
The Annals of Applied Probability
2005, Vol. 15, No. 2, 1193–1226
DOI 10.1214/105051605000000133
© Institute of Mathematical Statistics, 2005

SAMPLE-PATH LARGE DEVIATIONS FOR TANDEM AND
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This paper considers Gaussian flows multiplexed in a queueing network.
A single node being a useful but often incomplete setting, we examine more
advanced models. We focus on a (two-node) tandem queue, fed by a large
number of Gaussian inputs. With service rates and buffer sizes at both nodes
scaled appropriately, Schilder’s sample-path large-deviations theorem can be
applied to calculate the asymptotics of the overflow probability of the second
queue. More specifically, we derive a lower bound on the exponential decay
rate of this overflow probability and present an explicit condition for the lower
bound to match the exact decay rate. Examples show that this condition holds
for a broad range of frequently used Gaussian inputs. The last part of the
paper concentrates on a model for a single node, equipped with a priority
scheduling policy. We show that the analysis of the tandem queue directly
carries over to this priority queueing system.

1. Introduction. Traffic engineering in communication networks greatly
benefits from models that are capable of accurately describing and predicting the
performance of the system. This modeling is a challenging task, as a broad variety
of traffic types are multiplexed in the network, with each of them having its specific
(stochastic) characteristics. A commonly used modeling step is to represent the
network nodes asqueues, and to use queueing theory to analyze the performance
(in terms of loss, delay, throughput, etc.) of the nodes. For the single queue
operating under the first-in-first-out (FIFO) discipline, even for advanced traffic
models detailed analyses are available. Evidently this single-node FIFO model
gives valuable insights, but is an oversimplification of reality. We mention two
serious limitations.

First, traffic streams usually traverseconcatenations of hops (rather than just a
single node). Second, it is envisaged that the service at these hops distinguishes
between several traffic classes (by usingpriority mechanisms, or the more
advancedgeneralized processor sharing discipline); compare the Differentiated
Services (diffserv) approach proposed by the Internet Engineering Task Force [17].
This motivates the recent interest in performance evaluation for these more
complex queueing models.
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As indicated above, each type of traffic has its own stochastic properties,
often summarized by thecorrelation structure. Traditional traffic models allow
only short-range dependent traffic processes, such as Markov-modulated Poisson
processes or exponential on-off sources, in which correlations decay relatively
quickly. Traffic measurements in the 1990s, however, showed that in various
situationslong-range dependent traffic models are more appropriate. This explains
the popularity of Gaussian models, as they cover both short-range (cf. Ornstein–
Uhlenbeck) and long-range dependent models (e.g., fractional Brownian motion,
see [19]). Another complicating issue is the fact that network traffic is usually
influenced by feedback loops (think of TCP), which control how the user’s traffic
supply is transmitted into the network. Kilpi and Norros [18], however, argue that
(nonfeedback) Gaussian traffic models are justified as long as the aggregation is
sufficiently large (both in time and number of flows), due to central limit type of
arguments.

This paper concentrates on the evaluation of tail asymptotics in queueing
systems that are more advanced than a single FIFO node. More specifically, we
examine in detailtandem queues (particularly the second queue) andpriority
queues (particularly the low-priority queue); it turns out that the analysis of the
tandem queue essentially carries over to the priority system. Our paper is meant
as a first step towards the analysis of networks with general topology, with nodes
operating under advanced scheduling disciplines such as Generalized Processor
Sharing (GPS).

In the tandem model we assume thatn i.i.d. Gaussian sources feed into the
queueing system, where the (deterministic) service rates of the queues as well as
the buffer thresholds are scaled byn, too. We now letn go to infinity; the resulting
framework is often referred to as themany-sources scaling, as was introduced
in [32].

A vast body of results exists for single FIFO queues under the many-sources
scaling. Most notably, under very mild conditions on the source behavior, it
is possible to calculate theexponential decay of the probabilitypn(b, c) that
the queue (fed byn sources, and emptied at a deterministic ratenc) exceeds
level nb. Early references in this large-deviations framework are the logarithmic
asymptotics found in, for example, [7] and [8]. We remark that exact asymptotics
for Gaussian inputs were recently found by D¸ebicki and Mandjes [9]. For Gaussian
sources the logarithmic asymptotics of [7] read

lim
n→∞

1

n
logpn(b, c) = − inf

t>0

(b + (c − µ)t)2

2v(t)
,(1)

whereµ is the mean input rate per source, andv(t) is the variance of the amount
of traffic generated by a single source in a time interval of lengtht . The goal of the
present paper is to find expressions similar to (1) for tandem and priority queues.

Our work fits in the framework of a series of articles by Mannersalo and
Norros [1, 23–25]. These papers examine queues with Gaussian sources, such
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as the single-node FIFO queue, but also priority queues and queues with GPS
scheduling. For the latter types of queues, they derive heuristics for the decay rate
of the overflow probabilities. The present paper shows that, for priority queues,
these heuristics are typically close, but that there is a gap with the exact outcome.
For both the tandem and priority queue a lower bound on the decay rate of the
overflow probability is derived. In addition, we present an explicit condition under
which this lower bound matches the exact value of the decay rate. Notice that lower
bounds of the decay rate are usually of practical interest, as typically the network
has to be designed such that overflow is sufficiently rare.

Our analysis exploits the above-mentioned similarity between priority and
tandem queues. The techniques applied stem from large-deviations theory,
particularly sample-path large deviations, based on (the generalized version of )
Schilder’s theorem. We mention that for priority systems in discrete time, different
bounds were found by Wischik [33]; we will comment on the relation with our
results later.

The paper is organized as follows. Section 2 introduces the tandem model, and
presents preliminaries on (sample-path) large deviations. Section 3 analyzes the
decay rate of the overflow probability of the second queue in a tandem system.
This analysis is illustrated in Section 4 by a number of (analytical and numerical)
examples. Section 5 studies the priority system, addressing the decay rate of the
overflow probability in the low-priority queue.

2. Model and preliminaries. This section introduces the tandem model that
is analyzed in Section 3. In addition, we present preliminaries on large-deviations
theory and the many-sources scaling.

2.1. Tandem model. Consider a two-queue tandem model, with (determinis-
tic) service ratenc1 for the first queue andnc2 for the second queue. We assume
that c1 > c2, in order to exclude the trivial case where the buffer of the second
queue cannot build up.

We considern sources (whose characteristics are specified in Section 2.2) that
feed into the first queue. Traffic of these sources that has been served at the first
queue immediately flows into the second queue—we assume no additional sources
to feed the second queue. We are interested in the steady-state probability of
the buffer content of the second queueQ2,n exceeding a certain thresholdnb,
b > 0, when the number of sources gets large, or, more specifically, its logarithmic
asymptotics:

J := − lim
n→∞

1

n
logP(Q2,n > nb).(2)

Note that we assume the buffer sizes of both queues to be infinite. We remark that
it is not a priori clear that the limit in (2) exists; its existence is a result of our study
(Theorem 3.1).
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2.2. Gaussian sources. Let Ai(·) denote i.i.d. centered Gaussian processes
with continuous sample paths and stationary increments, andAi(0) ≡ 0, for
i = 1, . . . , n. Then, fors < t , we interpretAi(s, t) := Ai(t) − Ai(s) as the amount
of traffic generated by theith source in(s, t]. Denote byA(s, t) the generic random
variable corresponding to a single source. The Gaussian sources are characterized
by their variance function v(·) (which is necessarily continuous); fors < t ,
VarA(s, t) = v(t − s).

Although in this setup the Gaussian processes are centered, our analysis is
capable of handling the situation in which the sources have a positive mean traffic
rateµ (smaller than bothc1 andc2, to guarantee stability). This is due to the fact
that the results for centered sources can be translated immediately into results for
noncentered sources; see Remark 2.6.

In the sequel we will frequently use the bivariate random variable(A(t),A(s)).
It obviously obeys a two-dimensional Normal distribution with zero mean and
covariance matrix�(s, t). With �(s, t) := Cov(A(t),A(s)), this covariance matrix
is given by

�(s, t) :=
(

v(t) �(s, t)

�(s, t) v(s)

)
and �(s, t) = v(t) − v(|t − s|) + v(s)

2
.

Gaussian sources have the conceptual problem that the possibility ofnegative
traffic is not ruled out, as opposed to “classical” input processes, such as
(compound) Poisson processes or on-off sources. However, in queueing theory
a key role is played by functionals of the arrival process, which are well defined,
regardless of whether the input stream corresponds to nonnegative traffic or not.
Consider, for instance, the stationary distribution of a queue fed by a single source,
emptied at ratec, given by the well-known formula supt>0(A(−t,0)−ct). Clearly,
the distribution of such functionals can still be evaluated for Gaussian input; see,
for example, Norros’ pioneering work for fBm [26], or [15]. We remark that such
an approach leads to nonnegative queue lengths in tandem systems with Gaussian
inputs—this will follow directly from representation (10). For priority systems it is
explained in detail in [25], Section 2.3, how negative queue lengths can be avoided
(a discrete-time version of the priority discipline is introduced, in which negative
traffic can annihilate queued traffic).

2.3. Sample-path large deviations. The analysis in the next sections relies on
a sample-path large-deviations principle (LDP) for centered Gaussian processes.
This section is devoted to a brief description of the main theorem in this
field, (the generalized version of )Schilder’s theorem [5]. However, we start by
recalling (the multivariate version of ) the well-knownCramér’s theorem; see [10],
Theorem 2.2.30. We let〈·, ·〉 denote the usual inner product:〈a, b〉 := aTb =∑d

i=1 aibi .
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THEOREM 2.1 (Multivariate Cramér). Let Xi ∈ R
d be i.i.d. d-dimensional

random vectors, distributed as a random vector X with finite moment-generating
function Ee〈θ,X〉 ( for all θ ∈ R

d ). Then the following LDP applies:

(a) For any closed set F ⊂ R
d ,

lim sup
n→∞

1

n
logP

(
1

n

n∑
i=1

Xi ∈ F

)
≤ − inf

x∈F
�(x).

(b) For any open set G ⊂ R
d ,

lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

Xi ∈ G

)
≥ − inf

x∈G
�(x),

where the large deviations rate function �(·) is given by

�(x) := sup
θ∈Rd

(〈θ, x〉 − logEe〈θ,X〉).(3)

REMARK 2.2. Consider the specific case thatX has a multivariate Normal
distribution with mean vectorµ and (d × d) nonsingular covariance matrix�.
Using logEe〈θ,X〉 = 〈θ,µ〉+ 1

2θT�θ , it is not hard to derive that, with(x −µ)T ≡
(x1 − µ1, . . . , xd − µd),

θ� = �−1(x − µ) and �(x) = 1
2(x − µ)T�−1(x − µ),(4)

whereθ� optimizes (3); it is well known that�(·) is convex.

We now sketch the framework of Schilder’s sample-path LDP, as established
in [5], see also [11]. We adopt the notation and setup of [1, 23]. Consider then

i.i.d. centered Gaussian processesAi(·), as introduced in Section 2.2. Define the
path space� as

� :=
{
ω :R → R, continuous,ω(0) = 0, lim

t→∞
ω(t)

1+ |t | = lim
t→−∞

ω(t)

1+ |t | = 0
}
,

which is a separable Banach space by imposing the norm

‖ω‖� := sup
t∈R

|ω(t)|
1+ |t | .

In [1] it is pointed out thatAi(·) can be realized on� under the assumption that

lim
t→∞

v(t)

tα
= 0 for someα < 2.(5)

We assume assumption (5) to be in force throughout this paper.
Next we introduce and define thereproducing kernel Hilbert space R ⊆ �—

see [3] for a more detailed account—with the property that its elements are roughly
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as smooth as the covariance function�(s, ·). We start from a “smaller” spaceR�,
defined by

R� :=
{
ω :R → R,ω(·) =

n∑
i=1

ai�(si, ·), ai, si ∈ R, n ∈ N

}
.

The inner product on this spaceR� is, for ωa,ωb ∈ R�, defined as

〈ωa,ωb〉R :=
〈

n∑
i=1

ai�(si, ·),
n∑

j=1

bj�(sj , ·)
〉
R

=
n∑

i=1

n∑
j=1

aibj�(si, sj );(6)

notice that this implies〈�(s, ·),�(·, t)〉R = �(s, t). This inner product has the
following useful property, which we refer to as thereproducing kernel property:

ω(t) =
n∑

i=1

ai�(si, t) =
〈

n∑
i=1

ai�(si, ·),�(t, ·)
〉
R

= 〈ω(·),�(t, ·)〉R.(7)

From this we introduce the norm‖ω‖R := √〈ω,ω〉R . The closure ofR� under
this norm is defined as the spaceR. Now we can define the rate function of the
sample-path LDP:

I (ω) :=
{

1
2‖ω‖2

R, if ω ∈ R,

∞, otherwise.
(8)

For the Gaussian sources introduced in Section 2.2, the following sample-path
LDP holds.

THEOREM 2.3 (Generalized Schilder).The following sample-path LDP
applies:

(a) For any closed set F ⊂ �,

lim sup
n→∞

1

n
logP

(
1

n

n∑
i=1

Ai(·) ∈ F

)
≤ − inf

ω∈F
I (ω).

(b) For any open set G ⊂ �,

lim inf
n→∞

1

n
logP

(
1

n

n∑
i=1

Ai(·) ∈ G

)
≥ − inf

ω∈G
I (ω).

A difficulty of Schilder’s theorem is its “implicitness,” as only in special cases
the rate functionI (·) can be explicitly minimized over the set of interest. The
authors of [1] succeed in exploiting the reproducing kernel property to give a
sample-path analysis of overflow in a single FIFO queue (with deterministic
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service ratenc) fed by Gaussian inputs. WithQn denoting the stationary buffer
content, they derive

lim
n→∞

1

n
logP(Qn > nb) = − inf

t≥0

(b + ct)2

2v(t)
.

It is elementary to show the existence of a minimizingt . On the one hand, it
holds that limt↓0(b + ct)2/2v(t) = ∞ [due to v(0) = 0]. On the other hand,
(5) implies that there is aβ < 2 such thatv(t) < tβ eventually, and hence also
limt→∞(b + ct)2/2v(t) = ∞. Notice that even in the FIFO setting, there is not
necessarily uniqueness of the optimizingt ; see, for instance, [21], [1], Section 3.7,
or [20], Example 5.2.

If t� denotes a minimizingt , the corresponding path is

f �(r) = −�(−r, t�)

v(t�)
(b + ct�) = −v(t�) − v(|t� + r|) + v(−r)

2v(t�)
(b + ct�).(9)

This path corresponds to a buffer that starts to fill at time−t�, and reaches overflow
at time 0; it is not hard to check thatf �(−t�) = −b − ct�, andf �(0) = 0, as
desired. Notice that the path is inR (in fact even inR�). If there is a unique
optimizing path in the target set (i.e., the set of all paths leading to overflow),
it is usually referred to as themost likely path to overflow. It has the interpretation
that, given that the rare event of overflow happens, with high probability it happens
according to this trajectory. Also,t� has then the interpretation of the most likely
duration of the busy period preceding overflow. (Notice that, in this FIFO setting,
there is not necessarily uniqueness; see, e.g., Section 3.7 in [1] or Example 5.2
in [20], or, in a non-Gaussian setting, [21].)

2.4. Many-sources scaling. In this section we show that the probability of our
interest can be written in terms of the “empirical mean process”n−1 ∑n

i=1 Ai(·).
The following lemma exploits the fact that we know both a representation of
the first queueQ1,n (in steady state) and a representation of thetotal queue
Q1,n + Q2,n (in steady state). Lett0 := b/(c1 − c2).

LEMMA 2.4. P(Q2,n > nb) equals

P

(
∃ t > t0 :∀ s ∈ (0, t) :

1

n

n∑
i=1

Ai(−t,−s) > b + c2t − c1s

)
.

PROOF. Notice that a “reduction principle” applies: the total queue length is
unchanged when the tandem network is replaced by its slowest queue; see [4, 14].
More formally:Q1,n + Q2,n = supt>0(

∑n
i=1 Ai(−t,0) − nc2t). Consequently we

can rewrite

Q2,n = (Q1,n + Q2,n) − Q1,n
(10)

= sup
t>0

(
n∑

i=1

Ai(−t,0) − nc2t

)
− sup

s>0

(
n∑

i=1

Ai(−s,0) − nc1s

)
.
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It was shown (see Lemma 5.1 of [31]) that the negative of the optimizingt (s)
corresponds to the start of the last busy period of the total queue (the first queue)
in which time 0 is contained. Notice that a positive first queue induces a positive
total queue, which immediately implies that we can restrict ourselves tos ∈ (0, t).
HenceP(Q2,n > nb) equals

P

(
∃ t > 0 :∀ s ∈ (0, t) :

1

n

n∑
i=1

Ai(−t,−s) > b + c2t − c1s

)
.

Because fors ↑ t the requirement

1

n

n∑
i=1

Ai(−t,−s) > b + c2t − c1s

reads 0> b + (c2 − c1)t , we can restrict ourselves tot > t0. We can interprett0 as
the minimum time it takes to cause overflow in the second queue (notice that the
maximum net input rate of the second queue in a tandem system isc1 − c2). �

The crucial implication of the above lemma is that for analyzingP(Q2,n ≥ nb),
we only have to focus on the behavior of theempirical mean process. More
concretely,

P(Q2,n > nb) = P

(
1

n

n∑
i=1

Ai(·) ∈ S

)
,(11)

where the set of “overflow paths”S is given by

S := {f ∈ � :∃ t > t0,∀ s ∈ (0, t) :f (−s) − f (−t) > b + c2t − c1s}.

REMARK 2.5. A straightforward time-shift shows that the probability that the
empirical mean process is inS coincides with the probability that it is inT , with

T := {f ∈ � :∃ t > t0,∀ s ∈ (0, t) :f (s) > b + c2t − c1(t − s)}.(12)

However, the setT is somewhat easier to interpret, see Figure 1. For different
values oft [i.e., t2 > t1 > t0 = b/(c1 − c2)], the lineb + c2t − c1(t − s) has been
drawn. The empirical mean processn−1 ∑n

i=1 Ai(·) is in T if there is at > t0
such that for alls ∈ (0, t) it stays above the lineb + c2t − c1(t − s). Notice
that T resembles the set corresponding to the probability of long busy periods
in a single queue, as studied in [27].

REMARK 2.6. As indicated above, our results are for centered sources, but
they can be translated easily into results for noncentered sources. Then the traffic
generated by Gaussian sourcei in the interval[s, t) is A(s, t) + µ(t − s), where
A(s, t) corresponds to a centered source; here 0< µ < min{c1, c2} ands < t . Let
q(µ, c1, c2) be the probability that the second queue exceedsnb, given that input
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FIG. 1. Graphical representation of the overflow set. For different values of t , the curve
b + c2t − c1(t − s) has been drawn. Overflow occurs if there is a t > t0 such that the empirical
mean process lies, for s ∈ (0, t), above the corresponding curve.

rateµ and service ratesc1 andc2 are in force. From (10) it follows immediately
that q(µ, c1, c2) = q(0, c1 − µ,c2 − µ), and hence we can restrict ourselves to
centered sources.

3. Analysis. In this section we analyze the logarithmic asymptotics of
P(Q2,n > nb). In Section 3.1 we show that the decay rate in (2) exists, of which
we derive a lower bound in Section 3.2. It turns out that this lower bound has
an insightful interpretation, which is given in Section 3.3. Section 3.4 presents
conditions under which the lower bound istight (meaning that the decay rate and
lower bound match). Finally, in Section 3.5 we prove and explain some properties
of the most likely path that we found.

3.1. Decay rate of the overflow probability. In this section we establish the
existence of the decay rate (2) ofP(Q2,n > nb). We already saw in (11) that
P(Q2,n > nb) can be rewritten as the probability that the empirical mean process
is in S (which is an open subset of�). The existence of the decay rate follows
from Schilder’s result (Theorem 2.3), by showing thatS is anI -continuity set, that
is, that the infima ofI (·) overS andS match.

THEOREM 3.1.

J = inf
f ∈S

I (f ) = inf
f ∈S

I (f ).

The proof of Theorem 3.1 can be found in the Appendix.
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3.2. Lower bound on the decay rate. The main result of this section is a
tractable lower bound onJ , which is given in Theorem 3.2. Observe that

S = ⋃
t>t0

⋂
s∈(0,t)

Ss,t with Ss,t := {f ∈ � :f (−s) − f (−t) > b + c2t − c1s}.

Hence we are interested in the decay rate of the union of intersections. The decay
rate of a union of events is simply the minimum of the decay rates of the individual
events. The decay rate of an intersection is not standard. In the next theorem we
find a straightforward lower bound on this decay rate. Define

Us,t := {f ∈ � :−f (−t) ≥ b + c2t;f (−s) − f (−t) ≥ b + c2t − c1s}.
THEOREM 3.2. The following lower bound applies:

J ≥ inf
t>t0

sup
s∈(0,t)

inf
f ∈Us,t

I (f ).(13)

PROOF. Clearly,

J = inf
t>t0

inf
f ∈⋂

s∈(0,t) Ss,t
I (f ).

Now fix t and consider the inner infimum. Iff (−s) − f (−t) > b + c2t − c1s for
all s ∈ (0, t), then also (f is continuous)f (−s) − f (−t) ≥ b + c2t − c1s for all
s ∈ [0, t]. Hence, ⋂

s∈(0,t)

Ss,t ⊆ ⋂
s∈[0,t]

Us,t ⊆ Ur,t

for all r ∈ (0, t), and consequently

inf
f ∈⋂

s∈(0,t) Ss,t
I (f ) ≥ inf

f ∈Ur,t
I (f ).

Now take the supremum overr in the right-hand side. �

Theorem 3.2 contains an infimum overf ∈ Us,t . In the next lemma we show
how this infimum can be computed. Recalling (4), the bivariate large-deviations
rate function of (

n∑
i=1

Ai(−t,0)

n
;

n∑
i=1

Ai(−t,−s)

n

)

is, for y, z ∈ R and t > 0, s ∈ (0, t), given by �(y, z) := 1
2(y, z)�(t −

s, t)−1(y, z)T. We also introduce the following quantity, which plays a key role
in our analysis:

k(s, t) := E
(
A(−s,0)|A(−t,0) = b + c2t

)
(14)

= E
(
A(s)|A(t) = b + c2t

) = �(s, t)

v(t)
(b + c2t).
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Under the following assumption, the infimum overUs,t can be simplified
considerably. The same assumption will be useful when deriving tightness
conditions in Section 3.4.

ASSUMPTION 3.3.
√

v(·) ∈ C2([0,∞)) is strictly increasing and strictly
concave.

LEMMA 3.4. Under Assumption 3.3,for t > t0 and s ∈ (0, t),

inf
f ∈Us,t

I (f ) = ϒ(s, t) :=
{

�(b + c2t, b + c2t − c1s), if k(s, t) > c1s,

(b + c2t)
2/2v(t), if k(s, t) ≤ c1s.

PROOF. Observe that

P

(
n∑

i=1

Ai(·)
n

∈ Us,t

)

(15)

= P

(
n∑

i=1

Ai(−t,0)

n
≥ b + c2t;

n∑
i=1

Ai(−t,−s)

n
≥ b + c2t − c1s

)
.

Hence we can use Theorem 2.1, yielding

inf
f ∈Us,t

I (f ) = inf �(y, z),

where the last infimum is overy ≥ b+c2t andz ≥ b+c2t −c1s. Using that�(·, ·)
is convex, this problem can be solved in a standard manner. It is easily verified that
the contour of� that touches the liney = b + c2t does so atz-value

z0 := �(t − s, t)

v(t)
(b + c2t);

also the contour that touchesz = b + c2t − c1s does so aty-value

y0 := �(t − s, t)

v(t − s)
(b + c2t − c1s).

We first show that it cannot be thaty0 > b + c2t , as follows. If y0 > b + c2t ,
then the optimum would be attained at(y0, b + c2t − c1s). Straightforward
computations, however, show thaty0 > b+c2t would imply that [use�(t, t − s) ≤√

v(t)v(t − s) ] (√
v(t) − √

v(t − s)
)
(b + c2t) >

√
v(t)c1s.(16)

This inequality is not fulfilled fors = 0 (0 �> 0) nor for s = t (b + c2t �> c1t for
t > t0). As the left-hand side of (16) is convex (ins) due to Assumption 3.3,
whereas the right-hand is linear (ins), there is nos ∈ (0, t) for which the inequality
holds. Conclude thaty0 > b + c2t can be ruled out. Two cases are left:
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FIG. 2. Contour lines of the (two-dimensional) rate function; the objective function is to be
minimized over the shaded region.

(A) Supposez0 > b + c2t − c1s, or, equivalently,k(s, t) ≤ c1s. Then(b + c2t, z0)

is optimal (see the left panel of Figure 2), with rate function(b + c2t)
2/2v(t),

independent ofs.
(B) In the remaining case (wherey0 ≤ b+c2t andz0 ≤ b+c2t −c1s) the optimum

is attained at(b + c2t, b + c2t − c1s), that is, the “corner point”; see the right
panel in Figure 2. This happens ifk(s, t) > c1s, and gives the desired decay
rate.

This proves the stated. As an aside we mention that ifk(s, t) = c1s, then both
regimes coincide:�(b + c2t, b + c2t − c1s) = (b + c2t)

2/2v(t). �

COROLLARY 3.5. Under Assumption 3.3,the following lower bound applies:

J ≥ inf
t>t0

sup
s∈(0,t)

ϒ(s, t).

3.3. Interpretation of the lower bound. The results of the previous section
have a helpful interpretation, leading to two regimes for values ofc1. Forc1 smaller
than some critical link ratecF

1 , we show in Corollary 3.7 that the lower bound of
Corollary 3.5 can be simplified considerably.

We start by drawing a parallel with the single-node FIFO result, as displayed
in (1). There,t has to be found such that

Lc(t) := (b + ct − EA(t))2

2VarA(t)

is minimized. LettFc denote an optimizing argumentt . Lc(t) can be interpreted as
the cost of generatingb + ct in an interval of lengtht , andtFc as the time duration
yielding the “lowest cost.”

Now we turn to our tandem setting, and in particular to the result of Lemma 3.4.
Computing the minimum of�(y, z) over its admissible region, we saw that, under
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Assumption 3.3, in both cases the optimizingy was equal toy = b + c2t . On the
contrary, for the optimizingz there were two possible regimes.

Now recall the representation (14) ofk(s, t) as a conditional mean, and (15).
The result in Lemma 3.4 essentially states that in the regimek(s, t) ≤ c1s the most
likely realization of

∑n
i=1 Ai(−t,0) ≥ nb + nc2t yields

∑n
i=1 Ai(−t,−s) ≥ nb +

nc2t − nc1s (with high probability,n large). In the other regime,k(s, t) > c1s, the
most likely realization of

∑n
i=1 Ai(−t,0) ≥ nb+nc2t does not automatically yield∑n

i=1 A(−t,−s) ≤ nb +nc2t −nc1s (with high probability,n large); fulfilling the
second constraint in (15) requires additional “cost.”

The next decomposition result follows immediately from Lemma 3.4 and the
above.

COROLLARY 3.6. For s ∈ (0, t), we have ϒ(s, t) = Lc2(t) + L(s|t), with

L(s|t) := max2{E(A(s)|A(t) = b + c2t) − c1s,0}
2Var(A(s)|A(t) = b + c2t)

(17)

= max2{k(s, t) − c1s,0}
2Var(A(s)|A(t) = b + c2t)

.

Similarly to the interpretation of the single-node FIFO result, we can inter-
pretϒ(s, t) as the cost of generating the required amount of traffic. Denoting by
s� andt� optimizing arguments in Corollary 3.5, the intuition is as follows:

(A) “Cost component”Lc2(t) is needed to generateb + c2t in the interval(−t,0].
By taking theinfimum over t (to gett�) we find themost likely epoch to meet
the constraint.

(B) “Cost component”L(s|t) is required to make sure that no more thanc1s is
generated in the interval(−s,0], conditional on the eventA(−t,0) = b + c2t .
We can interprets� as the epoch at whichmost effort has to be done to fulfill
this requirement. This is of course reflected by the fact that in Corollary 3.5
we have to take thesupremum over all s in (0, t). Evidently, if k(s, t) ≤ c1s

for all s ∈ (0, t), this cost component is 0.

For large values ofc1, k(s, t) will be smaller thanc1s for all s ∈ (0, t), since it does
not depend onc1. As argued above, in this case the second term in Corollary 3.6
vanishes. If this holds for thet that maximizes the first term, that is,tFc2

, then

inf
t>t0

sup
s∈(0,t)

ϒ(s, t) = Lc2

(
tFc2

)
.(18)

This clearly holds for allc1 larger than

cF
1 := inf

{
c1|∀ s ∈ (

0, tFc2

)
: k

(
s, tFc2

) ≤ c1s
}

= inf
{
c1|∀ s ∈ (

0, tFc2

)
: c1 ≥ k(s, tFc2

)

s

}
= sup

s∈(0,tFc2
)

k(s, tFc2
)

s
.
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It implies that, for these large values ofc1, the lower bound onJ of Corollary 3.5
coincides with the result of a single-node FIFO queue with service ratec2. The
intuition behind this is that essentially in this regime all traffic entering the first
queue is served immediately, and goes directly into the second queue; traffic is not
“reshaped” by the first queue. Ifc1 < cF

1 , then the first queuedoes play a role in
delaying and reshaping the traffic before entering the second queue, as we will see
in the next section.

COROLLARY 3.7. For all c1 ≥ cF
1 , (18)applies.

3.4. Tightness of the decay rate. Corollary 3.5 is a lower bound on the decay
rateJ . Of course, such a bound is only useful if it is relatively close to the actual
decay rate, or, even better, coincides with it. In the latter case we say that the lower
bound istight.

In Section 3.2, we have derived a lower bound onJ by replacing the decay
rate of an intersection of events by the decay rate of the least likely of these. It is
important to observe that if the optimum path in this least likely set happens to be
in all the sets of the intersection, then the lower bound is tight.

More specifically, lets� and t� be optimizers in the lower bound of Corol-
lary 3.5. Clearly we can prove tightness of the lower bound by showing that the
most probable path inUs�,t� is in S (or S; use Theorem 3.1). In our analysis we
distinguish between (A)c1 ≥ cF

1 , and (B)c1 < cF
1 .

REGIME (A) (c1 larger than the critical service rate). In this situation, we
know from Corollary 3.7 that the lower bound in Corollary 3.5 reduces to the
decay rate in a single FIFO queue. The next result follows easily.

THEOREM 3.8. Under Assumption 3.3,if c1 ≥ cF
1 , then

J = inf
t>t0

sup
s∈(0,t)

ϒ(s, t) = Lc2

(
tFc2

)
,

and a most probable path in S is

f �(r) = −E
(
A(r,0)|A(−tFc2

,0
) = b + c2t

F
c2

)
.(19)

PROOF. As shown in Section 3.3, in this regimet� = tFc2
, whereas the choice

of s� is irrelevant [asc1 ≥ cF
1 impliesL(s|t�) = 0 for all s ∈ (0, t�)]. Notice that

it is now sufficient to show thatf � ∈ S, or f � ∈ S (use Theorem 3.1). We claim
thatf �(·) ∈ S, or more precisely, that there existst ≥ t0 such that for alls ∈ (0, t)

it holds thatf �(−s)−f �(−t) ≥ b+ c2t − c1s. This follows because, by definition
of cF

1 , for all s ∈ (0, t�),

f �(−s) − f �(−t�) = E
(
A(−t�,−s)|A(−t�,0) = b + c2t

�)
= b + c2t

� − k(s, t�) ≥ b + c2t
� − c1s.
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This completes the proof.�

We want to stress that the above theorem holds for all Gaussian processes,
regardless of the specific shape of the variance function. Consequently, the result is
also valid for long-range dependent processes, such as fractional Brownian motion.

REGIME (B) (c1 smaller than the critical service rate). We follow the same
approach as in Regime (A): first we derive (in Lemma 3.10) a most probable
path inUs�,t� , and then we verify (in Theorem 3.11) whether this path is inS.
It turns out that we have to impose certain additional conditions to make the lower
bound of Corollary 3.5 tight. We proceed by two technical lemmas; the proof of
Lemma 3.9 is given in the Appendix.

LEMMA 3.9. Under Assumption 3.3,if c1 < cF
1 , then k(s�, t�) ≥ c1s

�.

LEMMA 3.10. If k(s, t) ≥ c1s, then a most probable path in Us,t is

f (r) = −E
(
A(r,0)|A(−t,0) = b + c2t,A(−s,0) = c1s

)
,(20)

with norm �(b + c2t, b + c2t − c1s).

PROOF. Using standard properties of conditional multivariate Normal random
variables, we see thatf (r) equals

−θ�
1(s, t)�(−r, t) − θ�

2(s, t)�(−r, s)
(21)

with
(

θ�
1(s, t)

θ�
2(s, t)

)
:= �(s, t)−1

(
b + c2t

c1s

)
.

We finish the proof by applying Lemma 3.4, and observing that
1
2‖f ‖2

R = ϒ(s, t) = �(b + c2t, b + c2t − c1s),

which is a matter of straightforward calculus.�

Before presenting our tightness result for the casec1 < cF
1 , we introduce some

new notation:

(i) For r1, r2 < 0,

ĒA(r1, r2) := E
(
A(r1, r2)|A(−t�,0) = b + c2t

�),
with Vār(·) and Cōv(·, ·) defined similarly. Also,v̄(r1) := VārA(r1,0) and
�̄(r1, r2) := Cōv(A(r1,0),A(r2,0)).

(ii) For r ∈ (−t�,0) we define the functions

m̄(r) := ĒA(r,0) + c1r√
v̄(r)

, m(r) := m̄(r)

m̄(−s�)
, ρ(r) := �̄(r,−s�)√

v̄(r)v̄(−s�)
.
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THEOREM 3.11. Suppose

m(−s) ≤ ρ(−s) for all s ∈ (0, t�).(22)

Under Assumption 3.3, if c1 < cF
1 , then

J = inf
t>t0

sup
s∈(0,t)

ϒ(s, t) = �(b + c2t
�, b + c2t

� − c1s
�),

and a most probable path is

f �(r) = −E
(
A(r,0)|A(−t�,0) = b + c2t

�,A(−s�,0) = c1s
�).

PROOF. As in Theorem 3.8, we have to show thatf �(·) is in S. This is done
as follows:

f �(−s) − f (−t�) = E
(
A(−t�,−s)|A(−t�,0) = b + c2t

�,A(−s�,0) = c1s
�)

= b + c2t
� − Ē

(
A(−s,0)|A(−s�,0) = c1s

�)
= b + c2t

� − ĒA(−s,0) − �̄(−s,−s�)

v̄(−s�)

(
c1s

� − ĒA(−s�,0)
)
.

Now it is easily seen that (22) implies thatf �(−s) − f (−t�) ≥ b + c2t
� − c1s for

all s ∈ (0, t�).
Due to Lemma 3.9,k(s�, t�) ≥ c1s

�. With Lemma 3.10, the expression forJ

follows. �

Although the condition (22), required in Theorem 3.11, is stated in terms of the
model parameters, as well as known statistics of the arrival process, it could be a
tedious task to verify it in a specific situation. The next lemma presents a somewhat
more transparentnecessary condition for (22).

The intuition behind the lemma is the following. Observe that bothρ(·) andm(·)
attain a maximum 1 atr = −s�. For ρ(·) this follows from the observation that
ρ(r) is a correlation coefficient; form(·) from Corollary 3.6 and Lemma 3.9.
Then a necessary condition for (22) is that ins� the curvem(·) is “more concave”
thanρ(·). The proof of the lemma is given in the Appendix.

LEMMA 3.12. A necessary condition for (22) is

m′′(−s�) ≤ ρ′′(−s�),(23)

or equivalently,

θ�
1(s�, t�)

(
v′′(t� − s�) − v′′(s�)

) + θ�
2(s�, t�)

(
v′′(0) − v′′(s�)

) ≥ 0.(24)

Condition (24) has an insightful interpretation, which will be given in the next
section.
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3.5. Properties of the input rate path. So far, we have analyzed pathsf of
the cumulative amount of traffic injected into the system. In this section we turn
our attention to the first derivative off , which can be interpreted as the path
of the input rate of the queueing system. As before, we have to consider two
regimes: (A)c1 ≥ cF

1 , and (B)c1 < cF
1 ; let Assumption 3.3 be in force. Consider

the pathsf � as identified in Theorems 3.8 and 3.11, and, more specifically, their
derivativeg�(·) := (f �)′(·). In case (A), witht� = tFc2

, andr ∈ (−t�,0),

g�(r) = b + c2t
�

2v(t�)

(
v′(r + t�) + v′(−r)

)
,

whereas in case (B) it turns out that, withr ∈ (−t�,−s�],

g�(r) = v′(r + t�) + v′(−r)

2
θ�

1(s�, t�) + −v′(−r − s�) + v′(−r)

2
θ�

2(s�, t�),

and withr ∈ [−s�,0),

g�(r) = v′(r + t�) + v′(−r)

2
θ�

1(s�, t�) + v′(r + s�) + v′(−r)

2
θ�

2(s�, t�).

If v′(0) = 0, we show below that the pathg�(·) has some nice properties. Notice
that the requirementv′(0) = 0 holds for many Gaussian processes. It is not valid
for standard Brownian motion (Bm), since thenv(t) = t , but the special structure
of Bm allows an explicit analysis, see Section 4.1. Fractional Brownian motion
(fBm), with v(t) = t2H , hasv′(0) = 0 only forH ∈ (1

2,1]; see Section 4.2.

PROPOSITION3.13. If c1 ≥ cF
1 and v′(0) = 0, then g�(0) = g�(−t�) = c2.

PROOF. Notice that, due to (1),t� satisfies

2c2
v(t�)

v′(t�)
= b + c2t

�.

The stated follows immediately fromv′(0) = 0. [As an aside, we mention that
g�(·) is symmetric in−t�/2.] �

Just as we exploited properties oft� in the proof of Proposition 3.13, we need
conditions fors� and t� in the regimec1 < cF

1 . These are derived in the next
lemma.

LEMMA 3.14. If c1 < cF
1 , then s� and t� satisfy the following equations:

2c2 = θ�
1(s�, t�)v′(t�) + θ�

2(s�, t�)
(
v′(t�) − v′(t� − s�)

)
,

2c1 = θ�
2(s�, t�)v′(s�) + θ1(s

�, t�)
(
v′(s�) + v′(t� − s�)

)
.
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PROOF. By Lemma 3.9,k(s�, t�) ≥ c1s
�. Observe thatϒ(s, t) = �(b +

c2t, b + c2t − c1s) can be rewritten as

θTx(s, t) − 1
2θT�(s, t)θ wherex(s, t) :=

(
b + c2t

c1s

)
;(25)

here we abbreviateθ ≡ (θ�
1(s, t), θ�

2(s, t))T. We write ∂t and ∂s for the partial
derivatives with respect tot ands, respectively. The optimals� andt� necessarily
satisfy the first-order conditions, obtained by differentiating (25) tot ands, and
equating them to 0. Direct calculations yield(

θ1c2
θ2c1

)
=

(
∂tθ1 ∂tθ2
∂sθ1 ∂sθ2

)(
�(s, t)θ − x(s, t)

) +
( 1

2θ2
1v′(t) + ∂t�(s, t)θ1θ2

1
2θ2

2v′(s) + ∂s�(s, t)θ1θ2

)
.

The second equality in (21) providesx(s, t) = �(s, t)θ . Now the stated follows
directly. �

PROPOSITION 3.15. If c1 < cF
1 and v′(0) = 0, then (i) g�(−t�) = c2,

and (ii) g�(−s�) = c1. Also, the necessary condition (24) is equivalent to
(g�)′(−s�) ≥ 0.

PROOF. Claims (i) and (ii) follow directly fromv′(0) = 0 and Lemma 3.14.
The last statement follows directly after some calculations.�

Proposition 3.15 can be interpreted as follows. The second queue starts a busy
period at time−t�. During this trajectory, the first queue starts to fill at time−s�

and is empty again at time 0, if the conditions of Theorem 3.11 apply. It is also
easily seen that the necessary condition (24) has the appealing interpretation that
(g�)′(−s�) ≥ 0: the input rate path should be increasing at time−s�.

3.6. Some remarks.

REMARK 3.16. In our lower bound we replace the intersection overs ∈ (0, t)

by the least likely event of the intersection. Under condition (24) the occurrence
of the least likely eventimplies all the other events in the intersection, with high
probability [in the sense thatf � ∈ Us�,t� implies thatf � ∈ Us,t� for all s ∈ (0, t�)].
The examples in Section 4 show that (22) is met for many “standard” Gaussian
models, but not always. If there is no tightness, a better lower bound can be
obtained by approximating the intersection by more than just one event:

J ≥ inf
t>t0

sup
s∈(0,t)m

inf
f ∈Us,t

I (f ),

wheres = (s1, . . . , sm), and the “multiple-constraints set”Us,t is defined by

Us,t := {f ∈ � :−f (−t) ≥ b + c2t;
f (−si) − f (−t) ≥ b + c2t − c1si, for i = 1, . . . ,m}.

Obviously, the lower bound becomes tighter when increasingm.
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REMARK 3.17. The approach we have followed in this section to analyze the
two-node tandem network can be easily applied to anm-node tandem network,
with strictly decreasing service rates, that is,c1 > · · · > cm—nodesi for which
ci ≤ ci+1 can be ignored, see [4, 14, 16]. Note that

∑k
i=1 Qi,n is equivalent to the

FIFO queue in which the sources feed into a buffer that is emptied at rateck . This
means that we have the characteristics of both

∑m−1
i=1 Qi,n and

∑m
i=1 Qi,n, which

enables the analysis ofQm,n, just as in the two-node tandem case.

4. Examples. One of the reasons for considering Gaussian input processes
is that they cover a broad range of correlation structures. Choosing the variance
function appropriately, we can make the input process exhibiting, for instance,
long-range dependent behavior. In this section we do the computations for various
variance functions. We also discuss in detail the condition in Theorem 3.11.

4.1. Standard Brownian motion. The variance function for Brownian motion
(Bm) is given byv(t) = t . Using (1), it is easily found thattFc2

= b/c2. According
to Corollary 3.7,cF

1 is the largest value ofc1 such that for alls ∈ (0, tFc2
),

s

tFc2

(
b + c2t

F
c2

) − c1s ≤ 0,

that is,cF
1 = 2c2. Hence, using Theorem 3.8, we have forc1 ≥ 2c2 thatJ = 2bc2,

with a constant input rateg�(r) = 2c2 for r ∈ (−tFc2
,0) andg�(r) = 0 elsewhere.

Now we turn to the case wherec1 < 2c2. The optimizing s� and t� are
determined by solving the first-order equations fors and t ; see Theorem 3.11.
We immediately obtain thatt� = b/(c1 − c2) and s� = 0. Obviously, for this
regime the service rate of the first queuedoes play a role. The most probable input
rate path readsg�(r) = c1, for r ∈ (−t�,0) andg�(r) = 0 elsewhere. It is easily
verified that the most probable pathf �(·) is in S, making the decay rate as found
in Theorem 3.11 tight. In other words,

J = �(b + c2t
�, b + c2t

� − c1s
�) = bc2

1

2(c1 − c2)
.

Observe that, interestingly, Bm apparently changes its rate instantaneously, as
reflected by the most likely input rate path. This is a consequence of the
independence of the increments.

4.2. Fractional Brownian motion. The variance function for fractional Brown-
ian motion (fBm) is given byv(t) = t2H , whereH is the so-called Hurst parameter.
ForH > 1

2 this corresponds to long-range dependent traffic. Now (1) gives

tFc2
= b

c2

H

1− H
.
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By Theorem 3.8,

J = 1

2

(
b

1− H

)2−2H (
c2 − µ

H

)2H

for all c1 ≥ cF
1 . Unfortunately, for generalH there does not exist a closed-form

expression forcF
1 . Now turn to the casec1 < cF

1 . Lemma 3.12 states that (24) is a
necessary condition for tightness to hold. Observe thatv′′(t) = (2H −1)2Ht2H−2

and hencev′′(0) = ∞. It is easily checked thatθ�
2(s�, t�) ≤ 0, which implies that

in this case (24) is not satisfied. Therefore the lower bound onJ is not tight.

4.3. M/G/∞ input. A versatile traffic model is the so-called M/G/∞ input
process. In this model sessions arrive according to a Poisson process with rateλ,
and stay in the system for some random durationD. During this period they
generate traffic at a unit rate. By choosing specific session-length distributionsD,
both short-range and long-range dependent inputs can be modeled. For more
results on queues with M/G/∞ input traffic processes, see, for example, [12, 30].
Below we approximate the M/G/∞ inputs by their “Gaussian counterpart,” that
is, Gaussian sources with the same mean and variance as the M/G/∞ input; this
procedure is extensively motivated in [1, 2].

Let the mean session-length be finite, sayδ, such that the mean input rate
equalsλδ. We denote byFD(·) the distribution function ofD and byFDr (·) the
distribution function of theresidual session-length, that is,FDr (x) = δ−1 ∫ x

0 (1 −
FD(y)) dy. We denote the corresponding densities byfD(·) andfDr (·).

Let B(t) denote the amount of traffic generated by a single M/G/∞ input in
an interval of lengtht . We now show how to compute the variancev(·) of B(t).
We will do this by first deriving the moment-generating function ofB(t). In fact
two types of sources contribute:

1. Sources that were already present at the start of the interval. The number of
these sources has a Poisson distribution with meanλδ. Their residual duration
has densityfDr (·); with probability (1 − FDr (t)) they transmit traffic during
the entire interval.

2. Sources that arrive during the interval. Their number has a Poisson(λt)
distribution. Given that the number of these arrivals isk ∈ N ∪ {0}, their
arrival epochs are i.i.d. random variables, uniformly over the interval (with
densityt−1). Their duration has densityfD(·).
Straightforward computations now yield (cf. [22])

logE
(
eθB(t)) = λδ

(
Mt(θ) − 1

) + λt
(
Nt(θ) − 1

)
with

Mt(θ) :=
∫ t

0
eθxfDr (x) dx + eθt (1− FDr (t)

)
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and

Nt(θ) :=
∫ t

0

∫ t

u

1

t
eθ(x−u)fD(x − u)dx du +

∫ t

0

1

t
eθ(t−u)(1− FD(t − u)

)
du.

Taking the second derivative of the log moment-generating function (with respect
to θ ) and then substituting 0 forθ , gives the variancev(t) of B(t):

λδ

(∫ t

0
x2fDr (x) dx + t2(1− FDr (t)

))

+ λ

(∫ t

0

∫ t

u
(x − u)2fD(x − u)dx du +

∫ t

0
(t − u)2(1− FD(t − u)

)
du

)
.

For fBm we could a priori rule out tightness of the lower bound due tov′′(0) = ∞;
see Lemma 3.12. For M/G/∞ inputs we show in the following lemma thatv′′(0)

is finite, even for heavy-tailedD. It implies that condition (22) needs to be checked
to verify tightness.

LEMMA 4.1. For δ < ∞ and finite fD(·), both (i) v′(0) = 0 and
(ii) v′′(0) < ∞.

PROOF. Using standard rules for differentiation of integrals,

v′(t) = λδ2t
(
1− FDr (t)

) + λ

∫ t

0
2(t − u)

(
1− FD(t − u)

)
du

and hencev′(0) = 0. Similarly,

v′′(t) = 2λδ
(
1− FDr (t) − tfDr (t)

)
+ 2λ

∫ t

0

(
1− FD(t − u) − (t − u)fD(t − u)

)
du

= 2λ

∫ ∞
t

(
1− FD(s)

)
ds.

Hence,v′′(0) = 2λδ < ∞. �

Now we consider some examples of session-length distributions. In all the
examples we takeb = 0.5, λ = 0.125,δ = 2 andc2 = 1.

Exponential. Using the above formula forv(·), we get

v(t) = 2λδ3
(

t

δ
− 1+ exp

(
− t

δ

))
.

Notice thatv(·) tends to a straight line for larget (corresponding to short-range
dependence). Numerical computations then givecF

1 = 1.195. Takingc1 = 1.1
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FIG. 3. M/exp/∞ input process.

results ins� = 4.756, t� = 5.169 andm(r), ρ(r) as given in Figure 3. The upper
panel of Figure 3 showsm(r) andρ(r) for r ∈ (−t�,0), whereas the lower panel
magnifies the graph around−s�. We see that indeedm(·) ≤ ρ(·) on the desired



TANDEM AND PRIORITY QUEUES 1215

FIG. 4. Input rate path for M/exp/∞ input process.

interval, so the decay rate is tight. A corresponding input rate path is given in
Figure 4, which satisfies the properties as indicated in Proposition 3.15.

Hyperexponential. In caseD has a hyperexponential distribution, with prob-
ability pi ∈ (0,1) it behaves as an exponential random variable with meanν−1

i ,
with i = 1,2 andp1 + p2 = 1. It is easily verified that

v(t) = 2λ
p1

ν3
1

(ν1t − 1+ e−ν1t ) + 2λ
p2

ν3
2

(ν2t − 1+ e−ν2t ),

with ν2 = p2/(δ−p1/ν1). As in the exponential case,v(·) is asymptotically linear.
For p1 = 0.25 andν1 = 5, we findcF

1 = 1.173, ands� = 4.700,t� = 5.210, when
usingc1 = 1.1. Also for this examplem(·) ≤ ρ(·), and hence there is tightness;
the graph looks similar to Figure 3. A corresponding input rate path is given in
Figure 5.

Pareto. If D has a Pareto distribution, thenP(D > t) = (1/(1 + t))α . The
variance function is given by

v(t) = 2λ

(3− α)(2− α)(1− α)

(
1− (t + 1)3−α + (3− α)t

)
,

with α = (1+ δ)/δ, excludingδ = 1 or 1
2. Notice that we haveα = 11

2, yielding
v(t) ∼ t

√
t , which corresponds to long-range dependent traffic. Numerical
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FIG. 5. Input rate path for M/H2/∞ input process.

calculations show thatcF
1 = 1.115, and forc1 = 1.1 we obtains� = 4.373,

t� = 5.432. Againm(·) is majorized byρ(·). An input rate path is given in Figure 6.

FIG. 6. Input rate path for M/Par/∞ input process.



TANDEM AND PRIORITY QUEUES 1217

We empirically found that there is not always tightness in the M/Par/∞ case. If
b is larger, for instanceb = 1, then (22) is not met.

5. Priority queues. In Section 3 we analyzed overflow in the second queue
of a tandem system. This analysis was enabled by the fact that we had explicit
knowledge of both thefirst queue and thetotal queue. In the present section we
use the same type of arguments to solve the (two-queue) priority system.

5.1. Analysis. We consider a priority system with a link of capacitync, fed
by traffic of two classes, each with its own queue. Traffic of class 1 does not
“see” class 2 at all, and consequently we know how thehigh-priority queueQh,n

behaves. Also, due to the work-conserving property of the system, thetotal queue
length Qh,n + Q�,n can be characterized. Now we are able, applying the same
arguments as for the tandem queue, to analyze the decay rate of the probability of
exceeding some buffer threshold in the low-priority queue. This similarity between
tandem and priority systems has been observed before; see, for instance, [13].

We let the system be fed byn i.i.d. high-priority (hp) sources, and an equal
number of i.i.d. low-priority (lp) sources; both classes are independent. We assume
that both hp and lp sources are Gaussian, and satisfy the requirements imposed
in Section 2. Define the means byµh and µ�, and the variance functions by
vh(·) and v�(·), respectively; alsoµ := µh + µ� (where µ < c) and v(·) :=
vh(·) + v�(·). We note that in this priority setting we cannot restrict ourselves to
centered processes. We denote the amount of traffic from theith hp source in(s, t],
with s < t , by Ah,i(s, t); we defineA�,n(s, t) analogously. Also�h(s, t),��(s, t)

andRh,R� are defined as before.

REMARK 5.1. Notice that this setting also covers the case that the number
of sources of both classes arenot equal. Assume, for instance, that there arenα

lp sources. Multiplyingµ� andv�(·) by α and applying the fact that the Normal
distribution is infinitely divisible, we arrive atn i.i.d. sources.

In the tandem situation we could, without loss of generality, center the Gaussian
sources. It can be checked easily that such a reduction property does not hold in
the priority setting, since there is no counterpart of Remark 2.6. Hence we cannot
assume without loss of generality thatµh = µ� = 0.

Analogously to Lemma 2.4, we obtain thatP(Q�,n > nb) equals

P

(
∃ t > 0 :∀ s > 0 :

1

n

n∑
i=1

Ah,i(−t,−s) + 1

n

n∑
i=1

A�,i(−t,0) > b + c(t − s)

)
.

Let Jp be the exponential decay rate ofP(Q�,n > nb); analogously to Theorem 3.1
it can be shown that this decay rate exists. Similarly to the tandem case, with
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f (·) ≡ (fh(·), f�(·)),
Ss,t

p := {f ∈ � × � :fh(−s) − fh(−t) − f�(−t) > b + c(t − s)},

Us,t
p :=

{
f ∈ � × � :

−fh(−t) − f�(−t) ≥ b + ct;
fh(−s) − fh(−t) − f�(−t) ≥ b + c(t − s)

}
,(26)

P(Q�,n > nb) = P

((
1

n

n∑
i=1

Ah,i(·); 1

n

n∑
i=1

A�,i(·)
)

∈ ⋃
t>0

⋂
s>0

Ss,t
p

)
.

THEOREM 5.2. The following lower bound applies:

Jp ≥ inf
t>0

sup
s>0

inf
f ∈Us,t

p

I (f ),(27)

with f̄h(t) := fh(t) − µht , f̄�(t) := f�(t) − µ�t and

I (f ) := 1
2‖f̄h‖2

Rh
+ 1

2‖f̄�‖2
R�

.

The infimum overf ∈ Us,t
p can be computed explicitly, as in Lemma 3.4. As the

analysis is analogous to the tandem case, but the expressions are more complicated,
we only sketch the procedure. Again there is a regime in which one of the two
constraints is redundant. Define

kp(s, t) := E
(
Ah(s)|Ah(t) + A�(t) = b + ct

)
.

Using the convexity of the large-deviations rate function, it can be shown that, if

E
(
Ah(t − s) + A�(t)|Ah(t) + A�(t) = b + ct

)
> b + c(t − s),

only the first constraint in (26) is tightly met; it is equivalent to require that
kp(s, t) < cs. [If kp(s, t) ≥ cs, either both constraints in (26) are met with equality,
or only the second constraint is met with equality; exact conditions for these two
cases are easy to derive, but these are not relevant in this discussion.] As before,
underkp(s, t) < cs, we obtain the decay rate

inf
f ∈Us,t

p

I (f ) = (b + (c − µ)t)2

2v(t)
,(28)

compare the FIFO queue with link ratenc; in the other cases the expressions are
somewhat more involved. Denote bytF the value oft > 0 that minimizes the
right-hand side of (28).

Similarly to the tandem case, there is a regime (i.e., a set of values of the link
ratec) in whichJp coincides with the decay rate of an FIFO queue. In this regime,
which we call regime (A), conditional on a large value of the total queue length,
it is likely that the hp queue is empty, such that all traffic that is still in the system
is in the lp queue. Hence, for allc in

{c|∀ s > 0 :kp(s, tF ) < cs}(29)
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we conclude

Jp = (b + (c − µ)tF )2

2v(tF )
.

If c is not in the set (29), we can use the methodology of Section 3 to find a
condition under which the lower bound of Theorem 5.2 is tight; we call this
regime (B).

REMARK 5.3. In the tandem case, we found that the FIFO result holds for
c1 ≥ cF

1 , whereas it does not hold forc1 < cF
1 ; the threshold valuecF

1 was found
explicitly in Section 3.3. In the priority setting there is not such a clear dichotomy.
Consider, for instance, the situation in which both types of sources correspond to
Brownian motions;vh(t) ≡ λht , v�(t) ≡ λ�t andλ := λh + λ�. Define

� :=
√

µ2
� + λ�

λh

(c − µh)2.

Then straightforward calculus yields that for(λh − λ�)c ≤ λh(µh + 2µ�) − λ�µh,
regime (A) applies (i.e., the FIFO result holds):

Jp = 2b(c − µ)

λ
,

whereas otherwise we are in regime (B):

Jp = b(� − µ�)

λ�

;
this is shown by verifying that the lower bound of Theorem 5.2 is tight for the
specific case of Brownian motion input. Usingµh + µ� < c, it can be verified
easily that this implies that forλh ≤ λ� the FIFO solution applies, whereas for
λh > λ� only for

c ≤ λh(µh + 2µ�) − λ�µh

λh − λ�

,

the FIFO solution applies.

5.2. Discussion. Large deviations for priority queues have been studied in
several papers. We mention here the work by Mannersalo and Norros [23] and
Wischik [33]. We briefly review their results, and compare them with our analysis.
Our lower bound then reads

J (I)
p := inf

t>0
sup
s>0

ϒp(s, t) with ϒp(s, t) := inf
f ∈Us,t

p

I (f ).

Just as we did, Mannersalo and Norros [23] identify two cases. They get the same
solution for our regime (A), that is, the situation in which, given a long total queue
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length, the hp queue is relatively short; see also Berger and Whitt’s [6] empty
buffer approximation.

In regime (B) the hp queue tends to be large, given that the total queue is long.
To prevent this from happening, [23] proposes a heuristic that minimizesI (f )

over

{f ∈ � × � :∃ t > 0 :−fh(−t) − f�(−t) ≥ b + ct;−fh(−t) ≤ ct}.(30)

Because regime (B) applies, the optimum paths in the set (30) are such that the
constraints onf are tightly met; consequently (30) is a subset ofUt,t

p . Hence the

resulting decay rate, which we denote byJ
(II)
p , yields a lower bound, but our lower

bound will be closer to the real decay rate:

J (II)
p := inf

t>0
ϒp(t, t) ≤ inf

t>0
sup
s>0

ϒp(s, t) = J (I)
p .

REMARK 5.4. In the simulation experiments performed in [23], the lower
boundJ

(II)
p (b) is usually close to the exact value. Our numerical experiments (cf.

the examples on the tandem queue in Section 4) show that the hp buffer usually
starts to fill shortly after the total queue starts its busy period. This means that in
many cases the error made by takings = t is relatively small. It explains why the
heuristic based on set (30) performs well.

Wischik [33] focuses on discrete time, and allows more general traffic than just
Gaussian sources. Translated into continuous time, in regime (B), his lower bound
on the decay rateJ (III )

p (Theorem 14) minimizesI (f ) over

{f ∈ � × � :∃ t > 0 :∃ s > 0 :−fh(−t) − f�(−t) ≥ b + ct;
(31)

−fh(−s) ≤ cs};
again a straightforward comparison gives that our lower boundJ

(I)
p is closer to the

actual decay rate:

J (III )
p := inf

t>0
inf
s>0

ϒp(s, t) ≤ inf
t>0

sup
s>0

ϒp(s, t) = J (I)
p .

REMARK 5.5. Recent work by Mannersalo and Norros [24] suggests that
a similar approach could work for a queue operating under the Generalized
Processor Sharing (GPS) scheduling discipline. For two classes of traffic (both
with n sources), sharing a resource with link capacitync and two buffers, the
model is parametrized by theweights φ1, φ2 ∈ [0,1], summing to 1. If both queues
are nonempty, both classes receive theirguaranteed service rates nφ1c andnφ2c,
respectively. If one class does not use all its bandwidth, it can be taken over by the
other class in a work-conserving manner. For more details on the system mechanics
for GPS, see, for instance, [28, 29].
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Consider the probability that the first queue exceeds levelnb, under the
assumption that the mean input rates of both classes are smaller than their
respective guaranteed service rates. Notice that the backlog of type 2 does not
exceed that of an FIFO queue with link ratenφ2c. This suggests that, in self-
evident notation, the decay rate is well approximated by the infimum ofI (f ) over{

f ∈ � × � :∃ t > 0 :∀ s > 0 :−f (1)(−t) − f (2)(−t) − f (2)(−s)

≥ b + ct − cφ2s
}
.

Reasoning heuristically (see also [24]), it is not likely that (i) queue 2 is nonempty
at the start of the busy period preceding overflow of queue 1, (ii) there is traffic
left in queue 2 at the epoch queue 1 reaches overflow. This would lead to a
minimization over{

f ∈ � × � :∃ t > 0 :∀ s > 0 :−f (1)(−t) − f (2)(−t) ≥ b + ct;
−f (2)(−s) ≤ cφ2s

}
,

compare the setsUs,t (as identified for the tandem system) andUs,t
p (priority

system). A lower bound for this decay rate is again found by taking the infimum
over t > 0 and the supremum overs > 0, as before.

APPENDIX

PROOF OF THEOREM 3.1. To prove Theorem 3.1, we first present an
auxiliary result (cf. [27], Proposition 4.2). The setS is open; we now determine its
closure. Define

St := {f ∈ � :∀ s ∈ (0, t) :f (−s) − f (−t) > b + c2t − c1s},
Ss,t := {f ∈ � :f (−s) − f (−t) > b + c2t − c1s}.

LEMMA A.1. The closures of St and S are characterized as follows:

St = {f ∈ � :∀ s ∈ (0, t) :f (−s) − f (−t) ≥ b + c2t − c1s},(32)

S = ⋃
t≥t0

St .(33)

PROOF. We first prove (32). “⊆” is obvious:

St = ⋂
s∈(0,t)

Ss,t ⊆ ⋂
s∈(0,t)

Ss,t .

Now consider “⊇.” Let f be in the right-hand side of (32). Define, withy+ :=
max{0, y} andy− := min{0, y},

fn(u) := f (u) + 1

n
(u− + t)+.
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It is easy to see that (i)‖f − fn‖� → 0, and (ii)fn ∈ St ; here (ii) follows from

fn(−s) − fn(−t) = f (−s) − f (−t) + 1

n
(t − s) > b + c2t − c1s

for s ∈ (0, t). This proves (32).
Next we show (33). Again we establish two inclusions. “⊇” is done by picking

an arbitraryf from the right-hand side:

(i) Suppose there is at > t0 such thatf ∈ St ; then we can reuse the above
argument: take anf from the right-hand side of (33), and show that there is a
sequencefn in S such that‖f − fn‖� → 0. This is exactly as before.

(ii) Supposef is only in the union in the right-hand side of (33) fort = t0;
then we have to show thatf can be approximated by anfn ∈ St0+δn , with
‖f − fn‖� → 0, andδn := 1/n. This is done by the following sequence:

fn(t) =



f (t), for t > −t0,

c1(t + t0) + f (−t0), for t ∈ [−t0 − δn,−t0],
−c1δn + f (t) + f (−t0) − f (−t0 − δn), for t < −t0 − δn.

Now fn ∈ St0+δn , as can be seen as follows. Fors ∈ (0, t0), using f ∈ St0 in
conjunction with (32),

fn(−s) − fn(−t0 − δn) = f (−s) + c1δn − f (−t0)

≥ b + c2t0 − c1s + c1δn > b + c2(t0 + δn) − c1s,

due toc1 > c2. For s ∈ [t0, t0 + δn), similarly,

fn(−s) − fn(−t0 − δn) = −c1s + c1t0 + c1δn

= −c1s + b + c2t0 + c1δn > b + c2(t0 + δn) − c1s.

Now concentrate on “⊆”; takef ∈ S:

(i) Hence there is a sequencefn ∈ S such that‖f − fn‖� → 0. Because
fn ∈ S, there is a sequence of epochstn (all of them strictly larger thant0) such
thatfn ∈ Stn .

(ii) tn is bounded. This can be seen as follows. Clearly, due tofn ∈ Stn ,

fn(−s) − fn(−tn) > b + c2tn − c1s

for all s ∈ (0, tn). Hence also−fn(−tn) ≥ b + c2tn (let s ↓ 0), and consequently

‖f − fn‖� ≥ f (−tn) − fn(−tn)

1+ tn
≥ b + c2tn

1+ tn
+ f (−tn)

1+ tn
.

Supposetn were not bounded; lettingn → ∞ would lead to a contradiction: 0≥ c2
[use thatf (u)/(1+ u) → 0 for u → ∞].
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(iii) Hence we can pick a subsequencetnk
such thattnk

goes to some finite limit
t∞ ≥ t0 for k → ∞. Now f ∈ St∞ , since, for alls ∈ (0, t∞) and k sufficiently
large,

fnk
(−s) − fnk

(−tnk
) ≥ b + c2tnk

− c1s.

This proves the lemma.�

We now prove the theorem. Clearly, from Schilder’s result,

inf
f ∈S

I (f ) ≤ J ≤ inf
f ∈S

I (f ).

To show the stated, we prove that the infima overS andS coincide.
Let T be defined by (12), and letT t and T s,t be defined analogously to

St andSs,t ; their closures are determined as in Lemma A.1. It is evident that the
infima overS andT coincide. As mentioned above, our aim is to prove that the
infima overS andS match, but it turns out to be more convenient to show that
the infima overT andT match.

This is done by choosingf from T ∩ R arbitrarily, and showing that we can
approximate it by a path inT . Clearly f ∈ T t� for somet� ≥ t0. Let ζ be an
arbitrary path inR that is strictly positive in(0, t�], and definefn := f + ζ/n.
Then there is atn > t� such thatfn ∈ T tn . This can be seen as follows.

(i) First observe thatf (s) ≥ b + c2t
� − c1(t

� − s) for all s in the closed
interval[0, t�]. Hence for alls ∈ (0, t�], andn ∈ N,

fn(s) = f (s) + 1

n
ζ(s) > b + c2t

� − c1(t
� − s).

(ii) As this inequality also holds fors = t�, we conclude that there is atn > t�

with fn(s) > b+c2tn −c1(tn − s) for all s ∈ (0, tn), or, equivalently, thatfn ∈ T tn .

Now notice that, forn → ∞,

‖fn‖2
R =

∥∥∥∥f + 1

n
ζ

∥∥∥∥
2

R

→ ‖f ‖2
R,

which proves Theorem 3.1.�

PROOF OFLEMMA 3.9. The lemma is proven in three steps. Notice that, as
we are in regime (B), it holds thatc1 < cF

1 = K(tFc2
), with

K(t) := sup
s∈(0,t)

k(s, t)

s
.(34)

(i) In [9], Lemma 3.1, it is shown that, under (5) and Assumption 3.3,Lc2(t) is
decreasing fort < tFc2

, and increasing fort > tFc2
.
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(ii) We now prove by contradiction thatK(t�) ≥ c1. SupposeK(t�) < c1.
Then, by (34), for alls ∈ (0, t�) it holds thatk(s, t�) < c1s, and hence also
sups∈(0,t�) L(s|t�) = 0; see (17). Now consider the decomposition of Corollary 3.6:

sup
s∈(0,t)

ϒ(s, t) = Lc2(t) + sup
s∈(0,t)

L(s|t);(35)

t� is minimizer of this expression. Becausek(s, t) is continuous, also for theclosed
interval [0, t�] it holds thatk(s, t�) < c1s. Hence it is possible to decreaset� such
that the first term in the right-hand side of (35) decreases (as we approachtFc2
from above, see Step 1), while the second remains 0. Hence the sum of both terms
decreases, implying thatt� cannot be optimal. So it cannot be that both

K(t�) < c1 and t� > tFc2
.

Similarly K(t�) < c1 rules out t� < tFc2
. HenceK(t�) < c1 implies t� = tFc2

.
However,K(tFc2

) > c1. Contradiction.
(iii) Notice that K(t�) ≥ c1, in conjunction with (17), directly implies that

k(s�, t�) ≥ c1s
�. This proves the lemma.�

PROOF OF LEMMA 3.12. First we show that (23) holds. As noted earlier,
bothm(·) andρ(·) have a maximum 1 at−s�. This means that (23) is necessary to
enforcem(r) ≤ ρ(r) for r in a neighborhood of−s�.

Next we show that (23) is equivalent to (24). First multiply bothm(·) andρ(·)
by h(·), where

h(r) :=
√

v̄(r)

v̄(−s�)

(
ĒA(−s�,0) − c1s

�).
Since h(r) : (−t�,0) → R+, this yields the requirementπ(r) ≤ n(r) for all
r ∈ (−t�,0), with

π(r) := ĒA(r,0) + c1r and n(r) := �̄(r,−s�)

v̄(−s�)

(
ĒA(−s�,0) − c1s

�).
Recall thatm(·) andρ(·) have the same function value and derivative at−s�. It is
easy to derive that this implies that(m ·h)(−s�) = (ρ ·h)(−s�) and(m ·h)′(−s�) =
(ρ · h)′(−s�). Therefore, the necessary condition becomesπ ′′(−s�) ≤ n′′(−s�).

Using standard formulas for conditional means of multivariate Normal random
variables,

ĒA(r,0) = +�(−r, t�)

v(t�)
(b + c2t

�),

leading to

d2

dr2

(
ĒA(r,0) + c1r

)∣∣∣∣
r=−s�

= b + c2t
�

2v(t�)

(
v′′(s�) − v′′(t� − s�)

)
.
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Assumingr ≤ −s�,

�̄(r,−s�) = v(−r) + v(s�) − v(−r − s�)

2
− �(−r, t�)�(s�, t�)

v(t�)
,

such that

d2

dr2 �̄(r,−s�)

∣∣∣∣
r=−s�

= v′′(s�) − v′′(0)

2
− v′′(s�) − v′′(t� − s�)

2

v(s�, t�)

v(t�)
.

It can be checked that the same result holds when the derivative is calculated
for r > −s�. Now it is a straightforward but tedious computation to prove that
this implies thatπ ′′(−s�) ≤ n′′(−s�) is equivalent to (24). �
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