
The Annals of Applied Probability
2005, Vol. 15, No. 3, 1733–1764
DOI 10.1214/105051605000000205
© Institute of Mathematical Statistics, 2005

ON THE POWER OF TWO CHOICES: BALLS AND
BINS IN CONTINUOUS TIME

BY MALWINA J. LUCZAK AND COLIN MCDIARMID

London School of Economics and University of Oxford

Suppose that there aren bins, and balls arrive in a Poisson process at
rateλn, whereλ > 0 is a constant. Upon arrival, each ball chooses a fixed
numberd of random bins, and is placed into one with least load. Balls have
independent exponential lifetimes with unit mean. We show that the system
converges rapidly to its equilibrium distribution; and whend ≥ 2, there is
an integer-valued functionmd(n) = ln lnn/lnd + O(1) such that, in the
equilibrium distribution, the maximum load of a bin is concentrated on the
two valuesmd(n) andmd(n) − 1, with probability tending to 1, asn → ∞.
We show also that the maximum load usually does not vary by more than a
constant amount from ln lnn/lnd, even over quite long periods of time.

1. Introduction. Balls-and-bins processes have been useful for modeling and
analyzing a wide range of problems, in discrete mathematics, computer science
and communication theory, and, in particular, for problems which involve load
sharing, see, for example, [4, 5, 12, 15–17, 22]. Here is one central result, from [3].
Let d be a fixed integer at least 2. Suppose that there aren bins, andn balls arrive
one after another: each ball picksd bins uniformly at random and is placed in
a least loaded of these bins. Then with probability tending to 1 asn → ∞, the
maximum load of a bin is ln lnn/ lnd + O(1).

In some recent work, balls have been allowed to “die,” see [3, 7, 21], which
is, of course, desirable when modeling telephone calls. For example, suppose that
we start withn balls inn bins: at each time step, one ball is deleted uniformly at
random, and one new ball appears and is placed in one ofd bins as before. It is
shown in [3] that, asn → ∞, at any given timet ≥ cn2 ln lnn, with probability
tending to 1, the maximum load of a bin is at most ln lnn/ lnd + O(1).

The results mentioned above all concern discrete time models, where at each
time step a ball may arrive or a ball may die and be replaced by a new one. Here
we analyze a simple and natural continuous time “immigration–death” balls-and-
bins model. We concentrate on the maximum bin load, which may be the quantity
of greatest interest, for example, in load-sharing models.

The scenario we consider is as follows. Letd be a fixed positive integer, say
d = 2. Let n be a positive integer and suppose that there aren bins. Balls arrive
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in a Poisson process at rateλn, whereλ > 0 is a constant. Upon arrival, each ball
choosesd random bins (with replacement), and is placed into a least loaded bin
among those chosen. (If there is more than one chosen bin with least load, the ball
is placed in the first such bin chosen.) Balls have independent exponential lifetimes
with unit mean. This process goes on forever.

This model was first studied by Turner in [21], who considers weak conver-
gence, for a suitable choice of state space. (Also, [19, 20] contain a discussion
of the completeness of the state space under the product topology.) Turner shows
that (with appropriate assumptions on the initial distribution), for each fixed non-
negative integerk the fraction of bins with load at leastk, converges weakly as
n → ∞ to a deterministic functionv(t, k) defined onR+ × Z

+, where the vector
(v(t, k) : k ∈ Z

+) is the unique solution to the system of differential equations for
k = 1,2, . . . ,

dv(t, k)

dt
= λ

(
v(t, k − 1)d − v(t, k)d

) − k
(
v(t, k) − v(t, k + 1)

)
, t ≥ 0,(1)

subject tov(t,0) = 1 for all t ≥ 0, and appropriate initial values(v(0, k) : k ∈ Z
+)

such that 1≥ v(0, k) ≥ v(0, k + 1) ≥ 0 for all k ∈ N. The weak-convergence
result applies only to fixed-index co-ordinates (i.e., fixed values ofk) over fixed-
length time intervals, and yields no information on the speed of convergence. Our
approach is different, and we are not concerned with weak convergence, although
weak convergence could be deduced from our results. The key step is to establish
concentration results, which apply to the fraction of bins with load at leastk at
time t (wherek, t need not be fixed); these concentration results may then be used
to analyze a balance equation involving these quantities. We are thus able to handle
random variables like the maximum load, over long periods of time.

For each timet ≥ 0 and eachj = 1, . . . , n, let Xt(j) be the random number of
balls in binj at time t , and letXt be theload vector (Xt(1), . . . ,Xt (n)). Thus,
the total number of balls|Xt | at time t is given by|Xt | = ∑n

j=1 Xt(j). We shall
always assume that the initial load vectorX0 satisfiesE[|X0|] < ∞. Note that|Xt |
follows a simple immigration–death process, and so its stationary distribution is
the Poisson distribution Po(λn) with meanλn.

It is easy to check that, for givend and n, the load vector process(Xt) is
Markov, with state space(Z+)

n. Standard results show that there is a unique
stationary distribution�; and, whatever the distribution of the starting stateX0,
the distribution of the load vectorXt at timet converges to� ast → ∞. Indeed,
this convergence is very fast, as our first theorem will show.

For x ∈ Z
n, let ‖x‖1 = ∑

i |x(i)| be theL1 norm ofx. (Thus, we have|Xt | =
‖Xt‖1.) We useL(X) to denote the probability law or distribution of a random
variable X. The total variation distance between two probability distributions
µ1 andµ2 may be defined bydTV(µ1,µ2) = inf Pr (X �= Y), where the infimum
is over all couplings ofX andY , whereL(X) = µ1 andL(Y ) = µ2. Equivalently,

dTV(µ1,µ2) = max
A

|Pr (X ∈ A) − Pr (Y ∈ A)|,
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where the maximum is over all suitable setsA. We also use the Wasserstein
distance, defined bydW(µ1,µ2) = inf E[‖X − Y‖1], where the inf is over
couplings ofX and Y as above. For distributionsµ1 and µ2 on Z

n, we have
dTV(µ1,µ2) ≤ dW(µ1,µ2).

THEOREM 1.1. Let d and n be positive integers, and let � be the correspond-
ing stationary distribution for the load vector. Suppose that initially the balls are
arbitrarily distributed over the bins, with E[|X0|] < ∞. Then for each time t ≥ 0,

dTV
(
L(Xt),�

) ≤ dW
(
L(Xt),�

) ≤ (λn + E[|X0|])e−t .

For each ε > 0 and initial statex, the mixing time τ(ε, x) is defined by
considering(Xt), whereX0 = x a.s. and setting

τ(ε, x) = inf
{
t ≥ 0 :dTV

(
L(Xt),�

) ≤ ε
}
.

[Recall thatdTV(L(Xt),�) is a nonincreasing function oft .] Thus, for example,
if 0 denotes the state with no balls, then the above theorem shows that

τ(ε,0) ≤ ln(λn/ε).

This upper bound on the mixing time is, in fact, of the right order, in that
τ(1

2,0) = �(lnn), as we shall see after the proof of Theorem 1.1 by considering
the behavior of the total number of balls present. For mixing results on related
models, see [4, 7]: mixing appears to be slower when balls live forever.

As we commented earlier, our primary interest is in the maximum load of a bin.
Let Mt = maxj Xt (j) be the maximum load of a bin at timet . Thus,Mt = ‖Xt‖∞,
where‖x‖∞ is the infinity norm maxj |xj | of x. The above theorem shows that
we can essentially restrict our attention to the stationary case, at least if we are
interested in times well beyond lnn, so let us now consider that case. We may
write M instead ofMt when the system is in equilibrium. The behavior of the
maximum loadMt or M is very different in the two casesd = 1 andd ≥ 2. This is
the “power of two choices” phenomenon—see, for example, [17]. For clarity, let
us writeX

(n)
t andM

(n)
t or M(n) here to indicate that there aren bins.

The most interesting case is whend ≥ 2 (indeed, whend = 2), but in order
to set things in context, let us first consider the (much easier) case whend = 1.
Suppose then thatd = 1. We shall see thatM(n) is concentrated on two values
m = m(n) andm − 1, which are close to lnn/ ln lnn; and that over a polynomial
length interval of time, we meet only small (constant size) deviations belowm but
we meet large deviations abovem, so that the maximum value ofM(n)

t over an
interval of lengthnK is usually about(K + 1)m. We use the phraseasymptotically
almost surely (a.a.s.) to mean “with probability→ 1 asn → ∞.”

THEOREM 1.2. Let d = 1, and suppose that X
(n)
0 is in the stationary

distribution (and thus so is M
(n)
t for each time t).
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(a) There exists an integer-valued function m = m(n) ∼ lnn
ln lnn

such that a.a.s.
M(n) is m(n) or m(n) − 1.

(b) For any constant K > 0,

min
0≤t≤nK

M
(n)
t ≥ m(n) − 3 a.a.s.

(c) For any constant K > 0,(
max

0≤t≤nK
M

(n)
t

)
ln lnn

lnn
→ K + 1 in probability as n → ∞.

The notationm = m(n) ∼ lnn
ln lnn

above means thatm(n) = (1 + o(1)) lnn
ln lnn

as
n → ∞. It is straightforward to determinem(n) more precisely from the proof of
the theorem: for example, we have

m(n) = lnn

ln lnn
+ (

1+ o(1)
)(lnn)(ln ln lnn)

(ln lnn)2 .

Now we consider the cased ≥ 2, when the maximum loadM(n)
t is far smaller.

Once again, it is concentrated on two valuesmd = md(n) andmd − 1, but now
these numbers are close to ln lnn/ lnd. This corresponds to the behavior of the
maximum load in discrete time models; see, for example, [3, 4, 12, 16], but is
more precise.

THEOREM 1.3. Let d ≥ 2 be fixed, and suppose that X
(n)
0 is in the

stationary distribution. Then there exists an integer-valued function md = md(n) =
ln lnn/lnd +O(1) such that M(n) is md or md −1 a.a.s. Further, for any constant
K > 0, there exists c = c(K) such that

max
0≤t≤nK

∣∣M(n)
t − ln lnn/lnd

∣∣ ≤ c a.a.s.(2)

The lower bound onM(n)
t , in fact, holds over longer intervals than stated in (2)

above. For example, there is a constantc such that

min
{
M

(n)
t : 0≤ t ≤ en1/4} ≥ ln lnn/ lnd − c a.a.s.(3)

However, the upper bound in (2) does not extend to much longer intervals. For
example, ifK > 0 andτ = nKd ln lnn, then

max
0≤t≤τ

M
(n)
t ≥ K ln lnn a.a.s.(4)

The plan of the rest of the paper is as follows. After giving some preliminary
results in the next section, we consider mixing times and prove Theorem 1.1.
Then we consider the easy cased = 1 when there is one random choice, and
prove Theorem 1.2. In order to prove Theorem 1.3, whered ≥ 2, we need
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some preliminary results, which are presented in the next three sections. First,
in Section 5 we give a concentration result for Lipschitz functions of the load
vector in equilibrium. In Section 6 we use balance equations to establish the key
equation (26) concerning the expected proportionu(i) of bins with load at leasti in
equilibrium. This result, together with the concentration result, yields a recurrence
for u(i). After that, in Section 7 we consider random processes like a random walk
with “drift.” Then we are ready to prove Theorem 1.3 in Section 8: we first prove
upper bounds, then lower bounds, and finally we prove the results (3) and (4). Last,
we briefly consider chaoticity and make some concluding remarks.

2. Preliminary results. In this section we give some elementary results
which we shall need several times below. A standard inequality for a binomial
or Poisson random variableX with meanµ is that

Pr (|X − µ| ≥ εµ) ≤ 2exp
(−1

3ε2µ
)

(5)

for 0 ≤ ε ≤ 1 (see, e.g., Theorem 2.3(c) and inequality (2.8) in [14]). Also, for
each positive integerk,

Pr (X ≥ k) ≤ µk/k! ≤ (eµ/k)k.(6)

If X has the Poisson distribution with meanµ, let us writeX ∼ Po(µ): for such a
random variable, we have

E
[
X1(X≥k)

] = µPr (X ≥ k − 1).(7)

Next we give an elementary lemma which we shall use later in order to extend
certain results, for example, concerning the maximum loadMt from a single point
in time to an interval of time. It yields bounds on the maximum and minimum
values of a suitable functionf (x) over a time interval[0, τ ].

Consider then-bin case, with set� = (Z+)n of load vectors. Let us say that a
real-valued functionf on � hasbounded increase if whenevers andt are times
with s < t , thenf (xt ) is at mostf (xs) plus the total number of arrivals in the
interval(s, t]; andf hasstrongly bounded increase if f (xt ) is at mostf (xs) plus
the maximum number of arrivals in the interval(s, t] which are placed in any one
bin. Thus, for example,f (x) = |x| has bounded increase, andf (x) = maxj x(j)

has strongly bounded increase.

LEMMA 2.1. Let (Xt) be in equilibrium. Let s, τ > 0 and let a, b be non-
negative integers. Suppose that (a)f has bounded increase and δ = Pr (Po(λns) ≥
b + 1), or (b) f has strongly bounded increase and δ = nPr (Po(λds) ≥ b + 1).
In both cases we have

Pr
[
f (Xt) ≤ a for some t ∈ [0, τ ]] ≤

(
τ

s
+ 1

)(
Pr

(
f (X0) ≤ a + b

) + δ
)

(8)

and

Pr
[
f (Xt) ≥ a + b for some t ∈ [0, τ ]] ≤

(
τ

s
+ 1

)(
Pr

(
f (X0) ≥ a

) + δ
)
.(9)
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PROOF. Consider first the case (a) whenf has bounded increase. Note that
the j = 	 τ

s

 + 1 disjoint intervals[(r − 1)s, rs) for r = 1, . . . , j cover [0, τ ].

Let Br denote the event of having in total at leastb + 1 arrivals in the interval
[(r − 1)s, rs), so thatPr (Br) = Pr [Po(λns) ≥ b + 1] = δ. Then

{f (Xt) ≤ a for somet ∈ [0, τ ]} ⊆
( j⋃

r=1

{f (Xrs) ≤ a + b}
)

∪
( j⋃

r=1

Br

)

and (8) follows. Similarly,

{f (Xt) ≥ a + b for somet ∈ [0, τ )} ⊆
( j−1⋃

r=0

{f (Xrs) ≥ a}
)

∪
( j⋃

r=1

Br

)

and (9) follows. To handle the case (b) whenf has strongly bounded increase,
note that ifCr denotes the event of having at leastb + 1 arrivals in the interval
[(r − 1)s, rs) which are placed into a single bin, thenPr (Cr) ≤ nPr [Po(λds) ≥
b + 1]; and then proceed as above.�

As we noted earlier, in equilibrium the distribution of the total number of balls
in the system is Po(λn). We close this section by using the last lemma to establish
a result that will enable us to “control” the total number of balls in the system over
long periods of time.

LEMMA 2.2. For any 0 < ε < 1, there exists β > 0 such that the following
holds. Consider an n-bin system, and let (Xt) be in equilibrium. Then a.a.s. for all
0≤ t ≤ eβn, the number of balls |Xt | satisfies

(1− ε)λn ≤ |Xt | ≤ (1+ ε)λn.

PROOF. By inequality (5), since|Xt | ∼ Po(λn), we have

Pr
(∣∣|Xt | − λn

∣∣ > ελn/2
) ≤ 2e−ε2λn/12

and

Pr [Po(ελn/4) ≥ ελn/2] ≤ 2e−ελn/12.

Let β satisfy 0< β < 1
12ε

2λ. We use case (a) of Lemma 2.1. Lets = ε/4 and
b = ελn/2: we may now use (8) witha = (1− ε)λn and (9) witha = (1+ ε/2)λn.

�

3. Rapid mixing: proof of Theorem 1.1. We shall couple(Xt) and a
corresponding copy(Yt ) of the process in equilibrium in such a way that with
high probability‖Xt − Yt‖1 decreases quickly to 0. We assume that the choices
process always generates a nonempty list of bins at an arrival time, and the new
ball is placed in a least-loaded bin among those chosen, breaking ties if necessary
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by choosing the first least-loaded bin in the list. In the meantime we make no other
assumptions about the arrivals process or the choices process. We assume as before
that balls die independently at rate 1, independently of the other two processes.

The coupling is as follows. Not surprisingly, we give the two processes the same
arrivals and choices ofd bins. Theheight of a ball in the system at a given time
is the number of balls in its bin that arrived before it, plus one. Assume that we
have a family of independent rate 1 Poisson processesFj,k for j = 1, . . . , n and
k = 1,2, . . . . WhenFj,k “tolls,” any ball in bin j at heightk in either process
dies (so that 0 or 1 or 2 balls die). Observe that at any timet , we are interested
in only a finite (with probability 1) number of these death processes [namely,∑

j Xt(j) ∨ Yt (j)]. We have now described the coupling of(Xt) and (Yt ). The
“memoryless” property of the exponential lifetime distribution ensures that it is
a proper coupling; and when the arrival process is Poisson, and the choices are
independent and uniform, the joint process(Xt , Yt ) is Markov. Forx, y ∈ Z

n, the
notationx ≤ y means thatx(j) ≤ y(j) for eachj = 1, . . . , n.

LEMMA 3.1. With the coupling of (Xt) and (Yt ) described above, the distance
‖Xt − Yt‖1 is nonincreasing, and given that ‖X0 −Y0‖1 = r , it is stochastically at
most the number of survivors at time t of r independent balls. Further, if 0≤ s ≤ t

and Xs ≤ Ys , then Xt ≤ Yt .

PROOF. Consider a jump timet0. Let Xt0− = x andYt0− = y, and letXt0 = x′
andYt0 = y′. (We assume right-continuity.) Suppose thatt0 is a death (“toll”) time.
If none or two balls die, then

‖x′ − y′‖1 = ‖x − y‖1,(10)

and if just one ball dies, then

‖x′ − y′‖1 = ‖x − y‖1 − 1.(11)

Thus, at any death time,

‖x′ − y′‖1 ≤ ‖x − y‖1.(12)

Suppose now thatt0 is an arrival time, and ballb arrives. We want to show
that (12) holds. If ballb is placed in the same bin in the two processes, then (10)
holds and, hence, so does (12). Suppose that ballb is placed in bini in the
X-process and in binj in theY -process, wherei �= j . Then ballb gets “paired” in
at least one of the processes, and so (12) holds. (By “paired” here, we mean that
in the other process there is a ball in the same bin at the same height. Observe that
these balls will stay paired until they die together.) For, note first thatx(i) ≤ x(j)

andy(j) ≤ y(i), and not both are equal by the tie-breaking rule. Now suppose that
ball b does not get paired in either process. Then we must havex(i) ≥ y(i) and
y(j) ≥ x(j), and so

x(i) ≥ y(i) ≥ y(j) ≥ x(j) ≥ x(i).
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But then all the values are equal, a contradiction.
We have now seen that (12) holds at each jump time, and (11) holds if a single

unpaired ball dies. Thus,‖Xt − Yt‖1 is nonincreasing. Further, we claim that, for
any time 0≤ s < t and any positive integerr , given that‖Xs − Ys‖1 = r and any
other history up to times, the probability that‖Xt − Yt‖1 = r is at moste−r(t−s).
The second part of the lemma will follow immediately from the claim.

To see why the claim is true, letSr denote the set of states(x, y) such that
‖x − y‖1 = r . We have seen that‖Xt − Yt‖1 is nonincreasing. For each state
(x, y) ∈ Sr , there arer of the death processesFjk such that if any of them tolls,
then the process moves intoSr−1. Thus, if (X0, Y0) ∈ Sr and T = inf{t ≥ 0 :
(Xt , Yt ) /∈ Sr} is the exit time fromSr , then Pr (T > t |(X0, Y0) = (x, y)) ≤ e−rt

for each(x, y) ∈ Sr and eacht > 0; and the claim follows.
The final comment on monotonicity is straightforward. For consider a jump

time t0 as above, and suppose thatx ≤ y. If t0 is a death time, then clearlyx′ ≤ y′,
so suppose thatt0 is an arrival time. But if the new ball is placed in bini in the
X-process and ifx(i) = y(i), then the ball is placed in bini also in theY -process,
sox′ ≤ y′. �

We may now rapidly prove Theorem 1.1. By the lemma,E(‖Xt − Yt‖1|(X0,

Y0) = (x, y)) is at most the expected number amongr = ‖x−y‖1 balls that survive
at least to timet , which is equal tore−t . Since‖x − y‖1 ≤ |x| + |y|, we have

E(‖Xt − Yt‖1|X0, Y0) ≤ (|X0| + |Y0|)e−t ,

and so

dW
(
L(Xt),L(Yt )

) ≤ E(‖Xt − Yt‖1) ≤ (E[|X0|] + λn)e−t .

This completes the proof of Theorem 1.1.
We now show that the upper bounds on the mixing times arising from

Theorem 1.1 are of the right order. We may see this by simply considering the total
number|Xt | of balls in the system. In equilibrium,|Xt | has the Poisson distribution
Po(λn), and so

dTV
(
L(Xt),�

) ≥ dTV
(
L(|Xt |),Po(λn)

)
.

We shall see that ifX0 = 0 a.s. andt ≤ 1
2 lnn − 2 ln lnn, then

dTV
(
L(|Xt |),Po(λn)

) = 1− o(1);(13)

and it follows that, for each 0< ε < 1, we haveτ(ε,0) = �(lnn).
Suppose then thatX0 = 0 a.s. and letµ(t) = E[|Xt |]. It is easy to check

that µ(t) = λn(1 − e−t ). If t is �(lnn), then, by Lemma 5.5 below (with, say,
b = ln3/2 n),

Pr
(∣∣|Xt | − µ(t)

∣∣ ≥ 1
2λn1/2 ln2 n

) = e−�(ln3/2 n).
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Also, if Z ∼ Po(λn), then, by (5),

Pr (|Z − λn| ≥ n1/2 lnn) = e−�(ln2 n).

Now if t is 1
2 lnn − 2 ln lnn, then|µ(t) − λn| = λne−t = λn1/2 ln2 n, and, thus,

dTV
(
L(|Xt |),Po(λn)

) = 1− e−�(ln3/2 n) = 1− o(1),

which gives (13) as required (since the left-hand side is a nonincreasing function
of t).

4. One choice: proof of Theorem 1.2. Let λ > 0 be fixed, as always. Let
d = 1. Let pi = pi(λ) = e−λ ∑

k≥i
λk

k! , the probability that a Po(λ) random
variable takes value at leasti. Let X0 be in equilibrium. Stationary bin loads are
independent Poisson random variables, each with meanλ. It follows that, for any
nonnegative integeri,

Pr (Mt ≥ i) ≤ npi(14)

and

Pr (Mt ≤ i) = (1− pi+1)
n ≤ e−npi+1.(15)

We now prove the three parts of the theorem.
Part (a). Letω(n) = ln lnn. Let m = m(n) be the least positive integeri such

thatnpi+1 ≤ 1/ω(n). By (14),

Pr (Mt ≥ m + 1) ≤ npm+1 = o(1),

soMt ≤ m a.a.s. Also,npm > 1/ω(n), sonpm−1 = �( lnn
ln lnn

· 1
ω(n)

) → ∞. Hence,
by (15),

Pr (Mt ≤ m − 2) ≤ e−npm−1 = o(1).

Thus,Mt is m or m − 1 a.a.s. Also, it is easy to check thatm ∼ lnn
ln lnn

.
Part (b). We apply case (b) of Lemma 2.1, withs ∼ n−K−2, a = m − 4 and

b = 1, together with (6) and (15).
Part (c). LetZ = max0≤t≤nK Mt . Let ε > 0. We show first that

Pr
(
Z > (K + 1+ ε) lnn/ ln lnn

) → 0 asn → ∞.(16)

To do this, we apply case (b) of Lemma 2.1, withs ∼ exp(− lnn/ ln lnn),
a ∼ (K + 1+ ε/2) lnn/ ln lnn andb ∼ lnn/(ln lnn)2, together with (6) and (14).

Now let 0< ε < K , and letk = �(K + 1− ε) lnn/ ln lnn�. We will show that

Pr (Z < k) → 0 asn → ∞,(17)

which will complete the proof of this part and thus of the theorem. Note thatnpk =
n−(K−ε+o(1)) = o(1). For each timet > 0, let φt be the sigma field generated by
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all events until timet . Let C be the event that|Xt | ≤ n2/2 for eacht ∈ [0, nK ].
ThenC holds a.a.s. by Lemma 2.2. Letn ≥ 2λ and letx be a load vector such that
|x| ≤ n2/2. GivenX0 = x, by Theorem 1.1,

dTV
(
L(Xt),�

) ≤ (λn + |x|)e−t

≤ n2e−t

≤ e− ln2 n

if t ≥ t1 = ln2 n + 2 lnn. In particular, by (15),

Pr
(
Mt1 ≤ k − 1|X0 = x

) ≤ e−npk + e− ln2 n.

Sincenpk = o(1),

e−npk + e− ln2 n ≤ e−npk
(
1+ 2e− ln2 n)

for n sufficiently large, which we now assume. Thus, fori = 0,1, . . . ,

Pr
(
M(i+1)t1 ≤ k − 1|φit1

) ≤ e−npk
(
1+ 2e− ln2 n)

on the eventDi = (|Xit1| ≤ n2/2) ∧ (Mit1 ≤ k − 1). Hence, if we denote	nK/t1

by i0, we have

Pr
(
(Z ≤ k − 1) ∧ C

) ≤ Pr

(
i0∧

i=0

Di

)

= Pr (D0)

i0−1∏
i=0

Pr

(
Di+1

∣∣∣ i∧
j=0

Dj

)

≤ (
e−npk

(
1+ 2e− ln2 n))i0

≤ (
1+ o(1)

) · exp
(−(nK/t1 − 1)n−(K−ε+o(1)))

= exp
(−nε+o(1)) → 0

asn → ∞. Above we used the observation that(
1+ 2e− ln2 n)i0 ≤ exp

(
i0 · 2e− ln2 n) = 1+ o(1).

5. Concentration. We have seen that our balls-and-bins model exhibits rapid
mixing. In many Markov models rapid mixing goes along with tight concentration
of measure. This is indeed the case here, as demonstrated by the following lemma,
which is crucial to our analysis. See [5] for large deviations bounds for a related
discrete-time balls-and-bins model.

Let n be a positive integer, and let� be the corresponding set of load vectors,
that is, the set of nonnegative vectors inZ

n. A real-valued functionf on � is
calledLipschitz (with Lipschitz constant 1) if

|f (x) − f (y)| ≤ ‖x − y‖1.
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LEMMA 5.1. There is a constant n0 such that, for all n ≥ n0, the n-bin system
has the following property. Let the load vector Y have the equilibrium distribution,
and let f be a Lipschitz function on �. Then, for each u ≥ n1/2 ln3/2 n,

Pr
(|f (Y ) − E[f (Y )]| ≥ u

) ≤ e−(u2/n)1/3
.

As stated in the Introduction, our primary interest is in the maximum load of
a bin. We may deduce easily from the last lemma the following result which we
shall use several times.

LEMMA 5.2. Consider the n-bin system in equilibrium. For each positive
integer i, let L(i) be the random number of bins with at least i balls, at say time
t = 0, and let l(i) = E[L(i)]. Then

sup
i

Pr
(|L(i) − l(i)| ≥ n1/2 ln3/2 n

) = O(n−1);

for any constant c > 0,

Pr
(

sup
i

|L(i) − l(i)| ≥ cn1/2 ln3 n

)
= e−�(ln2 n);

and for each integer r ≥ 2,

sup
i

{|E[L(i)r ] − l(i)r |} = O(nr−1 ln3 n).

PROOF. Note that

Pr
(
L(�2λn�) > 0

) ≤ Pr
(
Po(λn) ≥ 2λn

) = e−�(n),

since the total number of balls is Po(λn). Since alwaysL(i) ≤ n, this shows that
we may restrict attention toi < 2λn. The first two parts of the lemma now follow
directly from Lemma 5.1 (note thatn0 is a constant, and does not depend onf ). To
prove the third part, setu = (r + 1)3/2n1/2 ln3/2 n, and note that, by Lemma 5.1,

Pr
(|L(i) − l(i)| > u

) ≤ e−(r+1) lnn = n−(r+1)

for n ≥ n0. Hence, for each positive integerk ≤ r ,

E[|L(i) − l(i)|k] ≤ uk + nk Pr
(|L(i) − l(i)| > u

) ≤ uk + o(1).

The result now follows from

0≤ E[L(i)r ] − l(i)r =
r∑

k=2

(
r

k

)
E

[(
L(i) − l(i)

)k]
l(i)r−k

≤
r∑

k=2

(
r

k

)
E[|L(i) − l(i)|k]nr−k

= O(nr−1 ln3 n). �
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The next lemma extends the second part of the last lemma, and shows that in
equilibrium the numberLt(i) of bins with load at leasti at time t is unlikely to
move far from its mean valuel(i). We show that all the valuesLt(i) are likely to
stay close tol(i) throughout a polynomial length time interval[0, τ ].

LEMMA 5.3. Let K > 0 be an arbitrary constant, and let τ = nK . Let X0 be
in equilibrium. Then

Pr
[

sup
t∈[0,τ ]

sup
i

|Lt(i) − l(i)| ≥ n1/2 ln3 n

]
= e−�(ln2 n).

PROOF. By Lemma 5.2, there existsγ > 0 such that for alln sufficiently large,
for each timet ≥ 0,

Pr
(

sup
i

|Lt(i) − l(i)| ≥ n1/2 ln3 n/2
)

≤ e−γ ln2 n.

We now lets = n−1/2 andb = 2λn1/2, and use Lemma 2.1(a), inequality (9).�

The rest of this section is devoted to proving Lemma 5.1. The plan of the proof
is as follows. Consider a loads process(Xt), whereX0 = x0 for a suitable load
vectorx0. (We are most interested in the casex0 = 0.) We shall prove concentration
for Xt , and later deduce concentration for the equilibrium load vectorY .

Note first that the equilibrium load of a bin is stochastically at most Po(λd).
For we can couple the load of a single bin with a process where the arrival rate
is always exactlyλd and the death rate exactly 1, so that the number of balls in
the former is no more than in the latter at all times; and for the latter process, the
equilibrium number of balls is Po(λd).

It will be convenient to limit the maximum load of a bin. Letb = b(n) be an
integer at least, say, 4 lnn/ ln lnn—we shall specify a value forb later. Assume
that maxj x0(j) ≤ b/3. Let At be the event thatMs ≤ b for all 0 ≤ s ≤ t . If
temporarilyM̃s denotes the maximum load of a process in equilibrium, then, by
the time “monotonicity” part of Lemma 3.1, we have

Pr (At ) ≤ Pr (M̃s ≥ 2b/3 for somes ∈ [0, τ ]).
Hence, by (9) in Lemma 2.1(b) and by (6),

Pr (At ) ≤ (t + 1)(2n)Pr
(
Po(λd) ≥ b/3

)
= exp

(
ln(t + 1) + lnn − 1

3b lnb + O(b)
)
.

It follows that, forn sufficiently large, for each timet ≤ eb, say,

Pr (At ) ≤ e−b lnb/13.(18)

In fact, we shall ultimately specify values fort andb so thatt = O(b lnb).
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Since loads are rarely large, we can approximate the loads process(Xt) by using
only a few of the death processesFj,k , namely, those withk ≤ b, which we call the
“low” death processes. In fact, we shall model both the original process and the
approximating process, by replacing these low death processes by a combined low
death Poisson process with ratenb, and a “reaper” process (we omit the “grim”),
which at each “toll” of the ratenb Poisson process selects uniformly at random a
pair (j, k) wherej ∈ {1, . . . , n} andk ∈ {1, . . . , b}, and behaves as if the process
Fj,k had “rung.” LetX̂t be the approximating process, which uses only the low
death processes. Observe that onAt we haveX̂t = Xt . SincePr (At ) is so small,
it will suffice for us to prove concentration for̂Xt .

Let z and z̃ be positive integers. Lett = (t1, . . . , tz) be z arrival times
(not ordered) and letd = (d1, . . . , dz) be corresponding choices ofd bins. Let
t̃ = (t̃1, . . . , t̃z̃) be z̃ low death times (not ordered) and letd̃ = (d̃1, . . . , d̃z̃)

be corresponding reaper choices [of pairs(j, k), wherej ∈ {1, . . . , n} and k ∈
{1, . . . , b}]. Assume that all these times are distinct. Given any initial load vectorx,
our approximating simulation generates a load vectorst (x, t,d, t̃, d̃) for each time
t ≥ 0.

The following deterministic lemma is analogous to the first part of Lemma 3.1,
when the arrivals, choices, death times and reaper choices processes are all
deterministic, and may be proved in a similar way.

LEMMA 5.4. Suppose that we are given two initial load vectors x0 and y0,
together with any sequence of arrival times t and corresponding bin choices d, and
departure times t̃ and corresponding reaper choices d̃, where all these times are
distinct. Then the distance ‖st (x0, t,d, t̃, d̃) − st (y0, t,d, t̃, d̃)‖1 is nonincreasing
in t , and so, in particular, for each t ≥ 0,

‖st (x0, t,d, t̃, d̃) − st (y0, t,d, t̃, d̃)‖1 ≤ ‖x0 − y0‖1.

Similarly, ‖st (x0, t,d, t̃, d̃) − st (y0, t,d, t̃, d̃)‖∞ is nonincreasing in t [recall that
‖z‖∞ = maxj |z(j)|].

Let us now sketch the plan of the rest of the proof. Letµ(t) = E[f (Xt)] and
µ̂(t) = E[f (X̂t )]. Let Zt be the number of arrivals in[0, t], so thatZt ∼ Po(λnt).
Let Z̃t be the number of low death times in[0, t], so thatZ̃t ∼ Po(bnt). We
shall condition onZt = z andZ̃t = z̃. Let µ̂(t, z, z̃) = E[f (X̂t )|Zt = z, Z̃t = z̃].
We shall use Lemma 5.4 and the bounded differences method to upper bound
Pr (|f (X̂t ) − µ̂(t, z, z̃)| ≥ u|Zt = z, Z̃t = z̃), see (20) below.

Next we remove the conditioning onZt andZ̃t . To do this, we choose suitable
“widths” w andw̃, then use the fact that bothPr (|Zt − λnt | > w) and Pr (|Z̃t −
bnt | > w̃) are small, and forz and z̃ such that|z − λnt | ≤ w and|z̃ − bnt | ≤ w̃,
the difference|µ̂(t, z, z̃) − µ̂(t)| is at most about 2(w + w̃), see (23) below. We
thus find thatPr (|f (X̂t ) − µ̂(t)| ≥ 3(w + w̃)) is small. But sinceX̂t = Xt on
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At , andAt is very likely to occur, this last result yields concentration forf (Xt)

around its mean. The part of the proof up to here is contained in Lemma 5.5 below.
Finally, we use the coupling lemma (Lemma 3.1) to relate the distribution ofXt

(with X0 = 0) to the equilibrium distribution.
Let us start on the details. We shall use the following lemma withx0 = 0. (It is

convenient elsewhere to have the more general form.)

LEMMA 5.5. There are constants n0 and c > 0 such that the following holds.
Let n ≥ n0 and b ≥ 4 lnn/ ln lnn be integers, and let f be a Lipschitz function
on �. Let also x0 ∈ � be such that maxj x0(j) ≤ b/3, and assume that the process
(Xt) satisfies X0 = x0 a.s. Then for all times 0< t ≤ eb and all u ≥ 1,

Pr
(|f (Xt) − µt | ≥ u

) ≤ ne−cu2/(nbt) + e−cnt + e−cb lnb.(19)

PROOF. Note first that we may assume without loss of generality that
f (x0) = 0, and so|f (Xt)| ≤ Zt + Z̃t , since we could replacef (x) by f (x) −
f (x0). Let z, z̃ be positive integers, and condition onZt = z, Z̃t = z̃. Then
X̂t depends on 2(z + z̃) independent random variablesT1, . . . , Tz, D1, . . . ,Dz,
T̃1, . . . , T̃z̃, andD̃1, . . . , D̃z̃. Indeed, we may writêXt asst (x0,T,D, T̃, D̃), where
T = (T1, . . . , Tz), D = (D1, . . . ,Dz), T̃ = (T̃1, . . . , T̃z̃), and D̃ = (D̃1, . . . , D̃z̃).
This property relies on the well-known fact that, conditional on the number of
events of a Poisson process during[0, t], the unordered event times are a sample
of i.i.d. random variables uniform on[0, t]. Write

g(t,d, t̃, d̃) = f
(
st (x0, t,d, t̃, d̃)

)
.

We prove that, conditional onZt = z and Z̃t = z̃, the random variablef (X̂t ) is
highly concentrated, by showing thatg satisfies a “bounded differences” condition.
Suppose first that we alter a single co-ordinate valuedj . Then the value ofg can
change by at most 2, by Lemma 5.4 starting at timetj with ‖xtj − ytj ‖1 ≤ 2; the

same holds if we alter a single co-ordinate valued̃j . Similarly, if we change a
co-ordinate valuetj or t̃j , the value ofg can change by at most 2: we may see
this by applying Lemma 5.4 once at the earlier time and once at the later time.
Thus, changing any one of the 2(z + z̃) co-ordinates can change the value ofg by
at most 2. Now we use the independent bounded differences inequality, see, for
instance, [14]. We find that, for eachu > 0,

Pr
(|g(T,D, T̃, D̃) − E[g(T,D, T̃, D̃)]| ≥ u

) ≤ 2exp
(
− u2

4(z + z̃)

)
.

In other words, we have proved that, for anyu > 0,

Pr
(|f (X̂t ) − µ̂(t, z, z̃)| ≥ u|Zt = z, Z̃t = z̃

) ≤ 2exp
(
− u2

4(z + z̃)

)
.(20)
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Next we will remove the conditioning onZt and Z̃t . We will choose suitable
“widths” w = w(n) and w̃ = w̃(n), where 0≤ w ≤ λnt and 0≤ w̃ ≤ bnt . Let
I denote the interval of integer valuesz such that|z − λnt | ≤ w, and letĨ denote
the interval of integer values̃z such that|z̃ − bnt | ≤ w̃. Recall that we shall ensure
that with high probabilityZt ∈ I and Z̃t ∈ Ĩ , and for eachz ∈ I and z̃ ∈ Ĩ , the
difference|µ̂(t, z, z̃) − µ̂(t)| is not too large.

SinceZt ∼ Po(λnt) andZ̃t ∼ Po(bnt), by (5),

Pr (Zt /∈ I ) = Pr (|Zt − λnt | > w) ≤ 2exp
(
− w2

3λnt

)
(21)

and

Pr (Z̃t /∈ Ĩ ) = Pr (|Z̃t − bnt | > w̃) ≤ 2exp
(
− w̃2

3bnt

)
.(22)

We shall choosew and w̃ to satisfyw ≥ 2(λnt lnn)1/2 and w̃ ≥ 2(bnt lnn)1/2.
Then, by (21), (22), (5) and (7), provided thatb satisfiesb = o(n1/3),

E
[
Zt1(Zt /∈I∨Z̃t /∈Ĩ )

] ≤ E
[
Zt1Zt>λnt+w

] + λnt Pr (Z̃t /∈ Ĩ ) = o(1)

and

E
[
Z̃t1(Zt /∈I∨Z̃t /∈Ĩ )

] ≤ E
[
Z̃t1Z̃t>bnt+w̃

] + bnt Pr (Zt /∈ I ) = o(1).

Hence, since|f (X̂t )| ≤ Zt + Z̃t ,

E
[|f (X̂t )| 1

(Zt /∈I∨Z̃t /∈Ĩ )

] = o(1).

But

µ̂(t) = ∑
z∈I,z̃∈Ĩ

µ̂(t, z, z̃)Pr (Zt = z, Z̃t = z̃) + E
[
f (X̂t )1(Zt /∈I∨Z̃t /∈Ĩ )

]
.

Hence,

µ̂(t) ≤ max
z∈I,z̃∈Ĩ

{µ̂(t, z, z̃)} + o(1),

and, using also (21) and (22),

µ̂(t) ≥ min
z∈I,z̃∈Ĩ

{µ̂(t, z, z̃)} + o(1).

By Lemma 5.4, for eachz, z̃,

|µ̂(t, z + 1, z̃) − µ̂(t, z, z̃)| ≤ 1

and

|µ̂(t, z, z̃ + 1) − µ̂(t, z, z̃)| ≤ 1.
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It follows, using the bounds above on̂µ(t), that, for eachz ∈ I andz̃ ∈ Ĩ ,

|µ̂(t, z, z̃) − µ̂(t)| ≤ 2(w + w̃) + o(1).(23)

Now by (20), (21), (22) and (23),

Pr
(|f (X̂t ) − µ̂(t)| ≥ (

3+ o(1)
)
(w + w̃)

)
≤ ∑

z∈I,z̃∈Ĩ

Pr
(|f (X̂t ) − µ̂(t)| ≥ (

3+ o(1)
)
(w + w̃)|Zt = z, Z̃t = z̃

)

× Pr (Zt = z, Z̃t = z̃)

+ Pr (Zt /∈ I ) + Pr (Z̃t /∈ Ĩ )

≤ ∑
z∈I,z̃∈Ĩ

Pr
(|f (X̂t ) − µ̂(t, z, z̃)| ≥ (

1+ o(1)
)
(w + w̃)|Zt = z, Z̃t = z̃

)

× Pr (Zt = z, Z̃t = z̃)

+ Pr (|Zt − λnt | > w) + Pr (|Z̃t − bnt | > w̃)

≤ 2exp
(
− (1+ o(1))(w + w̃)2

4(λnt + bnt + w + w̃)

)
+ 2exp

(
− w2

3λnt

)
+ 2exp

(
− w̃2

3bnt

)

≤ 2exp
(
−(1+ o(1))(w + w̃)2

5nbt

)
+ 2exp

(
− w2

3λnt

)
+ 2exp

(
− w̃2

3bnt

)
,

sinceb(n) → ∞ asn → ∞. Let u satisfy

6(nbt lnn)1/2 ≤ u ≤ 3
√

λbnt.

Let w̃ = u/3 andw = w̃
√

λ/b. Observe that, forn sufficiently large, the bounds
required above onw andw̃ hold, andu = (3+ o(1))(w + w̃). Thus,

Pr
(|f (X̂t ) − µ̂(t)| ≥ u

) ≤ 2e−(1+o(1))u2/(45nbt) + 4e−u2/(27nbt)

≤ e−u2/(46nbt)

for n sufficiently large. But ifu < 6(nbt lnn)1/2, thene−u2/(46nbt) ≥ n−1. Thus, as
long asu ≤ 3

√
λbnt , we have

Pr
(|f (X̂t ) − µ̂(t)| ≥ u

) ≤ ne−u2/(46nbt).

Now we move fromX̂t to Xt . Note that in[0, t] there areZt arrivals and at most
|X0| + Zt departures, and so|f (Xt) − f (X̂t )| ≤ 2(|X0| + 2Zt). Thus, since also
Xt = X̂t onAt ,

|µ̂(t) − µ(t)| = ∣∣E[(
f (Xt) − f (X̂t )

)
1At

]∣∣ ≤ 2E
[
(|X0| + 2Zt)1At

]
.

But |X0| ≤ nb/3 andE[Zt1At
] ≤ 2λnt Pr (At) + E[Zt1Zt>2λnt ]. Hence,

|µ̂(t) − µ(t)| ≤ (2nb/3+ 8λnt)Pr (At ) + 4E
[
Zt1Zt>2λnt

] = o(1),
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by (18) and (7). Thus,

Pr
(|f (Xt) − µ(t)| ≥ u

) ≤ Pr
(|f (X̂t ) − µ̂(t)| ≥ u + o(1)

) + Pr (At )

≤ ne−(u+o(1))2/(46nbt) + e−b lnb/13,

by (18) (since we assume thatt ≤ eb). The lemma now follows, by replacingu by
min{u,3

√
λbnt}. �

We shall use Lemma 5.5 here withX0 = 0 to complete the proof of Lemma 5.1.
As we saw before, we may assume thatf (0) = 0, and, hence, always|f (x)| ≤ |x|.
It remains to relate the distribution ofXt with X0 = 0 to the equilibrium
distribution, and to choose values forb and t . By Theorem 1.1, ifY has
the equilibrium distribution, thendTV(L(Xt),L(Y )) ≤ λne−t . Hence, for alln
sufficiently large,b ≥ 4 lnn/ ln lnn andu ≥ 1,

Pr
(|f (Y ) − µ(t)| ≥ u

)
≤ dTV

(
L(Xt),L(Y )

) + Pr
(|f (Xt) − µ(t)| ≥ u

)
(24)

≤ λne−t + ne−cu2/(ntb) + e−cnt + e−cb lnb.

Let u ≥ 2(n ln3 n/c ln lnn)1/2. Let t = (u2c ln lnn/n)1/3 andb = 	t/ ln lnn
. Then
t ≥ 41/3 lnn. Also, lnb ≥ (1+o(1)) ln lnn, sob lnb ≥ (1+o(1))t = �(t). Further,
cu2/(nbt) = �(t). It now follows from (24) that

Pr
(|f (Y ) − µ(t)| ≥ u

) = e−�((u2 ln lnn/n)1/3).

Finally, we relateµ(t) = E[f (Xt)] to E[f (Y )]. By Theorem 1.1,

|µ(t) − E[f (Y )]| ≤ dW
(
L(Xt),L(Y )

) = o(1)

sincet ≥ 41/3 lnn. Thus, we find that, for anyu ≥ 2(n ln3 n/c ln lnn)1/2,

Pr
(|f (Y ) − E[f (Y )]| ≥ u

) = e−�((u2 ln lnn/n)1/3).

This completes the proof of Lemma 5.1.

6. Balance equations. In this section we suppose throughout that the system
is in equilibrium. We present the balance equation (26), and deduce Lemma 6.1,
which we shall need in Section 8, concerning the expected proportion of bins with
at leasti balls.

Letd ≥ 2 be a fixed integer. Consider a positive integern, and the corresponding
set � of load vectors. Forx ∈ � and a nonnegative integerk, let u(k, x) be
the proportion of binsj with load x(j) at leastk. Thus, alwaysu(0, x) = 1.
Let X have the equilibrium distribution over�, and letu(k) denoteE[u(k,X)]
(which depends onn). [Thus,u(k) = l(k)/n, wherel(k) was defined earlier as the
expected number of bins with load at leastk.]
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LEMMA 6.1. (a)There is a constant c such that, for n sufficiently large, if
j ≥ ln lnn/ lnd + c, then u(j) ≤ n−1 ln3 n.

(b) For any η > 0, there is a constant c such that, for n sufficiently large, if
j ≤ ln lnn/ lnd − c, then u(j) ≥ n−η.

The rest of this section is devoted to proving this lemma. First we present the
balance equations.

It is easy to check (see [21]) that, iff is the bounded functionf (x) = u(k, x),
then the generator operatorG of the Markov process satisfies

Gf (x) = λ
(
u(k − 1, x)d − u(k, x)d

) − k
(
u(k, x) − u(k + 1, x)

)
[cf. with equation (1) earlier]. To see this, note thatu(k, x) − u(k + 1, x) is the
proportion of bins with load exactlyk, andu(k−1, x)d −u(k, x)d is the probability
that the minimum load of thed attempts is exactlyk−1. SinceX is in equilibrium,
E[Gf (X)] = 0. Hence,

λ
(
E[u(k − 1,X)d ] − E[u(k,X)d ]) − k

(
u(k) − u(k + 1)

) = 0.(25)

Now
∑
k≥1

ku(k, x) = 1

n

n∑
j=1

(
x(j) + 1

2

)
≤ |x|2

n
,

and so ∑
k≥1

ku(k) ≤ E[|X|2]
n

< ∞.

Hence,ku(k) → 0 as k → ∞. Also, E[u(k,X)d ] ≤ u(k). It follows on sum-
ming (25), fork ≥ i, that, for eachi = 1,2 . . . , we have

λE[u(i − 1,X)d ] − iu(i) − ∑
k≥i+1

u(k) = 0.(26)

(This is the result thatE[Gf (X)] = 0, wheref (x) is the number of balls of
“height” at leasti, i.e.,f (x) = ∑n

j=1(x(j) − i + 1)+, but sincef is not bounded,
we cannot assert the result directly.) Equation (26) is the key fact in our analysis.
Observe that, by (26), for each positive integeri,

u(i) ≤ λ

i
E[u(i − 1,X)d ].(27)

We are now ready to prove the lemma, part (b) first. Leta = �2λ� − 1. We shall
show thatu(a) is at least a positive constant, and theu(i) do not decrease too
quickly for i ≥ a.

Note first that, sinceE[u(i − 1,X)d ] ≥ u(i − 1)d , by (26), we have

λu(i − 1)d − iu(i) − ∑
k≥i+1

u(k) ≤ 0.(28)
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Also, since 0≤ u(i − 1,X) ≤ 1, we haveE[u(i − 1,X)d ] ≤ u(i − 1) and so
by (27), for eachi = 1,2, . . . , we haveu(i) ≤ λu(i−1)/i. Thus, fori ≥ a, we have
u(i + 1) ≤ λu(i)/(i + 1) ≤ u(i)/2. Hence, ifk ≥ i ≥ a, thenu(k) ≤ 2−(k−i)u(i);
and so ∑

k≥i+1

u(k) ≤ u(i) for i ≥ a.

It now follows from (28) that, fori ≥ a, we haveλu(i − 1)d − (i + 1)u(i) ≤ 0;
and, thus,

u(i) ≥ λu(i − 1)d

i + 1
for i ≥ a.(29)

Inequality (29) will show that theu(i) do not decrease too quickly fori ≥ a.
Now consider small values ofi. Let i ∈ {1, . . . , a}. Sinceu(i) ≥ u(k) for k ≥ i,

we have(a − i)u(i) − ∑a
k=i+1 u(k) ≥ 0. Hence, by (28),

0 ≥ λu(i − 1)d − iu(i) − ∑
k≥i+1

u(k)

≥ λu(i − 1)d − au(i) − ∑
k≥a+1

u(k)

≥ λu(i − 1)d − (a + 1)u(i).

Thus, we have

u(i) ≥ λ

2λ + 1
u(i − 1)d for i = 1, . . . , a.

The last inequality shows that there is a constantδ1 > 0 (depending only on
λ and d) such that alwaysu(a) ≥ δ1. But by (29) and induction oni, for each
i = 1,2, . . . ,

u(a + i) ≥ λ1+d+···+di−1

(a + i + 1)(a + i)d(a + i − 1)d
2 · · · (a + 2)d

i−1 u(a)d
i

.

To upper bound the denominator, note that

ln
(
(a + i + 1)(a + i)d(a + i − 1)d

2 · · · (a + 2)d
i−1)

= di
i∑

k=1

d−k ln(a + k + 1) ≤ c2 di

for some constantc2, and so the denominator is at mostec2d
i
. Let δ2 > 0 be the

constantλe−c2δ1. Then

u(i) ≥ u(a + i) ≥ δ2
di = exp

(
−di ln

1

δ2

)



1752 M. J. LUCZAK AND C. MCDIARMID

for eachi = 1,2, . . . . Let the constantc3 be such thatd−c3 ln 1
δ2

≤ η. Hence, if
i ≤ ln lnn/ lnd − c3, then

u(i) ≥ exp
(
−(lnn)d−c3 ln

1

δ2

)

≥ exp(−η lnn) = n−η.

This completes the proof of part (b) of the lemma.

We now prove part (a) of the lemma. By Lemma 5.2, there exists a constant
c1 > 0 such that, for all positive integersi andn,

u(i) ≤ λ

i

(
u(i − 1)d + c1n

−1 ln3 n
)
.(30)

Let i∗ = i∗(n) be the smallest positive integeri such thatu(i − 1)d < c1n
−1 ln3 n,

that is,u(i − 1) < c
1/d
1 n−1/d(lnn)3/d . We may assume thatn is sufficiently large

thatc1 ln3 n > 1, and so the quantityc1/d
1 n−1/d(lnn)3/d in the last bound is> 1/n.

Note that, by (30),

u(i∗) ≤ 2λ

i∗
c1n

−1 ln3 n = o(n−1 ln3 n),

sincei∗(n) → ∞ asn → ∞ by part (b).
We want an upper bound oni∗. By (30),

u(i) ≤ 2λ

i
u(i − 1)d(31)

for each i = 1, . . . , i∗ − 1. Let i0 be the constant�2eλ�. We check thati∗ <

ln lnn/ lnd + i0 + 2. Sincei∗(n) → ∞ as n → ∞, we may assume thati0 ≤
i∗ − 1. By (31), u(i0) ≤ 2λ

i0
u(i0 − 1)d ≤ 2λ

i0
≤ e−1. Also by (31), for i = i0 +

1, . . . , i∗ − 1, we haveu(i) ≤ u(i − 1)d , and it follows thatu(i) ≤ e−di−i0 for
each i = i0, . . . , i

∗ − 1. But e−di−i0 ≤ 1/n when di−i0 ≥ lnn; that is, when
i ≥ ln lnn/ lnd + i0. Thus, if i∗ ≥ ln lnn/ lnd + i0 + 2, thenu(i∗ − 2) ≤ 1/n,
contradicting the choice ofi∗. This completes the proof of part (a) of Lemma 6.1,
and thus of the whole lemma.

7. Random walks with drift. In this section we consider a generalized
random walk on the integers, which takes steps of 0,±1 but with probabilities
that can depend on the history of the process, and where there is a “drift.” We shall
use the following version of the Bernstein inequality—see Theorem 2.7 in [14].

LEMMA 7.1. Let b ≥ 0, and let the random variables Z1, . . . ,Zn be
independent, with Zk − E[Zk] ≥ −b for each k. Let Sn = ∑

k Zk , and let Sn have
expected value µ and variance V (assumed finite). Then for any z ≥ 0,

Pr (Sn ≤ µ − z) ≤ exp
(
− z2

2V + (2/3)bz

)
.(32)
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(The term2
3bz should be thought of as an error term.) The next lemma concerns

hitting times for a generalized random walk with “drift.”

LEMMA 7.2. Let φ0 ⊆ φ1 ⊆ · · · ⊆ φm be a filtration, and let Y1, Y2, . . . , Ym be
random variables taking values in {−1,0,1} such that each Yi is φi -measurable.
Let E0,E1, . . . ,Em−1 be events, where Ei ∈ φi for each i, and let E = ∧

i Ei . Let
Rt = R0 + ∑t

i=1 Yi . Let 0 ≤ p ≤ 1/3, let r0 and r1 be integers such that r0 < r1,
and let pm ≥ 2(r1 − r0). Assume that, for each i = 1, . . . ,m,

Pr (Yi = 1|φi−1) ≥ 2p on Ei−1 ∧ (Ri−1 < r1)

and

Pr (Yi = −1|φi−1) ≤ p on Ei−1 ∧ (Ri−1 < r1).

Then

Pr
(
E ∧ (Rt < r1 ∀ t ∈ {1, . . . ,m})|R0 = r0

) ≤ exp
(
−pm

28

)
.

PROOF. Let us first prove the lemma assuming that the above inequalities
on Pr (Yi = 1|φi−1) and Pr (Yi = −1|φi−1) hold a.s.; that is, ignoring the events
Ei−1 ∧ (Ri−1 < r1). We shall then see easily how to incorporate these events.

We can couple theYi with i.i.d. random variablesZi taking values in{−1,0,1},
such that Pr (Zi = 1) = 2p, Pr (Zi = −1) = p and Pr (Zi ≤ Yi) = 1 for
eachi. The variablesZ1,Z2, . . . are independent;E[Zi] = p, Var[Zi] ≤ 3p, and
Zi − E[Zi] ≥ −1− p ≥ −4/3 for eachi. Let St = ∑t

i=1 Zi , let µt = E(St ) = pt ,
and note thatVar(St ) ≤ 3tp. Hence, by Bernstein’s inequality, Lemma 7.1, for
eachy > 0,

Pr (St ≤ µt − y) ≤ exp
(
− y2

6pt + y

)
.

Note thatµm = pm. Thus, ifa = r1 − r0,

Pr (Rt < r1 ∀ t ∈ {1, . . . ,m}|R0 = r0)

≤ Pr (Sm < a)

≤ exp
(
− (pm − a)2

6pm + (pm − a)

)

≤ exp
(
−pm

7

(
1− a

pm

)2)

≤ exp
(
−pm

28

)
,

sincea/pm ≤ 1/2.



1754 M. J. LUCZAK AND C. MCDIARMID

Now let us return to the full lemma as stated, with the eventsEi . For each
i = 0,1, . . . ,m − 1, let Fi = Ei ∧ (Ri < r1); and for eachi = 1, . . . ,m, let
Ỹi = Yi · 1Fi−1 + 1F i−1

. Let R̃0 = R0 and fort = 1, . . . ,m, let R̃t = R0 + ∑t
i=1 Ỹi .

Then Pr (Ỹi = 1|φi−1) ≥ 2p, since, by assumption, it is at least 2p on Fi−1, and
it equals 1 onF i−1. Similarly, Pr (Ỹi = −1|φi−1) ≤ p. Hence, by what we have
just proved applied to thẽYi ,

Pr
(
E ∧ (Rt < r1 ∀ t ∈ {1, . . . ,m})|R0 = r0

)
= Pr

(
E ∧ (R̃t < r1 ∀ t ∈ {1, . . . ,m})| R̃0 = r0

)
≤ Pr (R̃t < r1 ∀ t ∈ {1, . . . ,m}|R̃0 = r0)

≤ exp
(
−pm

28

)
,

as required. �

The next lemma shows that if we try to cross an interval against the drift, then
we will rarely succeed.

LEMMA 7.3. Let a be a positive integer. Let p and q be reals with q > p ≥ 0
and p + q ≤ 1. Let φ0 ⊆ φ1 ⊆ φ2 ⊆ · · · be a filtration, and let Y1, Y2, . . . be
random variables taking values in {−1,0,1} such that each Yi is φi -measurable.
Let E0,E1, . . . be events where each Ei ∈ φi , and let E = ∧

i Ei . Let R0 = 0 and
let Rk = ∑k

i=1 Yi for k = 1,2, . . . . Assume that, for each i = 1,2, . . . ,

Pr (Yi = 1|φi−1) ≤ p on Ei−1 ∧ (0≤ Ri−1 ≤ a − 1)

and

Pr (Yi = −1|φi−1) ≥ q on Ei−1 ∧ (0 ≤ Ri−1 ≤ a − 1).

Let

T = inf
{
k ≥ 1 :Rk ∈ {−1, a}}.

Then

Pr
(
E ∧ (RT = a)

) ≤ (p/q)a.

PROOF. As with the previous lemma, let us first prove this lemma assuming
that the given inequalities onPr (Yi = 1|φi−1) and Pr (Yi = −1|φi−1) hold a.s.
We can couple theYi with i.i.d. random variableŝYi taking values in{0,±1} such
that Pr (Ŷi = 1) = p, Pr (Ŷi = −1) = q and Pr (Yi ≤ Ŷi) = 1. Let R̂0 = 0, let
R̂k = ∑k

i=1 Ŷi for k = 1,2, . . . , and let

T̂ = inf
{
k ≥ 1 :R̂k ∈ {−1, a}}.
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Then from standard properties of a simple random walk,

Pr (RT = a) ≤ Pr (R̂
T̂

= a) ≤ (p/q)a.

Now let us incorporate the eventsEi , and consider the full lemma as stated. For
eachi = 0,1, . . . , let Fi = Ei ∧ (0 ≤ Ri−1 ≤ a − 1); and for eachi = 1,2, . . . ,
let Ỹi = Yi1Fi−1 − 1F i−1

. Let R̃k and T̃ be defined in the obvious way. Then
Pr (Ỹi = 1|φi−1) ≤ p, since, by assumption, it is at mostp onFi−1, and it equals 0
on F i−1. Similarly, Pr (Ỹi = −1|φi−1) ≥ q. Hence, by what we have just proved
applied to theỸi ,

Pr
(
E ∧ (RT = a)

) ≤ Pr (R̃
T̃

= a) ≤ (p/q)a. �

8. Proof of Theorem 1.3. We have assembled all the preliminary results we
need. In this section we at last prove Theorem 1.3, and inequalities (3) and (4) that
follow it. We assume throughout that the process is in equilibrium.

Let d ≥ 2 be a fixed integer. Consider then-bin system. Recall thatu(k) is the
expected proportion of bins with load at leastk. Definej∗ = j∗(n) to be the least
positive integeri such thatu(i) < n−1/2 ln3 n. By Lemma 6.1,

j∗(n) = ln lnn/ lnd + O(1).

We shall show that,

for d = 2, we haveM = j∗ or j∗ + 1 a.a.s.(33)

and

for d ≥ 3, we haveM = j∗ − 1 or j∗ a.a.s.(34)

This will complete the proof of the first part of Theorem 1.3.
For each timet and eachi = 0,1, . . . , let the random variableZt(i) be the

number of new balls arriving during[0, t] which have height at leasti on arrival,
that is, which are placed in a bin already holding at leasti −1 balls. LetJ0 = 0 and
enumerate the arrival times after time 0 asJ1, J2, . . . . We shall define a “horizon”
time t0 of the order of lnn, and letN = �2λnt0�. For each timet , let At be the
event

{λn/2≤ |Xs | ≤ 2λn ∀ s ∈ [0, t]}.
Then by Lemma 2.2, the eventAt0 holds with probability 1− e−�(n).

8.1. The case d ≥ 3. We consider first the case whend ≥ 3, which is easier
than whend = 2.

Let K > 0 be a (large) constant and lett0 = (K + 4) lnn. Sincel(j∗ − 1) ≥
n1/2 ln3 n, the concentration result Lemma 5.3 shows thatPr (M < j∗ − 1) =
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e−�(ln2 n). In particular,M ≥ j∗ − 1 a.a.s., which is “half” of (34). Also, (8) in
Lemma 2.1 above [withs = n−(K+4), a = j∗ − 3 andb = 1] shows that

min{Mt : 0≤ t ≤ nK} ≥ j∗ − 2 a.a.s.(35)

This result establishes a finer form of the lower bound half of (2). In fact, this half
of (2) will follow from (3) which we prove later, so (35) is not needed for our
proofs.

Next we shall show thatM ≤ j∗ a.a.s., which is the other half of (34). For
k = 0,1, . . . , let Ek be the event that at timeJk there are no more than 2n1/2 ln3 n

bins with at leastj∗ balls. Then Pr (Ek) = e−�(ln2 n) by Lemma 5.2, since
l(j∗) < n1/2 ln3 n. Consider the ball which arrives at timeJk : on Ek−1, it has
probability at mostp1 = (2n−1/2 ln3 n)d of falling into a bin with at leastj∗ balls.
Note that

Pr (JN+1 ≤ t0) ≤ Pr [Po(λnt0) ≥ 2λnt0] = e−�(n lnn).(36)

Also, for each positive integerr ,

Pr
(
B(N,p1) ≥ r

) ≤ (Np1)
r = O

((
n−(d/2−1)(lnn)3d+1)r).

(Here we are usingB to denote a binomial random variable.) Hence, for each
positive integerr , using Lemma 5.3,

Pr
[
Zt0(j

∗ + 1) ≥ r
]

≤ Pr
(
B(N,p1) ≥ r

) + Pr

(
N−1∨
k=0

Ek

)
+ Pr (JN+1 ≤ t0)

= O
((

n−(d/2−1)(lnn)3d+1)r).
Also, the probability that some “initial” ball survives to timet0 is at mostλne−t0,
as we saw earlier. Hence, for each positive integerr ,

Pr [M ≥ j∗ + r] ≤ Pr
[
Zt0(j

∗ + 1) ≥ r
] + λne−t0.

In particular,Pr (M ≥ j∗ + 1) = o(1), which together with the earlier result that
M ≥ j∗ − 1 a.a.s., completes the proof of (34). Further,

Pr [M ≥ j∗ + 2K + 5] = o(n−K−2).

Now (9) in Lemma 2.1 withτ = nK and s = n−2, together with (35), lets us
complete the proof of (2).
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8.2. The case d = 2. The cased = 2 needs a little more effort, and uses the
“drift” results from the last section. Again, letK > 0 be a (large) constant, but now
let t0 = (2K + 8) lnn. We first show thatM ≥ j∗, by showing that, in fact,

Lt0(j
∗) ≥ ln3 n a.a.s.(37)

Let J ′
0 = 0, and enumerate all jump times after time 0 (not just the arrival times)

asJ ′
1, J

′
2, . . . . Note thatJ ′

n ≤ t0 a.a.s., since

Pr (J ′
n > t0) ≤ Pr (Jn > t0) = Pr

(
Po(λnt0) < n

) = e−�(n lnn)

by (5). Fork = 0,1, . . . , letEk be the eventAJ ′
k
∧ (LJ ′

k
(j∗ −1) ≥ 1

2n1/2 ln3 n). Let

E = ∧n−1
k=0 Ek . We saw earlier thatPr (At0) = o(1). By Lemma 5.2, as before, we

havePr (LJ ′
k
(j∗ − 1) < 1

2n1/2 ln3 n) = e−�(ln2 n). Thus,

Pr (E) ≤ Pr
(
At0

) + Pr (J ′
n > t0) + ne−�(ln2 n) = o(1).

For k = 0,1, . . . , let Rk = LJ ′
k
(j∗) and fork = 1,2, . . . , let Yk = Rk − Rk−1, so

that

Rk = R0 +
k∑

j=1

Yj .

Let p2 = ln6 n/(24n), and letr1 = 	2 ln3 n
. OnEk−1 ∧ (Rk−1 < r1),

Pr
(
Yk = 1|φJ ′

k−1

) ≥ 2p2

and

Pr
(
Yk = −1|φJ ′

k−1

) ≤ p2,

for n sufficiently large. [Here we useφt to denote theσ -field generated by
(Xs : 0 ≤ s ≤ t).] Also, thennp2 ≥ 2r1. Hence, by Lemma 7.2, for each integer
r0 with 0≤ r0 < r1,

Pr
(
E ∧ (Rk < r1 ∀ k ∈ {1, . . . , n})|R0 = r0

) ≤ e−p2n/28.

Since Pr (E) = o(1), it follows that a.a.s.Rk ≥ r1 for somek ∈ {1, . . . , n}. (If
R0 = r1, then we may replacer1 by r ′

1 = r1+1 above: ifR0 ≥ r1+1, thenR1 ≥ r1

a.s.) Thus, a.a.s.LJ ′
k
(j∗) ≥ 	2 ln3 n
 for somek ∈ {1, . . . , n}. Finally, sinceJ ′

n ≤ t0

a.a.s. as we saw above, we find that a.a.s.Lt(j
∗) ≥ 	2 ln3 n
 for somet ∈ [0, t0].

In order to complete the proof of (37), it suffices to show that a.a.s. there will be
no “excursions” that cross downwards from	2 ln3 n
 to at most ln3 n. Let B be the
event that there is such a crossing. The only possible start times for such a crossing
are departure times during[0, t0]. Recall thatN = �2λnt0�. Now |X0| ≤ N a.a.s.
and we saw in (36) that a.a.s. there are at mostN arrivals in [0, t0]. Hence, if
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C denotes the event that there are more than 2N departures during[0, t0], then
Pr (C) = o(1).

We may use Lemma 7.3 (suitably translated and reversed) to upper bound the
probability that any given excursion leads to a crossing. Leta = 	ln3 n
. Let
p = 2p2 and letq = p2. We apply Lemma 7.3 witha, p, q and Ek as above.
We obtain

Pr (B) ≤ Pr (C) + N2−a + Pr

(
N−1∧
k=0

Ek

)
= o(1).

Thus, we have established (37), and, hence, proved thatM ≥ j∗ a.a.s.
We now consider upper bounds onM . We shall show thatM ≤ j∗ + 1 a.a.s., by

showing thatLt0(j
∗ + 2) = 0 a.a.s. Fork = 0,1, . . . , let Fk be the event that at the

arrival timeJk there are no more than 2n1/2 ln3 n bins with at leastj∗ balls. Since
l(j∗) < n1/2 ln3 n, Lemma 5.1 yieldsPr (Fk) = e−�(ln2 n). Consider the ball which
arrives at timeJk : onFk−1 it has probability at mostp3 = 4 ln6 n/n of falling into
a bin with at leastj∗ balls. Thus, for each positive integerr ,

Pr
(
Zt0(j

∗ + 1) ≥ r
) ≤ Pr

(
B(N,p3) ≥ r

) + Pr

(
N−1∨
k=0

Fk

)
+ Pr (JN+1 ≤ t0).

Also, the probability that some “initial” ball survives to timet0/2 is at most
λne−t0/2. Hence, there is a constantc such that, with probability 1− O(n−K−3),
we haveLt(j

∗ + 1) ≤ c ln7 n uniformly for all t ∈ [t0/2, t0]. Thus, this also holds
over[0, t0].

Fork = 0,1, . . . , letF ′
k be the event that at timeJk there are no more thanc ln7 n

bins with at leastj∗ + 1 balls. OnF ′
k−1, the ball arriving at timeJk has probability

at mostp4 = c2 ln14n n−2 of falling into a bin with at leastj∗ + 1 balls. Then for
each positive integerr ,

Pr
(
Zt0(j

∗ + 2) ≥ r
) ≤ Pr

(
B(N,p4) ≥ r

) + Pr

(
N−1∨
k=0

F ′
k

)
+ Pr (JN+1 ≤ t0).

Also, as we noted above, the probability that some “initial” ball survives to timet0
is at mostλne−t0, and so

Pr
(
Mt0 ≥ j∗ + r + 1

) ≤ Pr
(
Zt0(j

∗ + 2) ≥ r
) + λne−t0.

It follows on takingr = 1 that a.a.s.Mt0 ≤ j∗ + 1; and on takingr = K + 3 that

Pr
(
Mt0 ≥ j∗ + K + 4

) = o(n−K−2).

Now (9) in Lemma 2.1(b), say withτ = nK ands = n−2, yields the upper bound
part of (2).
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8.3. Completing the proof. In this sectiond will be any fixed integer at least 2.
The lower bound half of (2) will follow from (3), which we now prove. [See
also (35) above.] Let 0< ε < 1

3, and letτ = exp(n1/3−ε). By Lemma 6.1, there
is a constant integerc > 0 such thatl(j∗ − c) ≥ n1−ε/2. By the concentration
result Lemma 5.1 [applied to the functionL(j∗ − c), with u = n1−ε/2],

Pr (M < j∗ − c) = Pr
(
L(j∗ − c) = 0

) = exp
(−�(n1/3−ε/3)

)
.

Now we may use inequality (8) in Lemma 2.1(b), withs = 1/τ , a = j∗ − c − 3
andb = 2, to show that a.a.s.Mt ≥ j∗ − c − 2 for all t ∈ [0, τ ]. This completes the
proof of (3).

It remains to prove (4). Letz = z(n) be a positive integer such that lnz = o(lnn).
Note that balls choosing bin 1 on each of theird trials arrive in a Poisson process at
rateλn−(d−1) (recall that balls choose bins with replacement). LetCt be the event
that, in the interval[t, t + 1), there are at leastz balls which arrive, choose bin 1
each time, and survive at least to timet + 1. Then

Pr (Ct ) ≥ (
1+ o(1)

)(
λn−(d−1)z−1)ze−z

= exp
(−(d − 1)z lnn − z ln z + O(z)

)
= n−(d−1+o(1))z.

Hence,

Pr
(
M

(n)
t < z ∀ t ∈ [0, τ )

) ≤ Pr
(
Xt(1) < z ∀ t ∈ [0, τ )

)
≤ Pr

(
each ofC0, . . . ,C	τ
−1 fail

)
≤ (

1− n−(d−1+o(1))z)τ
≤ exp

(−τn−(d−1+o(1))z).
Hence,

Pr
(
M

(n)
t < z ∀ t ∈ [0, τ )

) → 0 asn → ∞ if τn−(d−1+o(1))z → ∞.(38)

This yields (4).

9. Chaoticity. As usual, fix a positive integerd: let us assume here that
d ≥ 2. One consequence of our concentration results is that asymptotically,
as n → ∞, individual bin loads become independent of one another. Thus,
our network satisfies thechaos hypothesis, Boltzmann’sstosszahlansatz [6]. In
recent years chaoticity phenomena have received considerable attention [6, 9,
10, 18] in the context of various multitype particle systems, such as computer
and communication networks, and interacting physical and chemical processes.
Consider the equilibrium case.
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PROPOSITION 9.1. Fix an integer r ≥ 2. Consider the n-bin model, with
load vector X in equilibrium. For any distinct indices j1, . . . , jr , the joint law
of X(j1), . . . ,X(jr) differs from the product law by at most O(n−1 ln4 n) in total
variation.

PROOF. As before, letu(k,X) denote the fraction of bins with load at leastk.
By Lemma 5.2,

sup
k

Pr
(|u(k,X) − u(k)| ≥ n−1/2 ln3/2 n

) = O(n−1).

Hence, for each positive integera ≤ r ,

sup
k1,...,ka

E

[
a∏

s=1

|u(ks,X) − u(ks)|
]

= O(n−a/2 ln3a/2 n) + O(n−1),(39)

where the supremum is over alla-tuplesk1, . . . , ka of nonnegative integers (not
necessarily distinct). But

E

[
r∏

s=1

u(ks,X)

]
−

r∏
s=1

u(ks)

= ∑
A⊆{1,...,r},|A|≥2

E

[ ∏
s∈A

(
u(ks,X) − u(ks)

)] ∏
s∈{1,...,r}\A

u(ks).

Hence, by (39), uniformly over allr-tuplesk1, . . . , kr ,∣∣∣∣∣E
[

r∏
s=1

u(ks,X)

]
−

r∏
s=1

u(ks)

∣∣∣∣∣
(40)

≤ ∑
A⊆{1,...,r},|A|≥2

E

[ ∏
s∈A

|u(ks,X) − u(ks)|
]

= O(n−1 ln3 n).

Now

u(k,X) = 1

n

n∑
j=1

1X(j)≥k.

Thus,

E

[
r∏

s=1

u(ks,X)

]
= n−rE

[
r∏

s=1

n∑
j=1

1X(j)≥ks

]

= E

[
r∏

s=1

1X(s)≥ks

]
+ O(n−1)
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uniformly over allr-tuplesk1, . . . , kr , since when we expand the middle expres-
sion, there areO(nr−1) terms for which the values ofj are not all distinct. Hence,
from (40),

sup
k1,...,kr

∣∣∣∣∣E
[

r∏
s=1

1X(s)≥ks

]
−

r∏
s=1

u(ks)

∣∣∣∣∣ = O(n−1 ln3 n).

But

Pr

(
r∧

s=1

(
X(s) = ks

)) = E

[
r∏

s=1

(
1X(s)≥ks − 1X(s)≥ks+1

)]
,

which is sum of 2r terms ±E[∏r
s=1 1X(s)≥k′

s
], where k′

s = ks or ks + 1; and∏r
s=1 Pr (X(s) = ks) is a corresponding sum of terms±∏r

s=1 u(k′
s). Hence, for

any setj1, . . . , jr of distinct bin indices,

sup
k1,...,kr

∣∣∣∣∣ Pr

(
r∧

s=1

(
X(js) = ks

)) −
r∏

s=1

Pr
(
X(js) = ks

)∣∣∣∣∣ = O(n−1 ln3 n).(41)

But there exists a constantc > 0 such that

Pr
(

max
j

X(j) > ln lnn/lnd + c

)
= O(n−1).

Hence, for any setj1, . . . , jr of distinct bin indices, the joint law ofX(j1),

. . . ,X(jr) differs from the product law by at mostO(n−1 ln3 n(ln lnn)r) in total
variation. �

The last result, together with the rapid mixing result Theorem 1.1, shows that,
with suitable initial conditions, bin loads will be nearly independent after a short
time. Suppose, for example, that we start with all bins empty or, more generally,
with O(n) balls in total, and lett = t (n) ≥ 2 lnn. Let j1, . . . , jr be fixed distinct
indices, wherer ≥ 2. Then ifY has the equilibrium distribution,

dTV
(
L

(
Xt(j1), . . . ,Xt (jr)

)
,L

(
Xt(j1)

) ⊗ · · · ⊗ L
(
Xt(jr)

))
≤ dTV

(
L

(
Y(j1), . . . , Y (jr)

)
,L

(
Y(j1)

) ⊗ · · · ⊗ L
(
Y(jr)

))
+ (r + 1)dTV

(
L(Xt),L(Y )

)
= O(n−1 ln4 n).

10. Concluding remarks. We have investigated a natural continuous-time
balls-and-bins model withd random choices, which exhibits the “power of
two choices” phenomenon. We found that the system converges rapidly to its
equilibrium distribution; in equilibrium, the maximum load is a.a.s. concentrated
on just two values; whend = 1, these values are close to lnn/ ln lnn; and when
d ≥ 2, they are close to ln lnn/ lnd, and the maximum load varies little over
polynomial length intervals. We make three further remarks:
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(a) We have not discussed the next level of detail. For example, for given values
of d ≥ 2 andλ > 0, let m(d,λ;n) denote the median value of the maximum
loadM(n) in equilibrium. We know that the differencem(d,λ;n)− ln lnn/ lnd

stays bounded asn → ∞, but how does it behave in more detail? How does it
depend onλ?

(b) Our approach can be applied, in a natural way, to the “original” load-balancing
problem, wherem ∼ cn balls are thrown inton bins sequentially, each ball
choosesd random bins, and is placed into a least loaded of these bins, see
[2, 3, 16]. It is known that, with probability tending to 1 asn → ∞, at the end
of the allocation process the maximum load of a bin is ln lnn/ lnd + O(1),
though it has not been possible to determine the behavior of theO(1) term.
We make a step forward here, and see that the maximum load is concentrated
on at most two values, as in the processes considered earlier in this paper.

We embed the process in continuous time, and for then-bin case, we assume
that balls arrive in a Poisson process of raten. A natural coupling, combined
with the bounded differences method, yield concentration of measure for
Lipschitz functions. As before, let(Xt) denote the loads process, letu(i, x) be
the proportion of bins with load at leasti in statex, and letut (i) = E[u(i,Xt)].
Let t0 > 0 be a fixed time. Then uniformly overt ∈ [0, t0] and overi ∈ N,

dut (i)

dt
= E[u(i − 1,Xt)

d ] − E[u(i,Xt)
d ]

= ut (i − 1)d − ut(i)
d + O(n−1 ln2 n).

Let (v(t, i) : i = 0,1, . . .) solve the system of differential equations

dv(t, i)

dt
= v(t, i − 1)d − v(t, i)d(42)

subject tov(t,0) = 1 for eacht ≥ 0 andv(0, i) = 0 for eachi = 1,2, . . . .
Then, using Gronwall’s lemma (see, e.g., [8]),

sup
0≤t≤t0

sup
i∈N

|ut (i) − v(t, i)| = O(n−1 ln2 n).

Defining j∗ = j∗(n) to be the least positive integeri such thatv(t, i) <

2n−1/2 lnn, with high probability, the maximum load of a bin when abouttn

balls have been thrown will equalj∗ − 1 or j∗ whend ≥ 3, and will equalj∗
or j∗ + 1 whend = 2. Note thatj∗ is defined purely in terms of the solution
to the limiting differential equation (42).

(c) Our methods can be adapted to handle the “supermarket” model. In this
well-studied queueing model, see, for example, [15, 17, 23], there aren

single-server queues, with service times which are independent exponentials
with mean 1; customers (balls) arrive in a Poisson stream at rateλn, where
0 < λ < 1, and go to a shortest ofd randomly chosen queues. In [11] we
are able to determine (for the first time) the behavior of the maximum queue
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length, and, indeed, we obtain similar results to those in the present paper. It
is possible also to analyze queues with a numbers = s(n) of servers, not just
1 or∞.

Acknowledgment. We are grateful to a referee for a very detailed reading of
the paper.
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