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ASYMPTOTIC BEHAVIOR OF A METAPOPULATION MODEL

BY A. D. BARBOUR! AND A. PUGLIESE?

Universitat Zurich and Universita di Trento

We study the behavior of an infinite system of ordinary differential
equations modeling the dynamics of a metapopulation, a set of (discrete)
populations subject to local catastrophes and connected via migration under
a mean field rule; the local population dynamics follow a generalized
logistic law. We find a threshold below which all the solutions tend to total
extinction of the metapopulation, which is then the only equilibrium; above
the threshold, there exists a unique equilibrium with positive population,
which, under an additional assumption, is globally attractive. The proofs
employ tools from the theories of Markov processes and of dynamical
systems.

1. Introduction. The simplest models of population growth and regulation
are formulated in terms of a more or less isolated population in a single habitat.
However, the importance of the spatial dimension has been recognized in a
number of ecological processes, resulting in one of the most active topics in
theoretical ecology: see, for instance, the two recent collections [26] and [8] and
the review article by Neuhauser [22]. These ideas have stimulated the development
of spatially structured stochastic populations models, as in [23] and [10], whose
mathematical analysis is generally very hard.

A very simple model recognizing the spatial dimension of ecological processes
was introduced by Levins [19] in 1969. He envisaged a metapopulation consisting
of many distinct habitat patches, within each of which the population behaves
much as in the single population models, but which are linked to one another by
migration. In his highly simplified model, patches are designated as occupied or
not, and all occupied patches are taken to be equivalent, irrespective of the number
of individuals present. With these simplifications, he obtained a single differential
equation,

d
(1.1) d—f =cLp(l—p)—vLp,
describing the behavior of the system: hepe= p(¢) represents the proportion

of occupied patchesy;, is the extinction rate and; is the colonization rate per
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occupied patch. Hence, an equilibrium exists only;if> vz, and, in that case,

the proportion of empty patches at equilibriumiigs/c;. His ideas have been
widely used, both in theoretical papers and in wildlife management problems (see,
e.g., [159]).

Levins’ metapopulation model has two major weaknesses: on the one hand,
it is based on a mean field assumption (the colonization rate in a patch depends
only on the overall proportion of patches occupied); on the other hand, all patches
are assumed to be equal and described simply as empty or occupied, disregarding
local population dynamics. Addressing the first issue requires the consideration of
spatial stochastic processes as mentioned above. For the second, some authors have
generalized Levins’ model by taking into account the numbers of individuals in the
occupied patches, giving rise to the so-called structured metapopulation models
[12]: they consist either of a finite [21] or infinite number of ordinary differential
equations [5], or of a partial differential equation [12, 13], where the structuring
variable x represents the number of individuals per patch. However, very few
analytical results are available for models of complexity comparable to ours, and
the behavior of these models has mainly been explored through simulation.

In this paper we investigate the deterministic approximation to the metapopula-
tion model discussed in [1]. This is a stochastic mean field metapopulation model,
in which the number of individuals in a patch is governed by a birth, death and
catastrophe process, with the same transition rates in each patch, together with
migration between the patches with a uniform transition yaper individual, des-
tinations being chosen uniformly at random among all patches. This last, mean
field assumption is probably the least biologically realistic, but has been used in
several papers [15], and may make very good sense for metapopulations of par-
asites in which the patches represent host animals. At all events, it makes the
mathematical treatment substantially simpler.

As is shown in [1], when the number of patches becomes very large, one can
approximate the stochastic model with the following infinite system of differential
equations:

pi()= _|:(bi +di+y)i+v+py ), jpj(t)]pi(t)
j=0

+ |:bi—1(i —D+py ) jp; (t):|Pi—1(t)
(1.2) /=0
+ [di+1+ y1G + D piya(t), i>1,

po(t) = v(Z pjt) — po(t)) + (d1+y)p1(t) — py ( Y ip (t)>po(t),
j=0

j=0

p0) =p°,
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in which p; () denotes the proportion of patches that are occupiedimjividuals,
i > 0. The parameters; andd; represent the per capita birth and death rates
in a patch occupied by individuals, the catastrophe rateiisn each patch, the
migration rate i3/ per individual, ang is the probability of a migrant successfully
reaching another patch. Note that this model is very similar to those studied by
Metz and Gyllenberg [21] as structured metapopulation models with finite patch
size, and by Casagrandi and Gatto [5].

We also assume the following:

(H1) ib; is concave and nondecreasing; is convex and nondecreasing.

It can easily be seen that (H1) implies thatis nonincreasing and; non-
decreasing. Hence, there extgt = lim;_, o b; anddy, = lim;_, o d;, for which
we further assume that

(H2) boo <doo +y(1—p) +v.

Generally, in logistic demography, the existence of a carrying capacity is assumed:
that is, there is a valu& such thatbxy = dg, which automatically implies that

bso < dwo- (H2) is weaker than that, and is, in fact, the natural condition: if
boo > dx + y(1 — p) + v, there can be no nontrivial equilibrium, as is proved

in Proposition 3.4.

The assumptions of concavity @b; and convexity ofid; are satisfied in
many examples, but not in all; for instance, a Ricker-type birth funchios:
boexp{—pBi} is not allowed. However, they are mathematically convenient assump-
tions, if the uniqueness of any nontrivial equilibrium solution to equations (1.2) is
to be guaranteed, and we make use of them in several steps of our proofs; they
could certainly be relaxed, but it is not easy to see what general conditions would
better replace them.

The existence and unigueness of the solutions to (1.2) are established in [1],
and a summary of those of her results relevant to this paper is given at the end
of the section. In this paper we consider the possible equilibrid (1.2), using
stochastic coupling arguments that are developed in Section 2. There is always
the “extinction” equilibrium, withw(0) = 1 andn (i) = 0, i > 1; this is also the
eventual limit of all finite patch stochastic systems, and makes the theory of quasi-
equilibria of essential importance for such models. In addition, if a threshold
condition is satisfied, we show in Section 3 that there is a unique nonnegative
equilibrium havingr (0) < 1 (Theorem 3.1). This distribution is shown to be the
equilibrium distribution for the single patch dynamics, in which immigration from
outside is fixed at a constant “effective” rate, determined by the nonzero solution
of a fixed point equation (3.3). In Theorem 4.5 of Section 4, we pglobal
convergence to this equilibrium when the threshold condition is satisfied, under
the additional assumption thdt, < +oo. The proof of convergence requires a
lemma (Lemma 4.2) which is of some difficulty, because the system (1.2) is infinite
dimensional. Its proof is the content of Section 5.
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The results of our paper give a rather complete description of this infinite
system (1.2) of ordinary differential equations. Similar problems have recently
been studied in other contexts, such as coagulation—fragmentation equations
[2, 18], although for systems of equations of rather different structure. It is possible
that our methods could be useful in other contexts as well.

We conclude the introduction by outlining the results that we need from [1].
First, note that the system (1.2) can be written in a more compact way as

pi=—0i + 1) pi + Ai—1pi—1+ Hit1Pi+1
(1.3) 00 00
+pV<Zij>(Pi1 —pi)+ V<8iOZPj - p,-),
j=0 j=0
where
p-1(t):=0 for all 7, no:=0 and Aig:=0;
Ai=bii and u;:=(d; +y)i foralli > 1.
It is proved in [1] that (1.3) is a well-posed problem in the spacealefined by
mt = {x = (xo,xl,...)T EEl, Z Jlxjl < oo}
J
equipped with the norm

o0
I [lm = lxol + Y ilxil.

i=0
More precisely, ifQ is the infinite matrix
bii, ifi+1=j>0,
—((bi + d +y))i +v),  ifi=,
Q)ij=qij = di + )i, ifi—1=j>0,
v(1—3i0) + (d1+ y)di1, if j =0,
0, otherwise

andg; = —q,;, we define the operatot by

D(A) = {u em: ) qlugl < oo};

(1.4) g

Au=uQ;  (Aw)i =) qriu.
k

Then it turns out that the closureof A is the generator of @%-semigroup omn!
(see also [24]).
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We then define the map : m* — m?! by
(1.5) F(p) =PV(ZJ'PJ')(T—1(£) —1(p)),
j=0

where(T-1(p)); := pi—1 and/ is the identity.F" is Lipschitz and, in this notation,
the system (1.3) can be written as

P'=Ap+F(p)
p(0) = p°.

The following theorem is proved in [1].

(1.6)

THEOREMA. Foreveryp® > 0e D(A) and anyT > 0, there exists a unique
p(t) = 0e C([0,T]; D(A)) N CL(0, T]; mY) satisfying(1.6). Clearly, p(¢) will
also satisfy(1.3) componentwise N

Moreoverif p° e C={pem!:p=0, ¥Xqp,; =1}, thenp(t)  C for all
t>0.

Since the p;(¢) represent the frequencies of sites withindividuals, the
conditionp(r) € C is quite natural, and most of the following results relate only to
that case.

2. Immigration, birth, death and catastrophe processes. The analysis of
the differential equations system (1.2) is accomplished indirectly, using the
properties of a number of associated birth and death processes. We make several
comparisons based on couplings of such processes, which exploit the fact that
birth and death processes cannot cross without meeting. A good general reference
is [20]; in particular, see pages 3 and 4. We begin with a simple lemma.

LEMMA 2.1. Fix a positive integer/, and letV = (V;, t > 0) be the birth
and death process on the integgrs: J with transition rates
j—Jj+1 atrate j¢, j=>J;

(2.2)
j—j—1 atrate ju, j>=J+1,

for someg, u > 0. Then if E™ denotes expectation conditional &% = m, for
any j’ > J, we have the following

1. If ¢ < p, thenEY (V) < (j'ie/(u — $))>.
2. 1f ¢ >, thenEU{V2) < (2j'¢e =" /(¢ — )},
3. If ¢ = pu, then for anye > 0, EV){V2} < (2 (¢ + £)e®! /)2
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PROOF. Itis enough to conduct the proof fgf = J: for ;' > J, theV-process
is stochastically smaller thanla-process defined withi replaced by;’.

Suppose first thap < w, in which caseV is positive recurrent. Observe that
a monotone coupling of two realizations Btprocesses, one with initial stafe
and the other starting with its equilibrium distributian shows that2")(v?) <
IE”(VOZ) for all . Now 7 satisfies the detailed balance equation

Jjorm(j) = +Dpur(j+1), izJ;
hence,jm(j) < J(¢/w)'~ forall j > J, from which it follows that
EV (VA <E" (V) <Y jlo/w'™’
ji=J
=Jou(n—¢) 2+ Pun—d)h

this proves part 1.
If ¢ > u, we have

(2.2) EV; =EViI[t1 <t]) + E(ViI[11 > t]),
where

rlzinf{t>0; Vi=1J, OmaszzJJrl < 00.

=s=t

Note thatP)[r; < oo] = /¢ and thatEY) (V2I[r1 > t]) < EY)(V?), where
V is a birth and death process @n with rates as in (2.1), but now for ajl > 0;
this latter bound implies that

ED (VA1 > 1]) < (EVV,}? 4 var) ¥,
(2.3) < {Je@ 12 4 varV v,
< J2EOTIN 4 JEOTINA + ) /(¢ — ) — 1.
Also, again by a monotone coupling of tWwo-processes,
EV (V2 < 1) <PV < BV (V) = (/9B (V),
and hence, from (2.2) and (2.3),
EV(VP) <o/ (¢ — w)} J2e2P7N2( + 1) /(¢ — )},
proving part 2, and also, once more by stochastic comparison, pari 3.
Now let X := (X, t > 0) be an immigration, birth and death process with per
capita birth and death ratgl ands;, respectively,/ > 1, and with immigration
rate . Suppose that the functiotg, is concave and increasing > 0, and that

né, is convex and increasing. Then it follows, in particular, thatis decreasing
ands, is increasing im > 1; we define

(2.4) c:= nll_)moo By — nll_)moo Sn.
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THEOREMZ2.2. LetX andc be as aboveThen
1. There exist constants; andC1(¢), ¢ > 0, such that

.2 .
E(j)(XtZ)S C1(1+ j9), if c <O,
Ci(e)e2cto (14 j2),  foranye >0, if ¢ > 0.
2. There exist constants; and C2(¢), ¢ > 0, such thatfor all m > 0,
Co, if 0,
0<EmHDy, _Emy, <] 2 €= '
Co(g)elcta)r foranye > 0, if ¢ > 0.

3. In either casefor all m > 0,
E(m+1)X[ — E(m)Xt > ]:E(m+2)Xt — E(m+l)Xt

PROOF Let ,8;. =B + j~iA for j > 1. Then note that, for any positive
integer J, a simple monotone coupling of two birth and death processes shows
that, if Xo < J, thenX is stochastically smaller than a birth and death prodéss
as in Lemma 2.1, having = g/, and u = §; and starting withVp = J, since
Vo > Xo and the sequenc@ ands; are nonincreasing and nondecreasing,in
respectively. lfic < 0, choose/ so thatg’, < §,, and use Lemma 2.1 part 1 to give

EV(x2) <EV(VA) <{J8;/@s — BDY. j <.
(25) EV(X2) <ED (VA < {jss /(s - BPDY2, > J.
If ¢ >0, choose/ so that
§;<B)<8;+c+e,

if this can be done, and use Lemma 2.1 part 2 as above to give
(26)  EVX2) <EV(V?) <{2maxJ, j1Be“T" /(8] — s}

The only remaining case occurs whee= 0 and the sequencgs ands; are both
constant for allj > J for someJ, in which case Lemma 2.1 part 2 or 3 can be
applied directly. Combining this observation with (2.5) and (2.6), part 1 is proved.

We now turn to part 2. LetY, W) := ((Y;, Wy), t > 0) be a two-dimensional
pure jump Markov process with transition rates given by

(i, j)— @G+1,j) atrate iB;+ A,

i, j)— (G—1,j) atrate ig;,
2.7)

(i,j)—> G, j+1) atrate @+ j)Bi+;—ibi,

(i, j)— G j—1 atrate @+ j)i+;j—id;,
for all i, j > 0. All the transition rates are nonnegative, because hgtrandns,,
are increasing. Then the proces$eandY + W are also Markovian, both having
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the same generator as the immigration, birth and death prétefhus, we can
couple realizationst! and X2 of X with X3 = m and X3 = m + 1 by realizing
(Y, W) with Yo=m andWp = 1, and settingk! = ¥ andX2=Y + W. Thenitis
immediate thak? — X = W, > 0 for all #; the next step is to bourl@W, .

However, just as before, a simple monotone coupling shows Wats
stochastically smaller than a birth and death prodéss in Lemma 2.1, having
¢ = p,, andu =8, and starting withVo = J, sinceVp > Wp and, for anyi > 0,

(i + ) Bivj —iBi < jBj < jB], j=J,
and
i+ j)8iyj—18; > jd; > jdy, j=>J+1,

by the concavity ofz8, and the convexity ofé,. Thus, in particularEW, <
E)V;, and the bounds dA/)(V,?) obtained in part 1 can be invoked, completing
the proof of part 2.

For part 3, we extendy, W) to a four-dimensional pure jump Markov process
Yy, Wy, Uy, V), t > 0) with transition rates

n—>n+e? atrate B+,

n—n—e?

atrate is;,
n—n+e? atrate (4 j)Bi+;—ifi,
n—>n—e? atrate (4 j)8i; —idi,

n—>n+¢e® atrate (i +k)Biwk —iBi,

n—>n—e® atrate (i +k)8ix —id;,
n—>n+e?® atrate i+ j+0DBitj+— G+ )Bivj,
n—>n—e? atrate (4 j+D8ij— G+ )i+,

whenn = (i, j, k, 1) is such thak =£ [, the last four transitions being replaced by

non+e®+e® atrate (4 j+k)Bivjrk — G+ )DBit)s

3 _e® atrate (i +k)Siqx —id:,

n—n— e
no>n+e® atrate (i 4+k)Bix —ifi— (i +j+k)Bivj+ G+ )bt

n—n—e? atrate (4 j+k)8iyjik — (i + j)8it; — G +k)8ipx + i,

when n = (i, j, k, k), all transition rates being nonnegative because of the
assumptions omnb, andnd,; here,e"™ denotes thenth coordinate vector. The
four processe¥, Y + W, Y 4+ U andY + W + V are Markov, and each has the
same generator as the immigration, birth and death prae3$us, realizations
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X1, x2, X3 and X* of X with X} =m, X2=X3=m +1 andX$=m + 2 can
be obtained fromY, W, U, V) by settingX1 =Y, X2=Y 4+ U, X3=Y + W
andX% =Y + W + V and taking¥o = m, Wo = Up = Vo= 1. Thus E"+D X, —
E"X, =EU, andE™*+2 X, —E™tD x, = EV,. Initially, Up = Vo = 1. Thereafter,
bothU andV make only unit jumps, and at any time at whighandV are equal,
either they can jump together, & can increase by 1 oV can decrease by 1.
Thus, U is always greater than or equal ¥ and, for each > 0, U, > V; with
positive probability. Hence, for atl > 0,

E" VX, - E"X, =EU, > EV, =E"+2 X, - E"+Dx,,

proving part 3. [

The theorem above is used in the study of our main object of interest,
a family of immigration, birth, death and catastrophe proceg$€s indexed by
an immigration parameter. The pure jump Markov process® has transition
rates

(2.8) j—j—1 atrate g j_1:=j(d;+y),
j—0 atrate gjo:=v,

and nb, is assumed to be increasing and concaug, to be increasing and
convex. The procesa) starting with any initial distributiony can be constructed

as follows from a sequence @fdependentrealizationsX©@, x® .. of an
X-process with parametefs = b;, 1 = pys ands; = d; + v, and withX > ~ v

and X(()”) =0, n > 1. Let the times(T,, n > 1) of the catastrophes be the
partial sums of independent negative exponentially distributed random variables
(E,, n > 1) with mean Jv, which are also independent ¢k, n > 0). Set

N(@) :=min{n > 0:T, <t}, whereTp := 0; then define

(2.9) 7 = XN (1 — Ty ).

A pair of Z®)-processeg ¢V andZ -2 with different initial states > / can then
always be coupled by using the same sequenceé-pfocessesX ™, n > 1) and
taking XOY =y + w, Xx©2 =y, where(Y, W) is as in (2.7) and ha¥ = [

andWg = k — [. With this construction, it is clear thﬂ“ D > ZES’Z) for all ¢, that
P[z®Y > 289 < ¢~ and that

(2.10) 0<E(ZzEY —z8?)=eVEW, =V ([EXX, —EVX,).
Defining
(2.11) = lim b, — I|m dy

n*>00
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and assuming that< v, it thus follows from Theorem 2.2 part 2 that, for- [,
0< E(k) Zt(s) _ E(l) ZI(S)
(2.12) (k —DCoe™1, if ¢ <O,
<
T k=DC(300 — ) exp{—3(v — o)},  ifc>0.
Thus, if f:Z — R is Lipschitz with constanK (1), then
(2.13) B® £ () —ED £ ()| < Ck = DK (e
for someC, @ > 0. Furthermore, from (2.10) and Theorem 2.2 part 3, we have
(2.14) E(m+1)Z,(s) _ E(m)Z,(s) > E(m+2)zt(5) _ E(m+1)Z,(s),

forall m, > 0.

THEOREM 2.3. Let Z®) be as defined i(2.8), with nb, increasing and
concave nd, increasing and conveXSuppose that < v, wherec is as defined
in (2.11). Then for s > 0, Z® is positive recurrent and its equilibrium
distribution 7 ) has finite mean equal tim,_, .. E©@ z*; furthermore for any

0 <8 < 1for whichc(148) < v, we can findK'1(8) < oo such that
(2.15) E(./){(ZI(S))(H-S)} < K1(5){1+j(1+8)},

forallz >0andj > 0.
If s = 0, the stateD is absorbing forZ®), and the only stationary distribution is
7@ = A, giving probability one td.

PROOF The case = 0 is immediate, so we now suppose that 0.
If v=0andc < 0, the detailed balance equations

(2.16) (Jbj+pys)mj=(+Ddjr1+y)mjsa, j =0,

are satisfied with

bj+pysj”"

div1+y

for somee > 0 and for allj large enough, becauge< 0. Hence, (2.16) have a
nonnegative solution with geometrically decreasing tail, and the conclusion of the
theorem follows.

If v > 0, positive recurrence is immediate. Constrzé? with Z{ = 0 from a

sequence ok -processes as above. Thenpift) := m®) (1) := EZI(S), we have the

renewal equation

Tj41 < 7 <(1-e)mj,

t
m(t) = e "E{X,|Xo =0} + / ve m(t — u)du.
0
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Now, by Lemma 2.1 part 1,

C1, if c <O,
EQX, < .
Cao((v —c)/2) exp{3(v + o)t} if >0,

for suitable constant€’; and C,. Furthermore, a monotone coupling of two
X-processes with different initial conditions shows tfA? X, increases with.
Hence, the key renewal theorem ([11], page 363) can be applied to conclude that

o0
(2.17) m® (00) :=tlirrgoEZfs) :v/ e V'E{X,|Xo=0}dt
- 0

exists and is finite. But now, becaugé” is nonnegative and positive recurrent, it
follows from (2.17) thatr ) has finite mean, satisfying

79 (e) =E"" (28) <m® (c0),

wheree(j) := j forall j >0 andr ™ (f) := Yo" £ (k).
Finally, for any O< é <1 for whichc¢(1 + §) < v, a similar renewal argument
can be employed, again appealing to Lemma 2.1 part 1, to show that

my (1) :=EO{(2") )

is uniformly bounded for alf; hence, the sequence of random variatﬂé“g is
uniformly integrable, and thus, in fact,

(2.18) 79 (e) =m® (00),
proving the first two claims of the theorem. Noting also that, for asy0,
ED{(20) )

. t o
(2.19) = e_”’IE(]){Xt(H(S)} +/ ve_””m((;)(t —u)du
0

<m$ (1) + (L+ j N2 (e) expl(L+ 8) (e + )1 — w1},

from Theorem 2.2 part 1, the remaining claim is also proved.

With these preparations, we can now prove the main result of the section. The
assumptions of Theorem 2.3 are still in force.

THEOREM 2.4. Let 7 denote the equilibrium distribution of the pro-
cess Z®); then 7@ (f) is continuous ins for any Lipschitz functionf.
Furthermore if ¢(j) := j for all j > 0, thenz®)(e) is an increasing strictly
concave function of.
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PROOF Let A" be the generator of the procegs’, so that

(ADR) () =Y quth) — h(j))
I#]

(2.20) = (jbj + pys){h(j +1) — h(j)}
+jdj +y)th(G =1 —h()H} +v{r(©0) — h(j)},

and, for any Lipschitz functiorf with constantk ( f), leté® (f) be defined by
(2:21) 0V () =~ /OOO{E”)f(Zf”) =7 (f)}dr.
We begin by showing that®) ( f) is a solution to the equation
(2.22) (AR ===V, j=0.
First, realizingr® (f) = E" £(z“), it follows from (2.13) that

[ED £(2) =790

Zn_lgs) {E(j)f(Zt(“)) _ E(k)f(zt(s))}
k>0

<CK(Ne™™ Y a1k — jl < CK(f)e™ {m®(c0) + j}.
k>0

(2.23)

Hence g (f) given in (2.21) is well defined. Now set
®) Ty m) p(7® :
0 (NG == [ ED £(2) =2 () ar

noting that limy_ « 65 (£)(j) = 6%)(f)(j) by (2.23). Conditioning on the first
jump gives

. T
08 (f)(j) = —E<”{ /0 (F(Z) = n9 () dt}
=~ UTT{f(j) -9}
T T—u
_ —qju () () _ ()
L afen ([ @ -=ana)

(2.24)
+ulf () —n(s)(f)}}du

=—q; ' A—e D f() =7}

T o
+ /0 S 16 () du.
I£]
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Now, by (2.23),

65 (D1 ju<r)| < CK(fa™(m® (00) +1)

for all 7 andu, andgj; > 0 only forl =0, j — 1, j + 1. Thus, lettingT — oo
in (2.24) and using dominated convergence, it follows that

0 NG =g D=7 D)+ T [ e 00 (@
I#j
or

FG) =79 =>"qu{oD OO -0V (H(N))
I#]

Thus,0)( f) solves (2.22).
Furthermore, again using (2.23),

(2.25) 09(HG+1) — 09 () = fo T(ED £(2) — B £(2)) dr

and (2.13) immediately gives

(2.26) 109G+ D =09 ()| < CK(f) /e
thus, A6®)( f) is bounded and, hence, also Lipschitz, with constant
(2.27) K(AOY(f)) <2CK(f)/e.

Now, by Dynkin’s formula ([14], Theorem 2), it follows that'*) (A®)h) = 0 for
all s, for any Lipschitz functiorh. In particular, for any > —s, using (2.20),

0= n(Sth) (A(SH)Q(S)(JC)) — Eﬂ(”’) (A(SH)@(S)(f))(Zg))
(228)  =E""{(AV0C(N)(Z5) + py1(a6Y (1)(Z)))
=B F(Z8) = 2O (f) + py1 (809 () (Z5)).
Thus, from (2.28) and (2.26), it follows that

(229) |7 =) < pyt| A6 ()| < py ItICK (f) ]

for any Lipschitz functionf, so thatz®)(f) is continuous irs, proving the first
part of the theorem.
It then also follows that

) =7 )+ py 1 (809 ()]
< pyltl|r (AW (1)) — 7D (A09 ()|
and, hence, that

(2.30) LxO(f) = —py (a0 1)
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Taking f = e, this last can be re-expressed using (2.21) as
d (s) ON (s) (s)
(2.31) T (e) =pyE /(.) {¢(Zg" +1,1) —g(Zy" 1)} dt,

whereg(j, 1) := EW Z) Hence, from Theorem 2.2 part 2, it follows thalt) (e)
is increasing iry, proving the next part of the theorem.
Now, from (2.28) withu and 2 for ¢,

g =) = —pyur ST (M09 (1))
and
g T2 (f) =79 (f) = —20yum ST (A0W ()
giving, again from (2.28),
g T2 (f) =228 (f) + 7 (f)
= —2pyu{r T2 (AW () — 7T (AW (1))
= —2pyufx (A0 (1)) = 20yum OT2) (A6 (A6 (1))
7T(s)(Ag(s)(f)) + ,oyu:r(H”) (Ag(s)(Ag(s)(f)))}
=2(pyu)’m (80P (A6 (1)) + 1,
where
nl < 10(py [u))*CK (A0 (AW (f))) /a < 4X(Cpy |u|/a)*K (f),
this last by (2.29) and (2.27). Hence'® ( f) is twice differentiable, and

(2.32) (”(f) 20227 ® (809 (A0 (1))).

ds 2
Now, using the formula given in (2.25), it follows that

AGS (AGD(f))(m)

- _ /OO{E(m-i-l)AQ(S)(f)(ZI(S)) — R Ap®) (f)(ZT(Y))} dt

_/ { (m—i-l)/ f(Zt(S)+1’ w)—gf(zt(s),w)}dw

B [T 2 + 1ow) — g2 w) dw

where g (I, w) := B £(z$). To evaluate (2.33), realiz&-D with z{? =

j +1andZ®2 with Z$ 2 — j as before, using the Markov procegs W)
of (2.7), withYg = j andWp =1, so that

Z,6D = 7,62 L W IEL > 1],

(2.33)
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whereE is an independent negative exponential random variable with mgan 1
Thus,

A (AOD (1)) ()
234) = E”)/O /O e g (Y, + Wy + 1 w) — g (Vs + Wi, w)

—gr(Yr+Lw)+gr(Y;, w)dwd:r.
In order to use (2.32) to investigate the curvaturez6? (e), we take f = e
in (2.34). Then, for any >/,
ek + 1, w) — ge(k,w) — ge(I + 1, w) + g (I, w)
— (E¢+DZ) _E® z0} _ R+ Z6) _ gD Z6)) g,

from (2.14), for allw > 0, so that the integrand is always negative. Hence, from
(2.34), it follows thatAd®) (A6 (e))(j) < 0 for all j ands, and thus, from (2.32),

d2
Wn(s)(e) <0, s>0.
This completes the proof of the theorent.]

3. Equilibria. We now investigate the equilibrium solutions of (1.3). For the
sake of simplicity, we shall assume here and in all that follows phatl. There
is no real loss of generality in this, since one couldd&et d; + y (1 — p) and
vy’ = yp, and write (1.2) using’ andy’ in place ofd andy. In biological terms,
unsuccessful migration is just one cause of death.

If = € m' is such a solution, and

x
s = errj,
j=0

thenw must solve
O0=—[(bi +di +y)i+v+yslm

(3.1) +[bi—1( — 1) + yslmi—1 + [div1 + y1G + Dmigq, i>1
O0=v(1l—mo) + (d1+ y)m1 — ysmo.

Hence,r must be the equilibrium distribution of the immigration, birth, death
and catastrophe proce§s(s), which we studied in detail in Section 2. From
Theorem 2.3, and using (H1) and (H2), we know tA&? has a unique stationary
distributionz ), which has finite mean denoted by

(3.2) Ge) =)= ja.
j=1
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In order to have an equilibrium solution of (1.3)must be equal tar ) (¢); in
other words, we look for a solution to the equation
(3.3) s =G(s),
a fixed point of the functiors.
THEOREM 3.1. Suppose thaH1) and (H2) are satisfiedIf G'(0) > 1, then

there exists a unique positive fixed paiiitof G; if G’'(0) < 1,thenG(s) < s for
all s > 0.

REMARK 3.2. Note thas = 0 is always a fixed point of7; the corresponding
equilibrium distributionz© is the vectore® = (1,0,0,...)”, which can be
interpreted as the extinction equilibrium.

For the proof, we need a technical point.

LEMMA 3.3. Let

with norm
o0
.2
lxll,,2 = |xol + Z °lx; ],
i=0

and letA; be the part ofA in m?, that is
D(A))={x e D(A):Ax em?);  Axx = Ax.
Then if p(0) € D(A2), p(¢) satisfies

(3-4) ijdjpj(t)<oo.
j=1

PROOF W first note that the restriction ef to m? is again aC%-semigroup.
This can be established following, with obvious changes, the proofs in [1]. In fact,
repeating step by step the proof of Proposition 6.5 of [1], one seeglthatw is
dissipative, as long as > 3 max b;. The density of the range is then established
exactly as in Proposition 6.6 of [1].

Moreover, repeating the proofs of Lemmas 6.8 and 6.9 of [1], one sees that the
domain of the restricted semigroup is contained in the set

xelh, 3 jAdjlxg| < oo},
j
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and (3.4) follows. O

PrROOF OFTHEOREM 3.1. First of all, it is proved in Theorem 2.4 thatis
an increasing, strictly concave function ér> 0. We now establish two further
properties oiG:

(3.5) G0)=0 and s_li)r(po G(s)/s < L.

The first of these follows because, wher= 0, the equilibrium distribution is
concentrated at 0, so that its mean is 0.

For the limit ass — oo, we letm (t) = m® (¢) = E(Zz*), with Z*) as defined
in (2.8), noting thatG (s) = lim,_..om® (¢) as shown in (2.18). Letting, (t) =
IP’(Z,(S) = j), we can writen (1) = 3 ; jp; ().

The forward equations satisfied pyr) can be written ap’(r) = A, p(r), where
A A i + i-1— Pi)s j Z 17

A1 D(A) > m?, (Asp),::(_m popi-i=p)s
(Ap)o — vspo, i=0,

is a bounded perturbation of the operaAbd_efined in (1.4).
Hence, if the initial valuep(0) is in D(A), then p(r) = e+ p(0) is differen-
tiable as a function frorR to m* and we have

m'(t)y =" jp)

J

=1
> (G = Dbj—1+ys)pj-1(t)
j=1

(3.6)

—((bj +@j+7))j+ys+v)p;)
+(G+Ddj—1+y)pj+1)}.
If p(0) € D(A2), the condition (3.4) allows the order of the sums in (3.6) to be
interchanged, and, with some manipulations, we obtain

(3.7) m'(t)=Y_jb; —dj)p;(t) — (y +v)m(t) + ys.
J

Using the concavity ofb(x) and the convexity ofd(x), we obtain

(38) Y jbjpj(t) <m@®b(m() and Y jd;p;t) >m)d(m(1)).
J J

Hence, from (3.7), it follows that

(3.9) m'(t) <m@®)[b(m(1)) —d(m(t)) —y —vI+ys,
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so thatm(r) < x®(¢), wherex := x® () is the solution of the Cauchy problem
x'=x[b(x)—d(x)—y —v]+ys,
x(0) =m(0).

SinceD(A») is dense inD(A), it follows thatm (1) < x®)(¢) for all p(0) € D(A).
Set

(3.11) a=v+deo—bs>0

(3.10)

because of (H2), and choosgesuch that

b(m) —d(m) —v=—a/2,
if this is possible; otherwise, set = 0. In any case, we have
(3.12) bm)—d(m)—v <-—a/2 form > m.

Takes such thatys = m(% + y). Then for alls > 5, there exists®) such that
x(t®)) =m andx(r) > m for t > t®. Then, using (3.12), we have

() <ys—xt)(3a+y) fort>1®.

Hence,

x (1) <,;,e—<a/2+y><z—r<‘>>+ys /’ o~ (@/2+y)1=0) 4

z(s)

y+a/2 y+a/2 “y+4a/2
so that, using (2.18),
G(s) = lim m(@) < lim x(1) < — 2
1—>00 1—>00 y+a/2
and, hence,
. 14
SIL)mOOG(s)/s < Ta2 <1,

as stated above.

Turning now to the fixed points of;, note thatG(0) = 0 and G is strictly
concave; henceG(s) = s has, at most, one other solution in> 0. Since
also lim_. ., G(s)/s < 1, it follows that there is a unique positive solution of
G(s)/s =1 if G'(0) > 1; otherwise, ifG'(0) < 1, we haveG(s)/s < 1 for all
s>0. O

The next result shows that assuming condition (H2) to be satisfied is not
restrictive, when looking for positive equilibria of (1.2).
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PropPoOsSITION3.4. If (H2) is violated there are no nontrivial equilibrium
solutions to(1.2).

PROOF. If y =0, the proposition follows immediately from the- -equation
in (1.2). Otherwise, the proces&®) is stochastically larger than a process’
which hasb =bso andd =d, for all j, and the same is truebf = b — by

for any 0< b, < bwo. Lettingsi :=E1Z®, note that, as for (3.6),
(3.13) m' (1) =m(t){boo — by —doo —y — v} +ys=—m(t)(a +y) +ys,

wherea’ = a + b, anda is as in (3.11). Suppose now that 0, so that (H2) is
violated. Ifa < —y, chooséb, so thata’ = —%y; otherwise, také, = 0. Then it
follows from (3.13) that

G(s) = lim EZ = lim () =s{y/(y +a)} > s,

for all s > 0, and there can be o> 0 for whichG(s) = s.

Finally, if « = 0 andy > 0, then the conditiom < v of Theorem 2.3 is satisfied,
so that, from Theorem 2.4, the functiai is strictly concave and;(0) = 0.
The argument above then givéss) > s for all s, which therefore precludes the
existence of any > 0 with G(s) = 5. This completes the proof.(]

REMARK 3.5. From (2.31), we see that
o
(3.14) G'0) =y /0 EDZO dt.

Thus, G’ (0) is the average number of successful propagules produced in a patch
colonized by a single immigrant, before population extinction in that patch,
disregarding other colonizations. This number may be considered a reproduction
number for colonizers of an empty habitat, as used in epidemic models [9],
thus, G’'(0) > 1 is the natural condition to ensure (meta)population persistence.
Indeed, a similar condition has been presented by Chesson [7] and Casagrandi and
Gatto [6]. See also [21], in which an analogous quantity is used as the invasion
fithess of a mutant; a discussion along their lines is, however, rather beyond the
scope of this paper.

Comparing the procesz® with a proces€” which hash; = by andd; = do,
one immediately obtains

E(l)Zt(O) < e—vte(bo—do—y)t.
Hence, if
bo—do—v <0,
one has;’(0) < 1.
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4. Convergence to equilibrium. In this section we prove the convergence
of the solutions of (1.2) to the unique positive equilibrium, when it exists, or
otherwise to the extinction equilibrium given b9 =(1,0,0,...). Conditions
(H1) and (H2) are assumed to hold throughout the section. We begin with two
natural bounds on the mean patch size, the first of which bou@glsaway from
infinity.

LEMMA 4.1. Letp®=>0and let

sy =7 jpj®).

j=0
Then

limsups(t) < +oo.

t—00

PROOF  Multiplying both sides of (1.2) by and summing fof from 1 to oo,
we obtain

(4.1) S'()=>_ jbjpj(t) =Y jdjpj(t) —vs(t).
j=0 j=0

Note that, as in the previous section, the interchange of derivatives and sums
is justified, if p© € D(A»), by the fact that the solutiop(r) € C1([0, T']; m1) and
satisfies (3.4). By density, (4.1) then holds foraflle D(A).

Now, using the concavity ofb(x) and the convexity okd(x) as in (3.8), we
have, from (4.1),

(4.2) s'(t) < {b(s(r)) —d(s(t)) — v}s(2).
By standard comparison arguments, we easily obtain

limsups(t) <5,

t—00

where
s=inf{s > 0:b(s) <d(s) + v}.
The set is not empty because of (H2).]

The next lemma gives the complementary comparison result, bourding
away from 0 wherG’(0) > 1 and p® # ¢°. Its proof is very much more difficult,
and is the subject of Section 5.

LEMMA 4.2. LetG'(0) > 1andds < +oo. If p2e C, p° + e, then

liminfs() > 0.
11— 00
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Now, if G'(0) > 1, let s* be the unique positive fixed point aff, as in
Theorem 3.1; ifG’(0) < 1, lets* = 0. In the next two lemmas, we show thdt)
converges ta*.

LEMMA 4.3. Under the same assumptions as in Lenghigwe have

limsups(z) <s*.
—00

PrROOF Assume, if possible, that

limsups(t) =5 > s™*.
—00
From the proof of Theorem 3.1, we then haggs) < 5. Chooses such that
G (5 + &) < §, and then choosg such that (r) <5 + ¢ for all ¢ > 1.

If we takes(r) as a fixed given function, we see that the solution of (1.2) can
be interpreted as the distribution of an immigration, birth, death and catastrophe
processZ () with time varying immigration rate(¢), starting at timerg with
distribution p(¢p). By an easy stochastic comparison (see [3]), that process is
dominated ins > 1o by a processZ¢+# with constant immigration rat@ + ¢
and with the same initial conditiop(zp). In Theorem 2.3, it is shown that¢+#)
is positive recurrent and that its equilibrium distribution has finite meén+ ¢)
as in (3.2); furthermore, from Theorem 2.3 and from (2.19) Witk 0, it follows
that
(4.3) Jlim_ EZCt) 1) =GG +¢)
if 3 i>17pj(to) < oo, true for allp% € D(A) because of Theorem A.

Hence, ifp(¢) is the distribution ofZ(¢), we have, using also (2.18),

o0
limsup) " jp;j(1) <G(GE +¢) <35.

t—>00 =1

On the other handp(z) is the solution of (1.2) andi(s) was defined as
Z?io Jjpj(t). The previous inequality thus reads

o0
limsups () =limsup) _ jp;(t) <5,
—00 —00 ]:1

contradictings = limsup_, ., s(t). O

The companion result is as follows.

LEMMA 4.4. LetG’(0) > 1andds < +oo. If p@e C, p° + eg, then

liminfs(z) > s*.
1—00
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PROOF Assume, if possible, that
liminfs(®) =5 < s™*.
—>00

Then, from Lemma 4.2, we have<0s < s*. SinceG(5) > 5, as seen in the proof
of Theorem 3.1, we can choosesuch thatG (s — &) > 5.

As in the proof of Lemma 4.3, choosing such thats(zr) > § — ¢ for all
t > tg, we can compare the process with immigration sdte to the process with
immigration rates — ¢. In this way, we obtain

o0
liminf s(r) = liminf jz_ljp,-(z) >G(5—¢)>5,

reaching a contradiction.C]
Combining these lemmas, we can prove the following theorem.

THEOREM 4.5. Let (H1) and (H2) hold, and let p° € C \ {¢°}. Then the
solution of (1.2) converges to the unique positive equilibriuinG’(0) > 1 and
dso < 400, and toe? if G’(0) < 1.

PROOF The previous lemmas together yield
lim s(t) =s*.
1—00

Now, the interpretation g (¢) as the distribution at timeof an immigration, birth,
death and catastrophe proc&swith immigration rateys () shows, as in the proof
of Lemma 4.3, thap(¢) is asymptotically bounded between the distributions of the
processe€ ¢ ~¢) andZ¢ "+ for anye > 0; that is, for any > 0,

(=) _ . . . (s*+¢)
an slltrglorngpj(t)Sllﬂigpzpj(ﬂfznj '
=l >l j=l Jj=l

But Theorem 2.4 implies the continuity inof 7 () with f = 1., proving
the theorem. OJ

REMARK 4.6. The conditionly, < +oc is used in the proof of Lemma 4.2.
There is no reason to suppose that it is necessary for Theorem 4.5 to be true, but
our proof makes essential use of it.

5. Repulsion from the extinction equilibrium. The aim of this section is to
prove Lemma 4.2. To do so, we employ a result from the theory of persistence,
which we now recall.

Let X be a metric space (with metrif) which is the disjoint union of two sets
X1 andX>, and suppose thdt is a continuous semiflow ok1. Thieme [25] gives
the following definitions:
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e X5 is aweak repelleffor X1 if

lim supd(CIJt(xl), X2) >0 Vxi e Xi.

t—00

e X, is auniform weak repellefor X if there exists > 0 such that

limsupd (®;(x1), X2) > ¢ Vx1eXi.
r—00

e X, is astrong repellerfor X if

Iiminfd(d),(xl),Xz) >0 Vxi e Xs.
1—00

e X, is auniform strong repellefor X if there existss > 0 such that

liminfd(®;(x1), X2) > ¢ Vx1 € Xs.
=00

In our application, the space will be the convex set

o
C = peml:pZO, ij:].
j=0

with

o
d(p.q)=1po—qol + >_ jlpj — qjl,
j=1
and the continuous semiflo®; (p) = ® (¢, p) is given by the solutiop(¢) of (1.6)
with p(0) = p. We takeX> to be{e} and X1 := C \ {¢°}; with these definitions,
the thesis of Lemma 4.2 is tha&b is a strong repeller fokK .
To prove the lemma, we use Theorem 6.2 of [25], which we state in a form
simplified to our present needs.

THEOREMB ([25]). LetX be a metric space which is the disjoint union of the
two setsX1 (open inX) and X2; let ® be a continuous semiflow oxy;. Assume
the following

(A) There exists a subs#&t C X, such thatfor all x € X1, there exists(x) > 0
such thatd, (x) € Y1 for all r > #(x).
(Ce.1) Foranyy € Y1, the orbit®([0, o) x {y}) has compact closure
(C6.2) Uyey,@(y) has compact closurevherg as usual w(y) is thew-limit set
(R) The setr; N {x € X; d(x, X2) = ¢} is bounded

ThenX> is a uniform strong repeller whenever it is a uniform weak repeller
We prove thatX, is a uniform weak repeller, and then Theorem B lets us

conclude thatX, is a (uniform) strong repeller, which is the thesis of Lemma 4.2.
To start with, we show that the assumptions of Theorem B are satisfied.
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Lemma 4.1 shows that, if we choose

Y1= {yiziyi =< 5}
1

then assumption (A) holds. Indeed, the proof of Lemma 4.1 shows that, if
y € Y1, then ®,(y) € Y1 for all + > 0. Assumption (R) is immediate, because
X2 is bounded. The following lemma establishes the other two assumptions of
Theorem B. For its proof, note that a get- m* has compact closure if (and only
if) im y— o0 >_ne v i1xi| = O uniformly forx € E; thatis, if, given any: > 0, there
existsN = N(g) > 1 such tha o> v i|x;| < e forallx € E.

LEMmA 5.1. If the continuous semi-flowb is given by the solutiong(z)
of (1.6) and C, X; and X, are the sets defined abqvthen assumptions
(Ce,1) and (Ce 2) hold.

PROOF As in Section 4, observe that(r) = ®,(y) is the distribution of an
immigration, birth, death and catastrophe procgssvith immigration rates(z)
starting at time O with distributiony. If y € Yi, this is dominated by an
immigration, birth, death and catastrophe procg$8 with constant immigration
rates (because of the previous remark), whose transition probabilities we denote
by

i) =P(2,® = j12o® =i).

Stochastic comparison then gives

(5.1) Yonpa®) <D Yy yipin@) =) yi Y npinl0).

n=N n=N =0 i=0 n=N

To estimate the right-hand side, we use (2.15) in Theorem 2.3; chodsingh
thatc(1+8) < v, we obtain

i 5 (1) <+ i 185, (1) < — B0 (z,0)1+ < E1
”:anzn = Na n:Nn Pin = Ns t = Ns’

uniformly for all r > 0, whereC; is a constant depending only érNote also that,
for § =0, (2.15) implies that

(5.2) Y npn®) =EYV(2,9) < K1(j + D).
n=0

To prove(Cs,1), takey € Y1; chooses > 0. Find N1 such that

00
&

i=Np 4K1
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and pick N, such thatNy > (%)1/‘3 fori =0,..., N1, then N, is the required
constant. In fact, using (5.2), we obtain

00 00 N1 00 00 00
Yovi Y npin® =Yy Y npin®+ D vi D npin(t)
i=0 n=N> i=0 n=N> i=N1 n=Np

N1 C; 00 e N1 00

l . .
<Y vi—s+ Y i +DK1<Z) yvi+2K1 ) iyi<e.
, N. . 2 .
i=0 2 i=N1 i=0 i=Np

In order to proveCe 2), we prove that, for any > 0, there existev = N(g) > 1
such that, for ally € Y3, there existgy = 79(y) such that

[e.e] o
Z nZ)’iﬁin(t) <e¢ forall t > 1o.
n=N i=0

Indeed, assume that this is true, and take w(y) for somey € Y;. Then there
exists a sequende,} with r, — oo such that

o0

(5.3) Zn|pn(tk) —qgn| — 0 ask — oo.
n=0

Takek such that; > tp(y) and that the difference in (5.3) is less tharThen

o0 o0 o0
D ngn < D nlpat) —anl+ Y pute)
n=N n=N n=N
o0 o0 o0
<D nlpat) —anl+ Y 1Y yipin(t) < 2e,
n=0 n=N i=0

using also (5.1), so tha&Ce ») is proved.

Now choose’ > 0 such that(1+ §) < v, and recall as above that, for eagh
there exist; < oo such that limsup, . E® (Z,)+% < ;. Hence, for each,
there existsg(i) such thafe®) (Z,)1+8 < 2¢; for all + > 19 and, hence, that

0
Y npin(t) <2C;N° forallt > 1o(i).
n=N

Fix ¢ > 0. Choosey € Y1 and findN1 = N1(e, y) such that

ad €

SN, 4K

whereK is as in (5.2); sefp(y) = max—o,... v, fo(i), and choose

.....

N = {4@‘1 max Ci}.

l<i=M
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Then, fort > r9(y), we have

00 00 N1 00 00 o)
Dy Y npin® =Yy Y. npim®+ Y. yi Y npin®)
i=0 n=N i=0 n=N i=N1+1 n=N

N1 e o)
SZ)’:‘§+ > vii+DKi<e,
i=0 i=N1+1

proving (5.3). [

Now we prove that{¢®} is a weak repeller through linearization. Since we
restrict our considerations to vectgpsr) in the convex setC, we havepg(t) =
1 - Z;?‘;l pj(1). Hen_ce, we need only examine the veatpt, po,...)". With a
slight abuse of notation, we now set

o0
X = x:(x1,x2,...)TE€l:Zj|Xj|<+OO}
j=1

with norm x| = j-‘;lj|xj|, noting thate® now translates into the point 0 &f,
and we denote here by and F the operators defined in (1.4)—(1.5) but restricted
to X, and usingpp =1 — Z;?‘;l p; in the definition of F. We then defineX . to
be the nonnegative cone I, note thatX , is the counterpart of the convex et
defined above.

Equation

(5.4) p'=Ap+ F(p)

corresponding to (1.6) now has 0 as the equilibrium, corresponding to the
extinction equilibriume® of (1.2). We again use, («%) to denote the solution

of (5.4) satisfyingu(0) = «°. This corresponds to the semi-flow of Lemma 5.1,
except that we now neglect the Oth component. Note that the metric in the convex
setC is equivalent to the norm i, since

o
d(u,v) = |uo — vol + Y _ilu; — vl
i=1

|-G

o0
<2 ilui —vil =2[u —vlx,
i=1
while obviously|u — v||x < d(u,v).
Note also tha# is the generator of a defective Markov process, the prozg’és
of Section 2 restricted to the state sp&te{0}. In the rest of this section, we only

00
+Zi|ui — V;
i=1
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consider processes with zero immigration rate; thus, when there is no ambiguity,
we drop the superscrip? and denote byZ, the process with zero immigration
rate.

From the results of Section 2, one immediately sees #has exponentially
absorbed at 0; more precisely, (2.13) with= ¢ and/ = s = 0 implies, in the
present notation, that

(5.5) et |l < e
for some positive constant ande. This implies that
{RA > —a} C p(A);

moreover, we have the representation

(5.6) (=) r), =D v (),
J
where " denotes the Laplace transform arg (r) is P(Z; = i|Zg = j).

We now discuss the stability of the 0 equilibrium of (5.4) using the linearization
principle. We first note that

(5.7) F'Ou=¢ue* VueX,
where
(5.8) pu)=y ) juj

j

and ¢! = (1,0,0,...)T. Since F/(0) is one-dimensional, hence, compact, the
essential spectrum [27] of + F’(0) coincides with that ofA, which, from (5.5),
is less or equal thar-a. The type of the semigroup+#' @) can then be
understood from the spectrum af+ F’(0).

Using (5.7), we can establish, through direct computation, the following result.

LEMMA 5.2. If Aisin p(A), thenA belongs top(A + F’(0)) if and only if
o((n — A)~Ltel) £ 1. In that case

P((h —A) ) o
1— (.~ A)~teh)

(5.9) (A—A—-F©) v=0—Aa) v+ A)-teb.

On the other handf
(5.10) p((n—A)teh) =1,
thenx is an eigenvalue with corresponding eigenveatet (1 — A) el
From this lemma, we see that an important role is played by the roots of (5.10)
in the half-plang{RA > —«}. Using the representation (5.6) and standard results

on the Laplace transform, as used, for instance, in the theory of age-dependent
populations [16], we have the following:
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LEMMA 5.3. There existsat most one real rootig > —a of (5.10). If
Ao exists all the other rootsh satisfyRA < Ag; if there is no real roatthere are no
complex roots ifRA > —«}. In any strip{fa < RX < b}, there are at most finitely
many roots

Finally, if

Ro:= Y iPy;(0) :Zifo Py (t)dt > [=]1,

thenig > [=]0; on the other handf Rg < 1, if there is a real rootig, it satisfies
Mo < 0.

REMARK 5.4. Note that
o0
Ro=)_i / Py (t)dt = G'(0),
— Jo
1
with G as given in (3.2).

From here on we assume thig > 1. Hence, the real eigenvalig is positive.
We denote byy, ..., Ax (with £ > 0) the other roots of (5.10) such thag ; >
0, and byXii1,..., A, (with n > k) the roots such thaRx; = 0. Since the
continuous spectrum (if it exists) of + F’(0) is contained in{RA < —a}, we
can split the spectrum of + F’(0) in three spectral sets” = {Ag, A1, ..., Ak},
0 ={Aks1,..., Ay} ando® ={A €eo(A+ F'(0)):RA < 0}.
By standard results (see Theorem 111.6.17 in [1X])¢an be split into the direct
sum of three subspaceég’, X¢ and X*, all invariant underd + F’(0). Moreover,
X* and X¢ are finite-dimensional X“ includes at leastg, the eigenvector
corresponding ta.g, while X¢ may well consist only of 0). This would be enough
to establish the instability of the 0 equilibrium. However, we wish to prove that all
initial datau > 0, u £ 0, are repelled away from 0, and this requires further work.
The following lemma uses the results of Bates and Jones [4] to establish the
existence of unstable and centre stable maniftfdsand W< for equation (5.4)
at 0. The conditions of their Theorem 1.2 are satisfied in view of Arrigoni’s results,
as summarized at the end of Section 1, together with (5.5) and the properties of the
eigenspaces discussed following Lemma 5.3.
Defining X = X¢ @ X, and letting P* and P“* denote the corresponding
projections, [4], Theorem 1.2 and its consequence (P3) yield the following result.

LEMMA 5.5. There exist a neighborhoo@ > 0 and Lipschitz functions
h: PU(U) — X and h: PSS(U) — X" with h*(0) = (h*)'(0) = h(0) =
(h¢*)(0) = 0 such that

W = {u" + h" ") :u" € P*(U))
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is the unstable manifolfin U) of 0, and
WCS — {MCS + hCS (uCS) : MCS c PCS‘(U)}

is a centre-stable manifold
Furthermorethere exists a neighborhodd c U of 0 such thatif u® e v\ Wes,
then there exists > 0 such thatd, (u°) ¢ V.

The final statement of the lemma shows that, if a solution comes close enough
to 0 to be in the neighborhood, and if it is then at a point not ifv<*, then it
has to leave/ at some later time. Hence, the limes superior of any solution curve
is necessarily positive, if it can be established that, for seme0, no points of
X+ N B, except for 0 are it¥**, where B, denotes the ball of radius centred
at 0. If this is the case, thef®} is a uniform weak repeller fok \ {0} in the
system (5.4), which is equivalent te°} being a weak repeller faf \ {¢°} in (1.6).
Applying Theorem B, Lemma 4.2 would then follow.

To show that indee®“* N X N B, = {0} for somee > 0, we begin by writing
the eigenprojections explicitly.

LEMMA 5.6. The projectionPy on the eigenspace correspondingigis

_ 9((o—A) M)

Pov = ro— A)~Lel.
O (G- ATy PO
The projectionP* on X* is given by
k -1
1 (A —A)"v) 11
Ply=P — A—A dx,
0 °”+J§lzz b T p(G - A1 T

whereI'; is a circle aroundi; that does not include other elements of the
spectrum

ProoOF It follows from the construction of the projection operators as in
formula (111.6.19) of [17] and from (5.9). O

Note that

00 o0
te "y i Py (t)dt <O.
i—1

¢ ((ho— A)~Lel) = — /0

On the other hand, it may well bg((; — A)~1e!) = 0 when 1< j < n, so that
the other projections may have a more complex form.
As a consequence, we immediately have the following result.

LEMMA 5.7. If ve X, theng((ho — A)~1v) =0.
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PROOF  The explicit representation dfy shows that ifp((Lo — A)~1v) #£ 0,
then Pov # 0. Howeverp € X implies thatPov =0. [

This lemma implies thak“* N X, = {0}, because ifv > 0 andv # 0, then
(Ao — A)~v > 0 by (5.6); hence, it follows from (5.8) that((Ag — A)"1v) > 0
also. This is almost what we need, sind&® and X are close to one another
near 0, and we are thus close to showing th&t N X, N B, = {0} for some
& > 0. To make the transition frooX“* to W<, we first show that, fon > 0,
o((ho — A)~1v) is large enough.

LEMMA 5.8. Assume thafl,, < 0o, and takev > 0. Then

_ vl
5.11 Ao —A) " lv) > )
(5.11) ((ho— A) )_doo+y+v+/\o

PROOF We start from the identity

A m .
YiPiGo= [ e B2 dr.
- 0

1

An easy coupling argument shows ttfatis stochastically larger than a death-and-
catastrophe process with death rétg+ . Hence,

/Ooe‘“”Ej(Zt)dt > /ooe‘“o”*d““)’dt = ] ,
0 0 Mty +doo+v

Now, if v > 0, we have
o((ho— A7) =D iv; Pji(ho)
iJ
ST J _ v .
= Aoty tdotv deotytvtio O

Using the above lemma together with Lemma 5.7, we can now show that the
norm of v~ is quite large, whenevear € X“*. Here,v~ denotes the negative part
of viv=vt —v~, with (v7); = max0, v;} and(v™); = maxO0, —v;}.

LEMMA 5.9. Assume thatl,, < co. If v € X, there exists; > 0 such that
vl = nllv].

PrRoor From Lemma 5.7, we have

0=9¢((ho—A) 1) =¢((ho— A) ") —p((ho — A1)

[l P T
> — [0 —A) " lv I,
deo+y+Vv+io
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using Lemma 5.8 and the obvious identify| = 1. Hence, using|v*| =
vl = vl

)IIv‘IIz o),
deo+y+Vv+2io deo +y +v+2Xo

which yields the thesis.[d

(n(xo A+

We now use this result, together with the closeness®fandW<*, to conclude
thatw< N X, N B, = {0} for somes > 0.

LEMMA 5.10. Assume thaty, < oo. Then there exists > 0 such thatv > 0,
v € B. N W impliesv =0.

PROOFE First takes such that||v® || < & implies || (v*)|| < g||v”||. Then
take e = §/||P°*||. Assume thatv = v* + A (v*) > 0 with ||v]| < e. Then it
follows that|[v< || = || P (v)|| < 6.

Split v = (v*)T — (v°%)~. Then we have

Z iv,-= Z i[U,'CS'i‘(hCS(UCS))i]E—Zi(vcs)i_+Zi|(hcs(vcs))i|

ivf*<0 ivf*<0 i=1 i=1
s\ — S5/ c 2 N, e
= —[[)7 I+ A7 @] < —nllv?| + Qllv”ll,

using Lemma 5.8 anfiv®*|| < §. This contradicts withv > 0 unlessv® = v =0.
Il

We have now proved what we need to show fitis a uniform weak repeller
for X, \ {0}. The details are as follows. We recall that we h&g¢e= G’ (0) > 1.

LEMMA 5.11. Assume thatl, < co. Then there existsg such that for all
u%>0,u° #0,
limsup|| @ %] > o.
t

— 0

ProoFr Take
so=%min{e, inf ||v||},
veX\V

wheree is that of Lemma 5.10, whil& is that of Lemma 5.5.

Assume that|®, u°)|| < 2so for all + > t9. Sinceu® > 0, the invariance of
the positive cone under (5.4) givas (1% > 0; moreover,®,; (1% # 0. Hence,
Lemma 5.10 implies thad[),o(uo) ¢ W<. From Lemma 5.5, it then follows that
&, (u% ¢ V for somer > 1o, contradicting|| ®; (u%)| < 2¢o for all r > 9. O
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PROOF OFLEMMA 4.2. Going back to the semi-flow; on C, note that

d(®:(u0), €%) =1— po()| + Y ilpi) =Y pi) + Y ipi(t)

j=1 j=1 j=1

<2) ipi(t) = 1P/ (o)l

j=1

while obviously

19 (o) || < d(P; (uo), €°).

Hence, Lemma 5.11 states tHaf} is a uniform weak repeller fo€ \ {¢°}. But
now Theorem B, together with Lemma 5.1, yields Lemma 4(2.
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