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NUMBER OF PATHS VERSUS NUMBER OF BASIS FUNCTIONS IN
AMERICAN OPTION PRICING1

BY PAUL GLASSERMAN AND BIN YU

Columbia University

An American option grants the holder the right to select the time at which
to exercise the option, so pricing an American option entails solving an op-
timal stopping problem. Difficulties in applying standardnumerical methods
to complex pricing problems have motivated the development of techniques
that combine Monte Carlo simulation with dynamic programming. One class
of methods approximates the option value at each time using a linear com-
bination of basis functions, and combines Monte Carlo with backward in-
duction to estimate optimal coefficients in each approximation. We analyze
the convergence of such a method as both the number of basis functions and
the number of simulated paths increase. We get explicit results when the ba-
sis functions are polynomials and the underlying process is either Brownian
motion or geometric Brownian motion. We show that the number of paths
required for worst-case convergence grows exponentially in the degree of the
approximating polynomials in the case of Brownian motion and faster in the
case of geometric Brownian motion.

1. Introduction. An American option grants the holder the right to select the
time at which to exercise the option, and in this differs from a European option
which may be exercised only at a fixed date. A standard result in the theory of
contingent claims states that the equilibrium price of an American option is its
value under an optimal exercise policy (see, e.g., Chapter 8 of [6]). Pricing an
American option thus entails solving an optimal stopping problem, typically with
a finite horizon.

Solving this optimal stopping problem and pricing an American option are
relatively straightforward in low dimensions. Assuming a Markovian formulation
of the problem, the relevant dimension is the dimension of the state vector, and
this is ordinarily at least as large as the number of underlying assets on which
the payoff of the option depends. In up to about three dimensions, the problem
can be solved using a variety of numerical methods, including binomial lattices,
finite-difference methods and techniques based on variational inequalities. (See,
e.g., Chapter 5 of [10] or Chapter 9 of [19] for an introduction to these methods.)
But many problems arising in practice have much higher dimensions, and these
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applications have motivated the development of Monte Carlo methods for pricing
American options. The optimal stopping problem embedded in the valuation of
an American option makes this an unconventional and challenging problem for
Monte Carlo.

One class of techniques, based primarily on proposals of Carrière [4], Longstaff
and Schwartz [11] and Tsitsiklis and Van Roy [17, 18], provides approximate
solutions by combining simulation, regression and a dynamic programming
formulation of the problem. Related methods have been used to solve dynamic
programming problems in other contexts; Bertsekas and Tsitsiklis [1] discuss
several techniques and applications. In this approach to American option pricing,
the value function describing the option price at each time as a function of the
underlying state is approximated by a linear combination of basis functions;
the coefficients in this representation are estimated by applying regression to the
simulated paths. Such an approximation is computed at each step in a dynamic
programming procedure that starts with the option value at expiration and works
backward to find the value at the current time. Any such method clearly restricts
the number of possible exercise dates to be finite; these dates may be specified in
the terms of the option, or they may serve as a discrete-time approximation for
a continuously-exercisable option.

The convergence results available to date for these methods are based on
letting the number of simulated paths increase while holding the number of basis
functions fixed. Tsitsiklis and Van Roy [18] prove such a result for their method
and Clément, Lamberton and Protter [5] do this for the method of Longstaff and
Schwartz [11]. (The two methods differ in the backward induction procedure they
use to solve the dynamic programming problem.) The convergence established
by these results is therefore convergence to the approximation that would be
obtained if the calculations could be carried out exactly, without the sampling error
associated with Monte Carlo. Convergence to the correct option price requires a
separate passage to the limit in which the number of basis functions increases.

This paper considers settings in which the number of paths and number of basis
functions increase together. Our objective is to determine how quickly the number
of paths must grow with the number of basis functions to ensure convergence to the
correct value. The growth required turns out to be surprisingly fast in the settings
we analyze. We take the underlying process to be Brownian motion or geometric
Brownian motion and regress against polynomials in each case. We examine
conditions for convergence to hold uniformly over coefficient vectors having a
fixed norm, and in this sense our results provide a type of worst-case analysis. We
show that for Brownian motion, the number of polynomialsK = KN for which
accurate estimation is possible fromN paths isO(logN); for geometric Brownian
motion it isO(

√
logN ). Thus, the number of paths must grow exponentially with

the number of polynomials in the first case, faster in the second case.
Focusing on simple models allows us to give rather precise results. Our most

explicit results apply to one-dimensional problems that do not require Monte Carlo
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methods, but we believe they are, nevertheless, relevant to higher-dimensional
problems. Many high-dimensional interest rate models have dynamics that are
nearly Brownian or nearly log-Brownian; see, for example, the widely used models
in Chapters 14 and 15 of [13]. Our focus on polynomials helps make our results
explicit and is also consistent with, for example, examples in [11] and remarks
in [5]. Our analysis relies on asymptotics of moments of the functions used in
the regressions. To the extent that similar asymptotics could be derived for other
basis functions and underlying distributions, our approach could be used in other
settings.

We prove two types of results, providing upper and lower bounds onK and thus
corresponding to negative and positive results, respectively. For an upper bound
on K , it suffices to exhibit a problem for which convergence fails. For this part
of the analysis we therefore consider a single-period problem—a single regression
and a single step in the backward induction. The fact that an exponentially growing
sample size is necessary even in a one-dimensional, single-period problem makes
the result all the more compelling. For the positive results we consider an arbitrary
but fixed number of steps, correspondingto a finite set of exercise opportunities.
We prove a general error bound that relies on few assumptions about the underlying
Markov process or basis functions, and then specialize to the case of polynomials
with Brownian motion and geometric Brownian motion.

Section 2 formulates the American option pricing problem, discusses approx-
imate dynamic programming and presents the algorithm we analyze. Section 3
undertakes the single-period analysis, first in a normal setting then in a lognormal
setting. Section 4 presents results for the multiperiod case. Proofs of some of the
results in Sections 3 and 4 are deferred to Sections 5 and 6, respectively.

2. Problem formulation. In this section we first give a general description
of the American option pricing problem, then discuss approximate dynamic
programming procedures and then detail the algorithm we analyze.

2.1. The optimal stopping problem. A general class of American option
pricing problems can be formulated through an�d -valued Markov process
{S(t),0 ≤ t ≤ T }, [with S(0) fixed], that records all relevant financial information,
including the prices of underlying assets. We restrict attention to options admitting
a finite set of exercise opportunities 0= t0 < t1 < t2 < · · · < tm ≤ T , sometimes
called Bermudan options. (We preserve the continuous-time specification ofS

because the lengths of the intervalsti+1 − ti appear in some of our results.)
If exercised at timetn, n = 0,1, . . . ,m, the option payshn(S(tn)), for some
known functionsh0, h1, . . . , hm mapping�d into [0,∞). Let Tn denote the set of
stopping times (with respect to the history ofS) taking values in{tn, tn+1, . . . , tm}
and define

V ∗
n (x) = sup

τ∈Tn

E[hτ (S(τ ))|S(tn) = x], x ∈ �d,(1)



AMERICAN OPTION PRICING 2093

for n = 0,1, . . . ,m. Then V ∗
n (x) is the value of the option attn in state x,

given that the option was not exercised prior totn. For simplicity, we have not
included explicit discounting in (1). Deterministic discounting can be absorbed
into the definition of the functionshn, and stochastic discounting can usually be
accommodated in this formulation at the expense of increasing the dimension ofS.

The option values satisfy the dynamic programming equations

V ∗
m(x) = hm(x),(2)

V ∗
n (x) = max

{
hn(x),E

[
V ∗

n+1
(
S(tn+1)

)∣∣S(tn) = x
]}

,(3)

n = 0,1, . . . ,m − 1. These can be rewritten in terms of continuation values

C∗
n(x) = E

[
V ∗

n+1
(
S(tn+1)

)∣∣S(tn) = x
]
, n = 0,1, . . . ,m − 1,

as

C∗
m(x) = 0,(4)

C∗
n(x) = E

[
max

{
hn+1

(
S(tn+1)

)
,C∗

n+1
(
S(tn+1)

)}∣∣S(tn) = x
]
,(5)

n = 0,1, . . . ,m − 1. The option values satisfy

V ∗
n (x) = max{hn(x),C∗

n(x)},
so these can be calculated from the continuation values.

2.2. Approximate dynamic programming. Exact calculation of (2)–(3) or
(4)–(5) is often impractical, and even estimation by Monte Carlo is challenging be-
cause of the difficulty of estimating the conditional expectations in these equations.
Approximate dynamic programming procedures replace these conditional expec-
tations with linear combinations of known functions, sometimes called “features”
but more commonly referred to as basis functions. Thus, for eachn = 1, . . . ,m,
let ψnk , k = 0, . . . ,K , be functions from�d to � and consider approximations of
the form

C∗
n(x) ≈

K∑
k=0

βnkψnk(x),

for some constantsβnk, or the corresponding approximation forV ∗
n . Working with

approximations of this type reduces the problem of finding the functionsC∗
n to one

of finding the coefficientsβnk. The methods of Longstaff and Schwartz [11] and
Tsitsiklis and Van Roy [17, 18] select coefficients through least-squares projection
onto the span of the basis functions. Other methods applying Monte Carlo to
solve (2)–(3) include Broadie and Glasserman [2, 3], Haugh and Kogan [9] and
Rogers [16]; for an overview, see Glasserman [8].

To simplify notation, we writeSn for S(tn). We write ψn for the vector of
functions (ψn0, . . . ,ψnK)�. The following basic assumptions will be in force
throughout:
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(A0) ψn0 ≡ 1 for n = 1, . . . ,m; E[ψn(Sn)] = 0, for n = 1, . . . ,m; and

�n = E[ψn(Sn)ψn(Sn)
�]

is finite and nonsingular,n = 1, . . . ,m.

For any square-integrable random variableY define the projection

�nY = ψ�
n (Sn)�

−1
n E[Yψn(Sn)].

Thus,

�nY =
K∑

k=0

akψnk(Sn)(6)

with

(a0, . . . , aK)� = �−1
n E[Yψn(Sn)].(7)

We also write

(�nY )(x) =
K∑

k=0

akψnk(x)

for the function defined by the coefficients (7).
Define an approximation to (4)–(5) as follows:Cm(x) ≡ 0,

Cn(x) = (
�n max{hn+1(Sn+1),Cn+1(Sn+1)})(x).(8)

As in (6), the application of the projection�n results in a linear combination of
the basis functions, so

Cn(x) = (�n max{hn+1,Cn+1}) (x) =
K∑

k=0

βnkψnk(x)(9)

with β�
n = (βn0, . . . , βnK) defined as in (7) but withY replaced by

Vn+1(Sn+1) ≡ max{hn+1(Sn+1),Cn+1(Sn+1)}.(10)

With the payoff functionshn fixed, we can rewrite (9) using the operator

LnCn+1 = �n(max{hn+1,Cn+1}).(11)

Exact calculation of the projection in (8) is usually infeasible, but it is relatively
easy to evaluate a sample counterpart of this recursion defined from a finite set
of simulated paths of the processS. We consider the following procedure to
approximate the coefficient vectorsβn and the continuation valuesCn.

Step 1. SetĈm = 0 andV̂m = max{hm, Ĉm} = hm.



AMERICAN OPTION PRICING 2095

Step 2. For eachn = 1, . . . ,m − 1, repeat the following steps: GenerateN

paths{S(i)
1 , . . . , S

(i)
n+1}, i = 1, . . . ,N , up to timetn+1, independent of each other

and of all previously generated paths. Calculate

γ̂n = 1

N

N∑
i=1

V̂n+1
(
S

(i)
n+1

)
ψn

(
S(i)

n

)
,

calculate the coefficientŝβn = �−1
n γ̂n and set

Ĉn = β̂�
n ψn ≡ L̂nĈn+1 ≡ �̂n max{hn+1, Ĉn+1},(12)

V̂n = max{hn, Ĉn}.(13)

Step 3. SetĈ0(S0) = N−1∑N
i=1 V̂1(S

(i)
1 ) andV̂0(S0) = max{h0(S0), Ĉ0(S0)}.

A few aspects of this algorithm require comment. In Step 3 we simply average
the estimated values att1 to get the continuation value at time 0 becauseS(0)

is fixed. The operatorŝLn and �̂n implicitly defined in (12) are the sample
counterparts of those in (6) and (11), using estimated rather than exact coefficients.
The coefficient estimates in Step 2 use the matrices�n. In ordinary least-squares
regression, each�n would be replaced with its sample counterpart,

1

N

N∑
i=1

ψn

(
S(i)

n

)
ψn

(
S(i)

n

)�
,

calculated from the simulated values themselves. (Owen [14] calls the use of
the exact matrixquasi-regression.) In our examples, the�n are indeed available
explicitly and using this formulation simplifies the analysis.

In Step 2 we have used an independent set of paths to estimate coefficients at
each date, though the algorithms of Longstaff and Schwartz [11] and Tsitsiklis
and Van Roy [17, 18] use a single set of paths for all dates. This modification is
theoretically convenient because it makes the coefficients ofĈn+1 independent of
the points at whichĈn+1 is evaluated in the calculation of̂γn. This distinction
is relevant only to the multiperiod analysis of Section 4 and disappears in the
single-period analysis of Section 3. The worst case over all multiperiod problems
is at least as bad as the worst single-period problem. The results in Section 3 thus
provide lower bounds on the worst-case convergence rate for multiperiod problems
whether one uses independent paths at each date or a single set of paths for all
dates.

3. Single-period problem. For the single-period problem, we fix datest1 <

t2 and consider the estimation of coefficientsβ0, . . . , βK in the projection of
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a function ofS2 onto the span ofψ1k(S1), k = 0, . . . ,K . Thus,

β = (β0, . . . , βK)� = �−1γ(14)

with � = �1 and γ = E[Yψ1(S1)] for someY . In a simplified instance of the
algorithm of the previous section, we simulateN independent copies(S(i)

1 , Y (i)),
i = 1, . . . ,N , and compute the estimate

β̃ = �−1γ̃ ,(15)

whereγ̃ is the unbiased estimator ofγ with components

γ̃k = 1

N

N∑
i=1

Y (i)ψ1k

(
S

(i)
1

)
, k = 0,1, . . . ,K.(16)

We analyze the convergence ofβ̃ (andγ̃ ) as bothN andK increase.
We denote by|x| the Euclidean norm of the vectorx. For a matrixA, we denote

by ‖A‖ the Euclidean matrix norm, meaning the square root of the sum of squared
elements ofA. It follows that|Ax| ≤ ‖A‖ |x| and then from (14) and (15),

1

‖�‖|γ̃ − γ | ≤ |β̃ − β| ≤ ‖�−1‖ |γ̃ − γ |.(17)

The Euclidean norm on vectors is a measure of the proximity of the functions
determined by vectors of coefficients. To make this more explicit, letb andc be
coefficient vectors and letSn have densitygn. Then

∫ ( K∑
k=0

bkψnk(x) −
K∑

k=0

ckψnk(x)

)2

gn(x) dx = (b − c)��n(b − c)

and

1

‖�−1
n ‖|b − c|2 ≤ (b − c)��n(b − c) ≤ ‖�n‖ |b − c|2.

Thus, the Euclidean norm on vectors gives theL2 norm (with respect togn) for
the functions determined by the vectors, up to factors of‖�n‖ and‖�−1

n ‖ that will
prove to be negligible in the settings we consider.

We therefore investigate the convergence of the expected squared difference
E[|β − β̃|2]. Because this is the mean square error ofβ̃, we also denote it by
MSE(β̃). Thus, (17) implies

1

‖�‖2 E[|γ̃ − γ |2] ≤ MSE(β̃) ≤ ‖�−1‖2E[|γ̃ − γ |2].(18)

For a given number of replicationsN and basis functionsK , MSE(β̃) can be
made arbitrarily large or small by multiplyingβ by a constant. To get meaningful
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results, we therefore adopt the following normalization:

(A1) |β| = 1.

We investigate the convergence of the supremum of theMSE(β̃) over all β

satisfying this condition. In order to investigate howN must grow withK , we
assume that the regression representation is, in fact, valid, in a sense implied by
the following two conditions:

(A2) Y has the form

Y =
K∑

k=0

akψ2k(S2),

for some constantsak.

(A3) There exist functionsfk :�+ → �+, k = 0, . . . ,K , such that

E[fk(t2)ψ2k(S2)|S1] = fk(t1)ψ1k(S1), t2 ≥ t1.

Condition (A3) states that theψnk(Sn) are martingales, up to a deterministic
function of time. Condition (A2), though a strong assumption in practice, makes
Theorems 1 and 2 more compelling: the rapid growth in the number of paths
implied by the theorems holds even though we have chosen the “correct” basis
functions, in the sense of (A2). The results of Section 4 give sufficient conditions
for convergence without such an assumption.

Under assumptions (A2) and (A3), we have

γk = E[Yψ1k(S1)]

= E

[
K∑

l=0

alψ2l(S2)ψ1k(S1)

]
(19)

=
K∑

l=0

al

fl(t1)

fl(t2)
E[ψ1l(S1)ψ1k(S1)].

The restriction onβ in (A1) then restrictsa.
Returning to the analysis ofMSE(β̃), (18) indicates that we need to analyze the

mean square error of̃γ , for which (sinceE[γ̃ ] = γ ) we get

E[|γ̃ − γ |2] =
K∑

k=0

Var[γ̃k](20)

=
K∑

k=0

1

N
E[Y 2ψ2

1k(S1)] − 1

N

K∑
k=0

γ 2
k .(21)
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Thus, using (18), (A2) and the Cauchy–Schwarz inequality,

MSE(β̃) ≤ ‖�−1‖2E[|γ̃ − γ |2]

≤ ‖�−1‖2
K∑

k=0

1

N
E[Y 2ψ2

1k(S1)](22)

≤ ‖�−1‖2 1

N

K∑
l=0

a2
l

K∑
k,j=0

E[ψ2
2j (S2)ψ

2
1k(S1)].

To get a lower bound, we may defineY ∗ = a∗
Kψ2K(S2), with a∗

K chosen such
that the correspondingβ∗ satisfies|β∗| = 1. Using (18) and (20), we then get

sup
|β|=1

MSE(β̃) ≥ 1

‖�‖2

(
K∑

k=0

1

N
E[Y ∗2ψ2

1k(S1)] − 1

N

K∑
k=0

γ 2
k

)
(23)

= 1

‖�‖2

(
a∗2
K

K∑
k=0

1

N
E[ψ2

2K(S2)ψ
2
1k(S1)] − 1

N

K∑
k=0

γ 2
k

)
.

From (22) and (23) we see that the key to the analysis of the uniform
convergence ofMSE(β̃) lies in the growth of fourth-order moments of the form
E[ψ2

2j (S2)ψ
2
1k(S1)]. This, in turn, depends on the choice of basis functions and

on the law of the underlying processS. We analyze the case of polynomials with
Brownian motion and geometric Brownian motion.

3.1. Normal setting. For this section, let{S(t),0 ≤ t ≤ T } be a standard
Brownian motion. We define the basis functions through the Hermite polynomials

Hen(x) =

n/2�∑
i=0

(−1)in!xn−2i

(n − 2i)!i!2i
, n = 0,1, . . . ,

where
n/2� denotes the integer part ofn/2. The Hermite polynomials have the
following useful properties: They are orthogonal with respect to the standard
normal densityφ, in the sense thatHe0 ≡ 1 and∫

Hei
(x)Hej

(x)φ(x) dx =
{

0, i �= j,

i!, i = j.

They define martingales, in the sense that (see, e.g., [15], page 151)

E
[
t
i/2
2 Hei

(
S(t2)√

t2

)∣∣∣S(t1)

]
= t

i/2
1 Hei

(
S(t1)√

t1

)
,

for t2 ≥ t1. And their squares admit the expansion

(
Hen(x)

)2 = (n!)2
n∑

i=0

He2i
(x)

(i!)2(n − i)! .(24)
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The functions

ψnk(x) = 1√
k!Hek

(
x/

√
tn
)

(25)

satisfy (A3) withfk(t) = tk/2. They are also orthogonal and their� matrix is the
identity. Thus,β = γ andβ̃ = γ̃ .

We can now state the main result of this section. Letρ = t2/t1, and forρ ≥ 1
define

cρ = 2 log
(
2+ √

ρ
)
.

THEOREM 1. Let ψnk be as in (25)and suppose (A2) holds. If K = (1− δ)×
logN/cρ for some δ > 0, then

lim
N→∞ sup

|β|=1
MSE(β̃) = 0.(26)

If K = (1+ δ) logN/cρ for some δ > 0, then

lim
N→∞ sup

|β|=1
MSE(β̃) = ∞.(27)

This result shows rather precisely that, from a sample size ofN , the highestK
for which coefficients of polynomials of orderK can be estimated uniformly well
is O(logN). Equivalently, the sample size required to achieve convergence grows
exponentially inK .

This is illustrated numerically in Table 1, which shows estimates ofMSE(β̃) for

TABLE 1
Estimates of MSE(β̃) for various combinations of K basis functions and N paths. The critical

values K = logN/cρ are displayed by in the bottom row and also indicated
by the horizontal line through the table

N

K 500 1000 2000 4000 8000 16000 32000 64000 128000

1 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.08 0.04 0.02 0.01 0.00 0.00 0.00 0.00 0.00
3 0.67 0.31 0.17 0.08 0.04 0.02 0.01 0.00 0.00
4 5.6 3.0 1.6 0.73 0.36 0.18 0.09 0.05 0.02
5 52.7 23.4 13.5 6.0 3.1 1.5 0.8 0.40 0.20
6 427.2 155.7 93.3 38.4 24.0 10.8 6.2 3.1 1.5
7 2403 1202 600.8 300.4 150.2 75.1 37.5 18.8 9.4
8 11447 5723 2862 1431 715.4 357.7 178.9 89.4 44.7
9 9856 4928 2464 1232 616 308 154

10 6109 3054 1527 764 381
11 2810 1405 702
12 1023

Bound 2.5 2.8 3.1 3.4 3.7 3.9 4.2 4.5 4.8
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various combinations ofN andK . The results shown are forY = ρK/2HeK
(S2/√

t2 )/
√

K!, with t1 = 1 andt2 = 2, a special case of theY we use to prove (27).
The estimates are computed as follows. For each entry of the table, we generate
5000 batches, each consisting ofN paths. From each batch we computeβ̃ and
then take the average of|β̃ − β|2 over the 5000 batches. This average provides
our estimate ofMSE(β̃) in each case withK ≤ 6. For K ≥ 7 this produced
unacceptably high variability, so for those cases we calculatedMSE(β̃) from 5000
replications ofN = 500,000 and then scaled the estimate byN .

The bottom row of the table displays the critical valuesK = logN/cρ provided
by Theorem 1; these values are also indicated by the horizontal line through the
table. As indicated by the theorem,MSE(β̃) explodes along any diagonal line
through the table steeper than the critical line, and remains small above the critical
line.

The proof of the theorem uses the following two lemmas, proved in Section 5.

LEMMA 1. For the ψnk in (25) and ρ = t2/t1,

E
[
ψ2k2(S2)ψ1k1(S1)

]= {
0, k1 �= k2,

ρ−k1/2, k1 = k2,
(28)

E
[
ψ2k2(S2)

2ψ1k1(S1)
2]= k1∧k2∑

k=0

ρ−k

(
2k

k

)(
k1
k

)(
k2
k

)
,(29)

with k1 ∧ k2 the minimum of k1 and k2. Equation (29) is strictly increasing in k1

and k2.

For the special casek1 = k2 = K , (29) yields

E[ψ2K(S2)
2ψ1K(S1)

2] =
K∑

k=0

ρ−k

(
2k

k

)(
2K

k

)2

.(30)

As a step toward bounding this expression, letk∗ denote the index of the largest
summand so that

ρ−k∗
(

2k∗
k∗

)(
K

k∗
)2

= max
0≤k≤K

ρ−k

(
2k

k

)(
K

k

)2

.(31)

Fork∗, we have the following lemma.

LEMMA 2. As K → ∞,

k∗ = 2

2+ √
ρ

K
(
1+ o(1)

)
.
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PROOF OF THEOREM 1. We boundMSE(β̃) from above based on (22).
Combining the fact thatβ = γ (because� = I ) with (19) and (28) we get

βk =
K∑

l=0

alE[ψ2l(S2)ψ1k(S1)] = akρ
−k/2.

Thus,|β| = 1 impliesa2
k ≤ ρk . From (30) and (31), we get

ρ−k∗
(

2k∗
k∗

)(
K

k∗
)2

< E[ψ2K(S2)
2ψ1K(S1)

2]
(32)

< (K + 1)ρ−k∗
(

2k∗
k∗

)(
K

k∗
)2

.

Recalling that� = I and applying the inequalitya2
k ≤ ρk to (22) we get

sup
|β|=1

MSE(β̃) ≤ sup
|β|=1

‖�−1‖2 1

N

K∑
l=0

a2
l

K∑
k,l=0

E[ψ2
2l(S2)ψ

2
1k(S1)]

≤ (K + 1)
1

N

K∑
k=0

ρk
K∑

k,l=0

E[ψ2
2k(S2)ψ

2
1l(S1)]

<
(K + 1)2

N
ρK(K + 1)2E[ψ2

2K(S2)ψ
2
1K(S1)](33)

<
(K + 1)5

N
ρK−k∗

(
2k∗
k∗

)(
K

k∗
)2

,(34)

where (33) follows from Lemma 1 and the last inequality follows from (32).
To get a lower bound on the supremum ofMSE(β̃) we use (23) with

Y ∗ = ρK/2ψ2K(S2) ≡ a∗
Kψ2K(S2),

for whichβK = 1 andβk = 0, k �= K . By applying Lemma 1 and the lower bound
in (32), (23) becomes

sup
|β|=1

MSE(β̃) ≥ 1

‖�‖2

1

N

(
a∗2
K

K∑
k=0

E[ψ2
2K(S2)ψ

2
1k(S1)] − 1

)

≥ 1

‖�‖2

a∗2
K

N
E[ψ2

2K(S2)ψ
2
1K(S1)]

≥ 1

K + 1

1

N
ρK−k∗

(
2k∗
k∗

)(
K

k∗
)2

.(35)
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By Stirling’s approximationn! ∼ √
2nπ(n

e
)n and Lemma 2 we get(

K

k∗
)

= K!
k∗!(K − k∗)!

=
√

2Kπ(K/e)K(1+ o(1))√
2k∗π

√
2(K − k∗)π(k∗/e)k∗

(K − k∗/e)K−k∗
(1+ o(1))

= 1√
2abKπaaKbbK

(
1+ o(1)

)
,(36)

with a = 2/(2+ √
ρ ) andb = 1− a. Also,(

2k∗
k∗

)
= 2k∗!

k∗!k∗!

=
√

4k∗π(2k∗/e)2k∗
(1+ o(1))

2k∗π(k∗/e)2k∗
(1+ o(1))

= 22aK

√
aKπ

(
1+ o(1)

)
.(37)

By substituting (36) and (37) into (34) and (35) we get

ρbK22aK

2N(K + 1)
√

aKπabKπa2aKb2bK

(
1+ o(1)

)
≤ sup

|β|=1
MSE(β̃)

≤ (K + 1)5ρbK22aK

2N
√

aKπabKπa2aKb2bK

(
1+ o(1)

)
.

Simple algebra verifies thatcρ = 2a log(2) − 2a log(a) − 2b log(b) + b log(ρ), so
we can rewrite these bounds as

ecρK

2N(K + 1)
√

aKπabKπ

(
1+ o(1)

)≤ sup
|β|=1

MSE(β̃)

≤ (K + 1)5ecρK

2N
√

aKπabKπ

(
1+ o(1)

)
.

If K = (1− δ) logN/cρ for someδ > 0, then asN → ∞,

log
{

(K + 1)5ecρK

2N
√

aKπabKπ

(
1+ o(1)

)}= −δ logN + o(logN) → −∞,

so (26) holds. IfK = (1+ δ) logN/cρ for someδ > 0, then asN → ∞,

log
{

ecρK

2N(K + 1)
√

aKπabKπ

(
1+ o(1)

)}= δ logN + o(logN) → ∞,
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and (27) holds. �

3.2. Lognormal setting. We now takeS to be geometric Brownian motion,
S(t) = exp(W(t) − t/2), with W a standard Brownian motion. For the basis
functionsψnk ≡ ψk , we use multiples of the powersxk to get the martingales

ψk(S(t)) = ekW(t)−k2t/2.(38)

These functions satisfy (A0). The main result of this section is the following:

THEOREM 2. Let the ψk be as in (38) and suppose (A2) holds. If

K =
√

(1− δ) logN

5t1 + t2

for some δ > 0, then

lim
N→∞ sup

|β|=1
MSE(β̃) = 0.

If

K =
√

(1+ δ) logN

3t1 + t2

for some δ > 0, then

lim
N→∞ sup

|β|=1
MSE(β̃) = ∞.

Compared with the normal case in Theorem 1, we see that hereK must be
much smaller—of the order of

√
logN . Accordingly,N must be much larger—of

the order of exp(K2). The analysis in this setting is somewhat more complicated
than in the normal case because theψk are no longer orthogonal. To prove the
theorem we state some lemmas that are proved in Section 5.

LEMMA 3. For t2 ≥ t1 and k1, k2 = 0, . . . ,K ,

E
[
ψk1(S1)ψk2(S2)

]= ek1k2t1,

E
[
ψ2

k1
(S1)ψ

2
k2

(S2)
]= ek2

1t1+k2
2t2+4k1k2t1,

and E[ψk1(S1)
2ψk2(S2)

2] is strictly increasing in k1 and k2.
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Using the first statement in the lemma, we find that the matrix�(t) with ij th
entryE[ψi−1(S(t))ψj−1(S(t))] is given by

�(t) =




1 1 1 · · · 1
1 et e2t · · · eKt

1 e2t e4t · · · e2Kt

...
...

...
. . .

...

1 eKt e2Kt · · · eK2t




.

We write� for �(t1).

LEMMA 4. We have ‖�(t)‖ ≤ (K + 1)2e2K2t and, with C(t) = exp(−2e/

(et − 1)2),

‖�(t)−1‖ ≤ C−1(t)K(K + 1)

(
et

et − 1

)K

.

PROOF OFTHEOREM 2. Condition (A2) and the martingale property of the
ψk(S(t)) imply that

E[Y |S1] =
K∑

k=0

akψk(S1),

and, thus, thatβk = ak , k = 0,1, . . . ,K . In this case, the normalization|β| = 1 is
equivalent to|(a0, . . . , aK)| = 1. Applying this in (22) and then applying Lemmas
3 and 4 we get

sup
|β|=1

MSE(β̃) ≤ sup
|β|=1

‖�−1‖2 1

N
E

[
K∑

k=0

ψ2
k (S2)ψ

2
K(S1)

]

≤ ‖�−1‖2 1

N
(K + 1)E[ψ2

K(S2)ψ
2
K(S1)]

≤ C−2(t1)K
2(K + 1)2

(
et1

et1 − 1

)2K K + 1

N
e5K2t1+K2t2.

If we now takeK =
√

(1−δ) logN
5t1+t2

, then asN → ∞,

log
{
C(t1)

2K2(K + 1)3
(

et1

et1 − 1

)2K 1

N
e5K2t1+K2t2

(
1+ o(1)

)}

= −δ logN + o(logN) → −∞,

which proves the first assertion in the theorem.
For the second part of the theorem, define

Y ∗ = eKW(t2)−K2t2/2,
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for which β∗ is (0, . . . ,0,1)�. The corresponding vectorγ ∗ is �β∗, the
last column of �. Applying this in (23) and using Lemmas 3 and 4 we
get

sup
|β|=1

MSE(β̃) ≥ 1

‖�‖2

(
K∑

k=0

1

N
E[ψ2

K(S2)ψ
2
k (S1)] − 1

N

K∑
k=0

(γ ∗
k )2

)

≥ 1

‖�‖2

1

N

(
E[ψ2

K(S2)ψ
2
K(S1)] − (γ ∗

K)2)

≥ 1

N(K + 1)2e2K2t1

(
e5K2t1+K2t2 − e2K2t1

)

= 1

N(K + 1)2e3K2t1+K2t2
(
1+ o(1)

)
.

If we now takeK =
√

(1+δ) logN
3t1+t2

, then asN → ∞,

log
{

1

N(K + 1)2
e3K2t1+K2t2

(
1+ o(1)

)}= δ logN + o(logN) → ∞,

proving the second assertion in the theorem.�

The analysis of this section differs from the normal setting of Section 3.1
in that the polynomials (38) are not orthogonal. In the Brownian case, the
Hermite polynomials are orthogonal and (after appropriate scaling) martingales.
In using (38), we have chosen to preserve the martingale property rather than
orthogonality. As a consequence‖�−1‖ and 1/‖�‖ appear in our bounds on
MSE(β̃). From Lemma 4 we see that‖�−1‖ has an asymptotically negligible
effect on the upper bound forMSE(β̃), and with or without the factor of 1/‖�‖,
the lower bound onMSE(β̃) is exponential in a multiple ofK2. The slower
convergence rate in the lognormal setting therefore does not appear to result from
the lack of orthogonality.

4. Multiperiod problem. We now turn to conditions that ensure convergence
of the multiperiod algorithm in Section 2.2 as both the number of basis functionsK

and the number of pathsN increase. We first formulate a general result bounding
the error in the estimated continuation values, then specialize to the normal and
lognormal settings.

4.1. General bound. We use the following conditions.

(B1) E[ψ2
nk(Sn)] andE[ψ4

nk(Sn)] are increasing inn andk.

As explained in the discussion of the single-period problem, we need some nor-
malization on the regression coefficients in order to make meaningful statements
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about worst-case convergence. For a problem withm exercise opportunities, we
impose

(B2) |βm−1| = 1.

This condition is analogous to the one we used in the single-period problem,
whereβ was a vector of coefficients at timet1 andY was a linear combination
of functions evaluated atS(t2).

We also need a condition on the functionshn that determine the payoff upon
exercise at timetn. The following condition turns out to be convenient:

(B3) E[h4
n(Sn)] ≤ ( tn

tn−1
)2KE[ψ4

nK(Sn)], for n = 0,1, . . . ,m.

SupposeSn has densitygn and define the weightedL2 norm on functions
G :� → �,

‖G‖n =
√∫

G(x)2 gn(x) dx.

With Ĉn the estimated continuation value defined by (12), we analyze the error
E[‖Ĉn − Cn‖2

n].
We need some additional notation. Let

c = max
n=1,...,m−1

tn+1

tn
, BK = max

n=1,...,m−1
‖�−1

n ‖,

HK = max{cK,B2
K(K + 1)}, AK = (K + 1)HKE[ψ4

mK(Sm)].
Under (A0),BK is well defined. We can now state the main result of this section.

THEOREM 3. If assumptions (A0) and (B1)–(B3)hold, then

E[‖Ĉn − Cn‖2
n] ≤ (2m−n − 1)

(K + 1)2

N
BKAm−n

K

(
E[ψ2

mK(Sm)])2(1+ o(1)
)
.(39)

This result is proved in Section 6. Its consequences will be clearer once we
illustrate it in the normal and lognormal settings.

4.2. Multiperiod examples.

4.2.1. Normal setting. As in Section 3.1, letS be a standard Brownian motion
and let theψnk be as in (25). Each�n is then the identity matrix,n = 1, . . . ,m. It
follows that

BK = max
n

‖�−1
n ‖ = √

K + 1.(40)

Also,

HK = max{cK,B2
K(K + 1)} = cK

for all sufficiently largeK .
To boundE[ψ4

mK(Sm)] (which appears inAK ), we use (29) (witht1 = t2 and
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k1 = k2 = K) and then Stirling’s formula and Lemma 2 to get

E[ψ4
mK(Sm)] =

K∑
k=0

(
2k

k

)(
K

k

)2

≤ (K + 1)
9
√

3

4
√

2K3π3
32K

(
1+ o(1)

)
.

The expression on the right follows from (32), (36) and (37) upon noting that with
ρ = 1 we geta = 2/3 andb = 1/3. Substituting this expression and (40) into (39)
yields

E[‖Ĉn − Cn‖2]

< (2m−n − 1)
(K + 1)2m−2n+5/2

N

(
9
√

3

4
√

2K3π3
32K

)m−n

c(m−n)K
(
1+ o(1)

)
.

It now follows that if

K = (1− δ) logN

(m − n)(2 log3+ logc)

for someδ > 0, then

lim
N→∞ sup

|βm−1|=1
E[‖Ĉn − Cn‖2

n] = 0.(41)

In other words, we have convergence of the estimated continuation values at all
exercise opportunities, as bothN andK increase. If the basis functions eventually
span the true optimum, in the sense that‖Cn − C∗

n‖n → 0 asK → ∞, then by the
triangle inequality, (41) holds withCn replaced byC∗

n .
On the other hand, from Theorem 1 we know that ifK = (1 + δ) logN/cρ for

anyδ > 0, with ρ = tm/tm−1, then

lim
N→∞ sup

|βm−1|=1
E[‖Ĉm−1 − Cm−1‖2

m−1] = ∞.

Thus, the crititcal rate ofK for the multiperiod problem isO(logN), just as in the
single-period problem.

4.2.2. Lognormal setting. Now we takeS to be geometric Brownian motion
and use the basis functions of Section 3.2. In this case we have

BK = max
n

‖�−1
n ‖ < max

n
C−1(tn)

(
etn

etn − 1

)K−1

< e2e/et1−1
(

et1

et1 − 1

)K−1

,

the first inequality following from Lemma 4, the second following from the fact
that bothC(tn) and( etn

etn−1)K−1 achieve their maximum values atn = 1.

As in Lemma 3, we haveE[ψ4
mK(Sm)] = exp(6K2tm) and E[ψ2

mK(Sm)] =
exp(K2tm). Making these substitution inAK and in (39), we get

E[‖Ĉn − Cn‖2
n] < (2m−n − 1)

(K + 1)m−n+2

N(42)
× BKHm−n

K e6(m−n)K2tm+2K2tm
(
1+ o(1)

)
.
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The factor(K + 1)2 is negligible compared to the exponential factor in (42). The
factorsBK andHK grow exponentially inK , but their exponents are linear inK ,
whereas the dominant exponent in (42) is quadratic inK . Thus,BK andHK are
also negligible for largeK . If we set

K =
√

(1− δ) logN

(6(m − n) + 2)tm

for anyδ > 0, then

lim
N→∞ sup

|βm−1|=1
E[‖Ĉn − Cn‖2

n] = 0.

On the other hand, we know from Theorem 2 that if

K =
√

(1+ δ) logN

3tm + tm−1

for anyδ > 0, then

lim
N→∞ sup

|βm−1|=1
E[‖Ĉm−1 − Cm−1‖2

m−1] = ∞.

Thus, the crititcal rate ofK for the multiperiod problem isO(
√

logN ), just as in
the single-period problem.

5. Proofs for the single-period problem.

5.1. Normal setting.

PROOF OFLEMMA 1. Equation (28) follows immediately from the orthogo-
nality and martingale properties of the Hermite polynomials. Using (24), we get

E
[
ψ2

2k2
(S2)ψ

2
1k1

(S1)
]= E

[(Hek2
(S2/

√
t2 )√

k2!
Hek1

(S1/
√

t1 )√
k1!

)2]

= (k1!k2!)E
[

k2∑
k=0

He2k
(S2/

√
t2 )

(k!)2(k2 − k)!
k1∑

l=0

He2l
(S1/

√
t1 )

(l!)2(k1 − l)!
]

= (k1!k2!)
k2∑

k=0

k1∑
l=0

E[He2k
(S2/

√
t2 )He2l

(S1/
√

t1 )]
(k!)2(k2 − k)!(l!)2(k1 − l)!

= (k1!k2!)
k1∧k2∑
k=0

(2k)! (t1/t2)
k

(k!)2(k2 − k)!(k!)2(k1 − k)!

=
k1∧k2∑
k=0

ρ−k

(
2k

k

)(
k1
k

)(
k2
k

)
.

The fourth equality applies (28).�
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PROOF OFLEMMA 2. The ratio between the(k + 1)st summand and thekth
summand in (30) is

rkK = ρ−(k+1)
(2k+2

k+1

)( K
k+1

)2
ρ−k

(2k
k

)(K
k

)2 = 2(2k + 1)

ρ(k + 1)

(K − k)2

(k + 1)2 .

For 0≤ k ≤ K − 1, its derivative with respect tok is

1

ρ(k + 1)4

(
8kK(k − K) + 4(k − K) + 10k2 − 8kK − 2K2)< 0.

Thus,rkK is strictly decreasing ink. At k = 0, rkK = 4K2/ρ, which is greater
than 1 for all sufficiently largeK ; and atk = K − 1,

rK−1,K = 2(2K − 1)

ρK3 ,

which is less than 1 for allK ≥ 2. Thus, for all sufficiently largeK , k∗ is
characterized by the condition

k∗ = min{k : rkK ≤ 1}.
The conditionrkK ≤ 1 is equivalent to

4(K − k)2

ρ(k + 1)2 ≤ 2k + 2

2k + 1
,(43)

and(2k +2)/(2k +1) is greater than 1 for all positivek. The ratio on the left-hand
side of (43) is decreasing ink, 0≤ k ≤ K − 1, so if we define

k1 = min
{
k :

4(K − k)2

ρ(k + 1)2 ≤ 1
}
,(44)

thenk∗ ≤ k1.
For any fixedk, the inequality in (43) will be violated for all sufficiently

largeK , sok∗ must increase without bound asK → ∞. It follows that(2k∗ + 2)/

(2k∗ + 1) → 1. If for someε > 0, we define

k2 = min
{
k :

4(K − k)2

ρ(k + 1)2 ≤ 1+ ε

}
,

thenk∗ ≥ k2 for all sufficiently largeK . Thus,k2 ≤ k∗ ≤ k1.
Fork1, we examine the equation

4(K − k)2

ρ(k + 1)2 = 1.

The only root of this equation less thanK is

k̂ = 2K − √
ρ

2+ √
ρ

=
(

2

2+ √
ρ

)
K
(
1+ o(1)

)
.
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The solutionk1 to (44) is either
k̂� or 
k̂� + 1, sok1/k̂ → 1.
The same argument applied to the equation

4(K − k)2

ρ(k + 1)2
= 1+ ε

shows that

k2 =
(

2

2+ √
ρ(1+ ε)

)
K
(
1+ o(1)

)
.

Noting that we may takeε > 0 arbitrarily small andk2 ≤ k∗ ≤ k1 concludes the
proof. �

5.2. Lognormal setting.

PROOF OF LEMMA 3. Using the martingale property ofψk(S(t)) and the
moment generating function ofW(t1), we get

E
[
ψk1(S(t1))ψk2(S(t2))

]= E
[
E
[
ψk1(S(t1))ψk2(S(t2))

∣∣W(t1)
]]

= E
[
ψk1(S(t1))ψk2(S(t1))

]
= E

[
e(k1+k2)W(t1)−k2

1t1/2−k2
2t2/2]

= ek1k2t1.

The second part of the lemma works similarly.�

PROOF OF LEMMA 4. The first assertion follows from the observation that
the largest entry of� is eK2t . For the second assertion, we note that� has the
form of a Vandermonde matrix, allowing calculation of its determinant (using [12],
page 322),

det� = ∏
0≤q<r≤K

(ert − eqt).(45)

By standard linear algebra, the inverse of� is given by

�−1 = �∗

det�
,(46)

where

�∗
qr = (−1)q+r det�(q|r),

and�(q|r) denotes the matrix obtained by deleting theqth row andr th column
from �. Two cases arise, depending on whetherq = r = 1 or not.
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Case 1. q �= 1 or r �= 1. Since� is symmetric, det�(q|r) = det�(r|q), so
it suffices to supposer �= 1. We can then compute the determinant of�(q|r)
using [12], page 333. Through (46) this leads to

�−1
qr = (−1)q+r ∑

s1<···<sK−(r−1),sd �=q−1 exp{∑K−(r−1)
d=1 sd t}∏q−2

j=0(e
(q−1)t − ejt )

∏K
j=q(e

j t − e(q−1)t )
,(47)

the sum ranging overs1, . . . , sd taking values in{0, . . . ,K}.
The lemma requires an upper bound on the numerator and a lower bound on the

denominator. To bound the numerator, forr̂ = 1, . . . ,K − 1, set

R(K,q, r̂) = ∑
s1<···<sr̂ ,sd �=q−1

exp

{
r̂∑

d=1

sdt

}
.

We now claim that

R(K,q, r̂) < R(K,1, r̂) <
er̂(K+1)t

(et − 1)r̂ er̂(r̂−1)t/2
(48)

for r̂ = 1, . . . ,K − 1. That R(K,q, r̂) < R(K,1, r̂) is immediate from the
definition ofR(K,q, r̂). The second inequality is proved by induction inr̂ . When
r̂ = 1,

R(K,1, r̂) = (et + · · · + eKt) <
e(K+1)t

et − 1
.

Then

R(K,1, r̂ + 1) = ∑
s1<···<sr̂+1,sd �=0

exp

{
r̂+1∑
d=1

sd t

}

=
K−r̂∑
i1=1

K−r̂+1∑
i2=i1+1

· · ·
K∑

ir̂+1=r̂+1

exp

{
r̂+1∑
j=1

ij t

}

=
K−r̂∑
i1=1

ei1tR(K,1, r̂)

<

K−r̂∑
i1=1

ei1t
er̂(K+1)t

(et − 1)r̂ er̂(r̂−1)t/2

<
e(K+1−r̂)t

et − 1

er̂(K+1)t

(et − 1)r̂ e
∑r̂−1

j=1 j t

= e(r̂+1)(K+1)t

(et − 1)r̂+1er̂(r̂+1)t/2
.(49)
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Thus, (48) holds.
The fact that

∂

∂r̂

(
er̂(K+1)t

(et − 1)r̂er̂(r̂−1)t/2

)
> 0,

implies that (49) achieves its maximum whenr̂ = K − 1. Thus,

R(K,q, r̂) <
e(K−1)(K+1)t

(et − 1)K−1e(K−1)(K−2)t/2
,(50)

for q = 1, . . . ,K + 1, r = 2, . . . ,K + 1.
Next, we show that the denominator of (47) is bounded below byC(t)exp(K ×

(K + 1)t/2), with C(t) = exp(−2e/(et − 1)2). For this, we rewrite the denomina-
tor of (47) as

q−2∏
j=0

(
e(q−1)t − ejt) K∏

j=q

(
ejt − e(q−1)t)

=
q−2∏
j=0

e(q−1)t

(
1− ejt

e(q−1)t

) K∏
j=q

ej t

(
1− e(q−1)t

ej t

)

= e
(q−1)2t+∑K

j=q j t
q−1∏
j=1

(
1− 1

ejt

)K−q+1∏
j=1

(
1− 1

e(q−1)t

)
(51)

> eK(K+1)t/2+(q−1)(q−2)/2
K∏

j=1

(
1− 1

ejt

) K∏
j=1

(
1− 1

ejt

)

> eK(K+1)t/2
K∏

j=1

(
1− 1

ejt

)2

.

Taking the logarithm of the product overj and applying a Taylor expansion yields
terms of the form

log
(

1− 1

ejt

)
= − 1

ejt
− 1

2e2j t
− · · · − 1

nenjt
− · · ·

> − 1

ejt
− 1

e(j+1)t
− · · · − 1

e(n−1+j)t
− · · ·

= − 1

ejt

et

et − 1
.

Therefore,
K∑

j=1

log
(

1− 1

ejt

)
> − et

et − 1

K∑
j=1

1

ejt
= −et

(et − 1)2

(
1+ o(1)

)
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and

K∏
j=1

(
1− 1

ejt

)
> e−e/(et−1)2

.(52)

Finally, by (51) and (52), we get that the denominator of (47) is bounded below by

e−2e/(et−1)2
eK(K+1)t/2.(53)

Applying this lower bound and (50) to (47), we get

�−1
qr < e2e/(et−1)2

(
et

et − 1

)K−1

= C−1(t)

(
et

et − 1

)K−1

(54)

for q, r not both equal to 1.

Case 2. q = 1 andr = 1. Because��−1 = I and all entries of the first row
of � are 1, we have

|�−1
11 | =

∣∣∣∣∣1−
K+1∑
r=2

�−1
1r

∣∣∣∣∣< 1+
K+1∑
r=2

|�−1
1r | < C−1(t)K

(
et

et − 1

)K

.(55)

Combining (54) and (55) we get

‖�−1‖ =
√∑

q,r

(�−1
qr )2 < C−1(t)(K + 1)K

(
et

et − 1

)K−1

.

�

6. Proofs for the multiperiod problem. As a tool for proving Theorem 3, we
introduce a second sequence of coefficient estimatesβ̃n andγ̃n. At eachn, β̃n is
the vector of coefficients that would be obtained using the algorithm of Section 2.2
if the coefficientsβn+1 were known exactly. More explicitly,

β̃n = �−1
n

(
1

N

N∑
i=1

Vn+1
(
S

(i)
n+1

)
ψn

(
S(i)

n

))

≡ �−1
n γ̃n,

with Vn+1 as in (10). The distinction between this and Step 2 of the algorithm is
that hereVn+1 uses the true coefficientsβn [as in (9)], whereaŝVn+1 in (13) uses
the estimated coefficientŝβn+1. The estimates̃βn and γ̃n are not computable in
practice and are simply used as a device for the proof. From the coefficientsβ̃n

define

C̃n(x) =
K∑

k=0

β̃nkψnk(x) = (L̂nCn+1)(x).
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Thus,C̃n results from applying the estimated operatorL̂n to the exact function
Cn+1, whereasĈn results from applying the estimated operator to the estimated
functionĈn+1.

The proof of Theorem 3 also relies on two lemmas.

LEMMA 5. Under conditions (A0) and (B1)–(B3),

|γm−n|2 ≤ (
2HKE[ψ4

mK(Sm)])n−1
(K + 1)n+1(E[ψ2

mK(Sm)])2(1+ o(1)
)

for n = 1, . . . ,m − 1.

PROOF. First note that for anyx ∈ �,

C2
n(x) = (

ψ�
n (x)�−1

n γn

)2 ≤ |ψn(x)|2‖�−1
n ‖2|γn|2.

By the definition ofγ , together with the fact|max{a, b}| ≤ |a| + |b|, we get

|γn,k| = ∣∣E[ψnk(Sn)max{hn+1(Sn+1),Cn+1(Sn+1)}]∣∣
≤ E

[|ψnk(Sn)hn+1(Sn+1)|]+ E
[|ψnk(Sn)ψ

�
n+1(Sn+1)�

−1
n+1γn+1|]

≤
√

E[ψ2
nk(Sn)]E[h2

n+1(Sn+1)]

+ ‖�−1
n+1‖|γn+1|

√
E[ψ2

nk(Sn)|ψn+1(Sn+1)|2]
≤
√

cKE[ψ4
mK(Sm)] + BK |γn+1|

√
(K + 1)

√
E[ψ4

mK(Sm)].
The last inequality uses (B1), (B3) and the inequalityE[h2] ≤√

E[h4]. Thus,

|γn|2 =
K∑

k=0

γ 2
n,k

≤ 2(K + 1)E[ψ4
mK(Sm)](cK + B2

K(K + 1)|γn+1|2)(56)

≤ 2(K + 1)E[ψ4
mK(Sm)]HK(1+ |γn+1|2),

with HK = max{cK,B2
K(K + 1)} as defined in Section 4.1.

Conditions (B1) and (B2) imply that

|γm−1|2 ≤ ‖�m−1‖2 ≤ (K + 1)2(E[ψ2
mK(Sm)])2.

Then (56) gives

|γm−2|2 ≤ 2(K + 1)E[ψ4
mK(Sm)]HK(1+ |γm−1|2)

= 2HKE[ψ4
mK(Sm)](K + 1)3(E[ψ2

mK(Sm)])2(1+ o(1)),

|γm−3|2 ≤ 2(K + 1)E[ψ4
mK(Sm)]HK(1+ |γm−2|2)

= (
2HKE[ψ4

mK(Sm)])2(K + 1)4(E[ψ2
mK(Sm)])2(1+ o(1)

)
and, proceeding by induction, completes the proof.�
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LEMMA 6. Under conditions (A0) and (B1)–(B3),

E[‖Ĉn − Cn‖2
n] ≤ BK

m−n∑
l=1

Am−n−l
K E[|γ̃m−l − γm−l|2].

PROOF. By the definition ofC, Ĉ andC̃ and the triangle inequality, we have

E[‖Ĉn − Cn‖2
n] = E[‖L̂nĈn+1 − LnCn+1‖2

n]
≤ E[‖L̂nĈn+1 − L̂nCn+1‖2

n + ‖L̂nCn+1 − LnCn+1‖2
n].

Now,

L̂nĈn+1 − L̂nCn+1 = ψ�
n �−1

n (γ̂n − γ̃n),

so

‖L̂nĈn+1 − L̂nCn+1‖2
n

= (γ̂n − γ̃n)
��−1

n

(∫
ψn(x)ψn(x)�gn(x) dx

)
�−1

n (γ̂n − γ̃n)

= (γ̂n − γ̃n)
��−1

n (γ̂n − γ̃n)

≤ ‖�−1
n ‖|(γ̂n − γ̃n)|2.

The same bound holds witĥLnCn+1 replaced byLnCn+1 andγ̂n replaced byγn.
Thus,

E[‖Ĉn − Cn‖2
n] ≤ BK(E[|γ̂n − γ̃n|2] + E[|γ̃n − γn|2]).(57)

Using the definitions of̂γn andγ̃n and the inequality|max{a, b}−max{a, c}| ≤
|b − c|, we get

(γ̂nk − γ̃nk)
2 ≤

(
1

N

N∑
i=1

∣∣ψnk

(
S(i)

n

)∣∣ ∣∣max
{
hn+1

(
S

(i)
n+1

)
, Ĉn+1

(
S

(i)
n+1

)}

− max
{
hn+1

(
S

(i)
n+1

)
,Cn+1

(
S

(i)
n+1

)}∣∣)2

(58)

≤
(

1

N

N∑
i=1

∣∣ψnk

(
S(i)

n

)∣∣ ∣∣Ĉn+1
(
S

(i)
n+1

)− Cn+1
(
S

(i)
n+1

)∣∣)2

≤ 1

N

N∑
i=1

ψ2
nk

(
S(i)

n

)(
Ĉn+1

(
S

(i)
n+1

)− Cn+1
(
S

(i)
n+1

))2
.

The pathsS(i), i = 1, . . . ,N , in this expression are independent of the coefficients
of Ĉn+1 (see Step 2 of the algorithm), so

E[(γ̂nk − γ̃nk)
2] = E

[
ψ2

nk(Sn)
(
Ĉn+1(Sn+1) − Cn+1(Sn+1)

)2]
,(59)
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with (Sn, Sn+1) independent of the coefficients ofĈn+1.
To bound (59), we use(

Ĉn+1(Sn+1) − Cn+1(Sn+1)
)2 = (

ψ�
n+1(Sn+1)�

−1
n+1(γ̂n+1 − γn+1)

)2
≤ |ψ�

n+1(Sn+1)|2‖�−1
n+1‖2|γ̂n+1 − γn+1|2.

The independence of(Sn, Sn+1) andγ̂n+1 then gives

E
[
ψ2

nk(Sn)
(
Ĉn+1(Sn+1) − Cn+1(Sn+1)

)2]
≤ ‖�−1

n+1‖2E[ψ2
nk(Sn)|ψn+1(Sn+1)|2]E[|γ̂n+1 − γn+1|2]

≤ B2
K(K + 1)E[ψ2

nK(Sn)ψ
2
n+1,K(Sn+1)]E[|γ̂n+1 − γn+1|2]

≤ B2
K(K + 1)

√
E[ψ4

nK(Sn)]E[ψ4
n+1,K(Sn+1)]E[|γ̂n+1 − γn+1|2]

≤ B2
K(K + 1)E[ψ4

mK(Sm)]E[|γ̂n+1 − γn+1|2],
the last inequality following from (B1).Using this bound with(58) and (59), we
get

E[|γ̂n − γ̃n|2] =
K∑

k=0

E[(γ̂n,k − γ̃n,k)
2]

≤ (K + 1)2B2
KE[ψ4

mK(Sm)]E[|γ̂n+1 − γn+1|2]
≤ AKE[|γ̂n+1 − γn+1|2](60)

≤ AKE[|γ̂n+1 − γ̃n+1|2] + AKE[|γ̃n+1 − γn+1|2].(61)

By iteratively using (60)–(61), we get

E[|γ̂n − γ̃n|2]

≤ Am−n−1
K E[|γ̂m−1 − γm−1|2] +

m−n−1∑
l=2

Am−n−l
K E[|γ̃m−l − γm−l|2]

= Am−n−1
K E[|γ̃m−1 − γm−1|2] +

m−n−1∑
l=2

Am−n−l
K E[|γ̃m−l − γm−l|2]

=
m−n−1∑

l=1

Am−n−l
K E[|γ̃m−l − γm−l|2],

becausêγm−1 = γ̃m−1 (sinceĈm = Cm = 0). Using this bound in (57) concludes
the proof. �

PROOF OF THEOREM 3. Because each̃γnk is an unbiased estimate of the
correspondingγnk, E[(γ̃nk − γnk)

2] is the variance of̃γnk and is therefore bounded
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above by the second moment ofγ̃nk . Thus,

E[|γ̃m−n − γm−n|2]

=
K∑

k=0

E[(γ̃m−n,k − γm−n,k)
2]

≤
K∑

k=0

1

N
E
[
ψ2

m−n,k(Sm−n)max{h2
m−n+1(Sm−n+1),C

2
m−n+1(Sm−n+1)}]

≤
K∑

k=0

1

N
E
[
ψ2

m−n,k(Sm−n)
(
h2

m−n+1(Sm−n+1) + C2
m−n+1(Sm−n+1)

)]

≤
K∑

k=0

1

N
E[ψ2

m−n,k(Sm−n)h
2
m−n+1(Sm−n+1)]

(62)

+
K∑

k=0

1

N
E
[
ψ2

m−n,k(Sm−n)‖�−1
m−n‖2|γm−n|2|ψm−n+1(Sm−n+1)|2].

For the first term in (62) we use the Cauchy–Schwarz inequality, (B1) and (B3) to
get

K∑
k=0

1

N
E[ψ2

m−n,k(Sm−n)h
2
m−n+1(Sm−n+1)]

≤ K + 1

N

√
E[ψ4

mK(Sm)]E[h4
m−n+1(Sm−n+1)](63)

≤ K + 1

N
HKE[ψ4

mK(Sm)].
For the second term in (62) we again use Cauchy–Schwarz and (B1) to get

K∑
k=0

1

N
E
[
ψ2

m−n,k(Sm−n)‖�−1
m−n‖2|γm−n|2|ψm−n+1(Sm−n+1)|2]

(64)
≤ K + 1

N
HKE[ψ4

mK(Sm)]|γm−n|2.
Combining (62)–(64) and Lemma 5 we arrive at

E[|γ̃m−n − γm−n|2]

≤ (K + 1)n+2

N
2n−1(HKE[ψ4

mK(Sm)])n(E[ψ2
mK(Sm)])2(1+ o(1)

)

= 2n−1(K + 1)2

N
An

K

(
E[ψ2

mK(Sm)])2(1+ o(1)
)
.
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By Lemma 6, we now get

E[‖Ĉn − Cn‖2
n]

≤ BK

(
m−n∑
l=1

Am−n−l
K E[|γ̃m−l − γm−l|2]

)

≤ BK

(K + 1)2

N
Am−n

K

(
E[ψ2

mK(Sm)])2
× (1+ 2+ · · · + 2m−n−1)

(
1+ o(1)

)
= (2m−n − 1)BK

(K + 1)2

N
Am−n

K

(
E[ψ2

mK(Sm)])2(1+ o(1)
)
,

which concludes the proof.�

7. Concluding remarks. It is natural to ask to what extent our results depend
on the fact that the basis functions we consider are polynomials. Some insight into
this question can be gleaned from the analysis of the lower bound onMSE(β̃) in
the proof of Theorem 1. The lower bound results from choosingY = aKψ2K(S2)

and its growth is driven by the second momenta2
KE[ψ2

2K(S2)ψ
2
1K(S1)]. With ψ1K

orthogonal to the other basis functions att1, the condition|β| = 1 translates to
aK = 1/E[ψ2K(S2)ψ1K(S1)]. Thus, the growth of the lower bound is driven by
the growth of the ratio

E[ψ2
2K(S2)ψ

2
1K(S1)]

(E[ψ2K(S2)ψ1K(S1)])2

asK increases. A few examples show that this ratio does indeed grow withK

even for choices of functions that grow much less quickly than polynomials. In the
case of Brownian motion, explicit calculations show that forψjK(x) = 1{x > K},
the ratio isO(K exp(K2/2t1)) and for ψjK(x) = max{0, x − K}, the ratio is
O(K3 exp(K2/2t1)), so in both of these cases the growth rate is even faster
than for the polynomials in Theorem 1. WithψjK(x) = xK exp(−x), numerical
calculations indicate that the ratio is roughly linear inK (thus requiring roughly
linear growth ofN ), but its magnitude is very large even at small values ofK .
These simple illustrations suggest that the phenomena observed in this paper may
occur more generally. But see [7] for more positive results using bounded basis
functions.
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