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ON THE POWER OF TWO CHOICES: BALLS AND
BINS IN CONTINUOUS TIME

BY MALWINA J. LuczAK AND COLIN MCDIARMID
London Schoal of Economics and University of Oxford

Suppose that there arebins, and balls arrive in a Poisson process at
rate An, wherex > 0 is a constant. Upon arrival, each ball chooses a fixed
numberd of random bins, and is placed into one with least load. Balls have
independent exponential lifetimes with unit mean. We show that the system
converges rapidly to its equilibrium distribution; and whér 2, there is
an integer-valued functiom;(n) = Inlnn/Ind + O(1) such that, in the
equilibrium distribution, the maximum load of a bin is concentrated on the
two valuesm (n) andmg(n) — 1, with probability tending to 1, ag — oco.

We show also that the maximum load usually does not vary by more than a
constant amount from Inle/Ind, even over quite long periods of time.

1. Introduction. Balls-and-bins processes have been useful for modeling and
analyzing a wide range of problems, in discrete mathematics, computer science
and communication theory, and, in particular, for problems which involve load
sharing, see, for example, [4, 5, 12, 15-17, 22]. Here is one central result, from [3].
Letd be a fixed integer at least 2. Suppose that there &ias, and: balls arrive
one after another: each ball picksbins uniformly at random and is placed in
a least loaded of these bins. Then with probability tending to & as oo, the
maximum load of abinisInin/Ind + O(2).

In some recent work, balls have been allowed to “die,” see [3, 7, 21], which
is, of course, desirable when modeling telephone calls. For example, suppose that
we start withr balls inn bins: at each time step, one ball is deleted uniformly at
random, and one new ball appears and is placed in oakebafis as before. It is
shown in [3] that, as: — oo, at any given time > cn?Inlnn, with probability
tending to 1, the maximum load of a bin is at most Infind + O (1).

The results mentioned above all concern discrete time models, where at each
time step a ball may arrive or a ball may die and be replaced by a new one. Here
we analyze a simple and natural continuous time “immigration—death” balls-and-
bins model. We concentrate on the maximum bin load, which may be the quantity
of greatest interest, for example, in load-sharing models.

The scenario we consider is as follows. lebe a fixed positive integer, say
d = 2. Letn be a positive integer and suppose that therendbins. Balls arrive
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in a Poisson process at rate, wherei > 0 is a constant. Upon arrival, each ball
chooses/ random bins (with replacement), and is placed into a least loaded bin
among those chosen. (If there is more than one chosen bin with least load, the ball
is placed in the first such bin chosen.) Balls have independent exponential lifetimes
with unit mean. This process goes on forever.

This model was first studied by Turner in [21], who considers weak conver-
gence, for a suitable choice of state space. (Also, [19, 20] contain a discussion
of the completeness of the state space under the product topology.) Turner shows
that (with appropriate assumptions on the initial distribution), for each fixed non-
negative integek the fraction of bins with load at leagt converges weakly as
n — oo to a deterministic function(z, k) defined onR* x Z*, where the vector
(v(t, k) k € Z™) is the unique solution to the system of differential equations for
k=12,...,

1) d"gt’ ) _ Aot k=D — v, b)) —k(v(t, k) —v(t,k+1), >0,

subject tov(z, 0) = 1 for all t > 0, and appropriate initial valugs (0, k) 1k € Z™)

such that 1> v(0,k) > v(0,k + 1) > O for all k € N. The weak-convergence
result applies only to fixed-index co-ordinates (i.e., fixed values) aver fixed-

length time intervals, and yields no information on the speed of convergence. Our
approach is different, and we are not concerned with weak convergence, although
weak convergence could be deduced from our results. The key step is to establish
concentration results, which apply to the fraction of bins with load at leasdt

timer (wherek, t need not be fixed); these concentration results may then be used
to analyze a balance equation involving these quantities. We are thus able to handle
random variables like the maximum load, over long periods of time.

For eachtimeg > 0 and eacly =1, ..., n, let X;(j) be the random number of
balls in binj at time¢, and letX, be theload vector (X;(2),..., X;(n)). Thus,
the total number of ballgX,| at timez is given by|X,| =3_; X,(j). We shall
always assume that the initial load vecky satisfieE[| Xo|] < co. Note that X; |
follows a simple immigration—death process, and so its stationary distribution is
the Poisson distribution Por) with meanin.

It is easy to check that, for gived andn, the load vector processy;) is
Markov, with state spac€Z*)". Standard results show that there is a unique
stationary distributiorII; and, whatever the distribution of the starting st&ig
the distribution of the load vectox, at timer converges tdl asr — oo. Indeed,
this convergence is very fast, as our first theorem will show.

Forx e Z", let ||x|l1 = X_; |x(i)| be theL1 norm ofx. (Thus, we havéX;| =
1 X:1l1.) We useL(X) to denote the probability law or distribution of a random
variable X. The total variation distance between two probability distributions
u1 anduo may be defined byity (11, u2) = inf Pr (X #£ Y), where the infimum
is over all couplings o andY, where.L(X) = 11 and.L(Y) = u2. Equivalently,

drv(u1, p2) =max|Pr (X € A) — Pr(¥ € A),
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where the maximum is over all suitable sets We also use the Wasserstein
distance, defined byiw(u1, u2) = infE[||X — Y|1], where the inf is over
couplings of X andY as above. For distributiong1 and o on Z", we have
drv (1, p2) < dw(p, 12).

THEOREM1.1. Letd andn bepositiveintegers, and let IT be the correspond-
ing stationary distribution for the load vector. Suppose that initially the balls are
arbitrarily distributed over the bins, with E[| Xg|] < oco. Then for eachtimer > 0,

drv (LX), M) < dw(L(X;), M) < (An 4 E[| Xo|])e ™"

For eache > 0 and initial statex, the mixing time z(e,x) is defined by
considering(X;), whereXo = x a.s. and setting

t(e,x) =inf{r > 0:d1v(L(X,), M) <e}.

[Recall thatdty (L(X;), IT) is a nonincreasing function of] Thus, for example,
if 0 denotes the state with no balls, then the above theorem shows that

t(g,0) <In(An/e).

This upper bound on the mixing time is, in fact, of the right order, in that
r(%, 0) = ®©(Inn), as we shall see after the proof of Theorem 1.1 by considering
the behavior of the total number of balls present. For mixing results on related
models, see [4, 7]: mixing appears to be slower when balls live forever.

As we commented earlier, our primary interest is in the maximum load of a bin.
Let M; = max; X;(j) be the maximum load of a bin at timeThus,M; = || X/ «,
where |lx||« is the infinity norm max|x;| of x. The above theorem shows that
we can essentially restrict our attention to the stationary case, at least if we are
interested in times well beyond #n so let us now consider that case. We may
write M instead ofM, when the system is in equilibrium. The behavior of the
maximum loadM; or M is very different in the two cases= 1 andd > 2. This is
the “power of two choices” phenomenon—see, for example, [17]. For clarity, let
us write X andM™ or M™ here to indicate that there atebins.

The most interesting case is whern> 2 (indeed, when! = 2), but in order
to set things in context, let us first consider the (much easier) case avheh.
Suppose then that = 1. We shall see that/™ is concentrated on two values
m =m(n) andm — 1, which are close to ln/InInx; and that over a polynomial
length interval of time, we meet only small (constant size) deviations beldart
we meet large deviations abowe so that the maximum value dﬂ,(") over an
interval of lengttn X is usually aboutK + 1)m. We use the phrasesymptotically
almost surely (a.a.s.) to mean “with probability> 1 asn — c0.”

THEOREM 1.2. Let d = 1, and suppose that X(()”) is in the stationary
distribution (and thussois M,(”) for each timer).
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(a) There exists an integer-valued function m = m(n) ~ "Lr,‘r?n such that a.a.s.
M™ ism(n) or m(n) — 1.
(b) For any constant K > 0,

min M >m@) — 3 a.as.

O<t<nk

(c) For any constant K > 0,

Inln . .
( max Mt(’”)—n — K+1  inprobabilityasn — oo.

0<t<nk Inn

The notationn = m(n) ~ (1 above means that(n) = (1 + o(1)) - as
n — oo. Itis straightforward to determin@ (n) more precisely from the proof of

the theorem: for example, we have

(Inn)(Inlnlnn)
(Inlnn)2

n
m(n) = ninn +(1+0(1))

In
I
Now we consider the case> 2, when the maximum IoaMt(”) is far smaller.
Once again, it is concentrated on two valweg= mg4(n) andmy — 1, but now
these numbers are close to Imlnind. This corresponds to the behavior of the
maximum load in discrete time models; see, for example, [3, 4, 12, 16], but is
more precise.

THEOREM 1.3. Let 4 > 2 be fixed, and suppose that Xg’) is in the
stationary distribution. Then there exists an integer-valued function my = my(n) =
Ininn/Ind + O (1) suchthat M™ ismy or my — 1 a.a.s. Further, for any constant
K > 0, there exists ¢ = ¢(K) such that

) max |Mt(") —Ininn/Ind| <c a.a.s.

O<r<nk

The lower bound om/lt("), in fact, holds over longer intervals than stated in (2)
above. For example, there is a consiastich that

(3) min{Mt(”) :0§t§e”1/4} >Ininn/Ind — ¢ a.a.s

However, the upper bound in (2) does not extend to much longer intervals. For
example, ifK > 0 andr = nX4INN7 then

4) max M > K Ininn a.a.s
O<t<t
The plan of the rest of the paper is as follows. After giving some preliminary
results in the next section, we consider mixing times and prove Theorem 1.1.
Then we consider the easy cage= 1 when there is one random choice, and
prove Theorem 1.2. In order to prove Theorem 1.3, whére 2, we need
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some preliminary results, which are presented in the next three sections. First,
in Section 5 we give a concentration result for Lipschitz functions of the load
vector in equilibrium. In Section 6 we use balance equations to establish the key
eqguation (26) concerning the expected propori@n of bins with load at leastin
equilibrium. This result, together with the concentration result, yields a recurrence
for u(i). After that, in Section 7 we consider random processes like a random walk
with “drift.” Then we are ready to prove Theorem 1.3 in Section 8: we first prove
upper bounds, then lower bounds, and finally we prove the results (3) and (4). Last,
we briefly consider chaoticity and make some concluding remarks.

2. Preliminary results. In this section we give some elementary results
which we shall need several times below. A standard inequality for a binomial
or Poisson random variablé with meany is that

(5) Pr(1X — pul > ep) < 2exp(—1e?p)

for 0 <e <1 (see, e.g., Theorem 2.3(c) and inequality (2.8) in [14]). Also, for
each positive integek,

(6) Pr(X >k) < puf/k! < (ep/B)X.

If X has the Poisson distribution with meanlet us writeX ~ Po(u): for such a
random variable, we have

(7) E[Xl(XZk)]Z,bLPI’ (X=k-1).

Next we give an elementary lemma which we shall use later in order to extend
certain results, for example, concerning the maximum Rfadrom a single point
in time to an interval of time. It yields bounds on the maximum and minimum
values of a suitable functiofi(x) over a time intervalO, t].

Consider the:-bin case, with seR = (Z™)" of load vectors. Let us say that a
real-valued functiorny on  hasbounded increase if whenevers andr are times
with s < ¢, then f(x;) is at mostf (x;) plus the total number of arrivals in the
interval (s, r]; and f hasstrongly bounded increase if f(x;) is at mostf (x;) plus
the maximum number of arrivals in the interval ] which are placed in any one
bin. Thus, for examplef (x) = |x| has bounded increase, affidx) = max; x(j)
has strongly bounded increase.

LEMMA 2.1. Let (X;) bein equilibrium. Let s,7 > 0 and let a, b be non-
negativeintegers. Supposethat (a) f hasboundedincreaseand § = Pr (Po(Ans) >
b+ 1), or (b) f has strongly bounded increase and § = n Pr (Po(Ads) > b + 1).
In both cases we have

(8) Pr[f(X;) <aforsomere[0,7]] < <§+1>(Pr (f(Xo) <a+b)+9)
and

(9) Pr{f(X;)=a+bforsometr €0, 1]] < <§+1>(Pr (f(Xo) = a) +39).
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PrROOE Consider first the case (a) whghhas bounded increase. Note that
the j = [ 1] + 1 disjoint intervals[(r — 1)s,rs) for r =1,..., j cover [0, t].
Let B, denote the event of having in total at least 1 arrivals in the interval
[(r — 1)s,rs), sothatPr (B,) = Pr [PoAns) > b+ 1] = 4. Then

j j
{f(X;) <aforsomer [0, 7]} C ( U X)) <a+ b}> U ( U Br>
r=1

r=1
and (8) follows. Similarly,

j—1 J
{f(X;) > a+bforsomer € [0,7)} C ( Ut (Xes) = a}) U ( U Br)
r=0 r=1
and (9) follows. To handle the case (b) whgrhas strongly bounded increase,
note that ifC, denotes the event of having at least 1 arrivals in the interval
[(r — D)s, rs) which are placed into a single bin, thém (C,) <nPr [PoAds) >
b + 1]; and then proceed as abové.]

As we noted earlier, in equilibrium the distribution of the total number of balls
in the system is Ran). We close this section by using the last lemma to establish
a result that will enable us to “control” the total number of balls in the system over
long periods of time.

LEMMA 2.2. For any 0 < € < 1, there exists 8 > 0 such that the following
holds. Consider an n-bin system, and let (X,) bein equilibrium. Then a.a.s. for all
0 <t <P, the number of balls | X,| satisfies

(1—e)an < |X;| < (L+e)an.

PrOOF By inequality (5), sinceX,| ~ Po(An), we have
Pr([|X:] — An| > ean/2) < Dp—€?hn/12
and
Pr [Po(ein/4) > eAn /2] < 2¢~ /12,
Let B satisfy 0< 8 < %Zezk. We use case (a) of Lemma 2.1. Let ¢/4 and

b = eAin/2: we may now use (8) with = (1—e)An and (9) witha = (1+€/2)An.
O

3. Rapid mixing: proof of Theorem 1.1. We shall couple(X;) and a
corresponding copyY;) of the process in equilibrium in such a way that with
high probability || X, — Y;||1 decreases quickly to 0. We assume that the choices
process always generates a nonempty list of bins at an arrival time, and the new
ball is placed in a least-loaded bin among those chosen, breaking ties if necessary
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by choosing the first least-loaded bin in the list. In the meantime we make no other

assumptions about the arrivals process or the choices process. We assume as before

that balls die independently at rate 1, independently of the other two processes.
The coupling is as follows. Not surprisingly, we give the two processes the same

arrivals and choices af bins. Theheight of a ball in the system at a given time

is the number of balls in its bin that arrived before it, plus one. Assume that we

have a family of independent rate 1 Poisson processgsfor j =1,...,n and

k=1,2,.... WhenF; “tolls,” any ball in bin j at heightk in either process

dies (so that 0 or 1 or 2 balls die). Observe that at any tinee are interested

in only a finite (with probability 1) number of these death processes [namely,

> X:(j) v Yi(j)]. We have now described the coupling ©f,) and (Y;). The

“memoryless” property of the exponential lifetime distribution ensures that it is

a proper coupling; and when the arrival process is Poisson, and the choices are

independent and uniform, the joint proc€3s, Y;) is Markov. Forx, y € Z", the

notationx < y means that(j) < y(j) foreachj =1,...,n.

LEmmA 3.1. Withthecoupling of (X,) and (Y;) described above, the distance
| X; — Y¢||1 isnonincreasing, and given that || Xo — Ypl||1 = r, it isstochastically at
most the number of survivors at time ¢ of » independent balls. Further, if0<s <t
and X, <Y, then X; <Y,.

PROOF Consider a jump time. Let X,,— =x andY;,— =y, and letX,, = x’
andY;, = y'. (We assume right-continuity.) Suppose thds a death (“toll”) time.
If none or two balls die, then

(10) Ilx" =yl = llx — yll1.
and if just one ball dies, then
(11) lx" =y 1= llx — yll1 — 1.

Thus, at any death time,
(12) Ilx" =yl < llx = yll1.

Suppose now thag is an arrival time, and balb arrives. We want to show
that (12) holds. If balb is placed in the same bin in the two processes, then (10)
holds and, hence, so does (12). Suppose thatial placed in bini in the
X-process and in biri in theY-process, where=# j. Then ballb gets “paired” in
at least one of the processes, and so (12) holds. (By “paired” here, we mean that
in the other process there is a ball in the same bin at the same height. Observe that
these balls will stay paired until they die together.) For, note firstitligt< x ()
andy(j) < y(i), and not both are equal by the tie-breaking rule. Now suppose that
ball b does not get paired in either process. Then we must héye> y(i) and
y(j) = x(j), and so

x() =z y(@) 2 y(j) Zx(j) =z x(@).
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But then all the values are equal, a contradiction.

We have now seen that (12) holds at each jump time, and (11) holds if a single
unpaired ball dies. Thug,X; — Y;||1 is honincreasing. Further, we claim that, for
any time 0< s < r and any positive integef, given that|| X, — Y;|l1 = r and any
other history up to time, the probability that| X, — ¥;||1 = r is at moste "=,

The second part of the lemma will follow immediately from the claim.

To see why the claim is true, % denote the set of staté€s, y) such that
lx — yll1 = r. We have seen thdtX; — Y;|l1 iS nonincreasing. For each state
(x,y) € Sy, there are- of the death processés; such that if any of them tolls,
then the process moves inf_1. Thus, if (Xg,Yp) € S, and T = inf{r > 0:
(X:,Yy) ¢ S} is the exit time fromS,., then Pr (T > t|(Xo, Yo) = (x,y)) <e "’
for each(x, y) € S, and eachr > 0; and the claim follows.

The final comment on monotonicity is straightforward. For consider a jump
timerg as above, and suppose that y. If rg is a death time, then clearly < y’,

S0 suppose thap is an arrival time. But if the new ball is placed in hirin the
X-process and it (i) = y(i), then the ball is placed in bihalso in theY -process,
sox' <y'. O

We may now rapidly prove Theorem 1.1. By the lemr&a)| X, — Y;||1|(Xo,
Yo) = (x, y)) is at most the expected number ameng | x — y||1 balls that survive
at least to time, which is equal toe™'. Since||x — y||1 < |x| + |y|, we have

E(IX: — Y:l111Xo, Y0) < (IXol + |YoDe™,
and so
dw(L(X;), L(¥1)) <E(X: — Yill1) < (E[|Xol] + An)e™".

This completes the proof of Theorem 1.1.

We now show that the upper bounds on the mixing times arising from
Theorem 1.1 are of the right order. We may see this by simply considering the total
numben X;| of balls in the system. In equilibriumX; | has the Poisson distribution
Po(in), and so

drv (LX), O) > dry (L(X,]), Po(An)).
We shall see that iko=0a.s. and < $Inn — 2InInx, then
(13) drv (LX), Pain)) =1 — o(1);

and it follows that, for each & ¢ < 1, we haver (¢, 0) = Q(Inn).

Suppose then thaXg = 0 a.s. and letu(r) = E[|X,|]. It is easy to check
that u(z) = an(1 — e ). If t is ©(Inn), then, by Lemma 5.5 below (with, say,
b= |n3/2n),

Pr (“X[l — M(;)’ > %)\Jll/zlnzn) _ e_Q(mS/zn)‘
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Also, if Z ~ Pa(An), then, by (5),
Pr(|Z — an| > nY?Inn) = e In*m)
Now if ¢ is 3 Inn — 2InInn, then|u(t) — An| = Ane™ = An¥/2In?n, and, thus,
drv(L(X:1), Po(n)) = 1— =200 — 1 _o(1),

which gives (13) as required (since the left-hand side is a nonincreasing function
of 7).

4. One choice: proof of Theorem 1.2. Let A > 0 be fixed, as always. Let
d=1. Let p; =pi(A) =e Y-, ’}(—'f the probability that a Ra) random
variable takes value at leastLet X be in equilibrium. Stationary bin loads are
independent Poisson random variables, each with rae#rfollows that, for any
nonnegative integer,

(14) Pr(M; >i) <np;
and
(15) Pr (M, <i)=(1— pis1)" <e "Pi+t,

We now prove the three parts of the theorem.
Part (a). Letw(n) = Inlnn. Letm = m(n) be the least positive integeérsuch
thatnp; 11 < 1/w(n). By (14),

Pr(M;>m+1) <nppu+1=0(),

SOM, <m a.a.s. Alsonp,, > 1/w(n), SOnp,_1 = Q (L - w(ln)
by (15),

) — o0o. Hence,

Pr(M; <m —2) <e "Pn-1=0(1).

Thus,M; ism orm — 1 a.a.s. Also, it is easy to check that~ 0.
Part (b). We apply case (b) of Lemma 2.1, with~ n=X=2 ¢ =m — 4 and
b =1, together with (6) and (15).

Part (c). LetZ = maxy_, .« M;. Lete > 0. We show first that
(16) Pr(Z>(K+1+¢)Inn/Inlnn) — 0 asn — 00.

To do this, we apply case (b) of Lemma 2.1, with~ exp(—Inn/Ininn),
a~(K+1+¢/2)Inn/Inlnn andb ~ Inn/(Inlnn)?2, together with (6) and (14).
NowletO<e < K,andletk =[(K +1—¢)Inn/Inlnn]. We will show that

a7 Pr(Z<k)y—0 asn — oo,

which will complete the proof of this part and thus of the theorem. Notedhat
n—(K=e+o(l) — (1). For each time > 0, let¢, be the sigma field generated by
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all events until timer. Let C be the event thatX,| < n?/2 for eachr € [0, nX].
ThenC holds a.a.s. by Lemma 2.2. Let> 2i and letx be a load vector such that
|x] <n?/2. GivenXg = x, by Theorem 1.1,

drv (LX), M) < (An + |x])e”’

< ne!

< e~ IN?n
if £ > 11 =In?n + 2Inn. In particular, by (15),
Pr(M; <k—1Xo=x) <e "Pk+ e,
Sincenpy =o0(1),
e Pk 4 o~ In?n <e "PH(14 26"”2”)
for n sufficiently large, which we now assume. Thus, fef 0, 1, ...,
Pr (M1, < k — 1dis,) < e Pk (1+ 2¢~ ")

on the evenD; = (|X;;,| < n?/2) A (M, <k — 1). Hence, if we denotén /1, |
by ip, we have

io
Pr((Z<k—1)AC)< Pr(/\Di>

i=0

io—1 i
— Pr (Do) [] Pr (D,-Hj A Dj)

i=0 j=0
< (e7"PH (L4 2¢7 M)y
< (14 0(1)) - exp(— (X /1y — Hn~K—e+oD))
=exp(—n*P) - 0
asn — oo. Above we used the observation that
(1+ 27" < explio - 27 "*") = 1+ o(1).

5. Concentration. We have seen that our balls-and-bins model exhibits rapid
mixing. In many Markov models rapid mixing goes along with tight concentration
of measure. This is indeed the case here, as demonstrated by the following lemma,
which is crucial to our analysis. See [5] for large deviations bounds for a related
discrete-time balls-and-bins model.

Let n be a positive integer, and € be the corresponding set of load vectors,
that is, the set of nonnegative vectorsZf. A real-valued functionf on  is
calledLipschitz (with Lipschitz constant 1) if

|f) = fDI=llx =yl
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LEMMA 5.1. Thereisaconstant ng suchthat, for all n > ng, the n-bin system
has the following property. Let the load vector Y have the equilibriumdistribution,
and let f bea Lipschitz function on . Then, for each u > n%/2In%2p,

Pr(lf(Y)—ELf(N] >u) < A

As stated in the Introduction, our primary interest is in the maximum load of
a bin. We may deduce easily from the last lemma the following result which we
shall use several times.

LEMMA 5.2. Consider the n-bin system in equilibrium. For each positive
integer i, let L(i) be the random number of bins with at least i balls, at say time
t=0,andlet (i) = E[L()]. Then

SUpPr (IL(Gi) — ()| = nY2In%2n) = 0(n™Y);
for any constant ¢ > 0,
Pr (SUDIL(i) —1(i)| > cn1/2|n3n) = o~ 2(n%n).

and for each integer r > 2,
SURLIELLG)' 1 —1G)' |} = 0 tIn3n).

PRooOF Note that
Pr (L(J2xn1) > 0) < Pr (Po(An) > 2an) = e~ %),

since the total number of balls is Ba). Since alwayd.(i) < n, this shows that
we may restrict attention tb< 2An. The first two parts of the lemma now follow
directly from Lemma 5.1 (note thag is a constant, and does not dependfnTo
prove the third part, set = (+ + 1)¥211/2In%?n, and note that, by Lemma 5.1,

Pr(|L(i) — ()] > u) < e~ CTDINN — =0+
for n > ng. Hence, for each positive integer r,
E[|LG) —1()|*] <u* +n*Pr(ILG) —1G)| > u) <u* +0(D).
The result now follows from
0= 1-16 = Y () ElL® - 1) ey~

k=2
) (1) EnL® ~ 6w

=0m " tin®n). O



1744 M. J. LUCZAK AND C. McDIARMID

The next lemma extends the second part of the last lemma, and shows that in
equilibrium the numbel, (i) of bins with load at least at time¢ is unlikely to
move far from its mean valuki). We show that all the values; (i) are likely to
stay close td(i) throughout a polynomial length time interv@, t].

LEMMA 5.3. Let K > 0 bean arbitrary constant, and let t = nX. Let X be
in equilibrium. Then

Pr |: sup sup|L;(i) —1(i)| = I’ll/2|n3ni| — ¢~ 2n?m)
tel0,7] i

PrROOF BylLemmabs.2, there exisis> 0 such that for alk sufficiently large,
for each time > 0,

Pr (sup|L,(i) —1(i)| > nY/? |n3n/2) < vnn,
We now lets = n~1/2 andb = 2an'/?, and use Lemma 2.1(a), inequality (9)J

The rest of this section is devoted to proving Lemma 5.1. The plan of the proof
is as follows. Consider a loads procegs§), where Xo = xg for a suitable load
vectorxp. (We are most interested in the cage= 0.) We shall prove concentration
for X,, and later deduce concentration for the equilibrium load veitor

Note first that the equilibrium load of a bin is stochastically at most.RPn
For we can couple the load of a single bin with a process where the arrival rate
is always exactly.d and the death rate exactly 1, so that the number of balls in
the former is no more than in the latter at all times; and for the latter process, the
equilibrium number of balls is Rad).

It will be convenient to limit the maximum load of a bin. Leét= b(n) be an
integer at least, say, 4y InInn—we shall specify a value fab later. Assume
that max xo(j) < b/3. Let A; be the event that/; <b forall 0 <s <¢. If
temporarily M, denotes the maximum load of a process in equilibrium, then, by
the time “monotonicity” part of Lemma 3.1, we have

Pr (A;) < Pr (M, > 2b/3 for somes € [0, 7]).
Hence, by (9) in Lemma 2.1(b) and by (6),
Pr (A;) < (¢t +1)(2n) Pr (Po(Ad) > b/3)
=expn(t +1) +Inn — 3bInb + O(b)).
It follows that, forn sufficiently large, for each time< ¢, say,
(18) Pr(A,) <e PInb/13,

In fact, we shall ultimately specify values foandb so thatt = O (bInb).
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Since loads are rarely large, we can approximate the loads pr@¢gdsy using
only a few of the death processEg;, namely, those witlk < b, which we call the
“low” death processes. In fact, we shall model both the original process and the
approximating process, by replacing these low death processes by a combined low
death Poisson process with ratk, and a “reaper” process (we omit the “grim”),
which at each “toll” of the ratab Poisson process selects uniformly at random a
pair (j, k) wherej € {1,...,n} andk € {1, ..., b}, and behaves as if the process
F; had “rung.” LetX, be the approximating process, which uses only the low
death processes. Observe thatfyrwe haveX, = X,. Since Pr (A;) is so small,
it will suffice for us to prove concentration fo¥; .

Let z and z be positive integers. Let = (r1,...,t,) be z arrival times
(not ordered) and led = (d1, ..., d;) be corresponding choices dfbins. Let
t=(1,... ,1z) be zZ low death times (not ordered) and ldt= (d]_,...,(?z)
be corresponding reaper choices [of paijsk), wherej € {1,...,n} andk €
{1,..., b}]. Assume that all these times are distinct. Given any~initial load vegtor
our approximating simulation generates a load vegtor, t, d, t, d) for each time
t>0.

The following deterministic lemma is analogous to the first part of Lemma 3.1,
when the arrivals, choices, death times and reaper choices processes are all
deterministic, and may be proved in a similar way.

LEMMA 5.4. Suppose that we are given two initial load vectors xo and yo,
together with any sequence of arrival timest and corresponding bin choicesd, and
departure times t and corresponding reaper choices d, where all these times are
distinct. Then the distance |s;(xo, t, d, t, d) — s;(yo, t, d, T, d)||1 is nonincreasing
in ¢, and so, in particular, for each ¢ > 0,

lIs; (xo, t, d, T, d) — s:(yo, t,d, T, d) |1 < [lx0 — yoll1.

Smilarly, ||s; (xo, t, d, T, d) — s:(yo, t, d, T, d)||o iS NONINCreasing in z [recall that
lzlloo = Max; [z(j)I].

Let us now sketch the plan of the rest of the proof. L¢t) = E[ f(X;)] and
() = E[f(X,)] Let Z; be the number of arrivals if0, ], so thatZ; ~ Po(ant).
Let Z, be the number of low death times [0, ], so thatZ, ~ Pobnt). We
shall condition onz, =z andZ, = Z. Let i(¢, 2, 2) = E[f(X,)|Z, =z, 7Z; =7
We shall use Lemma 5.4 and the bounded differences method to upper bound
Pr(f(X,) —pt,z,2)| >ulZ; =z, Z; =7), see (20) below.

Next we remove the conditioning dfy and Z,. To do this, we choose suitable
“widths” w andw, then use the fact that bofr (|Z; — Ant| > w) and Pr (|Z; —
bnt| > w) are small, and for andz such thatjz — Ant| < w and|z — bnt| < w,
the differencei(z, z,Z) — (¢)| is at most about @ + w), see (23) below. We
thus find thatPr (| £(X,) — /i()| > 3(w + w)) is small. But sinceX; = X, on
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A;, and A; is very likely to occur, this last result yields concentration faiX;)
around its mean. The part of the proof up to here is contained in Lemma 5.5 below.
Finally, we use the coupling lemma (Lemma 3.1) to relate the distributiaX, of
(with Xo = 0) to the equilibrium distribution.

Let us start on the details. We shall use the following lemma wgta: 0. (It is
convenient elsewhere to have the more general form.)

LEMMA 5.5. Thereare constants ng and ¢ > 0 such that the following holds.
Let n > ng and b > 4Inn/Ininn be integers, and let f be a Lipschitz function
on . Let also xq € 2 be such that max; xo(j) < b/3, and assume that the process
(X,) satisfies Xg = xg a.s. Then for all times0 <7 < ¢’ andall u > 1,

(19) Pr (1f (X0) — o] = u) < ne™ /000 4 gment | g=chinb,

ProOOF Note first that we may assume without loss of generality that
f(x0) =0, and so| f(X,)| < Z: + Z,, since we could replacg (x) by f(x) —
f(x0). Letz,Z be positive integers, and condition dfy = z, Z, = Z. Then
Xt depends on@Z + z) independent random vanablél;L Tz Dy, ..., D,
Ti,..., T z, andDi,...,D :. Indeed, we may erté(t aSSt(xo,T D, T, D), where

=(T1,...,T,), D= (Dl,.. D,), T= (T1,.. T) andD = (Dl,.. D:- ).

This property relies on the weII—known fact that conditional on the number of
events of a Poisson process duriifgz], the unordered event times are a sample
of i.i.d. random variables uniform qi, ¢]. Write

g(t,d,T,d) = f(s:(x0,t, d, T, d)).

We prove that, conditional o, = z and Z, = %, the random variablg‘()?t) is
highly concentrated, by showing thasatisfies a “bounded differences” condition.
Suppose first that we alter a single co-ordinate valuerhen the value of can
change by at most 2, by Lemma 5.4 starting at tineith [lx;, — y;; [l1 < 2; the

same holds if we alter a single co-ordinate vaﬂ.)e Similarly, if we change a
co-ordinate value; or 7;, the value ofg can change by at most 2: we may see
this by applying Lemma 5.4 once at the earlier time and once at the later time.
Thus, changing any one of théz2+ 7) co-ordinates can change the valuezdsy

at most 2. Now we use the independent bounded differences inequality, see, for
instance, [14]. We find that, for eaeh> 0,

~ ~ ~ ~ Lt2
Pr(lg(T,D,T,D) —E[g(T,D,T,D)]| > u) < 2ex%—4(Z n Z))'

In other words, we have proved that, for any 0,

B 2
20) Prf(R) —jilt.2, 9| >ulZs =27 =3) < 2exp(—4(z”+ z>>'



ON THE POWER OF TWO CHOICES 1747

Next we will remove the conditioning o#, and Z,. We will choose suitable
“widths” w = w(n) andw = w(n), where 0< w < Ant and 0< w < bnt. Let
I denote the interval of integer valuesuch thafz — Ant| < w, and let/ denote
the interval of integer valugssuch thatz — bnt| < w. Recall that we shall ensure
that with high probabilityZ, € I and Z, € I, and for eachy € I andz € I, the
difference|i(z, z, Z) — (t)| is not too large.

SinceZ, ~ Po(ant) andZ, ~ Po(bnt), by (5),

2
(1) Pr(Z ¢ 1)= Pr(|Z —int| > w) 52exp<— o )
3\nt
and
.. - w?
(22) Pr(z;¢1)= Pr(|Z,—bnt|>ﬁ;)§2exp(— )
3bnt

We shall choosev and @ to satisfyw > 2(AntInn)Y/2 and w > 2(bnt Inn)/2,
Then, by (21), (22), (5) and (7), provided thasatisfiesh = o(n1/3),

E[Z:1 ;410 7,¢0) < E[Ze17,20mew] + Ant Pr (Z, ¢ 1)=0(1)
and

E[Z,1

1<E[Z1 +bntPr(Z; ¢ I)=0(1).

(Zi¢IvZi &) Z,>bm+u3]

Hence, sinceéf (X,)| < Z; + Zi,
E[|f(f(t)| 1(Z,¢IvZ,¢f)] =o(1).
But

ll(t) = Z /:\L(t, 2,2 Pr(Z, =z, Zt =2)+ E[f(Xt)l(Z[¢IvZ,¢i)]‘

zel zel

Hence,

() < max {ii(t,z,2)} + o),

zel,zel

and, using also (21) and (22),
@)= min {4, z,2)} +o(d).

zel,zel

By Lemma 5.4, for each, z,
lat,z+1,2) — @z, <1
and

o, z,z+1) — at,z,2)| < 1.
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It follows, using the bounds above @iz), that, for eachy € I andz € I,
(23) la(t,z,2) — (@) < 2(w + w) +o(1).
Now by (20), (21), (22) and (23),
Pr(1/ (X)) — A1) = (3+ o(1) (w + 1))
< Y Pr (1fXp) = 2] = B+ o) (w +W)|Z; =z, Z; =3)

zel el
x Pr(Z,=z,Z,=7%)
+Pr(Z,¢l)+Pr(zZ ¢l
< Y Pr(If(X) - Atz = 1+ o) (w+W)|Z =2, Z =3)

zel,zel
X PI‘(Z;:Z,Z,=Z)
+ Pr(|1Z; — Ant| > w) + Pr (|Z, — bnt| > W)

~\2 2 ~2
<2ex (d+oM)(w +w) )+2eXp<— od )+2exp( W >

_4(Ant + bnt + w + W) 3int ~ 3bnt
(1+o<1>>(w+w>2) p( w2> p( w2>
<2exp — 2exp — 2exp — ,
= Snbt + ) T 3bnt

sinceb(n) — oo asn — oo. Letu satisfy
6(nbt Inn)Y? < u < 3v/Abnt.

Let w = u/3 andw = w+/\/b. Observe that, for sufficiently large, the bounds
required above ow andw hold, andu = (34 o(1))(w + w). Thus,
Pr(If (X)) — A(t)] = u) < 20— (Ito)u?/(A5nbt) y g,~u?/(2Tnbr)
< e—uz/(46nbt)

for n sufficiently large. But i« < 6(nbt Inn)Y/2, thene=*/(460 > =1 Thys, as
long asu < 3v/Abnt, we have

Pr (|f()?t) — A >u) < o2/ (4enbt)

Now we move fromX, to X,. Note that iAr{O, t] there areZ; arrivals and at most
| Xol + Z; departures, and S¢ (X;) — f(X:)| < 2(|Xo| + 2Z;). Thus, since also
Xt - Xt on A[,

|A(6) — )| = [E[(f (X)) — £(X) 15, ]| < 2E[(1Xol + 2Z1) 15 ]
But |Xo| < nb/3 andE[Z;15 ] < 2wnt Pr (A;) + E[Z,1z,> 2] Hence,
|(t) — u(0)| < (2nb/3+ 8Ant) Pr (A;) 4 4E[ Zi 17,200 ] = 0(D),
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by (18) and (7). Thus,

Pr(|f(X0) — u@®)| = u) < Pr(|f(X) — £(0)] = u + o(D) + Pr (A;)

< ne—(u+o(1))2/(46nbt) +e—b|nb/13’
by (18) (since we assume thak e”). The lemma now follows, by replacingby
min{u, 3v/Abnt}. O

We shall use Lemma 5.5 here wikip = 0 to complete the proof of Lemma 5.1.
As we saw before, we may assume thi&gh) = 0, and, hence, alwayg (x)| < |x|.
It remains to relate the distribution aoX; with Xo = 0 to the equilibrium
distribution, and to choose values fér and . By Theorem 1.1, ifY has
the equilibrium distribution, theaTy (L(X;), L£(Y)) < Ane~!. Hence, for alln
sufficiently largep > 4Inn/Inlnn andu > 1,

Pr(lf(Y)—pun@)|>u)
(24) <drv (LX), L))+ Pr(|f(X;) — ()| > u)

_ _cu? _ _
< Ane t—l—ne cu /(nlb)+e cnt+e cblnb.

Letu > 2(nIndn/cIininn)¥/2. Lett = (u2cIninn/n)3 andb = |¢/Inlnn]. Then
t > 4Y3Inn. Also, Inb > (1+0(1)) Inlnn, sobInb > (1+0(1))t = Q(r). Further,
cu?/(nbt) = Q(t). It now follows from (24) that

Pr (1f(Y) — (1)) = u) = e~ HEninn/m ™),
Finally, we relatew(r) = E[ f (X,)] to E[ f(Y)]. By Theorem 1.1,
(1) — ELF (NI < dw(L(X1), L(Y)) = 0(D)
sincet > 4/3Inn. Thus, we find that, for any > 2(nIn3n/cIninn)/2,
Pr (£ () — ELF ()] > u) = ¢~ 2@ ninn/m®)

This completes the proof of Lemma 5.1.

6. Balance equations. In this section we suppose throughout that the system
is in equilibrium. We present the balance equation (26), and deduce Lemma 6.1,
which we shall need in Section 8, concerning the expected proportion of bins with
at least balls.

Letd > 2 be a fixed integer. Consider a positive integgaind the corresponding
set Q of load vectors. Forx € 2 and a nonnegative integér, let u(k, x) be
the proportion of binsj with load x(j) at leastk. Thus, alwaysu(0, x) = 1.
Let X have the equilibrium distribution oveR, and letu (k) denoteE[u(k, X)]
(which depends on). [Thus,u(k) =1(k)/n, wherel (k) was defined earlier as the
expected number of bins with load at leagt
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LEMMA 6.1. (a)Thereis a constant ¢ such that, for n sufficiently large, if
j>Ininn/Ind + ¢, thenu(j) <n=In3n.

(b) For any > 0, there is a constant ¢ such that, for n sufficiently large, if
j=<Ininn/Ind —c,thenu(j) >n=".

The rest of this section is devoted to proving this lemma. First we present the
balance equations.

It is easy to check (see [21]) that, ffis the bounded functionf (x) = u(k, x),
then the generator operat6rof the Markov process satisfies

Gf(x)=xulk—1, 0% — u(k, 09 = k(uk, x) —uk + 1, x))
[cf. with equation (1) earlier]. To see this, note thdk, x) — u(k + 1, x) is the
proportion of bins with load exactly, andu (k — 1, x)? —u(k, x)¢ is the probability
that the minimum load of the attempts is exactly — 1. SinceX is in equilibrium,
E[Gf(X)] =0. Hence,
(25)  MEMuk — 1, X)1— E[uk, X)*1) — k(u(k) — u(k + 1)) =0.
Now
Skt n = 230 (0 F) < B
k=1 =1 "
and so
E[X|°]

n

> ku(k) <

k>1

<X

Hence,ku(k) — 0 ask — oo. Also, E[u(k, X)4] < u(k). It follows on sum-
ming (25), fork > i, that, foreachi =1, 2..., we have

(26) AE[u( — 1, X)) —iu@)— Y uk)=0.

k>i+1
(This is the result thaE[Gf(X)] = 0, where f(x) is the number of balls of
“height” at least, i.e., f(x) = Z;?:l(x(j) — i+ 1), but sincef is not bounded,
we cannot assert the result directly.) Equation (26) is the key fact in our analysis.
Observe that, by (26), for each positive integer

(27) u(i) < %E[u(i —1,X)7.

We are now ready to prove the lemma, part (b) first.det [24] — 1. We shall
show thatu(a) is at least a positive constant, and th@) do not decrease too
quickly fori > a.

Note first that, sinc&[u(i — 1, X)¢] > u(i — 1)¢, by (26), we have

(28) au(i — D —iu@)— Y ulk) <0.
k>i+1
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Also, since 0< u(i — 1, X) < 1, we haveE[u(i — 1, X)4] < u(i — 1) and so
by (27),foreacti=1,2,...,we havea:(i) < Au(i —1)/i. Thus, fori > a, we have
u(i +1) < ru(i)/( +1) <u(i)/2. Hence, ifk > i > a, thenu(k) < 2= Dy (i);
and so
> uk)<u@)  fori>a.

k>i+1
It now follows from (28) that, fori > a, we haveiu(i — DY — (G +Du@) <0;
and, thus,

. ad
(29) u(i) = %

Inequality (29) will show that tha (i) do not decrease too quickly for- a.
Now consider small values of Leti € {1, ...,a}. Sinceu(i) > u(k) fork > i,
we have(a —i)u(i) — >y_; 1 u(k) > 0. Hence, by (28),

0= au(i — DY —iu@@) — Y u(k)

k>i+1

> au(i — D7 —au(@)— Y uk)

k>a+1

> (i — 17 — (@ + Du().

fori >a.

Thus, we have

u(i) > u@i—-107% fori=1,...,a.

A
2 +1
The last inequality shows that there is a const@&nt- 0 (depending only on
A andd) such that always(a) > 8;1. But by (29) and induction om, for each
i=12...,

A LHd4etd
(a+i+D@+i)da+i—D% . (a+2d
To upper bound the denominator, note that

u(a +i) > u(a)?.

N(@+i+D@a+ila+i-1" - @+27")
i
=d" Y d*In@+k+D <cod’
k=1

for some constant,, and so the denominator is at me&t . Let 82 > 0 be the
constant.e=“2§;. Then

. . di i 1
u@i)>u(a+1i)=>38" =exp| —d In8_
2
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for eachi = 1,2, .... Let the constant3 be such that/=<3In % <. Hence, if
i <Inlnn/Ind — c3, then

u(i) > exp(—(ln n)d In é)

>exp(—nlnn)=n"".
This completes the proof of part (b) of the lemma.

We now prove part (a) of the lemma. By Lemma 5.2, there exists a constant
c1 > 0 such that, for all positive integersandn,

(30) u(i) < kf(u(i — 1% +cintindn).
l

Leti* = i*(n) be the smallest positive integesuch that:(i — 1)¢ < cin~1In%x,
that is,u(i — 1) < ¢/“n=Y4(Inn)3/4. We may assume thatis sufficiently large

thatc1 In3n > 1, and so the quantity’“n =24 (Inn)34 in the last bound is- 1/n.
Note that, by (30),

2\
u(i*) < :Cln_lmsn =o(n~tIn%n),
i

sincei*(n) — oo asn — oo by part (b).
We want an upper bound aii. By (30),

(31) u(i) < Zi u(i — )7
l

for eachi =1,...,i* — 1. Letig be the constanf2e¢A]. We check that* <
Ininn/Ind + ig + 2. Sincei*(n) — co asn — oo, we may assume thag <

i* — 1. By (31),u(ip) < %u(io — 1) < % <e 1 Also by (31), fori = ig +
1,...,i* — 1, we haveu(i) < u(i — 1), and it follows thatu(i) < e=4"" for
eachi =ig,...,i* — 1. Bute ¥ ° < 1/n whend’~ > Inn; that is, when

i >Ininn/Ind 4 ig. Thus, ifi* > Ininn/Ind + ip + 2, thenu(i* — 2) < 1/n,
contradicting the choice af. This completes the proof of part (a) of Lemma 6.1,
and thus of the whole lemma.

7. Random walks with drift. In this section we consider a generalized
random walk on the integers, which takes steps ,afD but with probabilities
that can depend on the history of the process, and where there is a “drift.” We shall
use the following version of the Bernstein inequality—see Theorem 2.7 in [14].

LEMMA 7.1. Let b > 0, and let the random variables Z4,...,Z, be
independent, with Z;, — E[Z] > —b for each k. Let S, = Y, Zi, and let S, have
expected value u and variance V (assumed finite). Then for any z > 0,

2
Z
(32) Pr(S, <u—2)< exi—m)-
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(The term%bz should be thought of as an error term.) The next lemma concerns
hitting times for a generalized random walk with “drift.”

LEMMA 7.2. LetggC ¢1 C --- C ¢, beafiltration,andlet Y1, Yo, ..., Y,, be
random variables taking values in {—1, 0, 1} such that each Y; is ¢;-measurable.
Let Eo, E1, ..., E,;—1 beevents, where E; € ¢; for eachi,andlet E = A; E;. Let
R, =Ro+Y!_,Yi.Let0< p <1/3,let ro and r1 beintegers such that rg < r1,
and let pm > 2(r1 — rg). Assumethat, for eachi =1, ..., m,

Pr¥Yi=1¢i-1)=2p  OnE;i_1A(Ri—1<r1)
and

Pr¥i=-1l¢i-1) <p  ONE;_1A(Ri—1<r1).
Then

Pr(EA(R <riVte{l,...,m})|Ro=ro) < exp(—%).

PROOF Let us first prove the lemma assuming that the above inequalities
on Pr (Y; = 1|¢;—1) and Pr (Y; = —1|¢;_1) hold a.s.; that is, ignoring the events
Ei_1 A (R;—1 < r1). We shall then see easily how to incorporate these events.

We can couple th&; with i.i.d. random variableg; taking values i{—1, 0, 1},
such thatPr(Z;, = 1) =2p, Pr(Z;, = -1) =p and Pr(Z; <Y;) =1 for
eachi. The variablesZ4, Zo, ... are independen&[Z;] = p, Var[Z;] < 3p, and
Zi —E[Z;]>—-1—p>—4/3foreachi. LetS, =Y!_; Z;, letu, =E(S;) = pt,
and note thawar(S;) < 3rp. Hence, by Bernstein’s inequality, Lemma 7.1, for
eachy > 0,

2
y

Pr(S; <u;—vy)<expl — .

S =ur—y) =< p(6pt+y)

Note thatu,, = pm. Thus, ifa = r1 — ro,
Pr(R; <riVte{l,...,m}|Ro=r0)

<Pr(s, <a
N2
~exp - (pm —a) )
6pm + (pm — a)

sincea/pm < 1/2.
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Now let us return to the full lemma as stated, with the evdrjitsFor each
i=01,. — 1, let F; = E; A (R; < r1); and for eachi = 1,...,m, let
Y=Y - 1F 1+1 ,-LetRo=Roandforr=1,....m, letR, =Ro+ Y 1 Y.

Then Pr (Y; = 1|¢>, 1) > 2p, since, by assumptlon itis at leagt &n F;_1, and
it equals 1 onF;_1. Similarly, Pr (Y; = —1|¢i_1) < p. Hence, by what we have
just proved applied to thg;,

Pr(EA(R; <riVte{l,...,m})|Ro=ro)
= Pr(E/\(R,<r1Vte{1,...,m})|Ro=ro)
< Pr(ét<r1VZ€{l,...,m}|]§0:r0)

<exp(-20).

as required. O

The next lemma shows that if we try to cross an interval against the drift, then
we will rarely succeed.

LEMMA 7.3. Leta beapositiveinteger. Let p and ¢ berealswithg > p >0
and p + g < 1. Let ¢g € ¢1 C ¢ C --- be a filtration, and let Y7, Yo, ... be
random variables taking values in {—1, 0, 1} such that each Y; is ¢;-measurable.
Let Eo, E1, ... beeventswhereeach E; € ¢;, and let E = \\; E;. Let Rp = 0 and
let Ry =Yk Y, fork=1,2,.... Assumethat, for eachi =1,2, ...,

Pr(Yi=1l¢i-1)<p OnNE_1A0<Ri_1<a-1)

and
Pr(Y; =-1l¢i-1) > ¢ onE; _1A0<R;_1<a-1.
Let
T =inflk > 1:Ry € {—1,a}}.
Then

Pr(EA(Rr=a)) <(p/q)°.

PROOF As with the previous lemma, let us first prove this lemma assuming
that the given inequalities oRr (Y; = 1|¢;—1) and Pr (¥; = —1|¢;_1) hold a.s.
We can couple th&; with i.i.d. random variable$; taking values in{0, +1} such
that Pr (¥; =1) = p, Pr(¥; = —1)=q and Pr (Y; < ¥;) = 1. Let Ry = 0, let
Re=Y% ,Vifork=12 .., andlet

=inf{k > 1: Ry € {—1,a}}.
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Then from standard properties of a simple random walk,
Pr(Rr =a) < Pr(R; =a) < (p/q)".

Now let us incorporate the evenis, and consider the full lemma as stated. For
eachi=0,1,...,let ;F =E; A(0<R;_1<a-—1);,andforeach =1,2, ...,
let ¥; = Y;15,_, — 15 . Let Ry and T be defined in the obvious way. Then
Pr (Y; = 1¢i_1) < p, since, by assumption, itis at mgson F;_1, and it equals 0
on F;_1. Similarly, Pr (¥; = —1|¢;_1) > g. Hence, by what we have just proved
applied to theY;,

Pr(EA(Rr=a)) < Pr(R; =a) < (p/q)". O

8. Proof of Theorem 1.3. We have assembled all the preliminary results we
need. In this section we at last prove Theorem 1.3, and inequalities (3) and (4) that
follow it. We assume throughout that the process is in equilibrium.

Letd > 2 be a fixed integer. Consider thebin system. Recall that(k) is the
expected proportion of bins with load at leasDefine j* = j*(n) to be the least
positive integer such that:(i) < n~2In®n. By Lemma 6.1,

j*(m)=Inlnn/Ind + 0(1).
We shall show that,

(33) ford =2, we haveM = j* or j*+1a.a.s.
and
(34) ford > 3, we haveM = j*—1 or j*aa.s.

This will complete the proof of the first part of Theorem 1.3.

For each timeg and eachi =0, 1, ..., let the random variabl&, (i) be the
number of new balls arriving during, 1] which have height at leaston arrival,
that is, which are placed in a bin already holding at Iéas1 balls. LetJop =0 and
enumerate the arrival times after time 0JasJ», .... We shall define a “horizon”
time 1o of the order of Im, and letN = [2\n1g]. For each time, let A, be the
event

(An/2<|Xs|<20n Vs el0,t]}.
Then by Lemma 2.2, the event, holds with probability 1— e =52V,
8.1. Thecased > 3. We consider first the case whdr= 3, which is easier
than wherd = 2.

Let K > 0 be a (large) constant and leg = (K + 4)Inn. Sincel(j* — 1) >
n1/21n3n, the concentration result Lemma 5.3 shows tRat(M < j* — 1) =
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¢=20n’m) | particular,M > j* — 1 a.a.s., which is “half” of (34). Also, (8) in
Lemma 2.1 above [with = n~K+4 4 = j* — 3 andb = 1] shows that

(35) min{M,;:0<t<n¥}>j*-2 aas

This result establishes a finer form of the lower bound half of (2). In fact, this half
of (2) will follow from (3) which we prove later, so (35) is not needed for our

proofs.
Next we shall show thal/ < j* a.a.s., which is the other half of (34). For
k=0,1,..., let E; be the event that at timé there are no more tham®21n3»

bins with at leastj* balls. Then Pr (E;) = e—(n?n) by Lemma 5.2, since
1(j*) < n¥/2Inn. Consider the ball which arrives at timg: on E;_1, it has
probability at mosips = (2n~1/2In%n)? of falling into a bin with at leasj* balls.
Note that

(36) Pr (Jy+1 < o) < Pr[Pa(Antg) > 2knig] = e~ "IN
Also, for each positive integet,

(Here we are usings to denote a binomial random variable.) Hence, for each
positive integer, using Lemma 5.3,

Pr{Z,(*+1) >r]
N—-1

< Pr(B(N,py)=r)+ Pr (\/ E—k) + Pr(Uy+1=<10)
k=0

= 0((n=“92=D(Inp)3+hy),

Also, the probability that some “initial” ball survives to timgis at mostine =0,
as we saw earlier. Hence, for each positive integer

PriM > j*+r] < Pr(Zy(j* +1) > r]+ Ane™".

In particular, Pr (M > j* 4+ 1) = o(1), which together with the earlier result that
M > j* — 1 a.a.s., completes the proof of (34). Further,

PriM > j*+2K 4+ 5] =o(n X72).

Now (9) in Lemma 2.1 witht = nX ands = n—2, together with (35), lets us
complete the proof of (2).
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8.2. Thecased = 2. The casel = 2 needs a little more effort, and uses the
“drift” results from the last section. Again, |& > O be a (large) constant, but now
let 1o = (2K + 8) Inn. We first show that/ > j*, by showing that, in fact,

(37) L,(j)=Inn  aas

Let J;= 0, and enumerate all jump times after time O (not just the arrival times)
asJj, J;,.... Note that/; <o a.a.s., since

Pr (Jy/; > tO) < Pr (Jn > l‘o) = Pr (PO(Xnto) < I’l) — e—Q(nlnn)

by (5). Fork =0, 1, ..., let Ex be the eventi ;s A (L, (j*—1) > nY2In3n). Let
E= /\z;é Ey. We saw earlier thaPr (A,,) = o(1). By Lemma 5.2, as before, we
havePr (L, (j* —1) < 3nY2In3n) = e~ 20’ Thys,

Pr(E) < Pr(Ay) + Pr(J, > to) + ne=20n*n =o0().

Fork=0,1,..., IetszLJIQ(j*) and fork=1,2,...,letYy, = Ry — Ry_1, SO
that
k
Rk:RO+ZYj~
j=1

Let p» =In®n/(24n), and letry = [2In3n]. ONEj_1 A (Rk—1 < r1),
Pr(Ye =1, ,)=2p2

and
Pr(Ye=—1l¢, ) < p2,

for n sufficiently large. [Here we use, to denote theo-field generated by
(X5:0<s <1).] Also, thennp, > 2r1. Hence, by Lemma 7.2, for each integer
rowith 0 <rg < r1,

Pr (E/\(Rk <rlvk€{1,,l’l})|R0:r0) Se—pzn/28‘

Since Pr (E) = o(1), it follows that a.a.sR; > rq for somek € {1,...,n}. (If
Ro = r1, then we may replace by r; = r1+1 above: ifRg > r1+1, thenRy > r1
a.s.) Thus, a.a.sL]k/ g* = |2In3n] for somek € {1, ..., n). Finally, sinceJ; <t

a.a.s. as we saw above, we find that aB.6;*) > |2 In3#] for somer € [0, 1o].

In order to complete the proof of (37), it suffices to show that a.a.s. there will be
no “excursions” that cross downwards frg@in®z | to at most I . Let B be the
event that there is such a crossing. The only possible start times for such a crossing
are departure times during, r0]. Recall thatV = [2Antg]. Now | Xg| < N a.a.s.
and we saw in (36) that a.a.s. there are at mésdrrivals in [0, rg]. Hence, if
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C denotes the event that there are more thand&partures duringO, #g], then
Pr (C) =o(1).
We may use Lemma 7.3 (suitably translated and reversed) to upper bound the
probability that any given excursion leads to a crossing. d.et [In®n]. Let
p = 2p» and letg = p>. We apply Lemma 7.3 witla, p, ¢ and E; as above.
We obtain

N-1
Pr(B)<Pr(C)+ N2+ Pr ( A\ E_k> =o(1).
k=0
Thus, we have established (37), and, hence, provedthat;* a.a.s.

We now consider upper bounds #f We shall show thal/ < j*+ 1 a.a.s., by
showing thatL,,(j* +2) =0a.a.s. Fok =0, 1, ..., let F; be the event that at the
arrival time J; there are no more tham¥2Inx bins with at leasj* balls. Since
1(j*) < nY2In3n, Lemma 5.1 yieldr (Fy) = e~2°"_Consider the ball which
arrives at timeJi: on Fi_1 it has probability at mosps = 4In®n/n of falling into
a bin with at leasy* balls. Thus, for each positive integer

N-1

Pr(Zi(j*+1) >r) < Pr(B(N, p3) >r)+ Pr ( \/ Fk) + Pr (Jn+1 < to).

k=0
Also, the probability that some “initial” ball survives to tinvg/2 is at most
ane~0/2_ Hence, there is a constansuch that, with probability + O (n=5-3),
we haveL,(j*+ 1) < cln’n uniformly for all ¢ € [r9/2, t0]. Thus, this also holds
over|[O0, rg].

Fork=0,1,...,let F,g be the event that at tim& there are no more tharin” »
bins with at leasy* + 1 balls. OnF;_,, the ball arriving at timeJ; has probability
at mostps = c¢?In**n n=2? of falling into a bin with at leas* + 1 balls. Then for
each positive integet,

N-1
Pr(Zw(j*+2)>=r) < Pr(B(N, ps) >r)+ Pr ( \/ F,g) + Pr (Jyy1 <t0).
k=0
Also, as we noted above, the probability that some “initial” ball survives to time
is at mostine=, and so

Pr(My>j*+r+1) < Pr(Zy(j"+2) >r)+rne .
It follows on takingr = 1 that a.a.sM;, < j* 4 1; and on taking = K + 3 that
Pr(My=>j*+K+4)=0(n X2,

Now (9) in Lemma 2.1(b), say with = nX ands = n—2, yields the upper bound
part of (2).
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8.3. Completing the proof. In this sectiond will be any fixed integer at least 2.
The lower bound half of (2) will follow from (3), which we now prove. [See
also (35) above.] Let & € < %, and letr = exp(n¥/3~<). By Lemma 6.1, there
is a constant integer > 0 such that/(j* — ¢) > n1~¢/2. By the concentration
result Lemma 5.1 [applied to the functidn(j* — ¢), with u = n1=¢/?],

Pr(M < J* —c)=Pr (L(]* —0)= o) — exq_g(n1/3—e/3)).

Now we may use inequality (8) in Lemma 2.1(b), with=1/7,a = j* —c — 3
andb = 2, to show that a.a.94;, > j* —c — 2 forallt € [0, t]. This completes the
proof of (3).

Itremains to prove (4). Let = z(n) be a positive integer such thatda= o(Inn).
Note that balls choosing bin 1 on each of theétrials arrive in a Poisson process at
ratexn— @~ (recall that balls choose bins with replacement). Cebe the event
that, in the intervalt, t 4+ 1), there are at leastballs which arrive, choose bin 1
each time, and survive at least to time 1. Then

Pr(Cy) > (1+ o) (an~¥ V77172

=exp(—(d —1zInn —zInz+ 0(2))
— p—(@d=1+o()z.

Hence,
Pr(M™ <zVi1e[0,1)) < Pr(X,1) <zViel0,1))
< Pr (each ofCo, ..., C|;|—1 fail)
< (1= p~@=Lro@yr
< exp(—gn~ @1tz
Hence,

(38) Pr (Mt(") <zVte[0,7))—>0 asn — oo if tn~ @ 1oz 5 o,

This yields (4).

9. Chaoticity. As usual, fix a positive integed: let us assume here that
d > 2. One consequence of our concentration results is that asymptotically,
as n — oo, individual bin loads become independent of one another. Thus,
our network satisfies thehaos hypothesis, Boltzmann’sstosszahlansatz [6]. In
recent years chaoticity phenomena have received considerable attention [6, 9,
10, 18] in the context of various multitype particle systems, such as computer
and communication networks, and interacting physical and chemical processes.
Consider the equilibrium case.
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PrROPOSITION9.1. Fix an integer r > 2. Consider the n-bin model, with
load vector X in equilibrium. For any distinct indices j1, ..., j-, the joint law
of X(j1), ..., X(j,) differs from the product law by at most O (n~1In*n) in total
variation.

PrROOFE As before, let«(k, X) denote the fraction of bins with load at least
By Lemma 5.2,

supPr (Ju(k, X) —u(k)| = n=Y2In¥%n) = 0(n™1).
k
Hence, for each positive integer< r,

(39) sup E
k

ki,..., a

[1’[ Ju ks, X) — u(lm@ =0~ ?In%/2n) + O(n™Y),
s=1

where the supremum is over afltuplesks, ..., k, of nonnegative integers (not
necessarily distinct). But

E[]‘[u(ks,m} — [Tutks

s=1 s=1

= > E[H(u(ks,X)—u(ks))} [T k.
JAI=2

AC{l,...,r} SEA se{l,...,r\A

Hence, by (39), uniformly over ahl-tuplesky, ..., k,,

’E[]‘[u(ks,)o} — [Tutky

s=1 s=1

(40)
< E[]‘[ Jue (s, X) —u(lmq

AC{1,...,r},|]A|>2 LseA
=0mn tIn®n).
Now
l n
u(k, X) ==Y " 1x(j)=«.
n -
j=1
Thus,

E[ [ ] utks. X)} = n_’E[ 1> 1X<j)zks}

s=1 s=1j=1

= E[ I1 1X(s)zks:| +0m™Y

s=1
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uniformly over allr-tuplesks, ..., k., since when we expand the middle expres-
sion, there ar@® (n’—l) terms for which the values gfare not all distinct. Hence,
from (40),

r

E{ I1 1X(s)zks:| — [T utks)
s=1

s=1

sup =0m tIn%n).

k1,....ky

But

Pr ( /\(X(S) = ks)> = E|: l_[(lX(S)st — lX(S)st+l)j|,
s=1

s=1

which is sum of 2 terms £E[[[{_; 1x (>« ], wherek; = ks or k; + 1; and
t—1 Pr (X(s) = ky) is a corresponding sum of terras[[;_, u(k;). Hence, for
any setj, ..., j, of distinct bin indices,

Pr ( /r\(xuo = ks)) - H Pr (X (js) = k)

s=1 s=1
But there exists a constant- 0 such that

(41) sup =0 tIn%n).
k

Pr <maxX(j) >Ininn/Ind + c> =0m™).
J

Hence, for any sef,..., j- of distinct bin indices, the joint law ofX (j1),
..., X(j,) differs from the product law by at mog2(n~1In3n(Inlnx)") in total
variation. O

The last result, together with the rapid mixing result Theorem 1.1, shows that,
with suitable initial conditions, bin loads will be nearly independent after a short
time. Suppose, for example, that we start with all bins empty or, more generally,
with O(n) balls in total, and let =t(n) > 2Inn. Let jy, ..., j, be fixed distinct
indices, where > 2. Then ifY has the equilibrium distribution,

drv (LX) -, X Gr))s LIX (1) @ -+ ® L(X,(jir)))
<drv (LY (1) Y (), LY (D)) ® -+ ® L(Y (jir)))
+ (r + Ddrv (LX), L(Y))

= 0m tIn*n).

10. Concluding remarks. We have investigated a natural continuous-time
balls-and-bins model with/ random choices, which exhibits the “power of
two choices” phenomenon. We found that the system converges rapidly to its
equilibrium distribution; in equilibrium, the maximum load is a.a.s. concentrated
on just two values; whed = 1, these values are close tanlininr; and when
d > 2, they are close to Inla/Ind, and the maximum load varies little over
polynomial length intervals. We make three further remarks:
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(a)

We have not discussed the next level of detail. For example, for given values
of d > 2 andA > 0, letm(d, A; n) denote the median value of the maximum
load M ™ in equilibrium. We know that the differenee(d, A; n) —Ininn/Ind

stays bounded as— oo, but how does it behave in more detail? How does it
depend or.?

(b) Our approach can be applied, in a natural way, to the “original” load-balancing

(42)

(©)

problem, wheren ~ cn balls are thrown inta: bins sequentially, each ball

chooses? random bins, and is placed into a least loaded of these bins, see

[2, 3, 16]. It is known that, with probability tending to 1 as—» oo, at the end

of the allocation process the maximum load of a bin is kiind + O(2),

though it has not been possible to determine the behavior oDitig¢ term.

We make a step forward here, and see that the maximum load is concentrated

on at most two values, as in the processes considered earlier in this paper.
We embed the process in continuous time, and fornthen case, we assume

that balls arrive in a Poisson process of raté\ natural coupling, combined

with the bounded differences method, yield concentration of measure for

Lipschitz functions. As before, I1€X,) denote the loads process, i€t, x) be

the proportion of bins with load at leasin statex, and letu,; (i) = E[u(i, X;)].

Let 7o > 0 be a fixed time. Then uniformly overe [0, o] and overi € N,

duy(i)

o =Elui -1, X% — E[u, X)?]

=u,(i — 1) —u, () + 0(n~1In%n).
Let (v(z,i):i =0,1,...) solve the system of differential equations
dvu(t,i)
dt

subject tov(z,0) = 1 for eachs > 0 andv(0,i) = 0 for eachi = 1,2, ....
Then, using Gronwall's lemma (see, e.qg., [8]),

=v(t,i — D% — v, i)

sup suplu; (i) — v(z,i)| = O(ntIn%n).

0<t<trgieN
Defining j* = j*(n) to be the least positive integérsuch thatv(z,i) <
2n~Y2|nn, with high probability, the maximum load of a bin when about
balls have been thrown will equat — 1 or j* whend > 3, and will equal;*
or j* 4+ 1 whend = 2. Note thatj* is defined purely in terms of the solution
to the limiting differential equation (42).
Our methods can be adapted to handle the “supermarket” model. In this
well-studied queueing model, see, for example, [15, 17, 23], there:are
single-server queues, with service times which are independent exponentials
with mean 1; customers (balls) arrive in a Poisson stream atirgtevhere
0 <A <1, and go to a shortest af randomly chosen queues. In [11] we
are able to determine (for the first time) the behavior of the maximum queue
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length, and, indeed, we obtain similar results to those in the present paper. It
is possible also to analyze queues with a numbers (n) of servers, not just
1 oroo.
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