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NUMERICAL SOLUTION OF CONSERVATIVE
FINITE-DIMENSIONAL STOCHASTIC
SCHRODINGER EQUATIONS!

By CARLOS M. MORA
Universidad de Concepcion

The paper deals with the numerical solution of the nonlinear It6
stochastic differential equations (SDEs) appearing in the unravelling of
quantum master equations. We first develop an exponential scheme of weak
order 1 for general globally Lipschitz SDEs governed by Brownian motions.
Then, we proceed to study the numerical integration of a class of locally
Lipschitz SDEs. More precisely, we adapt the exponential scheme obtained
in the first part of the work to the characteristics of certain finite-dimensional
nonlinear stochastic Schrédinger equations. This yields a numerical method
for the simulation of the mean value of quantum observables. We address the
rate of convergence arising in this computation. Finally, an experiment with

a representative quantum master equation illustrates the good performance of
the new scheme.

1. Introduction.

1.1. Objectives. The primary objective of this paper is to develop an efficient
scheme for the computation &f(Z,, AZ,), whereA € C%4, (., ") is the standard

scalar product inC¢, and Z, satisfies the following 1td stochastic differential
equation (SDE) or€¢:

t n t
Q) Zt:zo-i—/O (GZS-|—D(ZS))ds-4—Z/0 Ek(Zs)dWSk,
k=1
where||Zo|| = 1, W is ann-dimensional§,)-Brownian motion,

n
G=—iH—3Y LiLy,
k=1
@)

n

D(z) =Y _(Relz, Liz) Lz — 3R (z, Lix)z),
k=1
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providedz € C¢, and for anyk =1, ..., n andz € C¢
3) E(z) = Lyz — Re(z, Liz)z.

Here Ly € C%4 for all k =1,...,n, H is ad x d self-adjoint matrix, and
(2,5, P, (§):>0) is the underlaying filtered probability space. Our main moti-
vation came from the numerical simulation of the evolution of open quantum sys-
tems. To help to shed light on our problem, Section 1.2 below looks closely at this
application.

In this work we follow the strategy of constructing exponential schemes
adapted to the characteristics of (1). This approach is partially motivated by the
good behavior of the exponential integrators in the solution of certain class of
stiff ordinary differential equations, for example, those associated to both time-
dependent Schrodinger equations and oscillatory electric circuits (see, e.g., [12,
13] for more details). Another motivation came from a number of numerical
experiments which illustrate the good performance of the exponential schemes for
real SDEs with additive noise whose numerical solution by the standard explicit
schemes presents numerical instabilities (see, e.g., [4, 16, 24]).

To gain understanding of the exponential methods, this article starts by
generalizing the Euler-exponential scheme for SDEs with additive noise proposed
in [24] to the context of SDEs of the form

t t
) X, = X0+/ b(s, Xy) ds +/ o (s, Xs) dW,,
0 0

wheret € [0, T], X, takes values ifR¢ and b, o are smooth functions with
bounded derivatives up to appropriate order. Indeed, adapting the methodology
employed in [24], we develop the following numerical method:

SCHEME 1 (Euler-exponential). Leg},... &0, &1, ..., &8, ..., £, 4 ...,
&y, be independent and identically distributed (i.i.d.) real random variables with
symmetric law, variance 1 and moments of any order. Then, we consider the
recursive algorithm

T
Vint1l = exp(Jb(Tm, Vm)M)

<V +£(b(T Vi) — JIb(Ty, Vi)V, —|-\/z (T Vin) )
X m T ms Vm m> Vm m) MU ms Vi)ém |

.....

independent of,,, forallm=1,..., M — 1.

In particular, we check that the error betweErf (Xr) and Ef(VI{‘f) has a
linear behavior whenf is a smooth function, that is, Scheme 1 achieves the
first order of weak convergence. Preliminary numerical experiments suggest that
Scheme 1 should be useful in situations where the eigenvalués béve vastly
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different sizes and their real parts are nonpositive. In these circumstances, both
the explicit Euler scheme and the implicit Euler scheme present relevant time step
restrictions in many cases. It will be interesting to test more carefully Scheme 1
with theoretical and real-life scientific problems.

Combining Scheme 1 with splitting and projection techniques yields an efficient
numerical method for (1). To be more precise, we may split the drift term of (1)
into two components to obtain that there exists a continuous semimartifiggle
such that

t
) zfzzm4iﬁ GZ, dr+Sit,

for all ¢t € [T}, Tn+1]. Here T,, = mT /M. Then, solving explicitly, the linear
SDE (5) leads to

(6) Z; =exp(G(t — Tw) Z1,, + /Tt exp(G(t — 1)) dSy.1,,,

for anyr € [T, Tji1]. Letting Z,, ~ Z7,, and replacing the right-hand side of (6)
by random vectors with similar first three moment properties, we arrive at the weak

approximationd)i’jLl of Zz,.,, where
T T T &
7 oM — ex D) —+.—NE k.
@) i =exp(G M)<z+ A k<z>sm>
with €2, ..., &2,..., €L, _,,..., &}, asin Scheme 1. Now, the growth ® ’1{”

is stabilized by using a projection technique from the numerical treatment of
ordinary differential equations with invariants. To be precise, sjfid = 1, we

prOJectCDZ"’ 1 onto the surface of the unit ball. From this we derive the following
numerical method

ScHEME 2 (Version of the Euler-exponential method). Lfﬁg’ be a random

variable independent ofy, ..., &y—1 satisfying ||234|| = 1. Then, we define
recursively

Q%H:p(exp(G%)(ZM—i—D(ZM)— \/7215,((2 ))

where
(2) = { 0, if z=0,
PO=2 1z, ifz#£0.

The behavior ofZ,, is tested by means of a numerical experiment. Sometimes
the application of the projection techniques deteriorates the performance of the
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numerical method. For instance, Section VII.2 of [10] presents an example where a
projection procedure destroys the correct qualitative behavior of a symplectic Euler
method applied to a deterministic Hamiltonian system. In our case, a numerical
experiment with a representative quantum system, where the eigenval@es of
have vastly different sizes and their real parts are nonpositive, illustrates the very
good behavior ofZ,,. In this example, both versions explicit and implicit of the
Euler scheme fail.

A secondary objective of this paper is to study convergence properties of the
stochastic schemes used for computlB{Z;, AZ;). In particular, our interest
is focused on the rate of convergence BfZ,., AZ,). Most of the existing
convergence theory for numerical methods requires that the coefficients of the
SDE be globally Lipschitz. This motivates the increasing interest in addressing
convergence properties of the numerical schemes for more general class of SDEs
(see, e.g., [11, 20, 31]). In our case, the SDE under, consideration is only
locally Lipschitz. In fact, the coefficients of (1) have nonlinear grow. To deal
with this situation, we modify the standard arguments due to Talay [27, 28] and
Milshtein [21]. Another difficulty in carrying out our theoretical study is tipatas
a singularity at 0. To overcome it, we take some inspirations in [29] and [9].

This paper is organized in six sections. Section 2 is devoted to introduce
notation. Section 3 develops Scheme 1. In Section 4 we construct Scheme 2.
Section 5 provides the rate of convergenceE«()ﬁM, AZ%). Section 6 presents
a numerical experiment.

1.2. Motivation. We start with a brief exposition of some basic results of
guantum mechanics. The states of a quantum system are described by elements
of an adequate complex Hilbert spadg (-, -)) and the quantum observables are
represented by self-adjoint linear operator§ ifsee, e.g., [5] for more details). In
the Heisenberg picture, the evolution of the observablender the Born—Markov
approximation is given by the minimal solution of the adjoint quantum master
equation

d n
(8) Eft:G*f[—i-f[G—i-ZLthLk, T():A.
k=1

Heret;, L4, ..., L, are general linear operatorsfrand

n
G=—iH -3 LiLy,
k=1
with H self-adjoint operator iry. The operatord. ;, with j =1, ..., n, describe

the effects of the environment anfd represents the Hamiltonian. For a fuller
mathematical treatment of (8), we refer the reader to [8].
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The concept of quantum trajectories allows the simulation of the evolution of
the quantum observables. Let us consider the linear stochastic evolution equation
onb,

t n t
) n:m+Aan+ZﬁLﬂM¥,
k=1

whereB is ann-dimensional Brownian motion on the filtered complete probability
space(2, §, Q, (3:):>0). Then, in the measurement interpretation of the quantum
trajectories the stochastic procegs= Y, /| Y; || describes the evolution of a system
conditioned on continuous observation (see, e.g., [33] and the references given
there). Furthermore, the mean value of the observdbde the instant is given

by Eq(Y:, AY;). In fact, we may see that

(10) Eq(Y:, AY;) = (yo, 1y0),

under certain assumptions (see, e.g., [3, 15]).

The stochastic Schrodinger equations (1) allows the description of finite-
dimensional open quantum systems, for exampleits models. Let diny < +oo.
Applying Itd’s formula, integration by parts formula and Girsanov’s theorem, we
see that there exists a probability measBrevhich is equivalent t@, such that
Z, satisfies (1) and

(11) Eq(Y:, AY,) = |lyol’Ep(Z;, AZ;).
Combining (10) and (11) gives
(v, 7yo) = lyoll*Ep(Z;, AZ,).

Hence, the numerical solution of (1) leads to the numerical descriptigiypeof

7, y0), Which represents the mean value of the observdbée the instant. This
procedure has been proposed in the physical literature in order to overcome the
difficulties appearing in the direct numerical integration of (8) (see, e.g., [25]). Itis
worth pointing out that the numerical schemes for (8) exhibit serious numerical
instabilities and the dimension of the state space of (8) grows up very fagkto
when dimh — +o0. On the other hand, the computatiym, 7, yo) by means of

the numerical solution of (9) presents drawbacks. In this case, a large number
of numerical experiments show the blow-up of the trajectories of the explicit
Euler method even for small size of the discretization step. Furthermore, in many
situations the implicit Euler scheme, defined as in [17, 20, 22, 31], tends to the
origin very fast.

Finally, the efficient numerical solution of (1) also plays an important role
in the study of many infinite-dimensional quantum phenomena, for instance,
harmonic oscillators. Let difpn = +co0. Then, we may choose an adequate
sequencehy)q of finite-dimensional Hilbert spaces such thag(Y;, AY;) is
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approximated b¥eq(Y; 4, AY; 4), WhereY; 4 is the continuous adapted stochastic
process with values olj; given by

t n t
Yia=PaYo+ [0 GaYsads+ Y /0 PyLYy qdBY,
k=1
with P;:h — b, the orthogonal projection df overh, and

n
Gy=—iPqH — 5 PgLPyL;
j=1
(see, e.qg., [23], where the rate of convergence of this approximation is studied).
Thus, similar arguments to those used in the previous paragraph give rise to our
main problem.

2. Notation. Throughout this paper we assume that the filtered probability
spaces satisfy the usual hypotheses (see, e.g., [7, 26]). We will den&getbg
conditional expectation with respect§p. For simplicity, we restrict our attention
to the equidistant partitions of the time intery@l 7], that is, time discretizations
of the form (TM),,—o....m, with T = mT /M. To shorten notation, sometimes
the explicit dependence on the discretization stéps will be suppressed except
where we wish to emphasize its role. For example, we will wFjteénstead oﬂ",y
if no misunderstanding is possible. We will use the same synkb@) (resp.,

K andg) for different positive increasing functions (resp., positive real numbers)
having the common property to be independentof-urthermore, itis understood
thatgq is greater than or equal to 2.

Let A € C4. Then, the symbolAT will stand for the transpose OA.

Furthermore,A%/ will be the (k, j)th component of the matrixt and ||A| =

JXhoa X0 1ART 12, For anyx, y e C7, we will write (x, y) = ¢_; xFy* and
=1, xd).

For each € N, we define?, to be{l, ...,d}. Foranyp € &, with/ € N, and
x € T¢, with T € {R, C}, we set

!
Fp(x) = l_[ P
k=1
8 .
axpt
symbol 39 stands for the identity operator am®h = {0}. We say that a family
of functions(f5 : [0, T] x R¢ — R)yce belongs to@lf([o, T] x R4, R) if for any
peEP,withl <L,

anda? g(x) =

. aiplg(x), provided thatz : T¢ — T is smooth enough. The
X

0] affg is a continuous function whenever ©,
(i) 107 fo(t, x)| < K(T)(1+ ||x||?) forall r € [0, T], x € R¢, and € O.
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Moreover, we write(fy :R? — R)geo € C5(R?,R) if (fo)oco satisfies the
conditions (i) and (ii).

3. Euler-exponential schemefor general SDEs. To shed some new light on
exponential schemes, this section develops an exponential method for (4). First,
we introduce a local exponential representationkofSecond, we derive a first
weak order exponential scheme. Finally, we deal with the convergence analysis of
the new scheme.

3.1. Euler-exponential schemeThroughout this section, we assume that
b ando satisfy the standard conditions for the existence and unigueness of strong
solutions of (4) (see, e.g., [1, 26]). Furthermore, for ary[0, 7] andx € R?, we
consider the adapted stochastic process defined by

t t
12) X =x +/ b(r, X% dr +/ o(r, X3")dw,,
N N

for all € [s, T]. For abbreviation, we sef; := X?’x
The following theorem states a local representatioXN aff exponential type.

LEMmMA 1. Let 8 ’b be a continuous function for each € #3. Suppose
that 9;» and a,a"b W|th k=1, ...,d, are also continuous function¥ ¢ is a
§1,-random variable taking values HR" then for anyr € [T,,;, Tyn+1],

xTnE = DT &~Tig 4 ) e”’”mf)(’—s)a(s,Xsvaf)dWS

(13) + t IO IO =S) (p(T,,, &) — Jb(T,, £)E) ds
T

t N
+ ; e 0T 8)(1=5) (/T L) (u, XMT'"*S)du) ds + R 7,.

Recall from Sectiod that Jb(T,,, &) = (8,{b’<(Tm, £)k, j=1,...4- In addition,

8
t kl 1

.....

and R, 7,, is given by

S r . . .
ZZ/ Ib(T )1 S>/ (/ Li(a,{b)(u,ijf)dw;)bf(r, XTn) dr ds
m Tm

j=li=

+22/ Tb(Tn £)(1—s)

j=li=

) r . . .
x/ </ L,-(a){b)(u,X,{’”’g)dWL’t)aJ"(r,X,T'"’é)dWrds,
T \I T



NUMERICAL SOLUTION OF SSEs 2151

where

=—+Zbk8k+

2kl 1

and foranyi =1,...,n,
d .
L,‘ = ZO‘k’l af.
k=1

PROOF.  Using Itd’s formula (see, e.g., [6]), we obtain, for any 7;,,,

N
(s, X[ ) = b(T. &) + [ L) X[) du

d s . .
+Z[ 3 b(u, XISy a(xImsyJ,
. T,
J
Substituting this result into (12), we see that, for anyT,,,
x/mt §+/ b(Tm,S)ds—i—f (/ L(b)(u, XTmf)du)

. . 1
+Z/ ( . 8fb(u,X;'”’$)d(XuTm’s)f>ds+‘/T o (s, XIm&) dws.

Then, applying 1to’s formula to eadl{ b, withi =1, ..., d, yields

14 x/m*

t
—&1 /T Ib(Tp, )X ds + S Vi€ [Ty Tl
where

t t
Siz, = / (DT, &) — Tb(T,. )€) ds + / o (s, XTmE) dw,

m

+/t </S L), Xfm’f)du> ds

+ ZZf </Tm (/Tm L,’(agb)(u, X,,T'”’S)dW,i)bj(s, XST'”’S)dS) dr

j=li= T

+Zme</m</ L; @by (u, X% dW; )of (s, XTmf)dW>dr

with W0 :=u. Sinces. 7, is a continuous semimartingale, the linear SDE (14) has
the explicit solution established in (13) (see, e.g., [26])1
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We are now in position to deduce an exponential scheme of weak order 1 for (4).

SinceX7y,, . X;":l(”” we start by replacing by Xz, in (13). Then, we neglect

the terms of the last line of (13) because they involve multiple integrals. Applying
the It6—Taylor formula too (s, X;), we see thavt (s, X;) can be approximated
by o (T, X1,) in the first line of (13). Furthermore, we substitute; for XTm

in (13), whereX7,, is so chosen that it approximat&s, in a weak linear sense.
From this we may conclude that, for any [T, T,+1],

X M
Xt’\'Y Tm >

where for eacl§r,, -random variablé,

YEM = exp(Jb(Ty, £)(t — Tyy))E

t
(15) —}—/T exp(Jb(Tn, §)(t — 5))(b(Tn, &) — Jb(T, §)E) ds

+/Tt exp(Jb(Tn, §)(t — 5))o (T, §) dWs.

In order to replace/XT’” by other random variables with similar first three
moments, we use arguments similar to those in Section 3.2 of [24]. In fact, we
approximate the integral

Tm+l _ _ _ _
/ exXp(Jb (T, X1, )(t — ) (b(T. X1,) — Jb(Ty, X1, ) X7, ) ds

m

by a classical rectangle. Finally, we look for a linear functi@gy (7, -, -) such
that

Ex,, (Hu (T, X1, &m) Ht (T X1, Em) ).
with &, ..., Ey—1 defined as in Scheme 1, is the approximation of

T - - - %
/ IV K1) s (T, X, )0 (T, X)Xt (i) g

given by a classical rectangle rule. This yields Scheme 1 defined in the
Introduction, that is, the method

T
Vine1 = exp(Jb(Tm, Vm)M)

(V + — (b(Tm’ Vin) — Jb(Tp, Vm)vm) + \/go'(Tma Vm)gm)

REMARK 1. Letthe eigenvalues of theh have nonpositive real part. Since

T T\ 1 T \2
exp<]b(Tm, Vm)ﬁ) = <1 — Jb(T,,, Vm)ﬁ> + 0<(Jb(Tm, Vm)M> )
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Scheme 1 leads to the following version of the implicit Euler scheme which avoid
the solution of nonlinear equations systems:

T -1

Vi1 = (1 =277 0(Tn, vl))

1 T 1 17,1 T 1
X< Vit 37 0T, Vi) =TT, Vi) Vi) 3| 20 (Ton, Vi )-

REMARK 2. To carry out the computation of ekph (T, V,,)T /M) times
a vectoru in the implementation ofV, we may use Krylov approximations
with Lanczos process (see, e.g., [12, 14]). In fact, many numerical experiments
with high-dimensional problems illustrate the good performance of this numerical
method. Furthermore, Hochbruck and Lubich [12] proved that the convergence of
Krylov methods for exp/b(T,,, V,,)T/M)u is faster than that for the solution
of the linear equationI — Jb(T,,, V,,)T/M)x = u, which is required in both
methodsV?! and the usual implicit Euler scheme wheris linear. Alternative
methods are Padé approximations, Strang splitting, Chebyshev approximations
and Magnus integrators.

3.2. Rate of convergence.Similar to the Euler scheme (see, e.g., [2, 32)]), the
error betweerkt f(Xr) and Ef(VI%) can be expanded in powers Bf M under
general enough conditions. In particular, adapting the arguments used in [24] for
studying the rate of weak convergence of the Euler-exponential scheme for SDEs
with additive noise, we obtain the next theorem.

THEOREM 1. LetE|Xol|? < +oo for anyg > 2. Assume thab and o are

continuous functions such thafb and 8¢ are bounded continuous functions
for everyp € #, withl =1, ..., 9. Furthermore suppose that the components of
b 8”b o7 b, gta”a anda? 2 2o belong to@o([o T]x R4, R) wheneverp € 9,
W|th 1=0,1, 2. Letthe components (ﬁéb, 320 belong toeg([o, Tl xR R). If
f € CY(R?,R), then there exists a continuous functign with (W (s, -))sefo,7] €

C(R?,R), such that

T T
Ef(X7) —Ef(Vi) — M/o EW (s, X,)ds

(16) .
<KDL+ EIIXOII")<M) ,

provided thatVy have the same distribution &%,.

Before we prove Theorem 1, we present a series of observations and results.
We start by considering the probability space, &, P) that arises from the
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completion of the product measure space inducedhyg, P), Vo, and the random
variablesto, ..., £&y7—1. Then, we combine the completion @; ® a(VOM, &k <
[tM/T] — 1));>0 with a limit procedure to construct the filtratiaqi®,);>o that
satisfies the usual hypotheses (see, e.g., IV 48 of [7]). Let us use from now
on the same letter to designate a random variable and its natural extension to
the Cartesian product spa€g for instance(W;);>o also denotes the stochastic
process(W; o Prq);>0, Where Pg is the projection ofQ over Q. Thus, W is
ann-dimensional(®,)-Brownian motion,Xg and Vg are &g-measurable, and for
anym=0,...,M — 1, &, is both&7, ., -measurable and independent®f;, .
Therefore, we only need to verify (16) faf andV defined on$2, &, P, (&1)s>0).

Lemma 2 recalls well-known results. They may be deduced using Itd’s formula,
the existence of a smooth version of the stochastic flow X;**, and induction
(some details may be found, e.g., in [18, 30]).

LEMMA 2. Fix B € NU {0}. Suppose thak and o are continuous functions
such thata”b and 8”0 are bounded continuous functions i 7'] x R? for all
peP,withi=1,...,8+2.Let(go)seco belong to@,’f+2(Rd, R). Set

ug (s, x) =E(go(X1) /X5 =x) =E(go(X7)),

wheneves € [0, T]. Then(ug)gco € C5T*(RY, R) and for all§ € ©,

iug(s,x) = —L(up)(s, x) if s €[0,T]andx € R?,

(17)
ug(T, x) = go(x) if x e RY,
where
d d
L=k +1 > (oD Y
k=1 k=1
Furthermore for eachp € 2, with [ = ., B,we have—tafug is a continuous

function and

9 - .
Eafug = —3PL(ug).

In the sequel, the symbdt, also denotes the conditional expectation with
respect tas,.

LEMMA 3. Let ¢ € [T, Tu+1]. Then for any &7, -measurable random
variable&, we have

L 70
(18) Er,g(.¥)=g(T.§) +Ex, | (55’“’ Y6 + L1 £ (2)(s, Yf)) ds
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with
d

Lrg(9)(s,x) = Y (Jb(r, E)x + b(r, &) — Tb(r, )€) 9 g (s, %)

k=1
d

+3 Y (0o HE @ e) a8 g (s, x),
k,l=1

provided that all of the derivates af: [0, T] x R? — R appearing in(18) are
continuous

PRoOFE Observe that

t
V=gt [ DT ©YE +b(T.6) — Ib(T,. 5)ds

t
+ [ o eamw.
T
Then we use the Ité formula to obtain (18)]

The proof of Lemma 4 is based on the Burkholder—Davis—Gundy inequalities
and the discrete Gronwall-Bellman lemma. We omit it because it may be proved
in much the same way as Lemma 4.3 of [24].

LEMMA 4. Let assumptions of Lemnizhold. Then

(19) E( sup Iv17) < K()(1+ EQVYTI)

and

m

u T \4/2

In addition, for any &7, -random variable taking values ik?, we have

T \4/2
@1) Er,( sup ¥ - IO0Tog ) <k (r)( 1) @ I,

te[T, Tm+l]

The next result provides a uniform bound of weak order 1 for the weak error
betweenX7, andV,,, withm =0, ..., M.

PROPOSITION1. Suppose thab and o are continuous functions such that

fb and 870 are bounded continuous functions i 7] x R? for any p € &,
with [ = 1,...,4. Assume that the componentsadf/d: and do /3¢ belong to
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CY([0, T] x RY, R). Let (go)sco € CHERY, R). If Vo have the same distribution
as Xg, then

T
|Ego(XT,) — Ego (VM| < K(T)(1+ Ell Xoll") 2~

forall 0 e ® andm =0,..., M.

ProOF We first decompose the global error as a sum of terms involving
the solution of a parabolic partial differential equation (17). This methodology
goes back to Talay [27, 28] and Milshtein [21]. More precisely,dets, x) =
Ego(X7"). Then

[Ego(X7,,) — Ego (V)| < 3 IECH]| + IE(HJ),
j=1

whereHJ = u (T, YT‘;H) —up(Tj_1, Vj—1) and
J Y y Vj-1
Hi =uo(Tj, Vi) —ug(T;, Vi—1) +ug(Tj, Vi—1) — ue (T}, Yr; ).

with V;_1 = exp(Jb(Tj_1, V;—1)T/M)V,_1.
Due to Lemma 2, we can use Taylor’s formula to obtain

-3
H =3
=1

Vie
+Rj (V) + R (Y,

| =

- ~ ~ V_ ~
P D 80us(Ty, Vi) (Fp(Vj = Vi—n) = Fp(Yp ™ = V1))

" peP

~

with

1 = ~ ~ -
Rj(x) =20 > us(Tj, Vi + 85 j () (x = Vi) F(x = Vi),
" pePy

whereE; ; d x d is a diagonal matrix whose components belongQdl]. As

in the proof of Theorem 4.1 of [24], using the Cauchy—Schwarz inequality and
Lemmas 2 and 4, we now see that

. T\2
(22) EH{| < KI)EIVl"+ D (4 )
Due to Lemma 2, applying Lemma 3 gives

~ T Vi Vi
ETj,lej = /; ) ETjil(—£(M9)(S, YS ! l) + °CT_/‘71,V]'71(Z’[9)(S7 YS ! l)) ds.
J—
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Then, combining again Lemmas 2 and 3 yields

. T; t .
2 Vi-1
ET_,-_lHZJ :/7:‘ /T ETj—1°CTj,1,Vj,1(“9)(S’ Ysl )ds dt
j-144j-1
T, [t

] Vi_
+ Er,_y (L2up)(s. Y™
(23) b
Vi1
— L1(up)(s, Yy’ 7)) ds dt
T; t Vj*l
2 /T Er, L1, v, 1 (Lo (s, Yo dsdr,
j-1Tj-1
where

r i(abk>ak+l i(a( T)kl)akl

1= — L+ —(oo )V o,
ar} ot 2k’1:1 ot

Hence, (21) and Lemma 2 lead to

. T\?2
(24) EH| < KO)EIVal + D (5; )
From (19), (22) and (24) we deduce the assertion of this propositian.
We are now in position to show the main result of this section.

PROOF OF THEOREM 1. Let u(s,x) = Ef(X7"). As in the proof of
Proposition 1, we have

M
Ef (Vi) =E ) (H{" + HY") + Eu(0, Vo),

m=1
where Hp' = u(Ty, Y;" ™) — u(Tyu_1, Vin—1) and

Vin—1

Hin = u(va Vm) - u(va Vm—l) + M(Tm, Vm—l) - u(Tma YTm )a
with Vm—l = eXFXJb(Tm—L Vm—l)T/M) Vin—1.
It follows from Taylor’s formula that
51 R y } v 3
H'=3% =% 80u(Ty, Viu) (F5(Vin = Viu—1) = F3(Y7" " = Viu_1))
1=1"" pep
1 Vin—1

+ Ry (Vi) + R (Y7 7),

with

1 - ~ ~ .
Ryu(x) = g Z af”(Tm, Vin—1-+ Eﬁ,m(x)(x - Vm—l))Fﬁ(X = Vin—1),
" pePs
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whereEj ,, d x d is a diagonal matrix whose components belongQdl]. We

may check that, for any € P;, with [ = 1,...,5, there exist a constagt and
functionsc; in Cﬁ(Rd, R) such that, foralm =1,..., M,

. - T \?2
Ery +F3(Vin — V1) — En, s (Y)m M 7, 3) — c,s(vm_l)(w

T 3
< K(T)1+ ||vm_1||q><ﬁ) .

Proceeding similarly to the proof of (22), we obtain

apu(Th,VQ, )
(- () )
I1=1pep,
T7\3
K(ME|Vp-1lf + D — ) .
< K(T)E V1) + >(M)
Thus, the mean value theorem leads to
3Pu(Ty, Vi
E( ( ) Z )3 Mc,,(%ﬂ)‘
I=1pep,

(25)
T1\3
< KD)A+ENVaalD(5; )
As in the estimation oH? in the proof of Proposition 1, Lemmas 2 and 3 imply
that (23) holds with: instead ofug. Then, due to Lemma 2, applying Lemma 3

yields

T2 t K
ETm—lHé,n - M ZA(Tm 1’ m— l) + ETm 1/ T - CDm(r) drds df,
m—=1+Y1Im-1

whereA (s, &) = (L2, (u) — L1(u) + L2(u) — 2L, £ (L(w)))(s. ) and
@y (5) = (2L1(L)) + LL2W)) — L3U) — L2)) (s, ¥y ")

+ (3L, 1.2y (L2W) = BLT, 1 v,y (L2)) (5, YY)
Vin—1

(chm 1, Vin— 1( ) 3£2m 1, Vin— 1(°C(u)))(s Y )
Here
: k) gk 13 92 Tk, ak,l
oCz—Z(a 219) +§k§l<w(oa )’)ax’,

It follows from Lemma 2 that
3

T\2 T
(26) ‘E(Hé” - <M) A(Ty-1, vml)/Z)‘ < K(T)(E]| V1]l + ”(M) .
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Let

5
W(s,x)=A(s,x)/2+ Z Z oPu(s, x)cp(x)/ 1.
1=1 pep,
Using Lemma 2, we get th&t (s, -))scjo.7] € Cf,(IR{d, R). Then, it follows from
Proposition 1 that
T
(27) |E(V(Tn-1, Vin—1) — Y(Tu-1, X1,,_))| < K(T)(E| Xoll? + l)ﬁ'

Hence, combining Itd’s formula, (25), (26) and (27) give

T Tn T 3
‘E(H{" + H)' — I W (s, Xs)ds) < K(T)(E| Xoll4 + 1)(M> ,

Tin—1

which completes the proof..J

REMARK 3. According to Theorem 1, we have

T 2
IEf(X7) —2Ef (VA +Ef (VDI < K(T)(1+ EIIXollq)(M> :

provided the hypotheses of Theorem 1 hold. This yields a second weak order
scheme based on the extrapolation Scheme 1 (see, e.qg., [32]).

4. Euler-exponential scheme for stochastic Schrodinger equations. We
now turn to our main problem. To be more precise, this section provides an
heuristic deduction of a version of the Euler-exponential scheme adapted to the
characteristics of (1).

The following lemma discusses the existence and uniqueness of the solutions
of (1).

LEMMA 5. Let s > 0. Suppose thatt is a §,-random variable with
E||£]|2 < co. Then there exists a unique global continuous solution of the SDE

t n t
(28) 755 =¢ +/ (GZ55 + D(Z55))dr + > | Ex(Z5%)dw}
S k=1 N

forall r > s. Moreover || Z*¢ || = 1 a.s., provided that|£|| = 1 a.s. Recall thatD is
given by(2) and E1, ..., E, are defined by3).

PROOFE Since the drift coefficient of (28) andy, with k = 1,...,n, are
locally Lipschitz, applying the truncation method, we obtain that (28) has a unique
local solution (see, e.g., [19, 26]). That is, there exists a stopping ginseich
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that (28) has a unique solution upg@ This solution has continuous paths a.s. and
lim Sup - ||Zf’S | = oo a.s. onf¢: < oo}. By It0’s formula, we have

n TN AL
. 2 ! ! s
@9) Ziul?=leP+2Y [ Rezyt, Lizyt)a - 124 1P aw,
k=1"*

whererty is the first exit time onf’g of {x:]x|| < N}. This yields
E 2
E|Zen]” = EllEN
It follows thatz: = 400 a.s. (null set depending @r). Hence, there exists a unique
global continuous solution of (28).

Let S, = Y'_, [/ Re(Z}%, Ly ZS%)dWE. Then(S,);= is a continuous semi-
martingale and

t
(30) 125512 = ||€||2+f (L— 125512 dS,.

Thus, the last assertion of the lemma follows from the uniqueness of the solution
of (30). O

We split the drift coefficient of (1) intd@; Z; and D(Z,). Then, analysis similar
to that in the proof of Lemma 1 shows that, foralt [T, Tp,+1],

Tm s ZTm T;n s ZTm
t

V4 =exp(G(t — Tyw))Zz, + th exp(G(t — $))D(Z; )ds

(31)
n t
+Z/ exp(G(t — 5))Ex (21", Z7, ) dWF.
k=17 Tm

Let Z,, be a linear weak approximation ofr, satisfying | Znll = 1. We now
approximateZsT’”’ZTm by Z,, in the right-hand side of (31) to obtain

A t A n t A
(32) Z, ~elU Tz, + fT UID(Zy)ds + ) /T O B (Z) dWE
m k:J. m

forall t € [Ty, Tr+1]

Since our goal is to compute(Z,, AZ,), we should approximate the measure
induced by the right-hand side of (32). To this end, we use the procedure employed
in Section 3.1 to yield

ZTm+l ~ Z"H‘l = CI)i’j_’f/[,
where® is given by (7). Finally, to include the information thgZ, || = 1, Z,,41
is projected onto the manifold € C? : ||z|| = 1}. We thus get Scheme 2 defined in
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the Introduction, that is, the method
A T A A T T A
M= p<exp(GM) (z,,%’ + D(Z%)M +\ > Ek(z,;‘f)g,ﬁ»,
k=1
where

) = {O if z=0,
PRI=12/121, ifz 0.

REMARK 4. Asin Remark 1, Scheme 2 leads to the following version of the
implicit Euler scheme.

ScHEME 3. Let} be a random variable with/} | = 1. Then we set
M T\ oy vy T T < M gk
Ly = P((I - Gﬁ) (Im + D) 50+ M};Ek(lm )§m>>-
5. Rate of convergence. In this section we focus our interest on the proof of
the following theorem which establishes the linear convergenE&ZSﬂ, AZA";’).
THEOREM2. Suppose thafor all B € C4-4,
(33) E(Zo, BZo) ~ (24!, BZY)| < IBIK (1)
If the law of&3 has compact supparthen
(34) E(Zr, AZp) ~ EZY AZI < KD

The proof of Theorem 2 starts with bounds for the concentratigh.&s in [9,
29], the assumption tha‘;g} has compact support allows us to obtain this kind of
estimate.

LEMMA 6. Let gol have compact supporfThen there exists an increasing

positive functionkK, such that||<1>m+1|| < Ko(T), wheneverm =0,...,. M — 1
and| z|| = 1. Furthermore there exist € ]0, 1[ and a strictly positive constark
independent of botl" and T/M such that||<I>m+1|| > K, for all T/M < 4,
m=0,...,M—1,andz € C¢ with | z|| = 1.

PROOF Without loss of generality, we can assume that the suppoE@of
belongs to the intervdl-a, a]. Hence, for any € C¢, with |z|| = 1, we get

(35) H%D(z)+\/>ZEk(Z)E

< ZuLku +2a ZnLkn
2M
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For anyz € C?, Re(Gz, z) < 0, and so(exp(Gt));=0 iS @ contraction semigroup
onC?. This yields

|ouM || <

m+1 < Kx(T),

T T
e+ D@ Y Bk
k=1

for all z € C¢ with ||z|| = 1.
Let¢(z) = || exp(G)z||. From (35), we see that there exists ]0, 1[ such that

T [T L
Z+ D(Z)M + \/;I;Ek(Z)Em

for T/M < 6§ andz € C¢ with ||z|| = 1. Thus,

-
-2

T T Z
¢<z+ D(2)+-+ M;Euz)sﬁz) > K1,

provided that||z|| = 1 andT/M < §. This gives the last assertion of the lemma
sinceg (x) < || exp(GT/M)x| whenevelT /M < 1. O

Similarly to the proof of Theorem 1, in the sequel we consider the complete
probability spacg$, &, P) induced by the random variablé%”, &0, ..., Em—1.
In addition, (2, &, P, (&,),>0) will be the filtered probability space satisfying
the usual hypotheses induced Kk, ®,P) and the fiItration(a(Z%,gk:k <
[tM/T] — 1));>0. By abuse of notation, we use the same symibplfor the
conditional expectation with respect to b@hand®;.

The role of the local approximation in the proof of Theorem 1 is played here
by W given by

t "ot
A T
K k=1"S

wherer > s andforanyk =1, ..., n,

k =
Sy =1l—= D &Ity ool ().
M 0

The next two lemmas provide information about the behaviob of

LEMMA 7. Let g& have compact supporffhen there exists an increasing

M
positive functionK4 such that||\IltTm “II < Ka(T), whenever|jz|| = 1, m =

0,....M—1,and: € [T}, T )" ;1. Moreover there existA €10, 1[ and a strictly

M
positive constankz independent of boti™ and 7/M such that]|¥,” *|| > K3

forall T/M <A, m=0,....M —1,t [T}, T} ], andz e C? with ||| = 1.
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PROOF Foranyt € [Ty, T,n+1], we have

t
\pl:Tm’Z = eG(l‘—Tm) (Z + / eG(Tm_S)D(Z) dS

M k=1

Hence, analysis similar to that in the proof of Lemma 6 shows the assertion of
the lemma. O

T n
= Z EG(T'”I)Ek(Z)fy]fll{TmH}(f))-

LEMMA 8. Suppose thaKs, K4 and A are as in Lemma/. Assume that
feC%*4(0,T] x 8 x 4,C), with 8 = {z € C?: K3(T) < |1zll < K4(T)}. Let
s(} have compact supporthen for allt € [T, Tr+1[,

Er, £ (1. W, W)
t 9 _ R
+), Em(%“ W?"*Z,wff"’ﬂw%(f)(s,wfww?m’”)ds’
Tm

provided thatl' /M < A andz € C¢ with ||z|| = 1. Here
d

d 0 - _
LEF) s x,y) = Z(a—){,{(&x, V(Gx + D@)* + %(s, x, y)(Gy + D(z))k)-
k=1

Furthermore
Er, f(Tusa. W15 V1)
= f(Tn,2,2)
(37) +/ " ( (s, WIn2, WIS £ (f) (s, WIne, \IJT’"Z))ds
o T
+ f(Z, M),
where|| O (z, T/M)|| < K(T)(T/M)? and
2
L (f)(s, %, y) = L), x,3) + 221“218 kfl(s X, VE;j ) Ej(z)
J
92 f
iy Z(a L6 N E @ B
j=1k,I=1
a2f

25ty y)mkml)
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PrOOE Applying the 1t6 formula for a general semimartingale, we obtain, for
anyr e [Tm, Tm—i—l]a

Ex, f(t, ¥/, /") — f(T,2,2)

t 9 7
I ETm< % (s, W s, ) +£§<f>(s,\lf§"’z,wf’”’”)"s

+ 17,0 (DB, (f(f, W) = f (10 W)

d af Tn\z T,z T,z Tn,zn\k
—Zw(ﬁw;_ . )(\Ijt - v,
k=1

4 of T, T, T, Tz \k
3w @ W),
k=1

This gives (36). Furthermore, expanding

Tz v Tz T,z T,z
f (Tt \IJT:;+1 \IIT’:H) = f (T4, ¥ m+1— \IIT::H_)

in powers of(\IJT’" < \D%’:fr)j and(\IJ%’;’fl — \IJ;:ZS?)J’, with j =1,...,d, we
obtain (37). To thls end, we combine (36), Taylor's formula and the mean value
theorem. [

Note that the coefficients of (1) are not globally Lipschitz. To overcome this
difficulty, instead of using the solution of the usual (in this context) partial
differential equation associated to (28), we employ the funatidf, 7] x D — C
described byD = {(x, y):x,y € C%, (¥, x) # 0} and

U(S,.x, }’) = (}_}a TT—SX)/<)_)7X>5
wherer, is the solution of the backward quantum master equation (8)ptC? .
PROOF OFTHEOREM2. Leta:[0,T] x C? x C? ~ C be given by
O[(tvxv y) - (.)_)’ TT7[X>.

According to (8) and Itd’s formula, we ha&x(t, Z;, ﬁ) =a(s,z,z), forany
1 €[0,T]. Hence E(Z3%, AZF*) = (z, Tr—sz). We thus get

v(s,z,2) = E(ZST’Z, AZST’Z),
provided that|z|| = 1. Therefore,

(38) E(ZM AZMy_E(Zy,AZr)=Eu(T, 2}, 2M) — Ev(0, Zo, Zo).
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Suppose thaT/A/{ <min{8, A}, with § andA as in Lemma 6 and Lemma 7,
respectively. SincéZp|| = 1, from (8), (33) and (38), we conclude that

M
‘E(Z%, AZy) —E(Zr,AZr)— > E(H{' + HY')

m=1

< K(T)—

where

Hl — U(Tm, q)Zm 1 M’ qumflvM> _ U(Tm, eGT/MZm—]_, eGT/Mzm—l)

+U(Tm,€GT/MZm—1, eGT/MZm_ )—U<Tm,\I’Tm lZm 1 \PTm lzm 1)
and
HY' =U<T \I/ T-1:Zn-1 \I—’T:Z 12 1) —v(Tm_]_, Zm_]_, Zm—l)-

We proceed to es’uma’rﬁf1 From the construction of Scheme 2 and a simple
computation, we see that, for anye C? satisfying |z = 1 and p € # with
=123, we have

T 2
|Ex,_ F(@5M — eCT/Mz) —Er,  F3(0y" 1 — e0T/Mz)| < K(T)(M> '

Hence, combining Lemma 6 with the deterministic Taylor formula gives

T 2
(39) EH| < K(T)(M) .

This follows by the same method as in the estimation/dgf in the proof of
Proposition 1.
It remains to estimaté/;’. According to Lemma 8, we have

Tm Qv
ETm_lHén :ETm—l/T E(S,\IJST'" m-1 \IJ Zm- l)dS
m—1

T T - 5
(40) +Ezr, , Ly (v)(s gl Zm=1 gy I )ds
T,

m—1

A T
+ Ov <Zm—l, M .

We may now apply Lemma 8 to the terms of the right-hand side of (40) to obtain

k T\?
(41) EHY| < K(T)(M> .

To be more precise, fortunately a very long computation shows that

L:(0)(s.2,2) = (2. 77-5Gz) + (Gz, 77 —2) + Y_(Liz, Tr—s Li2),
k=1
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whenevel|z|| = 1. Since (8) leads to

v
E(&x’}’)
(42)
1 (. i} =
=5 ((y, G tr_sx) + (V. Tr—sGx) + Y (7. Lj‘TT—sij>>,
9y j:1

we deduce that, fofz| =1,
ov _ _
5(89 Z, Z) + °CZ(U)(S7 Z, Z) - 0

Therefore, Lemma 8 yields thEtTm_lHén is equal to

OU(Zm 1, )+ET / / Tm Zna \IJT'” Zn- 1)drds
Tn-1 -1 8}"

s _—
1 v Tm m—1 Tm m—1
i ET /m 1 /,n_l QCZ’"—l(g) (I’, Yr Wy ) drds
+ E Tn § i(cﬁ ~ (v))(r \Ij Zmp-1 W) drds
- Tn—1/Tn-21 or Zm-1 > T

Tw s —
" 1 N Tm Zm 1 T, Zm 1
+Er, 4 /ml - l£zm 1(°CZ; (v))( i\ )drds.
Hence, (41) follows from (42) and Lemma 7.

We conclude from (39) and (41) that (:§4) holds TotM < min{$, A}. Hence,
our claim follows from|| Z7|| =1 a.s. and|Z}| =1. O

REMARK 5. We expect that an expansion similar to (16) holds for the error
E(Zr,AZ7) — E(Z}, AZ}!). Nevertheless, the proof of this result is still in
progress.

REMARK 6. We now turn to (9) with dinhy = +oo. It is relevant to
characterize the global errdEq(Yr, AYr) — E(ZM AZM)| in function of M
and the dimension df,,,. A step toward this goal was given in [23], where the rate
of convergence oE(EY | AEY ) to Eq(Yr, AYr) is studied. HereE denotes
the numerical solution of (9) bf/ the Euler scheme. An objective of this paper is to
advance toward the solution of this problem.

6. Numerical experiment. This section illustrates the performance of the
schemeZ. To this end, we consider the following representative example of forced
and damped quantum harmonic oscillator in the interaction representation.
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EXAMPLE 1. Returning to Section 1.2, we chodse- 1%(Z.). Let (PK)kez,
be the canonical orthonormal basis on the spfé(iEJr). Then, the domain of
the operators:’ anda is {x € 12(Z1): Y =oklxk|? < +o0} and for allm € Z,

aTgom =+/m+ ly,+1 and
B { 0, if m=0,
aPm = M -1, if m > 0.

The Number operator is defined by= a'a.
We now simulate the Hamiltonian a&§ = z‘(cfr —a) + N. Furthermore, we set
L1=0.2a, L, =0.0142, L3 =0.1N andL4 = 0.1a".

In Example 1,5 describes the state space of a single mode of a quantized
electromagnetic field. The operatof, respectivelya, is the creation operator,
respectively annihilation operator. Then, for instance, the féah— a) describes
a linear pumping and.; simulates the damping due to photon emission.

To test the schem&, we setT = 100 andYy = ¢s. Moreover, we choosgy
as the linear manifold spanned ly; :0 < j < d} with d = 50. The objective
is to describe numericall¥q(Y; 50, NY; 50) for ¢ € [0, T]. As we comment in
Section 1.2, this task leads to solve (1) fo= 50. The parameters selected allow
us to obtain the “true” value dEq(Y; 50, NY; 50) by means of the solution of the
backward quantum master equation (8) associated to our SDE. To this end, we use
its explicit solution. It is worth pointing out that the numerical solution of finite-
dimensional backward quantum master equations presents serious drawbacks
when the dimension of the state space is high (see, e.g., [25]). In fact, some of
these problems can be observed in our example in&as&00.

In the numerical experiment, we compare Scheme 2, Scheme 3 and the
following version of the explicit Euler scheme:

- , if Ex11=0,
Erpi={- e
Exy1/llEgsall,  if Exp1 #0,
whereEy1 = E¢+(GEg+D(E)T/M+TIM X _y Ej(EpE] , with &g, ...
B, ... &Y 4,...,&L_;asin Scheme 2. In all codes; assumes valuesl, each

with probability 1/2.

Figure 1 shows the “true” solution and the approximations obtained by the
numerical schemes. Moreover, Table 1 looks at the dependence of thesgrrors
to the time step siz& /M, where

21074
e/(x. M)= max [E(Z;, NZ;)=2-10"* 37 (x]lis/100@0). N X} 00(@i))].
ji=J,.., k=1

whenevery denotes the numerical method and {0, ..., 100}. Indeed, Table 1
presents estimated valuessgfandA. HereA is the maximum of the length of the
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Fic. 1. Dotted line “true” solution solid line (a) explicit Euler scheméb) implicit Euler scheme
and (c) Euler-exponential scheme

90 percent confidence intervals taken over the instant of tifdes., 100,. We
use the batch method to estimate these intervals (see, e.g., [17]).

It can be seen from both Figure 1 and Table 1 that the Euler-exponential
scheme presents a superior performance than the other two numerical methods
for this example. For instance, the error induced by Scheme 3Mith16- 10°
is substantially greater than the error induced by Scheme 2 Mith 2 - 10°.

TABLE 1 R R
Errors versus step sizes for the explicit Euler metligdhe versignl
of the implicit Euler method and the Euler-exponential metiAod

M 2000 4000 8000 16000
e(E, M) 46.6545 467107 466381 235562
A(E, M)/2 0.023207 013302 031203 028929
e(I, M) 6.6179 55739 39754 25181
A, M)/2 0.030248 0045375 0037721 0054798
e(Z, M) 0.33533 02236 011426 0037446

A(Z, M)/2 0.066711 0059289 0077666 0098786
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FiG. 2. Errors versus step size for Schege/ =0, v, J =50, A andJ =100, ¢.

Furthermore, the accuracy of Scheme 2 is very good for large time step sizes. This
suggests thaZ shows great promise for the long time integration of stochastic
Schrédinger equations.

Finally, Figure 2 shows precision-step size diagrams. In particular, this figure
gives the error$J(Z,M), with J = 0,50, 100, versus the step SsiZE/M.
Moreover, it presents the best least square linear approximation ot:g¢&zh.).

From Figure 2, we see that the errors inducedZbglosely follow a straight line.
This is in a good agreement with Theorem 2.
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