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NUMBER OF PATHS VERSUS NUMBER OF BASIS FUNCTIONS IN
AMERICAN OPTION PRICING?

BY PAUL GLASSERMAN AND BIN YU
Columbia University

An American option grants the holder the right to select the time at which
to exercise the option, so pricing an American option entails solving an op-
timal stopping problem. Difficulties inpplying standarchumerical methods
to complex pricing problems have motivated the development of techniques
that combine Monte Carlo simulation with dynamic programming. One class
of methods approximates the option value at each time using a linear com-
bination of basis functions, and combines Monte Carlo with backward in-
duction to estimate optimal coefficients in each approximation. We analyze
the convergence of such a method as both the number of basis functions and
the number of simulated paths increase. We get explicit results when the ba-
sis functions are polynomials and the underlying process is either Brownian
motion or geometric Brownian motion. We show that the number of paths
required for worst-case convergence grows exponentially in the degree of the
approximating polynomials in the case of Brownian motion and faster in the
case of geometric Brownian motion.

1. Introduction. An American option grants the holder the right to select the
time at which to exercise the option, and in this differs from a European option
which may be exercised only at a fixed date. A standard result in the theory of
contingent claims states that the equilibrium price of an American option is its
value under an optimal exercise policy (see, e.g., Chapter 8 of [6]). Pricing an
American option thus entails solving an optimal stopping problem, typically with
a finite horizon.

Solving this optimal stopping problem and pricing an American option are
relatively straightforward in low dimensions. Assuming a Markovian formulation
of the problem, the relevant dimension is the dimension of the state vector, and
this is ordinarily at least as large as the number of underlying assets on which
the payoff of the option depends. In up to about three dimensions, the problem
can be solved using a variety of numerical methods, including binomial lattices,
finite-difference methods and techniques based on variational inequalities. (See,
e.g., Chapter 5 of [10] or Chapter 9 of [19] for an introduction to these methods.)
But many problems arising in practice have much higher dimensions, and these
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applications have motivated the development of Monte Carlo methods for pricing
American options. The optimal stopping problem embedded in the valuation of
an American option makes this an unconventional and challenging problem for
Monte Carlo.

One class of techniques, based primarily on proposals of Carriere [4], Longstaff
and Schwartz [11] and Tsitsiklis and Van Roy [17, 18], provides approximate
solutions by combining simulation, regression and a dynamic programming
formulation of the problem. Related methods have been used to solve dynamic
programming problems in other contexts; Bertsekas and Tsitsiklis [1] discuss
several techniques and applications. In this approach to American option pricing,
the value function describing the option price at each time as a function of the
underlying state is approximated by a linear combination of basis functions;
the coefficients in this representation are estimated by applying regression to the
simulated paths. Such an approximation is computed at each step in a dynamic
programming procedure that starts with the option value at expiration and works
backward to find the value at the current time. Any such method clearly restricts
the number of possible exercise dates to be finite; these dates may be specified in
the terms of the option, or they may serve as a discrete-time approximation for
a continuously-exercisable option.

The convergence results available to date for these methods are based on
letting the number of simulated paths increase while holding the number of basis
functions fixed. Tsitsiklis and Van Roy [18] prove such a result for their method
and Clément, Lamberton and Protter [5] do this for the method of Longstaff and
Schwartz [11]. (The two methods differ in the backward induction procedure they
use to solve the dynamic programming problem.) The convergence established
by these results is therefore convergence to the approximation that would be
obtained if the calculations could be carried out exactly, without the sampling error
associated with Monte Carlo. Convergence to the correct option price requires a
separate passage to the limit in which the number of basis functions increases.

This paper considers settings in which the number of paths and number of basis
functions increase together. Our objective is to determine how quickly the number
of paths must grow with the number of basis functions to ensure convergence to the
correct value. The growth required turns out to be surprisingly fast in the settings
we analyze. We take the underlying process to be Brownian motion or geometric
Brownian motion and regress against polynomials in each case. We examine
conditions for convergence to hold uniformly over coefficient vectors having a
fixed norm, and in this sense our results provide a type of worst-case analysis. We
show that for Brownian motion, the number of polynomi&ls= Ky for which
accurate estimation is possible fravnpaths isO (log N); for geometric Brownian
motion it is O (/Iog N ). Thus, the number of paths must grow exponentially with
the number of polynomials in the first case, faster in the second case.

Focusing on simple models allows us to give rather precise results. Our most
explicit results apply to one-dimensional problems that do not require Monte Carlo
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methods, but we believe they are, nevertheless, relevant to higher-dimensional
problems. Many high-dimensional interest rate models have dynamics that are
nearly Brownian or nearly log-Brownian; see, for example, the widely used models
in Chapters 14 and 15 of [13]. Our focus on polynomials helps make our results
explicit and is also consistent with, for example, examples in [11] and remarks
in [5]. Our analysis relies on asymptotics of moments of the functions used in
the regressions. To the extent that similar asymptotics could be derived for other
basis functions and underlying distributions, our approach could be used in other
settings.

We prove two types of results, providing upper and lower bounds amd thus
corresponding to negative and positive results, respectively. For an upper bound
on K, it suffices to exhibit a problem for which convergence fails. For this part
of the analysis we therefore consider a single-period problem—a single regression
and a single step in the backward induction. The fact that an exponentially growing
sample size is necessary even in a one-dimensional, single-period problem makes
the result all the more compelling. For the positive results we consider an arbitrary
but fixed number of steps, correspondinga finite set of execise oppatunities.

We prove a general error bound that relies on few assumptions about the underlying
Markov process or basis functions, and then specialize to the case of polynomials
with Brownian motion and geometric Brownian motion.

Section 2 formulates the American option pricing problem, discusses approx-
imate dynamic programming and presents the algorithm we analyze. Section 3
undertakes the single-period analysis, first in a normal setting then in a lognormal
setting. Section 4 presents results for the multiperiod case. Proofs of some of the
results in Sections 3 and 4 are deferred to Sections 5 and 6, respectively.

2. Problem formulation. In this section we first give a general description
of the American option pricing problem, then discuss approximate dynamic
programming procedures and then detail the algorithm we analyze.

2.1. The optimal stopping problem. A general class of American option
pricing problems can be formulated through #d-valued Markov process
{S(t),0=<r < T}, [with S(0) fixed], that records all relevant financial information,
including the prices of underlying assets. We restrict attention to options admitting
a finite set of exercise opportunities0ry <t1 <tr < --- < t,, < T, sometimes
called Bermudan options. (We preserve the continuous-time specificatiSn of
because the lengths of the intervals; — ¢, appear in some of our results.)
If exercised at timer,, n = 0,1, ..., m, the option pays:,(S(z,)), for some
known functiongig, k1, ..., h, mappingh? into [0, cc0). Let 7,, denote the set of
stopping times (with respect to the historySftaking values inz,, t,,+1, - . ., tm}
and define
(1) V¥ (x) = SUPE[h,(S(1))|S(ty) = x1, x e R,

€T,
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for n =0,1,...,m. Then V*(x) is the value of the option af, in statex,

given that the option was not exercised priorsto For simplicity, we have not

included explicit discounting in (1). Deterministic discounting can be absorbed

into the definition of the functions,,, and stochastic discounting can usually be

accommodated in this formulation at the expense of increasing the dimension of
The option values satisfy the dynamic programming equations

2) Vi (X) = hy (x),

(3) V. (x) = max{h, (x), E[V, (S (ta+1))[S (1) = x]},

n=0,1,...,m — 1. These can be rewritten in terms of continuation values
Cr(x) =E[V, 1 (S(tns1) S (1) = x], n=0,1,....m—1,

as
(4) Crn(x)=0,
(5) Cr(x) = E[maX{h,11(S(tat1)), Crry 1 (Snr)) }|S (1) = x],

n=0,1,...,m — 1. The option values satisfy
Vi(x) =max{h, (x), C, (x)},
so these can be calculated from the continuation values.

2.2. Approximate dynamic programming. Exact calculation of (2)—(3) or
(4)—(5) is often impractical, and even estimation by Monte Carlo is challenging be-
cause of the difficulty of estimating the conditional expectations in these equations.
Approximate dynamic programming procedures replace these conditional expec-
tations with linear combinations of known functions, sometimes called “features”
but more commonly referred to as basis functions. Thus, for eaet, ..., m,
let i, k=0, ..., K, be functions fromi? to 9t and consider approximations of
the form

K
Cr(x) ~ ) Bukmk (x),
k=0

for some constantg,, or the corresponding approximation fgj*. Working with
approximations of this type reduces the problem of finding the functitjrts one
of finding the coefficients,;. The methods of Longstaff and Schwartz [11] and
Tsitsiklis and Van Roy [17, 18] select coefficients through least-squares projection
onto the span of the basis functions. Other methods applying Monte Carlo to
solve (2)—(3) include Broadie and Glasserman [2, 3], Haugh and Kogan [9] and
Rogers [16]; for an overview, see Glasserman [8].

To simplify notation, we writeS,, for S(¢,). We write v, for the vector of
functions (¥,.0, ..., ¥ux) . The following basic assumptions will be in force
throughout:
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(AO) ypo=1forn=1,...,m; E[Y,(S,)]=0,forn=1,...,m;and
Wy, = E[Yn (S)¥n (S) ']
is finite and nonsingulan =1, ..., m.
For any square-integrable random variabldefine the projection

MY =, (S) W, E[Y ¥ (Sn)].

Thus,
K
(6) MY =) apyn(Sn)
k=0
with
@) (@0, -..,ag) " =V, YE[Y Y (Sp)].

We also write

K
(T Y)(x) =Y axui (x)

k=0
for the function defined by the coefficients (7).

Define an approximation to (4)—(5) as follows;, (x) =0,
(8) Ch(x) = (Hn max{f,4+1(Sn+1), Cn+1(Sn+1)})(x)~

As in (6), the application of the projectiar, results in a linear combination of
the basis functions, so

K
9) Cn(x) = (T Max{/y 41, Cg1}) () = D Bak¥ink (x)

k=0
with 8] = (Bno. ..., Bux) defined as in (7) but with' replaced by
(10) Vn+1(Sn+l) = maX{hn+1(Sn+1), Cn+1(Sn+1)}-
With the payoff functions:,, fixed, we can rewrite (9) using the operator
(11) LnCn+1 = Hn(max{hn—i—l’ Cn+l})-

Exact calculation of the projection in (8) is usually infeasible, but it is relatively
easy to evaluate a sample counterpart of this recursion defined from a finite set
of simulated paths of the process We consider the following procedure to
approximate the coefficient vectgss and the continuation valu&s,.

Sepl. SetC,, =0 andV,, = maxh,, Cpul = hpm.
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Sep 2. Foreachm =1,...,m — 1, repeat the following steps: Generadie
paths{S(‘) S(’)l} i= 1 , N, up to timet, 1, independent of each other
and of all previously generated paths. Calculate

ZVnH Sﬁl Y (S),

calculate the coefficieni$, = w17, and set

(12) én = BIWn = inén+1 = lcln max{hn—i-l, én—i—l}’
(13) V, =max{h,, Cy,}.

Sep3. SetCo(So) = N 13N, Va(sy”) andVo(So) = maxio(So). Co(So)}-

A few aspects of this algorlthm require comment. In Step 3 we simply average
the estimated values at to get the continuation value at time 0 becays6)
is fixed. The operatord,, and I1, implicitly defined in (12) are the sample
counterparts of those in (6) and (11), using estimated rather than exact coefficients.
The coefficient estimates in Step 2 use the matriggsin ordinary least-squares
regression, eactyr,, would be replaced with its sample counterpart,

N

Z S(l) S(l))

calculated from the simulated values themselves. (Owen [14] calls the use of
the exact matrixquasi-regression.) In our examples, tlg, are indeed available
explicitly and using this formulation simplifies the analysis.

In Step 2 we have used an independent set of paths to estimate coefficients at
each date, though the algorithms of Longstaff and Schwartz [11] and Tsitsiklis
and Van Roy [17, 18] use a single set of paths for all dates. This modification is
theoretically convenient because it makes the coefficients, f independent of
the points at whicrf?nH is evaluated in the calculation gf,. This distinction
is relevant only to the multiperiod analysis of Section 4 and disappears in the
single-period analysis of Section 3. The worst case over all multiperiod problems
is at least as bad as the worst single-period problem. The results in Section 3 thus
provide lower bounds on the worst-case convergence rate for multiperiod problems
whether one uses independent paths at each date or a single set of paths for all
dates.

3. Single-period problem. For the single-period problem, we fix datgs<
t> and consider the estimation of coefficierig, ..., Bx in the projection of
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a function ofS> onto the span ofr1;(S1), k=0, ..., K. Thus,

(14) B=Bo....Bx) =v 1ty

with ¥ = W¥; andy = E[Y¥1(S1)] for someY. In a simplified instan_ce of the
algorithm of the previous section, we simulafeindependent copie(§§’), Y@y,
i=1,..., N, and compute the estimate

(15) B=v"1p,

wherey is the unbiased estimator gfwith components

1 N 0 o
16 =— Y Y{ S), k=0,1,...,K.
(16) Vi N;ﬂ Y1k (S7”)

We analyze the convergence®fandy) as both¥ andK increase.

We denote byx| the Euclidean norm of the vecter For a matrixA, we denote
by ||A|| the Euclidean matrix norm, meaning the square root of the sum of squared
elements ofA. It follows that|Ax| < ||A|| |x| and then from (14) and (15),

1 ~ _ -
17) mw—wsm—msnw Y7 =yl

The Euclidean norm on vectors is a measure of the proximity of the functions
determined by vectors of coefficients. To make this more explici; l@bdc be
coefficient vectors and Ief,, have density,,. Then

K K 2
/(Z bk (x) — ) Cklﬁnk(X)) gn(X)dx =B —c) ¥, (b—c)
k=0 k=0

and

—— b —clP < (=)W, (b —c) < Wl Ib—c|”.
(N7

Thus, the Euclidean norm on vectors gives fifenorm (with respect tg,) for
the functions determined by the vectors, up to factoiplof|| and||lI/n—1|| that will
prove to be negligible in the settings we consider.

We therefore investigate the convergence of the expected squared difference
E[|8 — B|?]. Because this is the mean square erropfive also denote it by
MSE(f). Thus, (17) implies

1 -
(18) WEW — 21 <MSEB) < v Y%Elly — v 121

For a given number of replication and basis function& , MSE(B) can be
made arbitrarily large or small by multiplying by a constant. To get meaningful
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results, we therefore adopt the following normalization:
(A1) |8 =1.

We investigate the convergence of the supremum of MisE(8) over all B
satisfying this condition. In order to investigate hawmust grow withK, we
assume that the regression representation is, in fact, valid, in a sense implied by
the following two conditions:

(A2) Y has the form

K
Y =) arpa(S2),

k=0
for some constants,.

(A3) There exist functiong; : %, — R4,k =0,..., K, such that

E[fk(22) Y2k (82)|S1] = fi (1) ¥k (S1), 2 >11.

Condition (A3) states that the,.(S,) are martingales, up to a deterministic
function of time. Condition (A2), though dreng assumption in practice, makes
Theorems 1 and 2 more compelling: the rapid growth in the number of paths
implied by the theorems holds even though we have chosen the “correct” basis
functions, in the sense of (A2). The results of Section 4 give sufficient conditions
for convergence without such an assumption.

Under assumptions (A2) and (A3), we have

Yk = E[Y Y1 (S1)]

K
(19) = E[Z alWZl(SZ)‘//lk(Sl)i|
=0

—ia T g (S0)va (5]
=2 iy P SVYs SO

The restriction orB in (A1) then restricts:.
Returning to the analysis ®fSE(f), (18) indicates that we need to analyze the
mean square error ¢f, for which (sinceE[y] = y) we get

K
(20) E[l7 —yI14 = Var[j]
k=0

K 1 1 K
(21) =2 VEHVEGOI -+ > v
k=0 k=0
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Thus, using (18), (A2) and éhCauchy—Schwarz inequality,
MSE(B) < IIW‘llle[I? —y I

(22) < e Z E[szflk(Sl)

< 2= Za, Z E[y3; (S5 (S

IO k,j=0

To get a lower bound, we may defid€ = a2k (S2), with a} chosen such
that the corresponding™® satisfieg*| = 1. Using (18) and (20), we then get

supMSEun

1 (¢ 2.2 18,
> —ElY =
1Bl= B ||‘1’||2( SR Nk:oyk>

(23)

||wn2< 22 w%msgwfk(sl)]—ﬁgm?).

From (22) and (23) we see that the key to the analysis of the uniform
convergence of1SE(f) lies in the growth of fourth-order moments of the form
E[¢§j<sz)¢12k(sl)]. This, in turn, depends on the choice of basis functions and
on the law of the underlying process We analyze the case of polynomials with
Brownian motion and geometric Brownian motion.

3.1. Normal setting. For this section, lef{S(),0 <t < T} be a standard
Brownian motion. We define the basis functions through the Hermite polynomials

[n/2] (_1)in|xn—2i

Hen(x)=zm, n=01,...,
i=0

where|n/2] denotes the integer part af2. The Hermite polynomials have the
following useful properties: They are orthogonal with respect to the standard
normal densityp, in the sense thatl,, = 1 and

/ He,(¥) He; (X) (x) dx = {O, g
il i=j.

They define martingales, in the sense that (see, e.g., [15], page 151)

el /2m, <S(12))S } 1/2 E<S(t1))’
[Q , s (T

for r» > 1. And their squares admit the expansion

(24) (He, (1)) = (1) Z ea )

z')z(n -
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The functions

1
(25) Yk (x) = ﬁHek (x/«/g)
satisfy (A3) with f (1) = tf/z. They are also orthogonal and th&irmatrix is the
identity. Thus,8 =y andg =y.
We can now state the main result of this section. het/r, and forp > 1
define

cp=2log(2+ /p).

THEOREM1. Lety,; beasin(25)and suppose(A2) holds. If K = (1 —§) x
logN/c, for some § > 0O, then

(26) lim supMSE(8) =0.
N=oopp1=1

If K =(1+68)logN/c, for someé > 0O, then

(27) lim sup MSE(8) = cc.
N=oopi=1

This result shows rather precisely that, from a sample sizZé,dhe highesK
for which coefficients of polynomials of ordéf can be estimated uniformly well
is O(log N). Equivalently, the sample size required to achieve convergence grows
exponentially ink .

This is illustrated numerically in Table 1, which shows estimateg# (3) for

TABLE 1
Estimates of MSE(B) for various combinations of K basis functions and N paths. The critical
values K =log N /c,, are displayed by in the bottom row and also indicated
by the horizontal line through the table

N
K 500 1000 2000 4000 8000 16000 32000 64000 128000
1 0.01 000 000 000 000 000 000 0.00 000
2 0.08 004 002 001 000 000 000 0.00 000
3 0.67 0.31 017 008 004 002 001 000 000
4 5.6 3.0 16 073] 0.36 018 009 005 002
5 527 234 135 6.0 31 15 0.8 0.40 0.20
6 4272 1557 933 384 240 108 6.2 31 15
7 2403 1202 608 3004 1502 751 375 188 9.4
8 11447 5723 2862 1431 7¥% 3577 1789 894 447
9 9856 4928 2464 1232 616 308 154
10 6109 3054 1527 764 381
11 2810 1405 702
12 1023

Bound 25 28 31 34 3.7 39 4.2 4.5 48
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various combinations oV and K. The results shown are faf = ,oK/ZHeK(Sz/
J2)/VK!, with r; = 1 andr, = 2, a special case of thé we use to prove (27).
The estimates are computed as follows. For each entry of the table, we generate
5000 batches, each consisting @fpaths. From each batch we compytend
then take the average ¢f — 8|2 over the 5000 batches. This average provides
our estimate ofMSE(B) in each case withk < 6. For K > 7 this produced
unacceptably high variability, so for those cases we calcubagsi 8) from 5000
replications ofN = 500,000 and then scaled the estimateMay

The bottom row of the table displays the critical valdés= log N /c,, provided
by Theorem 1; these values are also indicated by the horizontal line through the
table. As indicated by the theoremiSE(B) explodes along any diagonal line
through the table steeper than the critical line, and remains small above the critical
line.

The proof of the theorem uses the following two lemmas, proved in Section 5.

LEMMA 1. Forthey,, in(25)and p =12/11,

(28) VoSV 0] = { ke, L
k1Ako
{2k k1 ko
(29) E[¥at, (S2)%Vw, (SD?] = Y o7t ,
sotvsvt= o () () (%)

with k1 A k2 the minimum of k1 and k». Equation (29) is strictly increasing in k1
and k.

For the special casg = ky = K, (29) yields

K

(30) ElYax (S2201k (SD2 = 3 p~* (i") (Zlf )2.

k=0

As a step toward bounding this expression ifedenote the index of the largest
summand so that

o () =gt (D)

Fork*, we have the following lemma.

LEMMA 2. ASK — oo,

2 K(1+40(1)).

2+ /o
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PROOF OF THEOREM 1. We boundMSE(B) from above based on (22).
Combining the fact thgs = ¢ (becausel = I) with (19) and (28) we get

K
B = @Bl (S)Vu (S = arp 2.

1=0
Thus,|8|=1 impIieSa,f < pk. From (30) and (31), we get

. 2
(58 ) (5) < Ewar (s (sp?

(32) ,

_i* [ 2k* K
o () (£)

Recalling thatv = 7 and applying the inequali'uy,f < p¥ to (22) we get

K K
sup MSE(B) < sup [w™* - Zaf > El5(S2)vE (D]
1Bl1= 1B1=1 I=0 k=0

1 K K
SK+D Y Pk > ElYE (S2vE (5]

k=0  k,i=0
K + 1)
33 < DK (K 4 DPE1B (S (s
(K+1)5 o e (2k%\ (K
(34) < () )

where (33) follows from Lemma 1 and the last inequality follows from (32).
To get a lower bound on the supremumMBE(8) we use (23) with
Y* = pX 2ok (S2) = aj Pk (S2).

for which Bx =1 andgy =0, k # K. By applying Lemma 1 and the lower bound
in (32), (23) becomes

11 *2 o 2 2 )
MSE E S Sl—1
SUpMSE(B) 2 1o N( @ LB (Svis)

*2

>
~ g N

1 1 c (25 [ K \2
35 ()
(35) _K+1Np o )\ e

E[ydx (S2)¥ix (S1)]
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By Stirling’s approximatiom! ~ +/2n7 ()" and Lemma 2 we get

K\ _ K!
(k*) kWK — k)
_ V2K (K /e)X(1+ 0(1))
V2 J2(K — k9w (k* Je)F (K — k* Je)K—K* (14 0(1))
1
) = K )
witha =2/(2+ ,/p) andb =1—a. Also,

2% 2%+
( k* ) = K

Ak (2K [e)* (1+ 0(D)

2k*7 (k* /e)2" (1 + 0(1))
22aK
(37) = m(l +0(1)).
By substituting (36) and (37) into (34) and (35) we get
pbK22aK
(1+0(1))

2N (K + 1)vaKmwabK wa?eK p2bK
< SUpMSE(f)
|BI1=1
(K + 1)5pbK22aK
T 2NVaKmabKma2eK p2bK

Simple algebra verifies thap, = 2a log(2) — 2alog(a) — 2blog(b) + blog(p), so
we can rewrite these bounds as
ecpK

(1+0(D)).

1 1 MSE (B
2N (K + 1)\/aKrraerr( +ol )) = \E\u:q ®)

_ (K + 1)%ecrK
T 2NVaKmabKn
If K=(1-6)logN/c, for somes > 0, then asV — oo,
(K + 1)%eK
{2NMabKn
S0 (26) holds. IfK = (14 6)logN /c, for somes > 0, then asV — oo,

(1+0(D)).

(1+0(1))} = —§logN +o(logN) — —o0,

ecpK
lo 14+0(1 }:alo N +o(logN ,
g{ZN(K+l)«/aK7raerr( o) g 0(10gN) = o
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and (27) holds. O

3.2. Lognormal setting. We now takeS to be geometric Brownian motion,
S(t) = exp(W () — t/2), with W a standard Brownian motion. For the basis
functionsy,x = ¥, we use multiples of the power$ to get the martingales
(38) Ya(S(0) = HV ORI

These functions satisfy (A0). The main result of this section is the following:

THEOREM 2. Letthe vy beasin (38)and suppose (A2) holds. If
K— [(L—8)logN
541

lim supMSE(8) =0.
N—o0 18]=1

K — (1+6)logN
\V 3+

lim supMSE(f) = .
N=oopp1=1

for some § > 0, then

for some § > 0, then

Compared with the normal case in Theorem 1, we see that Kiemeust be
much smaller—of the order offlog N. Accordingly, N must be much larger—of
the order of expk?). The analysis in this setting is somewhat more complicated
than in the normal case because theare no longer orthogonal. To prove the
theorem we state some lemmas that are proved in Section 5.

LEMMA 3. Formn>nandkq,ko=0,..., K,

E[Yk, (S1) ¥k, (S2)] = e1ket,

2 2
E[wkzl (Sl) wkzz (SZ)] — eklll+k2[2+4k1k2fl’

and E[y, (S1)%¥,(S2)?] is strictly increasing in kq and k».
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Using the first statement in the lemma, we find that the ma@rix) with ijth
entryE[y;—1(S(1)y;—1(S(1))] is given by

11 1.1
1 of 621‘ ... ekt
2t 4 2Kt
W(f) = led e ---e
2
1eKt62K’---eK’

We write W for W(zq).

LEMMA 4. We have ¥ ()] < (K + 1)2e2K* and, with C(1) = exp(—2e/
(et - 1)2)1

et K
o= oRE + (1)

PrROOF OFTHEOREM 2. Condition (A2) and the martingale property of the
Y (S(2)) imply that
K
E[Y[S1] =) ax ¥ (S1),
k=0

and, thus, thaB, =ax, k=0, 1, ..., K. In this case, the normalizatidg| =1 is
equivalenttg(ao, ..., ax)| = 1. Applying this in (22) and then applying Lemmas
3 and 4 we get

. 1 K
SUpMSE(f) < supnw—lnz—E[ YE(S2)YE(S )}
1Bl=1 1Bl=1 N k; IR

1
< ”‘I’_I”ZN(K + DE[Y2 (S22 (S1)]

1 2K
e ) K + 165K2t1+K212
et —1 N

If we now takek :,/%, then asV — oo,

2.2 af € N\ L k2 k2,
log} C(r1)°K“(K + 1) o] N (14 0(D)

= —48logN +o(logN) — —o0,

<C%(1)K3(K + 1)2(

which proves the first assertion in the theorem.
For the second part of the theorem, define

y*— eKW(zz)—Kzzz/Z’
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for which g* is (0,...,0,1)T. The corresponding vectop* is WB*, the
last column of ¥. Applying this in (23) and using Lemmas 3 and 4 we
get

K
‘;up MSE(B) > TS (Z E[v & (S2)VA(SD)] — Z(yk*>2>
k=0

( (W2 (S2DVZ(S)] — (¥E)?)

- ||‘I"||2 N
> 1 . ( 5K2t1+K2t2 _eZKzl‘l)
N(K + 1)22K%
1 3K211+K %t
= 1 1)).
N(K +1)2° (1+0(D)

If we now takek = ,/%, then asN — oo,

3K2t1+K2t2 —
Iog{iN(K—{—l)ze (l+0(l))} SlogN +o(logN) — oo,

proving the second assertion in the theoremm.

The analysis of this section differs from the normal setting of Section 3.1
in that the polynomials (38) are not orthogonal. In the Brownian case, the
Hermite polynomials are orthogonal and (after appropriate scaling) martingales.
In using (38), we have chosen to preserve the martingale property rather than
orthogonality. As a consequend& —1|| and /| ¥| appear in our bounds on
MSE(B). From Lemma 4 we see thgt—1| has an asymptotically negligible
effect on the upper bound foaSE(B), and with or without the factor of 4| W],
the lower bound orMSE(B) is exponential in a multiple ok2. The slower
convergence rate in the lognormal setting therefore does not appear to result from
the lack of orthogonality.

4. Multiperiod problem. We now turn to conditions that ensure convergence
of the multiperiod algorithm in Section 2.2 as both the number of basis functions
and the number of path¥ increase. We first formulate a general result bounding
the error in the estimated continuation values, then specialize to the normal and
lognormal settings.

4.1. General bound. We use the following conditions.
(B1) E[v k(S )] andE[x//nk(S )] are increasing im andk.

As explained in the discussion of the single-period problem, we need some nor-
malization on the regression coefficients in order to make meaningful statements
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about worst-case convergence. For a problem witbxercise opportunities, we
impose

(B2) 1Bm—-1l=1.

This condition is aniagous to the one we used inettsingle-pedd problem,
where 8 was a vector of coefficients at timg andY was a linear combination
of functions evaluated &i(z>).

We also need a condition on the functionsthat determine the payoff upon
exercise at time,. The following condition turns out to be convenient:

(B3) E[h%(S))] < (,%l)ZKE[w,fK(Sn)], forn=0,1,...,m.

Supposes, has densityg, and define the weighted? norm on functions
G:N— N,

1G I =\// G(x)2 g, (x) dx.

With C, the estimated continuation value defined by (12), we analyze the error

E[ICy — Call7]: N _
We need some additional notation. Let
1 _
c= max 2, Bx = max ||¥ 1|,
n=1..m-1 t, n=1,...m-1

Hg =maX{cX, BZ2(K + 1)},  Ag = (K + L HgE[V2 (Sl
Under (A0), B is well defined. We can now state the main result of this section.

THEOREM 3. If assumptions (A0) and (B1)—(B3)hold, then
(K +1)2

~ 2 m—n __
(39) ElC, —Cull;1 = (2 D—

By AT (E[Y2 k(S (1+ 0(D)).

This result is proved in Section 6. Its consequences will be clearer once we
illustrate it in the normeand lognormal settings.

4.2. Multiperiod examples.

4.2.1. Normal setting. As in Section 3.1, lef be a standard Brownian motion
and let they,,; be as in (25). Eacly, is then the identity matrixg =1, ..., m. It
follows that

(40) Bk = mnax||\11n_1|| =vK+1.
Also,
Hg =maxX{cX, B2 (K +1)} =X

for all sufficiently largek .
To boundE[w;tK(Sm)] (which appears iMg), we use (29) (withry = ¢ and
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k1 = k> = K) and then Stirling’s formula and Lemma 2 to get

K 2
4 2k\ (K W3 ok
m)l = = 1 3 1 1).
Bk (S)] };(k)(k) = (K41, 3 (14 0(D)

The expression on the right follows from (32), (36) and (37) upon noting that with
o =1we gelu = 2/3 andb = 1/3. Substituting this expression and (40) into (39)
yields

E[ICy — Cull®]
2m—2n+5/2 -
c@ropte 1)1:: / <4\/Z\1/(§ 332K>m R (L4 o).
T

It now follows that if
_ (1—-68)logN
~ (m —n)(2log3+logc)

for somes > 0, then

(41) lim  sup E[IC, — Cal31=0.
N=ocop, 4]=1

In other words, we have convergence of the estimated continuation values at all
exercise opportunities, as bathandK increase. If the basis functions eventually
span the true optimum, in the sense th@t — C|, — 0 asK — oo, then by the
triangle inequality, (41) holds witly, replaced byC;:.

On the other hand, from Theorem 1 we know thaKit= (1 + §)logN /c, for
anys > 0, with p =¢,,/t,,_1, then

lim  sup E[|Cp_1— Cn_1ll3_4]1= 0.
N—>oo|g, 4|=1

Thus, the crititcal rate oK for the multiperiod problem i® (log N), just as in the
single-period problem.

4.2.2. Lognormal setting. Now we takeS to be geometric Brownian motion

and use the basis functions of Section 3.2. In this case we have
1 4 eln K-1 2011 et K-1

Bk = mnax||\11n I < mnaxC (t”)<etn — 1) <e <m> ,
the first inequality following from Lemma 4, the second following from the fact
that bothC (z,,) and(e[j["_l)f’(—l achieve their maximum valuesat= 1.

As in Lemma 3, we have&[y?  (S,)] = exp6K2t,) and E[Y2  (S)] =
exp(K %t,,). Making these substitution i ¢ and in (39), we get
(K + 1)m—n+2

N

x Bg Hlng—neG(m—n)Kztm—l—ZKztm (1+ 0(1)).

E[IC, — Call2] < (2" — 1)
(42)
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The factor(K + 1)? is negligible compared to the exponential factor in (42). The
factorsBg and Hx grow exponentially ink, but their exponents are linear i,
whereas the dominant exponent in (42) is quadrati& inThus, Bx and Hx are
also negligible for largX . If we set

K:\/ (1—5)logN

(6(m — n) + 2)t,
foranys$ > 0, then

lim  sup E[IC, — Cull21=0.
N=oog, q]=1

On the other hand, we know from Theorem 2 that if
K- [(1+68)logN
3tm + -1

lim  sup E[ICpn—1— Cu-1ll5_4]=00.
N—>oolﬁm—1|:1

for anyé > 0, then

Thus, the crititcal rate oK for the multiperiod problem i®) (y/logN ), just as in
the single-period problem.

5. Proofsfor the single-period problem.
5.1. Normal setting.

PROOF OFLEMMA 1. Equation (28) follows immediately from the orthogo-
nality and martingale properties of the tgte polynomials. Using (24), we get
He, (S2/\/12) Hey, (S1//11)\2?
e[y, (S22, (SD)] = E[( 2 i ) ]
k2! V k1!

2. Hop (S2/3/12) < Heyy (S1//11)
= (k1!ko!)E ‘2 °2
(k2 [,2 (kD2(kz — k) EO (l!)%—l)!}

ko k1
= (k1tk2) > > ElHey (S2/y/12) Hey (S1//11)]

o= (kD22 — NI (ky — 1))

kqAko k
B (2k)! (11/12)
= (k) 2 Gz, oz o

k1Ako

S )
=Pk )\ )k )
k=0
The fourth equality applies (28).00
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PROOF OFLEMMA 2. The ratio between thg + 1)st summand and theh
summand in (30) is

Il ¢ (kz’il)z 20k 1) (K k2
Io_k(zkk)(ll:) pk+1) (k+1)2
For 0< k < K — 1, its derivative with respect tbis
1

p(k +1)*
Thus, r¢g is strictly decreasing it. At k = 0, rixk = 4K2/p, which is greater
than 1 for all sufficiently largeX'; and atk = K — 1,
2(2K — 1)

pk3

which is less than 1 for alkk > 2. Thus, for all sufficiently largekK, k* is
characterized by the condition

(8kK (k — K) + 4(k — K) + 10k? — 8kK — 2K?) < 0.

’

rk-1K =

K =min{k:rig < 1.
The conditionr;x < 1 is equivalent to
«K—m2<%+2
pk+1)2 =~ 2k+1’
and(2k +2)/(2k + 1) is greater than 1 for all positive The ratio on the left-hand
side of (43) is decreasingin 0<k < K — 1, so if we define
A(K — k)2

(44) k1= min{k : m =< 1},

(43)

thenk* <k;.

For any fixedk, the inequality in (43) will be violated for all sufficiently
large K, sok™ must increase without bound &— oo. It follows that(2k* + 2)/
(2k* +1) — 1. If for somee > 0, we define

4K —k)?
(7)2 =< l +& } )
pk+21)
thenk* > k» for all sufficiently largeK . Thus,ko < k* < k.
Forky, we examine the equation

k2=min{k:

4K —k)?
pk+12
The only root of this equation less th&his
~ 2K — 2
P= V$:< )Ku+oa»
2+ /p 2+./p
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The solutionks to (44) is either k| or |k] + 1, Sok1/k — 1.
The same argument applied to the equation

A(K — k)2
— —1+4¢
p(k + 1)2

shows that

k —<;>K(1+0(1))
=2+ v/pdro '

Noting that we may take > O arbitrarily small andc, < k* < k1 concludes the
proof. O
5.2. Lognormal setting.

PROOF OFLEMMA 3. Using the martingale property af;(S(¢)) and the
moment generating function &¥ (1), we get

E[Vky (S(10)) Yk, (S (12))] = E[E[ Yk, (S (1)) Yk, (S (12)) [W (11) ]
= E[Vi, (S(11) ¥, (S(12))]
= E[ethtkW ()—kin/2-k50/2)

— pkikann
The second part of the lemma works similarly]

PROOF OFLEMMA 4. The first assertion follows from the observation that
the largest entry ofV is X% For the second assertion, we note thahas the
form of a Vandermonde matrix, allowing calculation of its determinant (using [12],
page 322),

(45) det¥ = l_[ (e — e,
O<g<r=<K

By standard linear algebra, the inverselofs given by

IIJ*

46 vl =
(46) detw
where

Wi, = (=17 detW(qlr),

and W (q|r) denotes the matrix obtained by deleting ¢t row andrth column
from W. Two cases arise, depending on whethetr = 1 or not.
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Casel. g #1orr=#1. SinceV is symmetric, de¥ (q|r) = det¥(r|q), SO
it suffices to suppose # 1. We can then compute the determinantdofg|r)
using [12], page 333. Through (46) this leads to

1)
(— 1)q+r Zsl< C<SK_(r—1),5dFq— 1exp{Zd B dat}
]‘[3:3(6(‘1 Dt _eﬂ)]‘[;{:q(eﬂ — ela=Dr)

the sum ranging oven, ..., s, taking values ifO, ..., K}.

-1
(47) lIjqr -

The lemma requires an upper bound on the numerator and a lower bound on the
denominator. To bound the numerator, foe 1, ..., K — 1, set

",‘
R(K,q,?) = > exp[stt}.
§1<-+-<8p,847q—1 d=1
We now claim that
ef(K+l)t
(48) R(K,q,7) < R(K,1,7) <

(ef — 1)?6?0—1)1/2

forr=1,...,K — 1. That R(K,q,7) < R(K,1,7) is immediate from the
definition of R(K, ¢, 7). The second inequality is proved by inductiorrinVhen
r=1,

e(K—l—l)t

RIK,1L,)=("+ - +eK) < —.
el —1

Then

r+1
R(K,1,;+1) = > exp[stt}

§1<r<8741,5¢70
K—F K—r+1 7+1
SOOI T bl
i1=1ip=i1+1 l/+1 =r+1

K—i
=Y ¢VR(K,1,7)
i1=1
ef(K+1)t

< Z e 1)7 7 G—D1/2
i1=1

e(K+1—f)z ef(K+l)t

el —1

<

(e" — 1)?62_?;%/?
DK+
(49) =

(ef — 1)F+1ef(F+D1/2°
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Thus, (48) holds.
The fact that

9 e?(K—i—l)t
ﬁ(w _ 1)fef(f_1)t/2) >0,

implies that (49) achieves its maximum whea K — 1. Thus,
eK—D(K+Dy

(50) R(K.q.7) < (¢! — 1)K—1(K—D(K-2)1/2’
forg=1,...,K+1,r=2,..., K+ 1.

Next, we show that the denominator of (47) is bounded below @yexp(K x
(K +1)1/2), with C(t) = exp(—2e/(e' — 1)?). For this, we rewrite the denomina-
tor of (47) as

q—2

n (q Dt e]z ﬁ el — pla— 1)t

j=0

K (g—Dyt
_ (=t jtf1_¢
H ¢ < oa— 1);) 1_[ ¢ (1 ol )

i
_ q-12+xK i 1 1
(51) = = (- ) [l (*~ow
J=

j=1

K(K+11/2+g-Dig-2)/2 T 1)1 1
l‘ — —
>e =>4 ||(1_ejt>||(l_ejt>
j=1 j=1
K(K+1)1/2 HK 1)\?
+D¢
> e | 1(1— E) .
]:

Taking the logarithm of the product ovgrand applying a Taylor expansion yields
terms of the form

loa (1 _ 1 1 1
1 1 1
Z T LG T oot
1l
T eltel —1

Therefore,
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and

K 1 _e/(ef_l)z
(52) Jl_[:l<l — ;) >e .
Finally, by (51) and (52), we get that the denominator of (47) is bounded below by

(53) o—2¢/( =17 ,K(K+1)1/2.

Applying this lower bound and (50) to (47), we get

1 20/(¢—1)? el K-1 1 e! K-1
e e
(54) wlce (e;—_l) =C (t)(et : 1)

for ¢, r not both equal to 1.

Case2. g =1andr=1.BecauselW¥ ! =7 and all entries of the first row
of ¥ are 1, we have

K+1

(55) |Wii ‘ Z\p

_ _ e
<1+ > |wpti<cC 1(t)K<et —
=2

Combining (54) and (55) we get

t K-1
= S e <c o k(L)
O

6. Proofsfor themultiperiod problem. As atool for proving Theorem 3, we
introduce a second sequence of coefficient estim@temdy,. At eachn, B, is
the vector of coefficients that would be obtained using the algorithm of Section 2.2
if the coefficientss, 1 were known exactly. More explicitly,

B = wgl( ZVn—i-l (s9)) wn(S,S”))

lIJ_lJ;Vh

with V,,+1 as in (10). The distinction between this and Step 2 of the algorithm is
that hereV, 1 uses the true coefficiengs, [as in (9)], wherea®,1 in (13) uses

the estimated coefﬁuean The estimate, andj, are not computable in
practice and are simply used as a device for the proof. From the coeffidients
define

K
Co(¥) =Y Burtrnk (¥) = (LnCrg1) (x).

k=0
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Thus, C, results from applying the estimated operafgr to the exact function
Cn+1, WhereasC, results from applying the estimated operator to the estimated
functionC,, 1.

The proof of Theorem 3 also relies on two lemmas.

LEMMA 5. Under conditions (AO) and (B1)—(B3),
Ym—n|? < (QHKE[Y2 ¢ (S)])" MK + D" H(E[Y2 ¢ (Sn)])* (L4 0(D))
forn=1,..., m—1.
PROOF  First note that for any € 0,

C2(x) = (¥, )W, )2 < 19 O 1, 2P 7 2.
By the definition ofy, together with the fadimaxa, b}| < |a| + |b|, we get
|Vn,k| = |E[wnk(Sn) ma)qhn—i—l(sn—&-l)’ Cn+l(Sn+l)}]|

=< E[|¢nk(Sn)hn+1(Sn+1)|] + E[|Wnk(Sn)l//y::_l(sn—kl)q’n_ilyn—kll]

< VEWZ (S)IEDZ, 1 (Sps1)]

IR a1 B2 (S W1 (Sur ) 2]

< JeKEMW2 L (Si)] + Br [ynt1lV (K + D)\ E[W 2 (S)]-

The last inequality uses (B1), (B3) and the inequatity?] < vE[h?]. Thus,
K
val? =3 vl
k=0

(56) < 2(K + DE[Y2  (S)1(cX + B2 (K + 1)|ynr1]?)

< 2(K + DE[Y  (S)1HK L+ |yns1ld),

with Hx = maxcX, B2 (K + 1)} as defined in Section 4.1.
Conditions (B1) and (B2) imply that

Ym—1/? < 1Wn_1l? < (K + DPEW2 ¢ (Sm)])>.
Then (56) gives
Yim—21® < 2K + DEWYm g (Si)IHk (L4 [yim-1/?)
— 2HKE[Y2 & (S I(K + D3EV2 ¢ (Sn)]) L+ 0(D)),
[Ym—3l? < 2(K + DE[Y g (Sw) | Hk (L4 [ym—2/?)

= (2HKE[Yi i (Sm)) (K + DHEMW2  (Sn)])*(1+ 0(D)
and, proceeding by induction, completes the proaf.
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LEMMA 6. Under conditions (AO) and (B1)—(B3),
m-—n
ENNCy — CallZ1< Bk Y AR " 'Ellfin—1 — ym—i?].
1=1
PROOF By the definition ofC, C andC and the triangle inequality, we have
E[ICy — CullZ1=ElILyCot1 — LnCryallZ]
<ElLaCry1 — LaCuyall; + I1LnCoy1 — LaCuall3].
Now,
inén—i-l - incn—i-l = w;—an_l();n - ?n),
so
1L Cry1 — LaCryal3

— (- %)Tw,:l( RS ACIHES dx)wn—l(ﬁn — )
= (P — 7)) ", P — )

< 1P — )P

The same bound holds with, C,1 replaced byL,C,+1 andy, replaced byy,.
Thus,

(57) E[Cn — Call2] < Bx El|Pn — 7ul?] + El| 7 — vl D).

Using the definitions of, andy, and the inequalitymaxa, b} — maxXa, c}| <
|b — c|, we get

();nk - ?nk)z = ( Zhbnk S(l))| |max{ n+1(S,(l_$_1) Cn—i—l(S,(,ij_l)}
i=1

2
— max{hn+1(Sn+1) Cn+1(Sr(lli1)}|)
(58)

1Q - 0\
N - > [k (S)] |Cn+1(S,§lJ)rl) - Cn+1(51§11)|)
i=1

A
—

N
Z SO (Cara(SL]y) — Cura(SE1y))%

ZI'—‘

The pathss®, i =1,..., N, in this expression are independent of the coefficients
of C,+1 (see Step 2 of the algorithm), so

59)  E[(Guk — 7ui)3 = E[Y 2 (S)(Co1(Sus1) — Cor1(Snsn)?],
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with (S,, S,+1) independent of the coefficients 6‘@+1.
To bound (59), we use

~ 2 — ~ 2
(Cn+1(Sn+1) - Cn+1(Sn+1)) = (WJ+1(Sn+1)‘pnj1(Vn+l - )’n—i—l))

< W1 Sur D P, 1P Pt — Vgl
The independence @8, S,+1) andy, .1 then gives

E[W2 () (Cara(Sus1) — Cap1(Snsn)]
<19, S IPELY 2 (S W41 (Su4DIPEN Putt — Yaral?]
< BR (K + DEWZ (S) V211 k SnrDIEPas1 — varal]
< BE(K + D\ E[W K SOIEWVE 1 g (SutDIENPus1 — yusal?]

< BZ(K 4 DE[Y & (S)IE[Pns1 — Yar1l?],

the last inequality following from (B1)Using this bound with(58) and (59), we
get

K
E[Pn — 70121 = D ElDnk — Pu)?]

k=0
< (K + D*BREWk (S)IElPat1 — vayal]
(60) < AKE[|Pnt1 — Yus1l]
(61) < AKE[Pnt1 — Pas1l?] + AKE[Put1 — vasal?l.
By iteratively using (60)—(61), we get

EllPn — 7l?]
m—n—1
< AT E o1 — ymea P14+ D> AR T EN et — Y]
[=2
m—n—1
= AR Pt — vt P+ Y AR T EN Pt — Y2
[=2
m—n—1

= > A EN s — w2,
=1

because,,_1 = yu_1 (sinceC,, = C,, = 0). Using this bound in (57) concludes
the proof. O

PROOF OF THEOREM 3. Because eacli,; is an unbiased estimate of the
corresponding,x, E[(Pux — ynk)z] is the variance of,; and is therefore bounded
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above by the second momentj,. Thus,

E[l);m—n - Vm—nlz]
K

= Y ElGn-nk = Yn-n)’]
k=0

K
1
<y NE[w,%_n,k@m_n) max{h2_, .1(Sm-n+1)s C4_ps1(Sm—nt1)}]
k=0

K
1
<Y NEW;_,,,,{(Sm_n)(hi_,,H(Sm_nH) +C2 1 (Sm—ntD)]
k=0

K
1
<Y ZEWE i (Snenhi i1 Sm-n+)]
k=0 N
(62) k
+ 2 IV kS L P i P11 (S D) ]
k=0

For the first term in (62) we use the Cauchy—Schwarz inequality, (B1) and (B3) to
get

K

1
Y ZEWA i Snendhi 1 (Sm—nt1)]
k=0 N
K—+1
(63) = = VEW S g (S IE 1 (Sn-n )]
K—+1
< = HKEWpnk (Sw)]
For the second term in (62) we again use Cauchy—Schwarz and (B1) to get
K 1 5
> Bk S 152 1P Yo 1 Ym 2 (St D]
64 *°
K+1
< HiE[ Y (Sm)]|Ym—n!?.

N
Combining (62)-(64) and Lemma 5 we arrive at

Ell7m—n — Ym-nl’]
K 1 n+2 i

= %Zn_l(HKE[W:;K(Sm)]) (E[Wn%[((sm)])z(l + 0(1))

_ 2K+

> A (E[Y2 ¢ (S)D)2(1+ 0(D)).
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By Lemma 6, we now get

E[IC, — Call?]
m-—n
< BK(Z AR E Py — ym_nz])
=1
(K+12 2
< By Af "(E[¥2 g (Sm)])

X (L1424 +2" " H(1+0(D)

K+1%
=(@2"" - 1Bk %A'}? (V2 (Sm])*(1+0(D),

which concludes the proof.(]

7. Concludingremarks. Itis natural to ask to what extent our results depend
on the fact that the basis functions we consider are polynomials. Some insight into
this question can be gleaned from the analysis of the lower boumds&ig) in
the proof of Theorem 1. The lower bound results from choodirgax Yok (S2)
and its growth is driven by the second momefE[ 3, (S2) V2, (S1)]. With ¥
orthogonal to the other basis functionsratthe condition|8| = 1 translates to
ag = 1/E[Y¥2k (S2) Y1k (S1)]. Thus, the growth of the lower bound is driven by
the growth of the ratio

E[Y 2 (S2) V2 (S1)]
(E[Yr2x (S2) V1K (S1)])2

as K increases. A few examples show that this ratio does indeed growRuvith
even for choices of functions that grow much less quickly than polynomials. In the
case of Brownian motion, explicit calculations show thatfgk (x) = 1{x > K},

the ratio is O(K exp(K2/2t1)) and for Yk (x) = max0, x — K}, the ratio is
O(K3exp(K?/2t)), so in both of these cases the growth rate is even faster
than for the polynomials in Theorem 1. With; ¢ (x) = xX exp(—x), numerical
calculations indicate that the ratio is roughly linearkin(thus requiring roughly
linear growth ofN), but its magnitude is very large even at small valueskof
These simple illustrations suggest that the phenomena observed in this paper may
occur more generally. But see [7] for more positive results using bounded basis
functions.
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