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NUMERICAL SOLUTION OF CONSERVATIVE
FINITE-DIMENSIONAL STOCHASTIC

SCHRÖDINGER EQUATIONS1

BY CARLOS M. M ORA

Universidad de Concepción

The paper deals with the numerical solution of the nonlinear Itô
stochastic differential equations (SDEs) appearing in the unravelling of
quantum master equations. We first develop an exponential scheme of weak
order 1 for general globally Lipschitz SDEs governed by Brownian motions.
Then, we proceed to study the numerical integration of a class of locally
Lipschitz SDEs. More precisely, we adapt the exponential scheme obtained
in the first part of the work to the characteristics of certain finite-dimensional
nonlinear stochastic Schrödinger equations. This yields a numerical method
for the simulation of the mean value of quantum observables. We address the
rate of convergence arising in this computation. Finally, an experiment with
a representative quantum master equation illustrates the good performance of
the new scheme.

1. Introduction.

1.1. Objectives. The primary objective of this paper is to develop an efficient
scheme for the computation ofE〈Zt,AZt 〉, whereA ∈ Cd,d , 〈·, ·〉 is the standard
scalar product inCd , and Zt satisfies the following Itô stochastic differential
equation (SDE) onCd :

Zt = Z0 +
∫ t

0

(
GZs + D(Zs)

)
ds +

n∑
k=1

∫ t

0
Ek(Zs) dWk

s ,(1)

where‖Z0‖ = 1, W is ann-dimensional(Ft )-Brownian motion,

G = −iH − 1
2

n∑
k=1

L∗
kLk,

(2)

D(z) =
n∑

k=1

(
Re〈z,Lkz〉Lkz − 1

2 Re2〈z,Lkx〉z),
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providedz ∈ Cd , and for anyk = 1, . . . , n andz ∈ Cd

Ek(z) = Lkz − Re〈z,Lkz〉z.(3)

Here Lk ∈ Cd,d for all k = 1, . . . , n, H is a d × d self-adjoint matrix, and
(�,F,P, (Ft )t≥0) is the underlaying filtered probability space. Our main moti-
vation came from the numerical simulation of the evolution of open quantum sys-
tems. To help to shed light on our problem, Section 1.2 below looks closely at this
application.

In this work we follow the strategy of constructing exponential schemes
adapted to the characteristics of (1). This approach is partially motivated by the
good behavior of the exponential integrators in the solution of certain class of
stiff ordinary differential equations, for example, those associated to both time-
dependent Schrödinger equations and oscillatory electric circuits (see, e.g., [12,
13] for more details). Another motivation came from a number of numerical
experiments which illustrate the good performance of the exponential schemes for
real SDEs with additive noise whose numerical solution by the standard explicit
schemes presents numerical instabilities (see, e.g., [4, 16, 24]).

To gain understanding of the exponential methods, this article starts by
generalizing the Euler-exponential scheme for SDEs with additive noise proposed
in [24] to the context of SDEs of the form

Xt = X0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dWs,(4)

where t ∈ [0, T ], Xt takes values inRd and b, σ are smooth functions with
bounded derivatives up to appropriate order. Indeed, adapting the methodology
employed in [24], we develop the following numerical method:

SCHEME 1 (Euler-exponential). Letξ1
0 , . . . , ξn

0 , ξ1
1 , . . . , ξn

1 , . . . , ξ1
M−1, . . . ,

ξn
M−1 be independent and identically distributed (i.i.d.) real random variables with

symmetric law, variance 1 and moments of any order. Then, we consider the
recursive algorithm

Vm+1 = exp
(
Jb(Tm,Vm)

T

M

)

×
(
Vm + T

M

(
b(Tm,Vm) − Jb(Tm,Vm)Vm

) +
√

T

M
σ(Tm,Vm)ξm

)
,

whereTm = mT/M , Jb = (∂
j
x bk)k,j=1,...,d andξm = (ξ1

m, . . . , ξn
m)�. HereV0 is

independent ofξm for all m = 1, . . . ,M − 1.
In particular, we check that the error betweenEf (XT ) and Ef (V M

M ) has a
linear behavior whenf is a smooth function, that is, Scheme 1 achieves the
first order of weak convergence. Preliminary numerical experiments suggest that
Scheme 1 should be useful in situations where the eigenvalues ofJb have vastly
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different sizes and their real parts are nonpositive. In these circumstances, both
the explicit Euler scheme and the implicit Euler scheme present relevant time step
restrictions in many cases. It will be interesting to test more carefully Scheme 1
with theoretical and real-life scientific problems.

Combining Scheme 1 with splitting and projection techniques yields an efficient
numerical method for (1). To be more precise, we may split the drift term of (1)
into two components to obtain that there exists a continuous semimartingaleS·,Tm

such that

Zt = ZTm +
∫ t

Tm

GZr dr + St,Tm(5)

for all t ∈ [Tm,Tm+1]. Here Tm = mT/M . Then, solving explicitly, the linear
SDE (5) leads to

Zt = exp
(
G(t − Tm)

)
ZTm +

∫ t

Tm

exp
(
G(t − r)

)
dSr,Tm,(6)

for any t ∈ [Tm,Tm+1]. Letting Ẑm ≈ ZTm and replacing the right-hand side of (6)
by random vectors with similar first three moment properties, we arrive at the weak

approximation�Ẑm,M
m+1 of ZTm+1, where

�
z,M
m+1 = exp

(
G

T

M

)(
z + D(z)

T

M
+

√
T

M

n∑
k=1

Ek(z)ξ
k
m

)
,(7)

with ξ1
0 , . . . , ξn

0 , . . . , ξ1
M−1, . . . , ξ

n
M−1 as in Scheme 1. Now, the growth of�

Ẑm,M
m+1

is stabilized by using a projection technique from the numerical treatment of
ordinary differential equations with invariants. To be precise, since‖Zt‖ = 1, we

project�Ẑm,M
m+1 onto the surface of the unit ball. From this we derive the following

numerical method:

SCHEME 2 (Version of the Euler-exponential method). LetẐM
0 be a random

variable independent ofξ1, . . . , ξM−1 satisfying ‖ẐM
0 ‖ = 1. Then, we define

recursively

ẐM
m+1 = p

(
exp

(
G

T

M

)(
ẐM

m + D(ẐM
m )

T

M
+

√
T

M

n∑
k=1

Ek(Ẑ
M
m )ξk

m

))
,

where

p(z) =
{

0, if z = 0,

z/‖z‖, if z 	= 0.

The behavior ofẐm is tested by means of a numerical experiment. Sometimes
the application of the projection techniques deteriorates the performance of the
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numerical method. For instance, Section VII.2 of [10] presents an example where a
projection procedure destroys the correct qualitative behavior of a symplectic Euler
method applied to a deterministic Hamiltonian system. In our case, a numerical
experiment with a representative quantum system, where the eigenvalues ofG

have vastly different sizes and their real parts are nonpositive, illustrates the very
good behavior ofẐm. In this example, both versions explicit and implicit of the
Euler scheme fail.

A secondary objective of this paper is to study convergence properties of the
stochastic schemes used for computingE〈Zt,AZt 〉. In particular, our interest
is focused on the rate of convergence ofE〈Ẑm,AẐm〉. Most of the existing
convergence theory for numerical methods requires that the coefficients of the
SDE be globally Lipschitz. This motivates the increasing interest in addressing
convergence properties of the numerical schemes for more general class of SDEs
(see, e.g., [11, 20, 31]). In our case, the SDE under, consideration is only
locally Lipschitz. In fact, the coefficients of (1) have nonlinear grow. To deal
with this situation, we modify the standard arguments due to Talay [27, 28] and
Milshtein [21]. Another difficulty in carrying out our theoretical study is thatp has
a singularity at 0. To overcome it, we take some inspirations in [29] and [9].

This paper is organized in six sections. Section 2 is devoted to introduce
notation. Section 3 develops Scheme 1. In Section 4 we construct Scheme 2.
Section 5 provides the rate of convergence ofE〈ẐM

M ,AẐM
M 〉. Section 6 presents

a numerical experiment.

1.2. Motivation. We start with a brief exposition of some basic results of
quantum mechanics. The states of a quantum system are described by elements
of an adequate complex Hilbert space(h, 〈·, ·〉) and the quantum observables are
represented by self-adjoint linear operators inh (see, e.g., [5] for more details). In
the Heisenberg picture, the evolution of the observableA under the Born–Markov
approximation is given by the minimal solution of the adjoint quantum master
equation

d

dt
τt = G∗τt + τtG +

n∑
k=1

L∗
kτtLk, τ0 = A.(8)

Hereτt ,L1, . . . ,Ln are general linear operators inh and

G = −iH − 1
2

n∑
k=1

L∗
kLk,

with H self-adjoint operator inh. The operatorsLj , with j = 1, . . . , n, describe
the effects of the environment andH represents the Hamiltonian. For a fuller
mathematical treatment of (8), we refer the reader to [8].
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The concept of quantum trajectories allows the simulation of the evolution of
the quantum observables. Let us consider the linear stochastic evolution equation
onh,

Yt = y0 +
∫ t

0
GYs ds +

n∑
k=1

∫ t

0
LkYs dBk

s ,(9)

whereB is ann-dimensional Brownian motion on the filtered complete probability
space(�,F,Q, (Ft )t≥0). Then, in the measurement interpretation of the quantum
trajectories the stochastic processZt = Yt/‖Yt‖ describes the evolution of a system
conditioned on continuous observation (see, e.g., [33] and the references given
there). Furthermore, the mean value of the observableA at the instantt is given
by EQ〈Yt ,AYt 〉. In fact, we may see that

EQ〈Yt ,AYt 〉 = 〈y0, τty0〉,(10)

under certain assumptions (see, e.g., [3, 15]).
The stochastic Schrödinger equations (1) allows the description of finite-

dimensional open quantum systems, for example,q-bits models. Let dimh < +∞.
Applying Itô’s formula, integration by parts formula and Girsanov’s theorem, we
see that there exists a probability measureP, which is equivalent toQ, such that
Zt satisfies (1) and

EQ〈Yt ,AYt 〉 = ‖y0‖2EP〈Zt,AZt 〉.(11)

Combining (10) and (11) gives

〈y0, τty0〉 = ‖y0‖2EP〈Zt,AZt 〉.
Hence, the numerical solution of (1) leads to the numerical description of〈y0,

τty0〉, which represents the mean value of the observableA at the instantt . This
procedure has been proposed in the physical literature in order to overcome the
difficulties appearing in the direct numerical integration of (8) (see, e.g., [25]). It is
worth pointing out that the numerical schemes for (8) exhibit serious numerical
instabilities and the dimension of the state space of (8) grows up very fast to+∞
when dimh → +∞. On the other hand, the computation〈y0, τty0〉 by means of
the numerical solution of (9) presents drawbacks. In this case, a large number
of numerical experiments show the blow-up of the trajectories of the explicit
Euler method even for small size of the discretization step. Furthermore, in many
situations the implicit Euler scheme, defined as in [17, 20, 22, 31], tends to the
origin very fast.

Finally, the efficient numerical solution of (1) also plays an important role
in the study of many infinite-dimensional quantum phenomena, for instance,
harmonic oscillators. Let dimh = +∞. Then, we may choose an adequate
sequence(hd)d of finite-dimensional Hilbert spaces such thatEQ〈Yt ,AYt 〉 is
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approximated byEQ〈Yt,d ,AYt,d〉, whereYt,d is the continuous adapted stochastic
process with values onhd given by

Yt,d = PdY0 +
∫ t

0
GdYs,d ds +

n∑
k=1

∫ t

0
PdLkYs,d dBk

s ,

with Pd :h → hd the orthogonal projection ofh overhd and

Gd = −iPdH − 1
2

n∑
j=1

PdL∗
jPdLj

(see, e.g., [23], where the rate of convergence of this approximation is studied).
Thus, similar arguments to those used in the previous paragraph give rise to our
main problem.

2. Notation. Throughout this paper we assume that the filtered probability
spaces satisfy the usual hypotheses (see, e.g., [7, 26]). We will denote byEt the
conditional expectation with respect toFt . For simplicity, we restrict our attention
to the equidistant partitions of the time interval[0, T ], that is, time discretizations
of the form (T M

m )m=0,...,M , with T M
m = mT/M . To shorten notation, sometimes

the explicit dependence on the discretization stepT/M will be suppressed except
where we wish to emphasize its role. For example, we will writeTm instead ofT M

m

if no misunderstanding is possible. We will use the same symbolK(·) (resp.,
K andq) for different positive increasing functions (resp., positive real numbers)
having the common property to be independent ofM . Furthermore, it is understood
thatq is greater than or equal to 2.

Let A ∈ Cl,q . Then, the symbolA� will stand for the transpose ofA.
Furthermore,Ak,j will be the (k, j)th component of the matrixA and ‖A‖ =√∑l

k=1
∑q

j=1 |Ak,j |2. For anyx, y ∈ Cd , we will write 〈x, y〉 = ∑d
k=1 xkyk and

x̄ = (x1, . . . , xd).
For eachl ∈ N, we definePl to be{1, . . . , d}l . For any �p ∈ Pl , with l ∈ N, and

x ∈ Td , with T ∈ {R,C}, we set

F �p(x) =
l∏

k=1

xpk

and∂
�p
x g(x) = ∂

∂xp1 · · · ∂

∂xpl g(x), provided thatg :Td → T is smooth enough. The

symbol ∂0 stands for the identity operator andP0 = {0}. We say that a family
of functions(fθ : [0, T ] × Rd → R)θ∈� belongs toCL

p ([0, T ] × Rd,R) if for any
�p ∈ Pl , with l ≤ L,

(i) ∂
�p
x fθ is a continuous function wheneverθ ∈ �,

(ii) |∂ �p
x fθ (t, x)| ≤ K(T )(1+ ‖x‖q) for all t ∈ [0, T ], x ∈ Rd , andθ ∈ �.
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Moreover, we write(fθ :Rd → R)θ∈� ∈ CL
p (Rd,R) if (fθ )θ∈� satisfies the

conditions (i) and (ii).

3. Euler-exponential scheme for general SDEs. To shed some new light on
exponential schemes, this section develops an exponential method for (4). First,
we introduce a local exponential representation ofX. Second, we derive a first
weak order exponential scheme. Finally, we deal with the convergence analysis of
the new scheme.

3.1. Euler-exponential scheme.Throughout this section, we assume that
b andσ satisfy the standard conditions for the existence and uniqueness of strong
solutions of (4) (see, e.g., [1, 26]). Furthermore, for anys ∈ [0, T ] andx ∈ Rd , we
consider the adapted stochastic processX

s,x
t defined by

X
s,x
t = x +

∫ t

s
b(r,Xs,x

r ) dr +
∫ t

s
σ (r,Xs,x

r ) dWr,(12)

for all t ∈ [s, T ]. For abbreviation, we setXx
t := X

0,x
t .

The following theorem states a local representation ofX of exponential type.

LEMMA 1. Let ∂
�p
x b be a continuous function for each�p ∈ P3. Suppose

that ∂tb and ∂t∂
k
xb, with k = 1, . . . , d, are also continuous functions. If ξ is a

FTm-random variable taking values inRd , then for anyt ∈ [Tm,Tm+1],
X

Tm,ξ
t = eJb(Tm,ξ)(t−Tm)ξ +

∫ t

Tm

eJb(Tm,ξ)(t−s)σ (s,XTm,ξ
s ) dWs

+
∫ t

Tm

eJb(Tm,ξ)(t−s)(b(Tm, ξ) − Jb(Tm, ξ)ξ
)
ds(13)

+
∫ t

Tm

eJb(Tm,ξ)(t−s)

(∫ s

Tm

L(b)(u,XTm,ξ
u ) du

)
ds + Rt,Tm.

Recall from Section1 thatJb(Tm, ξ) = (∂
j
x bk(Tm, ξ))k,j=1,...,d . In addition,

L = ∂

∂t
+ 1

2

d∑
k,l=1

(σσ�)k,l ∂k,l
x

andRt,Tm is given by
d∑

j=1

n∑
i=0

∫ t

Tm

eJb(Tm,ξ)(t−s)
∫ s

Tm

(∫ r

Tm

Li(∂
j
x b)(u,XTm,ξ

u ) dWi
u

)
bj (r,XTm,ξ

r ) dr ds

+
d∑

j=1

n∑
i=0

∫ t

Tm

eJb(Tm,ξ)(t−s)

×
∫ s

Tm

(∫ r

Tm

Li(∂
j
x b)(u,XTm,ξ

u ) dWi
u

)
σ j,·(r,XTm,ξ

r ) dWr ds,



NUMERICAL SOLUTION OF SSEs 2151

where

L0 = ∂

∂t
+

d∑
k=1

bk ∂k
x + 1

2

d∑
k,l=1

(σσ�)k,l ∂k,l
x

and for anyi = 1, . . . , n,

Li =
d∑

k=1

σk,i ∂k
x .

PROOF. Using Itô’s formula (see, e.g., [6]), we obtain, for anys ≥ Tm,

b(s,XTm,ξ
s ) = b(Tm, ξ) +

∫ s

Tm

L(b)(u,XTm,ξ
u ) du

+
d∑

j=1

∫ s

Tm

∂j
x b(u,XTm,ξ

u ) d(XTm,ξ
u )j .

Substituting this result into (12), we see that, for anyt ≥ Tm,

X
Tm,ξ
t = ξ +

∫ t

Tm

b(Tm, ξ) ds +
∫ t

Tm

(∫ s

Tm

L(b)(u,XTm,ξ
u ) du

)
ds

+
d∑

j=1

∫ t

Tm

(∫ s

Tm

∂j
x b(u,XTm,ξ

u ) d(XTm,ξ
u )j

)
ds +

∫ t

Tm

σ (s,XTm,ξ
s ) dWs.

Then, applying Itô’s formula to each∂i
xb, with i = 1, . . . , d, yields

X
Tm,ξ
t = ξ +

∫ t

Tm

Jb(Tm, ξ)XTm,ξ
s ds + St,Tm ∀ t ∈ [Tm,Tm+1],(14)

where

St,Tm =
∫ t

Tm

(
b(Tm, ξ) − Jb(Tm, ξ)ξ

)
ds +

∫ t

rm

σ (s,XTm,ξ
s ) dWs

+
∫ t

Tm

(∫ s

Tm

L(b)(u,XTm,ξ
u ) du

)
ds

+
d∑

j=1

n∑
i=0

∫ t

Tm

(∫ r

Tm

(∫ s

Tm

Li(∂
j
x b)(u,XTm,ξ

u ) dWi
u

)
bj (s,XTm,ξ

s ) ds

)
dr

+
d∑

j=1

n∑
i=0

∫ t

Tm

(∫ r

Tm

(∫ s

Tm

Li(∂
j
x b)(u,XTm,ξ

u ) dWi
u

)
σ j,·(s,XTm,ξ

s ) dWs

)
dr,

with W0
u := u. SinceS·,Tm is a continuous semimartingale, the linear SDE (14) has

the explicit solution established in (13) (see, e.g., [26]).�
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We are now in position to deduce an exponential scheme of weak order 1 for (4).

SinceXTm+1 = X
Tm,XTm

Tm+1
, we start by replacingξ by XTm in (13). Then, we neglect

the terms of the last line of (13) because they involve multiple integrals. Applying
the Itô–Taylor formula toσ(s,Xs), we see thatσ(s,Xs) can be approximated
by σ(Tm,XTm) in the first line of (13). Furthermore, we substituteXTm for X̄Tm

in (13), whereX̄Tm is so chosen that it approximatesXTm in a weak linear sense.
From this we may conclude that, for anyt ∈ [Tm,Tm+1],

Xt ≈ Y
X̄Tm,M
t ,

where for eachFTm -random variableξ ,

Y
ξ,M
t = exp

(
Jb(Tm, ξ)(t − Tm)

)
ξ

+
∫ t

Tm

exp
(
Jb(Tm, ξ)(t − s)

)(
b(Tm, ξ) − Jb(Tm, ξ)ξ

)
ds(15)

+
∫ t

Tm

exp
(
Jb(Tm, ξ)(t − s)

)
σ(Tm, ξ) dWs.

In order to replaceY
X̄Tm,M

Tm+1
by other random variables with similar first three

moments, we use arguments similar to those in Section 3.2 of [24]. In fact, we
approximate the integral∫ Tm+1

Tm

exp
(
Jb

(
Tm, X̄Tm

)
(t − s)

)(
b
(
Tm, X̄Tm

) − Jb
(
Tm, X̄Tm

)
X̄Tm

)
ds

by a classical rectangle. Finally, we look for a linear functionHM(Tm, ·, ·) such
that

ETm

(
HM

(
Tm, X̄Tm, ξm

)
HM

(
Tm, X̄Tm, ξm

)�)
,

with ξ0, . . . , ξM−1 defined as in Scheme 1, is the approximation of∫ Tm+1

Tm

eJb(Tm,X̄Tm)(Tm+1−s)σ
(
Tm, X̄Tm

)
σ

(
Tm, X̄Tm

)�
eJb(Tm,X̄Tm)�(Tm+1−s) ds

given by a classical rectangle rule. This yields Scheme 1 defined in the
Introduction, that is, the method

Vm+1 = exp
(
Jb(Tm,Vm)

T

M

)

×
(
Vm + T

M

(
b(Tm,Vm) − Jb(Tm,Vm)Vm

) +
√

T

M
σ(Tm,Vm)ξm

)
.

REMARK 1. Let the eigenvalues of theJb have nonpositive real part. Since

exp
(
Jb(Tm,Vm)

T

M

)
=

(
I − Jb(Tm,Vm)

T

M

)−1

+ O

((
Jb(Tm,Vm)

T

M

)2)
,
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Scheme 1 leads to the following version of the implicit Euler scheme which avoid
the solution of nonlinear equations systems:

V 1
m+1 =

(
I − T

M
Jb(Tm,V 1

m)

)−1

×
(
V 1

m + T

M

(
b(Tm,V 1

m) − Jb(Tm,V 1
m)V 1

m

) +
√

T

M
σ(Tm,V 1

m)ξm

)
.

REMARK 2. To carry out the computation of exp(Jb(Tm,Vm)T /M) times
a vector u in the implementation ofV , we may use Krylov approximations
with Lanczos process (see, e.g., [12, 14]). In fact, many numerical experiments
with high-dimensional problems illustrate the good performance of this numerical
method. Furthermore, Hochbruck and Lubich [12] proved that the convergence of
Krylov methods for exp(Jb(Tm,Vm)T /M)u is faster than that for the solution
of the linear equation(I − Jb(Tm,Vm)T /M)x = u, which is required in both
methodsV 1 and the usual implicit Euler scheme whenb is linear. Alternative
methods are Padé approximations, Strang splitting, Chebyshev approximations
and Magnus integrators.

3.2. Rate of convergence.Similar to the Euler scheme (see, e.g., [2, 32]), the
error betweenEf (XT ) andEf (V M

M ) can be expanded in powers ofT/M under
general enough conditions. In particular, adapting the arguments used in [24] for
studying the rate of weak convergence of the Euler-exponential scheme for SDEs
with additive noise, we obtain the next theorem.

THEOREM 1. Let E‖X0‖q < +∞ for any q ≥ 2. Assume thatb and σ are
continuous functions such that∂

�p
x b and ∂

�p
x σ are bounded continuous functions

for every �p ∈ Pl , with l = 1, . . . ,9. Furthermore, suppose that the components of
∂
∂t

∂
�p
x b, ∂

�p
x

∂
∂t

b, ∂
∂t

∂
�p
x σ and∂

�p
x

∂
∂t

σ belong toC0
p([0, T ] × Rd,R) whenever�p ∈ Pl ,

with l = 0,1,2. Let the components of∂
2

∂t2b, ∂2

∂t2σ belong toC0
p([0, T ]× Rd,R). If

f ∈ C9
p(Rd,R), then there exists a continuous function	, with (	(s, ·))s∈[0,T ] ∈

C4
p(Rd,R), such that∣∣∣∣Ef (XT ) − Ef (V M

M ) − T

M

∫ T

0
E	(s,Xs) ds

∣∣∣∣
(16)

≤ K(T )(1+ E‖X0‖q)

(
T

M

)2

,

provided thatV0 have the same distribution asX0.

Before we prove Theorem 1, we present a series of observations and results.
We start by considering the probability space(�̄,G, P̄) that arises from the
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completion of the product measure space induced by(�,F,P), V0, and the random
variablesξ0, . . . , ξM−1. Then, we combine the completion of(Ft ⊗σ(V M

0 , ξk : k ≤
[tM/T ] − 1))t≥0 with a limit procedure to construct the filtration(Gt )t≥0 that
satisfies the usual hypotheses (see, e.g., IV 48 of [7]). Let us use from now
on the same letter to designate a random variable and its natural extension to
the Cartesian product space�̄, for instance,(Wt)t≥0 also denotes the stochastic
process(Wt ◦ Pr�)t≥0, where Pr� is the projection of�̄ over �. Thus,W is
ann-dimensional(Gt )-Brownian motion,X0 andV0 areG0-measurable, and for
any m = 0, . . . ,M − 1, ξm is both GTm+1-measurable and independent ofGTm .
Therefore, we only need to verify (16) forX andV defined on(�̄,G, P̄, (Gt )t≥0).

Lemma 2 recalls well-known results. They may be deduced using Itô’s formula,
the existence of a smooth version of the stochastic flowx �→ X

s,x
t , and induction

(some details may be found, e.g., in [18, 30]).

LEMMA 2. Fix β ∈ N ∪ {0}. Suppose thatb andσ are continuous functions
such that∂ �p

x b and ∂
�p
x σ are bounded continuous functions on[0, T ] × Rd for all

�p ∈ Pl , with l = 1, . . . , β + 2. Let (gθ )θ∈� belong toCβ+2
p (Rd,R). Set

uθ(s, x) = E
(
gθ (XT )�Xs = x

) = E
(
gθ (X

s,x
T )

)
,

whenevers ∈ [0, T ]. Then(uθ )θ∈� ∈ C
β+2
p (Rd,R) and for all θ ∈ �,

∂

∂s
uθ (s, x) = −L(uθ )(s, x) if s ∈ [0, T ] andx ∈ Rd,

(17)
uθ(T , x) = gθ (x) if x ∈ Rd,

where

L =
d∑

k=1

bk ∂k
x + 1

2

d∑
k,l=1

(σσ�)k,l ∂k,l
x .

Furthermore, for each �p ∈ Pl , with l = 0, . . . , β, we have∂
∂t

∂
�p
x uθ is a continuous

function and

∂

∂t
∂ �p
x uθ = −∂ �p

x L(uθ ).

In the sequel, the symbolEt also denotes the conditional expectation with
respect toGt .

LEMMA 3. Let t ∈ [Tm,Tm+1]. Then, for any GTm-measurable random
variableξ , we have

ETmg(t, Y
ξ
t ) = g(Tm, ξ) + ETm

∫ t

Tm

(
∂

∂t
g(s, Y ξ

s ) + LTm,ξ (g)(s, Y ξ
s )

)
ds,(18)
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with

Lr,ξ (g)(s, x) =
d∑

k=1

(
Jb(r, ξ)x + b(r, ξ) − Jb(r, ξ)ξ

)k
∂k
xg(s, x)

+ 1
2

d∑
k,l=1

(σσ�)k,l(r, ξ) ∂k,l
x g(s, x),

provided that all of the derivates ofg : [0, T ] × Rd → R appearing in(18) are
continuous.

PROOF. Observe that

Y
ξ
t = ξ +

∫ t

Tm

(
Jb(Tm, ξ)Y ξ

s + b(Tm, ξ) − Jb(Tm, ξ)ξ
)
ds

+
∫ t

Tm

σ (Tm, ξ) dWs.

Then we use the Itô formula to obtain (18).�

The proof of Lemma 4 is based on the Burkholder–Davis–Gundy inequalities
and the discrete Gronwall–Bellman lemma. We omit it because it may be proved
in much the same way as Lemma 4.3 of [24].

LEMMA 4. Let assumptions of Lemma1 hold. Then

E
(

sup
m=0,...,M

‖V M
m ‖q

)
≤ K(T )

(
1+ E(‖V M

0 ‖q)
)

(19)

and

ETm

(∥∥V M
m+1 − eJb(Tm,V M

m )T /MV M
m

∥∥q) ≤ K(T )

(
T

M

)q/2

(1+ ‖V M
m ‖q).(20)

In addition, for anyGTm-random variableξ taking values inRd , we have

ETm

(
sup

t∈[Tm,Tm+1]
∥∥Y ξ,M

t − eJb(Tm,ξ)(t−Tm)ξ
∥∥q

)
≤ K(T )

(
T

M

)q/2

(1+ ‖ξ‖q).(21)

The next result provides a uniform bound of weak order 1 for the weak error
betweenXTm andVm, with m = 0, . . . ,M .

PROPOSITION 1. Suppose thatb and σ are continuous functions such that
∂

�p
x b and ∂

�p
x σ are bounded continuous functions on[0, T ] × Rd for any �p ∈ Pl ,

with l = 1, . . . ,4. Assume that the components of∂b/∂t and ∂σ/∂t belong to
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C0
p([0, T ] × Rd,R). Let (gθ )θ∈� ∈ C4

p(Rd,R). If V0 have the same distribution
asX0, then ∣∣Egθ

(
XTm

) − Egθ (V
M
m )

∣∣ ≤ K(T )(1+ E‖X0‖q)
T

M

for all θ ∈ � andm = 0, . . . ,M .

PROOF. We first decompose the global error as a sum of terms involving
the solution of a parabolic partial differential equation (17). This methodology
goes back to Talay [27, 28] and Milshtein [21]. More precisely, letuθ(s, x) =
Egθ (X

s,x
Tm

). Then

∣∣Egθ

(
XTm

) − Egθ (Vm)
∣∣ ≤

m∑
j=1

|E(H
j
1 )| + |E(H

j
2 )|,

whereH
j
2 = uθ(Tj , Y

Vj−1
Tj

) − uθ(Tj−1,Vj−1) and

H
j
1 = uθ(Tj ,Vj ) − uθ(Tj , Ṽj−1) + uθ(Tj , Ṽj−1) − uθ

(
Tj ,Y

Vj−1
Tj

)
,

with Ṽj−1 = exp(Jb(Tj−1,Vj−1)T /M)Vj−1.
Due to Lemma 2, we can use Taylor’s formula to obtain

H
j
1 =

3∑
l=1

1

l!
∑
�p∈Pl

∂ �p
x uθ (Tj , Ṽj−1)

(
F �p(Vj − Ṽj−1) − F �p

(
Y

Vj−1
Tj

− Ṽj−1
))

+ Rj(Vj ) + Rj

(
Y

Vj−1
Tj

)
,

with

Rj(x) = 1

4!
∑
�p∈P4

∂ �p
x uθ

(
Tj , Ṽj−1 + � �p,j (x)(x − Ṽj−1)

)
F �p(x − Ṽj−1),

where� �p,j d × d is a diagonal matrix whose components belong to[0,1]. As
in the proof of Theorem 4.1 of [24], using the Cauchy–Schwarz inequality and
Lemmas 2 and 4, we now see that

|EH
j
1 | ≤ K(T )(E‖Vj−1‖q + 1)

(
T

M

)2

.(22)

Due to Lemma 2, applying Lemma 3 gives

ETj−1H
j
2 =

∫ Tj

Tj−1

ETj−1

(−L(uθ )(s, Y
Vj−1
s ) + LTj−1,Vj−1(uθ )(s, Y

Vj−1
s )

)
ds.
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Then, combining again Lemmas 2 and 3 yields

ETj−1H
j
2 =

∫ Tj

Tj−1

∫ t

Tj−1

ETj−1L
2
Tj−1,Vj−1

(uθ )(s, Y
Vj−1
s ) ds dt

+
∫ Tj

Tj−1

∫ t

Tj−1

ETj−1

(
L2(uθ )(s, Y

Vj−1
s )

(23)
− L1(uθ )(s, Y

Vj−1
s )

)
ds dt

− 2
∫ Tj

Tj−1

∫ t

Tj−1

ETj−1LTj−1,Vj−1(L(uθ ))(s, Y
Vj−1
s ) ds dt,

where

L1 =
d∑

k=1

(
∂

∂t
bk

)
∂k
x + 1

2

d∑
k,l=1

(
∂

∂t
(σσ�)k,l

)
∂k,l
x .

Hence, (21) and Lemma 2 lead to

|EH
j
2 | ≤ K(T )(E‖Vj−1‖q + 1)

(
T

M

)2

.(24)

From (19), (22) and (24) we deduce the assertion of this proposition.�

We are now in position to show the main result of this section.

PROOF OF THEOREM 1. Let u(s, x) = Ef (X
s,x
T ). As in the proof of

Proposition 1, we have

Ef (VM) = E
M∑

m=1

(Hm
1 + Hm

2 ) + Eu(0,V0),

where Hm
2 = u(Tm,Y

Vm−1
Tm

) − u(Tm−1,Vm−1) and

Hm
1 = u(Tm,Vm) − u(Tm, Ṽm−1) + u(Tm, Ṽm−1) − u

(
Tm,Y

Vm−1
Tm

)
,

with Ṽm−1 = exp(Jb(Tm−1,Vm−1)T /M)Vm−1.
It follows from Taylor’s formula that

Hm
1 =

5∑
l=1

1

l!
∑
�p∈Pl

∂ �p
x u(Tm, Ṽm−1)

(
F �p(Vm − Ṽm−1) − F �p

(
Y

Vm−1
Tm

− Ṽm−1
))

+ R1
m(Vm) + Rm

(
Y

Vm−1
Tm

)
,

with

Rm(x) = 1

6!
∑
�p∈P6

∂ �p
x u

(
Tm, Ṽm−1 + � �p,m(x)(x − Ṽm−1)

)
F �p(x − Ṽm−1),
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where� �p,m d × d is a diagonal matrix whose components belong to[0,1]. We
may check that, for any�p ∈ Pl , with l = 1, . . . ,5, there exist a constantq and
functionsc �p in C4

p(Rd,R) such that, for allm = 1, . . . ,M ,∣∣∣∣ETm−1F �p(Vm − Ṽm−1) − ETk
F �p

(
Y

Vm−1,M

Tm
− Ṽm−1

) − c �p(Vm−1)

(
T

M

)2∣∣∣∣
≤ K(T )(1+ ‖Vm−1‖q)

(
T

M

)3

.

Proceeding similarly to the proof of (22), we obtain∣∣∣∣∣E
(
Hm

1 −
(

T

M

)2 5∑
l=1

∑
�p∈Pl

∂
�p
x u(Tm, Ṽm−1)

l! c �p(Vm−1)

)∣∣∣∣∣
≤ K(T )(E‖Vm−1‖q + 1)

(
T

M

)3

.

Thus, the mean value theorem leads to∣∣∣∣∣E
(
Hm

1 −
(

T

M

)2 5∑
l=1

∑
�p∈Pl

∂
�p
x u(Tm,Vm−1)

l! c �p(Vm−1)

)∣∣∣∣∣
(25)

≤ K(T )(1+ E‖Vm−1‖q)

(
T

M

)3

.

As in the estimation ofH 2
m in the proof of Proposition 1, Lemmas 2 and 3 imply

that (23) holds withu instead ofuθ . Then, due to Lemma 2, applying Lemma 3
yields

ETm−1H
m
2 = T 2

2M2�(Tm−1,Vm−1) + ETm−1

∫ Tm

Tm−1

∫ t

Tm−1

∫ s

Tm−1

�m(r) dr ds dt,

where�(s, ξ) = (L2
s,ξ (u) − L1(u) + L2(u) − 2Ls,ξ (L(u)))(s, ξ) and

�m(s) = (
2L1(L(u)) + L(L1(u)) − L3(u) − L2(u)

)
(s, Y

Vm−1
s )

+ (
3LTm−1,Zm−1(L

2(u)) − 3LTm−1,Vm−1(L1(u))
)
(s, Y

Vm−1
s )

+ (
L3

Tm−1,Vm−1
(u) − 3L2

Tm−1,Vm−1
(L(u))

)
(s, Y

Vm−1
s ).

Here

L2 =
d∑

k=1

(
∂2

∂t2bk

)
∂k
x + 1

2

d∑
k,l=1

(
∂2

∂t2(σσ�)k,l

)
∂k,l
x .

It follows from Lemma 2 that∣∣∣∣E(
Hm

2 −
(

T

M

)2

�(Tm−1,Vm−1)/2
)∣∣∣∣ ≤ K(T )(E‖Vm−1‖q + 1)

(
T

M

)3

.(26)
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Let

	(s, x) = �(s, x)/2+
5∑

l=1

∑
�p∈Pl

∂ �p
x u(s, x)c �p(x)/ l!.

Using Lemma 2, we get that(	(s, ·))s∈[0,T ] ∈ C4
p(Rd,R). Then, it follows from

Proposition 1 that∣∣E(
	(Tm−1,Vm−1) − 	(Tm−1,XTm−1)

)∣∣ ≤ K(T )(E‖X0‖q + 1)
T

M
.(27)

Hence, combining Itô’s formula, (25), (26) and (27) give∣∣∣∣E(
Hm

1 + Hm
2 − T

M

∫ Tm

Tm−1

	(s,Xs) ds

)∣∣∣∣ ≤ K(T )(E‖X0‖q + 1)

(
T

M

)3

,

which completes the proof.�

REMARK 3. According to Theorem 1, we have

|Ef (XT ) − 2Ef (V 2M
2M ) + Ef (V M

M )| ≤ K(T )(1+ E‖X0‖q)

(
T

M

)2

,

provided the hypotheses of Theorem 1 hold. This yields a second weak order
scheme based on the extrapolation Scheme 1 (see, e.g., [32]).

4. Euler-exponential scheme for stochastic Schrödinger equations. We
now turn to our main problem. To be more precise, this section provides an
heuristic deduction of a version of the Euler-exponential scheme adapted to the
characteristics of (1).

The following lemma discusses the existence and uniqueness of the solutions
of (1).

LEMMA 5. Let s ≥ 0. Suppose thatξ is a Fs -random variable with
E‖ξ‖2 < ∞. Then there exists a unique global continuous solution of the SDE

Z
s,ξ
t = ξ +

∫ t

s

(
GZs,ξ

r + D(Zs,ξ
r )

)
dr +

n∑
k=1

∫ t

s
Ek(Z

s,ξ
r ) dWk

r(28)

for all t ≥ s. Moreover, ‖Zs,ξ‖ = 1 a.s., provided that‖ξ‖ = 1 a.s. Recall thatD is
given by(2) andE1, . . . ,En are defined by(3).

PROOF. Since the drift coefficient of (28) andEk , with k = 1, . . . , n, are
locally Lipschitz, applying the truncation method, we obtain that (28) has a unique
local solution (see, e.g., [19, 26]). That is, there exists a stopping timeζξ such
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that (28) has a unique solution up toζξ . This solution has continuous paths a.s. and

limsupt→ζξ− ‖Zs,ξ
t ‖ = ∞ a.s. on{ζξ < ∞}. By Itô’s formula, we have

∥∥Zs,ξ
τN∧t

∥∥2 = ‖ξ‖2 + 2
n∑

k=1

∫ τN∧t

s
Re〈Zs,ξ

r ,LkZ
s,ξ
r 〉(1− ‖Zs,ξ

r ‖2) dWk
r ,(29)

whereτN is the first exit time ofZs,ξ
t of {x :‖x‖ ≤ N}. This yields

E
∥∥Zs,ξ

τN∧t

∥∥2 = E‖ξ‖2.

It follows thatζξ = +∞ a.s. (null set depending onξ ). Hence, there exists a unique
global continuous solution of (28).

Let St = ∑n
k=1

∫ t
s Re〈Zs,ξ

r ,LkZ
s,ξ
r 〉dWk

r . Then (St )t≥s is a continuous semi-
martingale and

‖Zs,ξ
t ‖2 = ‖ξ‖2 +

∫ t

s
(1− ‖Zs,ξ

r ‖2) dSr .(30)

Thus, the last assertion of the lemma follows from the uniqueness of the solution
of (30). �

We split the drift coefficient of (1) intoGZs andD(Zs). Then, analysis similar
to that in the proof of Lemma 1 shows that, for allt ∈ [Tm,Tm+1],

Z
Tm,ZTm
t = exp

(
G(t − Tm)

)
ZTm +

∫ t

Tm

exp
(
G(t − s)

)
D(Z

Tm,ZTm
s ) ds

(31)

+
n∑

k=1

∫ t

Tm

exp
(
G(t − s)

)
Ek

(
ZTm

s ,ZTm

)
dWk

s .

Let Ẑm be a linear weak approximation ofZTm satisfying‖Ẑm‖ = 1. We now

approximateZ
Tm,ZTm
s by Ẑm in the right-hand side of (31) to obtain

Zt ≈ eG(t−Tm)Ẑm +
∫ t

Tm

eG(t−s)D(Ẑm)ds +
n∑

k=1

∫ t

Tm

eG(t−s)Ek(Ẑm) dWk
s(32)

for all t ∈ [Tm,Tm+1].
Since our goal is to computeE〈Zt,AZt 〉, we should approximate the measure

induced by the right-hand side of (32). To this end, we use the procedure employed
in Section 3.1 to yield

ZTm+1 ≈ Z̄m+1 = �
Ẑm,M
m+1 ,

where� is given by (7). Finally, to include the information that‖Zt‖ = 1, Z̄m+1
is projected onto the manifold{z ∈ Cd :‖z‖ = 1}. We thus get Scheme 2 defined in
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the Introduction, that is, the method

ẐM
m+1 = p

(
exp

(
G

T

M

)(
ẐM

m + D(ẐM
m )

T

M
+

√
T

M

n∑
k=1

Ek(Ẑ
M
m )ξk

m

))
,

where

p(z) =
{

0, if z = 0,
z/‖z‖, if z 	= 0.

REMARK 4. As in Remark 1, Scheme 2 leads to the following version of the
implicit Euler scheme.

SCHEME 3. Let ÎM
0 be a random variable with‖ÎM

0 ‖ = 1. Then we set

ÎM
m+1 = p

((
I − G

T

M

)−1
(
ÎM
m + D(ÎM

m )
T

M
+

√
T

M

n∑
k=1

Ek(Î
M
m )ξk

m

))
.

5. Rate of convergence. In this section we focus our interest on the proof of
the following theorem which establishes the linear convergence ofE〈ẐM

M ,AẐM
M 〉.

THEOREM 2. Suppose that, for all B ∈ Cd,d ,

|E〈Z0,BZ0〉 − E〈ẐM
0 ,BẐM

0 〉| ≤ ‖B‖K(T )
T

M
.(33)

If the law ofξ1
0 has compact support, then

|E〈ZT ,AZT 〉 − E〈ẐM
M ,AẐM

M 〉| ≤ K(T )
T

M
.(34)

The proof of Theorem 2 starts with bounds for the concentration of�. As in [9,
29], the assumption thatξ1

0 has compact support allows us to obtain this kind of
estimate.

LEMMA 6. Let ξ1
0 have compact support. Then there exists an increasing

positive functionK2 such that‖�z,M
m+1‖ ≤ K2(T ), wheneverm = 0, . . . ,M − 1

and‖z‖ = 1. Furthermore, there existδ ∈]0,1[ and a strictly positive constantK1

independent of bothT and T/M such that‖�z,M
m+1‖ ≥ K1 for all T/M < δ,

m = 0, . . . ,M − 1, andz ∈ Cd with ‖z‖ = 1.

PROOF. Without loss of generality, we can assume that the support ofξ1
0

belongs to the interval[−a, a]. Hence, for anyz ∈ Cd , with ‖z‖ = 1, we get∥∥∥∥∥ T

M
D(z) +

√
T

M

n∑
k=1

Ek(z)ξ
k
m

∥∥∥∥∥ ≤ 3

2

T

M

n∑
k=1

‖Lk‖2 + 2a

√
T

M

n∑
k=1

‖Lk‖.(35)



2162 C. M. MORA

For anyz ∈ Cd , Re〈Gz, z〉 ≤ 0, and so(exp(Gt))t≥0 is a contraction semigroup
on Cd . This yields

‖�z,M
m+1‖ ≤

∥∥∥∥∥z + D(z)
T

M
+

√
T

M

n∑
k=1

Ek(z)ξ
k
m

∥∥∥∥∥ ≤ K2(T ),

for all z ∈ Cd with ‖z‖ = 1.
Let φ(z) = ‖exp(G)z‖. From (35), we see that there existsδ ∈]0,1[ such that∥∥∥∥∥z + D(z)

T

M
+

√
T

M

n∑
k=1

Ek(z)ξ
k
m

∥∥∥∥∥ ≥ 1

2
,

for T/M < δ andz ∈ Cd with ‖z‖ = 1. Thus,

φ

(
z + D(z)

T

M
+

√
T

M

n∑
k=1

Ek(z)ξ
k
m

)
≥ K1,

provided that‖z‖ = 1 andT/M < δ. This gives the last assertion of the lemma
sinceφ(x) ≤ ‖exp(GT/M)x‖ wheneverT/M < 1. �

Similarly to the proof of Theorem 1, in the sequel we consider the complete
probability space(�̄,G, P̄) induced by the random variableŝZM

0 , ξ0, . . . , ξM−1.
In addition, (�̄,G, P̄, (Gt )t≥0) will be the filtered probability space satisfying
the usual hypotheses induced by(�̄,G, P̄) and the filtration(σ (ẐM

0 , ξk : k ≤
[tM/T ] − 1))t≥0. By abuse of notation, we use the same symbolEt for the
conditional expectation with respect to bothFt andGt .

The role of the local approximationY in the proof of Theorem 1 is played here
by 	 given by

	
s,z
t = z +

∫ t

s

(
G	s,z

r− + D(z)
)
dr +

n∑
k=1

∫ t

s
Ek(z) dSk

r ,

wheret ≥ s and for anyk = 1, . . . , n,

Sk
r =

√
T

M

M−1∑
m=0

ξk
mI[Tm+1,+∞[(r).

The next two lemmas provide information about the behavior of	.

LEMMA 7. Let ξ1
0 have compact support. Then there exists an increasing

positive functionK4 such that‖	T M
m ,z

t ‖ ≤ K4(T ), whenever‖z‖ = 1, m =
0, . . . ,M − 1, and t ∈ [T M

m ,T M
m+1]. Moreover, there exist� ∈]0,1[ and a strictly

positive constantK3 independent of bothT and T/M such that‖	T M
m ,z

t ‖ ≥ K3
for all T/M < �, m = 0, . . . ,M − 1, t ∈ [T M

m ,T M
m+1], andz ∈ Cd with ‖z‖ = 1.
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PROOF. For anyt ∈ [Tm,Tm+1], we have

	
Tm,z
t = eG(t−Tm)

(
z +

∫ t

Tm

eG(Tm−s)D(z) ds

+
√

T

M

n∑
k=1

eG(Tm−t)Ek(z)ξ
k
mI{Tm+1}(t)

)
.

Hence, analysis similar to that in the proof of Lemma 6 shows the assertion of
the lemma. �

LEMMA 8. Suppose thatK3,K4 and � are as in Lemma7. Assume that
f ∈ C2,4,4([0, T ] × S × S,C), with S = {z ∈ Cd :K3(T ) ≤ ‖z‖ ≤ K4(T )}. Let
ξ1

0 have compact support. Then for allt ∈ [Tm,Tm+1[,
ETmf

(
t,	

Tm,z
t ,	

Tm,z
t

)
= f (Tm, z, z̄)(36)

+
∫ t

Tm

ETm

(
∂f

∂s

(
s,	Tm,z

s ,	
Tm,z
s

) + L1
z(f )

(
s,	Tm,z

s ,	
Tm,z
s

))
ds,

provided thatT/M < � andz ∈ Cd with ‖z‖ = 1. Here

L1
z(f )(s, x, y) =

d∑
k=1

(
∂f

∂xk
(s, x, y)

(
Gx + D(z)

)k + ∂f

∂yk
(s, x, y)

(
Ḡy + D(z)

)k)
.

Furthermore,

ETmf
(
Tm+1,	

Tm,z
Tm+1

,	
Tm,z
Tm+1

)
= f (Tm, z, z̄)

+
∫ Tm+1

Tm

ETm

(
∂f

∂s

(
s,	Tm,z

s ,	
Tm,z
s

) + Lz(f )
(
s,	Tm,z

s ,	
Tm,z
s

))
ds(37)

+ Of

(
z,

T

M

)
,

where‖Of (z,T /M)‖ ≤ K(T )(T /M)2 and

Lz(f )(s, x, y) = L1
z(f )(s, x, y) + 1

2

n∑
j=1

d∑
k,l=1

∂2f

∂xkxl
(s, x, y)Ej (z)

kEj (z)
l

+
n∑

j=1

d∑
k,l=1

(
∂2f

∂xkyl
(s, x, y)Ej (z)

kEj (z)
l

+ 1

2

∂2f

∂ykyl
(s, x, y)Ej (z)

k
Ej (z)

l
)
.
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PROOF. Applying the Itô formula for a general semimartingale, we obtain, for
any t ∈ [Tm,Tm+1],

ETmf
(
t,	

Tm,z
t ,	

Tm,z
t

) − f (Tm, z, z̄)

=
∫ t

Tm

ETm

(
∂f

∂s

(
s,	Tm,z

s ,	
Tm,z
s

) + L1
z(f )

(
s,	Tm,z

s ,	
Tm,z
s

))
ds

+ I{Tm+1}(t)ETm

(
f

(
t,	

Tm,z
t ,	

Tm,z
t

) − f
(
t,	

Tm,z
t− ,	

Tm,z
t−

)

−
d∑

k=1

∂f

∂xk

(
t,	

Tm,z
t− ,	

Tm,z
t−

)
(	

Tm,z
t − 	

Tm,z
t− )k

−
d∑

k=1

∂f

∂yk

(
t,	

Tm,z
t− ,	

Tm,z
t−

)(
	

Tm,z
t − 	

Tm,z
t−

)k)
.

This gives (36). Furthermore, expanding

f
(
Tm+1,	

Tm,z
Tm+1

,	
Tm,z
Tm+1

) − f
(
Tm+1,	

Tm,z
Tm+1−,	

Tm,z
Tm+1−

)
in powers of(	Tm,z

Tm+1
− 	

Tm,z
Tm+1−)j and(	

Tm,z
Tm+1

− 	
Tm,z
Tm+1−)j , with j = 1, . . . , d, we

obtain (37). To this end, we combine (36), Taylor’s formula and the mean value
theorem. �

Note that the coefficients of (1) are not globally Lipschitz. To overcome this
difficulty, instead of using the solution of the usual (in this context) partial
differential equation associated to (28), we employ the functionv : [0, T ]×D → C

described byD = {(x, y) :x, y ∈ Cd, 〈ȳ, x〉 	= 0} and

v(s, x, y) = 〈ȳ, τT −sx〉/〈ȳ, x〉,
whereτt is the solution of the backward quantum master equation (8) withh = Cd .

PROOF OFTHEOREM 2. Letα : [0, T ] × Cd × Cd �→ C be given by

α(t, x, y) = 〈ȳ, τT −t x〉.
According to (8) and Itô’s formula, we haveEα(t,Z

s,z
t ,Z

s,z
t ) = α(s, z, z̄), for any

t ∈ [0, T ]. Hence,E〈Zs,z
T ,AZ

s,z
T 〉 = 〈z, τT −sz〉. We thus get

v(s, z, z̄) = E〈Zs,z
T ,AZ

s,z
T 〉,

provided that‖z‖ = 1. Therefore,

E〈ẐM
M ,AẐM

M 〉 − E〈ZT ,AZT 〉 = Ev
(
T , ẐM

M , ẐM
M

) − Ev(0,Z0,Z0 ).(38)
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Suppose thatT/M < min{δ,�}, with δ and� as in Lemma 6 and Lemma 7,
respectively. Since‖Ẑ0‖ = 1, from (8), (33) and (38), we conclude that∥∥∥∥∥E〈ẐM

M ,AẐM
M 〉 − E〈ZT ,AZT 〉 −

M∑
m=1

E(Hm
1 + Hm

2 )

∥∥∥∥∥ ≤ K(T )
T

M
,

where

Hm
1 = v

(
Tm,�

Ẑm−1,M
m ,�

Ẑm−1,M
m

)
− v

(
Tm, eGT/MẐm−1, eGT/MẐm−1

)
+ v

(
Tm, eGT/MẐm−1, eGT/MẐm−1

) − v
(
Tm,	

Tm−1,Ẑm−1
Tm

,	
Tm−1,Ẑm−1
Tm

)
and

Hm
2 = v

(
Tm,	

Tm−1,Ẑm−1
Tm

,	
Tm−1,Ẑm−1
Tm

)
− v

(
Tm−1, Ẑm−1, Ẑm−1

)
.

We proceed to estimateHm
1 . From the construction of Scheme 2 and a simple

computation, we see that, for anyz ∈ Cd satisfying‖z‖ = 1 and �p ∈ Pl with
l = 1,2,3, we have∣∣ETm−1F �p(�z,M

m − eGT/Mz) − ETm−1F �p
(
	

Tm−1,z

Tm
− eGT/Mz

)∣∣ ≤ K(T )

(
T

M

)2

.

Hence, combining Lemma 6 with the deterministic Taylor formula gives

|EHm
1 | ≤ K(T )

(
T

M

)2

.(39)

This follows by the same method as in the estimation ofHm
1 in the proof of

Proposition 1.
It remains to estimateHm

2 . According to Lemma 8, we have

ETm−1H
m
2 = ETm−1

∫ Tm

Tm−1

∂v

∂s

(
s,	

Tm,Ẑm−1
s ,	

Tm,Ẑm−1
s

)
ds

+ ETm−1

∫ Tm

Tm−1

L
Ẑm−1

(v)
(
s,	

Tm,Ẑm−1
s ,	

Tm,Ẑm−1
s

)
ds(40)

+ Ov

(
Ẑm−1,

T

M

)
.

We may now apply Lemma 8 to the terms of the right-hand side of (40) to obtain

|EHk
2 | ≤ K(T )

(
T

M

)2

.(41)

To be more precise, fortunately a very long computation shows that

Lz(v)(s, z, z̄) = 〈z, τT −sGz〉 + 〈Gz, τT −sz〉 +
n∑

k=1

〈Lkz, τT −sLkz〉,
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whenever‖z‖ = 1. Since (8) leads to

∂v

∂t
(s, x, y)

(42)

= − 1

〈ȳ, x〉
(
〈ȳ,G∗τT −sx〉 + 〈ȳ, τT −sGx〉 +

n∑
j=1

〈ȳ,L∗
j τT −sLjx〉

)
,

we deduce that, for‖z‖ = 1,

∂v

∂t
(s, z, z̄) + Lz(v)(s, z, z̄) = 0.

Therefore, Lemma 8 yields thatETm−1H
m
2 is equal to

Ov

(
Ẑm−1,

T

M

)
+ ETm−1

∫ Tm

Tm−1

∫ s

Tm−1

∂2v

∂r

(
r,	

Tm,Ẑm−1
r ,	

Tm,Ẑm−1
r

)
dr ds

+ ETm−1

∫ Tm

Tm−1

∫ s

Tm−1

L1
Ẑm−1

(
∂v

∂r

)(
r,	

Tm,Ẑm−1
r ,	

Tm,Ẑm−1
r

)
dr ds

+ ETm−1

∫ Tm

Tm−1

∫ s

Tm−1

∂

∂r

(
L

Ẑm−1
(v)

)(
r,	

Tm,Ẑm−1
r ,	

Tm,Ẑm−1
r

)
dr ds

+ ETm−1

∫ Tm

Tm−1

∫ s

Tm−1

L1
Ẑm−1

(
L

Ẑm−1
(v)

)(
r,	

Tm,Ẑm−1
r ,	

Tm,Ẑm−1
r

)
dr ds.

Hence, (41) follows from (42) and Lemma 7.
We conclude from (39) and (41) that (34) holds forT/M < min{δ,�}. Hence,

our claim follows from‖ZT ‖ = 1 a.s. and‖ẐM
M‖ = 1. �

REMARK 5. We expect that an expansion similar to (16) holds for the error
E〈ZT ,AZT 〉 − E〈ẐM

M ,AẐM
M 〉. Nevertheless, the proof of this result is still in

progress.

REMARK 6. We now turn to (9) with dimh = +∞. It is relevant to
characterize the global error|EQ〈YT ,AYT 〉 − E〈ẐM

M ,AẐM
M 〉| in function of M

and the dimension ofhm. A step toward this goal was given in [23], where the rate
of convergence ofE〈EM

T,m,AEM
T,m〉 to EQ〈YT ,AYT 〉 is studied. HereE denotes

the numerical solution of (9) by the Euler scheme. An objective of this paper is to
advance toward the solution of this problem.

6. Numerical experiment. This section illustrates the performance of the
schemeẐ. To this end, we consider the following representative example of forced
and damped quantum harmonic oscillator in the interaction representation.
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EXAMPLE 1. Returning to Section 1.2, we chooseh = l2(Z+). Let (ϕk)k∈Z+
be the canonical orthonormal basis on the spacel2(Z+). Then, the domain of
the operatorsa† anda is {x ∈ l2(Z+) :

∑
k≥0 k|xk|2 < +∞} and for allm ∈ Z+,

a†ϕm = √
m + 1ϕm+1 and

aϕm =
{

0, if m = 0,√
mϕm−1, if m > 0.

The Number operator is defined byN = a†a.
We now simulate the Hamiltonian asH = i(a† − a) + N . Furthermore, we set

L1 = 0.2a, L2 = 0.01a2, L3 = 0.1N andL4 = 0.1a†.

In Example 1,h describes the state space of a single mode of a quantized
electromagnetic field. The operatora†, respectivelya, is the creation operator,
respectively annihilation operator. Then, for instance, the termi(a† − a) describes
a linear pumping andL1 simulates the damping due to photon emission.

To test the schemêZ, we setT = 100 andY0 = ϕ6. Moreover, we choosehd

as the linear manifold spanned by{ϕj : 0 ≤ j ≤ d} with d = 50. The objective
is to describe numericallyEQ〈Yt,50,NYt,50〉 for t ∈ [0, T ]. As we comment in
Section 1.2, this task leads to solve (1) ford = 50. The parameters selected allow
us to obtain the “true” value ofEQ〈Yt,50,NYt,50〉 by means of the solution of the
backward quantum master equation (8) associated to our SDE. To this end, we use
its explicit solution. It is worth pointing out that the numerical solution of finite-
dimensional backward quantum master equations presents serious drawbacks
when the dimension of the state space is high (see, e.g., [25]). In fact, some of
these problems can be observed in our example in cased = 100.

In the numerical experiment, we compare Scheme 2, Scheme 3 and the
following version of the explicit Euler scheme:

Êk+1 =
{

0, if Ēk+1 = 0,

Ēk+1/‖Ēk+1‖, if Ēk+1 	= 0,

whereĒk+1 = Êk +(GÊk +D(Êk))T /M +√
T/M

∑n
j=1 Ej(Êk)ξ

j
k , with ξ1

0 , . . . ,

ξn
0 , . . . , ξ1

M−1, . . . , ξ
n
M−1 as in Scheme 2. In all codes,ξ1

0 assumes values±1, each
with probability 1/2.

Figure 1 shows the “true” solution and the approximations obtained by the
numerical schemes. Moreover, Table 1 looks at the dependence of the errorsε0
to the time step sizeT/M , where

εJ (χ,M) = max
j=J,...,100

∣∣∣∣∣E〈Zj ,NZj 〉−2·10−4
2·10−4∑
k=1

〈χM
jM/100(ωk),NχM

jM/100(ωk)〉
∣∣∣∣∣,

wheneverχ denotes the numerical method andJ ∈ {0, . . . ,100}. Indeed, Table 1
presents estimated values ofε0 and�. Here� is the maximum of the length of the
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FIG. 1. Dotted line: “ true” solution, solid line: (a)explicit Euler scheme, (b) implicit Euler scheme
and (c) Euler-exponential scheme.

90 percent confidence intervals taken over the instant of times{0, . . . ,100}. We
use the batch method to estimate these intervals (see, e.g., [17]).

It can be seen from both Figure 1 and Table 1 that the Euler-exponential
scheme presents a superior performance than the other two numerical methods
for this example. For instance, the error induced by Scheme 3 withM = 16 · 103

is substantially greater than the error induced by Scheme 2 withM = 2 · 103.

TABLE 1
Errors versus step sizes for the explicit Euler methodÊ, the versionÎ

of the implicit Euler method and the Euler-exponential methodẐ

M 2000 4000 8000 16000

ε(Ê,M) 46.6545 46.7107 46.6381 23.5562
�(Ê,M)/2 0.023207 0.13302 0.31203 0.28929
ε(Î ,M) 6.6179 5.5739 3.9754 2.5181
�(Î ,M)/2 0.030248 0.045375 0.037721 0.054798
ε(Ẑ,M) 0.33533 0.2236 0.11426 0.037446
�(Ẑ,M)/2 0.066711 0.059289 0.077666 0.098786
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FIG. 2. Errors versus step size for Scheme2: J = 0, �, J = 50, � andJ = 100, ♦.

Furthermore, the accuracy of Scheme 2 is very good for large time step sizes. This
suggests that̂Z shows great promise for the long time integration of stochastic
Schrödinger equations.

Finally, Figure 2 shows precision-step size diagrams. In particular, this figure
gives the errorsεJ (Ẑ,M), with J = 0,50,100, versus the step sizeT/M .
Moreover, it presents the best least square linear approximation of eachεJ (Ẑ, ·).
From Figure 2, we see that the errors induced byẐ closely follow a straight line.
This is in a good agreement with Theorem 2.
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