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PERIODIC COPOLYMERS AT SELECTIVE INTERFACES:
A LARGE DEVIATIONS APPROACH

BY ERWIN BOLTHAUSEN AND GIAMBATTISTA GIACOMIN

Universität Zürich and Université Paris 7

We analyze a(1 + 1)-dimension directed random walk model of
a polymer dipped in a medium constituted by two immiscible solvents
separated by a flat interface. The polymer chain is heterogeneous in the sense
that a single monomer may energetically favor one or the other solvent. We
focus on the case in which the polymer types are periodically distributed
along the chain or, in other words, the polymer is constituted of identical
stretches of fixed length. The phenomenon that one wants to analyze is the
localization at the interface: energetically favored configurations placemost
of the monomers in the preferred solvent and this can be done only if the
polymer sticks close to the interface.

We investigate, by means of large deviations, the energy–entropy compe-
tition that may lead, according to the value of the parameters (the strength of
the coupling between monomers and solvents and an asymmetry parameter),
to localization. We express the free energy of the system in terms of a varia-
tional formula that we can solve. We then use the result to analyze the phase
diagram.

1. Introduction and results.

1.1. The model. Let S = {Sx}x=0,1,... be a simple symmetric random walk
starting at 0, that is,S0 = 0, Sx = ∑x

j=1Yj , where{Yj }j=1,2,... are i.i.d. variables
such thatP(Y1 = ±1) = 1/2. For adeterministicsequenceω = {ωx}x∈N, ωx ∈
{−1,1} and a parameterh ≥ 0, we introduce theHamiltonian

HN,ω,h(S)
def=

N∑
x=1

(ωx + h)sign(Sx),(1.1)

and the probability measurePN,ω,λ,h

dPN,ω,λ,h

dP
(S)

def= exp(λHN,ω,h(S))

ZN,ω,λ,h

,(1.2)

whereλ ≥ 0 is the coupling constant, andZN,ω,λ,h is the normalization

ZN,ω,λ,h
def= E

[
exp

(
λHN,ω,h(S)

)]
.(1.3)
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964 E. BOLTHAUSEN AND G. GIACOMIN

We make the convention that ifSx = 0, then sign(Sx) = sign(Sx−1), which
amounts to assigning the sign to the bond((x −1, Sx−1), (x, Sx)) rather than to the
vertex(x, Sx); see Figure 1. Our basic assumption on the sequenceω = {ωx}x∈N is
that it iscenteredandperiodic; that is, there existsT ∈ N such thatωx = ωx+2T for
everyx ∈ N and

∑2T
x=1ωx = 0. We writeTω for the smallest suchT . We exclude

from our analysis thetrivial ω’s for whichω2k−1ω2k = −1 for everyk ∈ N and in
particular the case ofTω = 1, that is,ωx = ±(−1)x . In this case,

∑N
x=1ωx sign(Sx)

is 0 or±1, due to the 2-periodicity of the random walk, and therefore, the influence
of ω on the path measure is asymptotically negligible. We writeT for the set of
centered periodic sequencesω which are nontrivial. This is theperiodic version
of the random model considered in [3], where{ωx}x is a typical realization of
a sequence of i.i.d. centered variables taking values±1. We will often drop the
dependence onλ,h for notational convenience.

PN,ω is our model for a heterogeneous polymer near an interface, the
x-axis, separating two media that interact with the monomers according to their
ω-characteristics. Possibly enlightening is the analogy with an oil/water interface
and monomers, that is,(Sx−1, Sx), that are either hydrophobic (ωx = +1) or
hydrophilic (ωx = −1).

The free energy of such a model in the infinite volume limit is defined as

fω(λ,h) = lim
N→∞

1

N
logZN,ω.(1.4)

The limit in (1.4) is easily seen to exist. We omit a direct proof as it follows
from our more precise results, see Proposition 1.4. (An elementary direct proof
can be given as in [3]; see, e.g., [7].)

FIG. 1. A polymer path: the quantities appearing on top of each excursion are∑k
x=j+1 ωx sign(Sx) (

∑k
x=j+1 ωx ), with j and k, respectively, the beginning and the end

point of the excursion.
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1.2. Localization and delocalization regions and the critical line.An elemen-
tary estimate is

fω(λ,h) ≥ λh,(1.5)

for everyω, λ andh. This follows by observing that if�+
N

def= {S :Sx ≥ 0 for every
x = 1,2, . . . ,N}, then

1

N
logZN,ω ≥ 1

N
logE

[
exp

(
λ

N∑
x=1

(ωx + h)sign(Sx)

)
;�+

N

]

= λ

N

N∑
x=1

(ωx + h) + 1

N
logP(�+

N)(1.6)

= λh + O

(
logN

N

)
, N → ∞,

by the well-known estimate 1/P(�+
N) = O(N1/2) (cf. [6], Chapter 3).

As in [3], motivated by the steps in (1.6), we partition the parameter space
{(λ,h) :λ ≥ 0, h ≥ 0} into two regions,L andD :

(i) the localizedregionL = {(λ,h) :fω(λ,h) > λh};
(ii) the delocalizedregionD = Lc = {(λ,h) :fω(λ,h) = λh}.
We will discuss in Section 1.7 why and how (de)localization in the free energy

sense isequivalentto pathwise de(localization). We set

φω(λ,h) = fω(λ,h) − λh.(1.7)

The first result is:

PROPOSITION1.1. For everyω ∈ T there exists a continuous nondecreasing
function hc : [0,∞) −→ [0,1) such thatL = {(λ,h) :h < hc(λ)}. Moreover,
hc(0) = 0 and limλ→∞ hc(λ) = 1.

We are going to focus on getting precise estimates on thecritical curvehc(·).

1.3. A formula for the free energy.We now give a series of definitions that
lead to a rather explicit formula for the free energy. In Section 1.6 one can find an
outline of the proof; this yields some intuition on this formula.

The basic idea of our approach is to split the Hamiltonian (1.1) as a sum of the
contributions coming from the excursions of the random walk. An excursion is a
portion S2a = 0, S2a+1, . . . , S2b−1, S2b = 0 of the walk, whereSx �= 0 for 2a <

x < 2b. Evidently, the relevant contribution coming fromω to one excursion is
±∑2b

x=2a+1ωx, and this depends ona andb only through their values moduloTω.



966 E. BOLTHAUSEN AND G. GIACOMIN

It is therefore natural to define the following matrix indexed by the Abelian group

S
def= Z/TωZ: for α,β ∈ S

ξα,β
def=

2b∑
x=2a+1

ωx,(1.8)

which is well defined by choosing representativesa ∈ α andb ∈ β with a < b.

Evidently

ξα,β = ξ0,β − ξ0,α.(1.9)

We setξ�
def= maxα,β |ξα,β | ≤ 2Tω. Notice that for everyω ∈ T the matrix{ξα,β}α,β

is not identically zero.
As an example, take the simplest case of anω-sequence:+,+,−,−,+,+,

−,−, · · · (Tω = 2), which yieldsξ = ( 0 2
−2 0

)
.

We need also some notation for the random walkS. Let η be the first return

time to 0, that is,η
def= inf{x ≥ 1 :Sx = 0}, and setK(x)

def= P(η = x) for x ∈ 2N,

pα,β
def= P(η/2 ∈ β − α) for α,β ∈ S, andKα,β(x)

def= P(η = x|η/2 ∈ β − α). Note
that{pα,β}α,β is bistochastic. As it is well known,

lim
x∈2N,x→∞x3/2K(x) = √

2/π =: CK,(1.10)

see, for example, [6], Chapter 3.
We set forx ∈ N andα,β ∈ S

�
λ,h
α,β(x)

def= log
(

1+ exp(−2(λξα,β + λhx))

2

)
,(1.11)

and in turn theS × S matrix with positive entries

Aα,β = Aα,β(b,λ,h)
def= pα,β

∑
x

Kα,β(x)exp
(
�

λ,h
α,β(x) − bx

)
,(1.12)

with b ≥ 0. Let us denote byZ = Z(b,λ,h) (> 0) the Perron–Frobenius
(maximal) eigenvalue. We observe thatAα,β(·, λ,h) is a decreasing function for
everyα andβ. This implies thatZ(·, λ,h) is decreasing (cf. [10], Chapter 1). For
the same reasonZ(b,λ, ·) is decreasing, too. We have the following:

THEOREM 1.2. Denote byb̃ = b̃(λ,h) the unique solution ofZ(b̃, λ,h) = 1,
if such a solution exists, and setb̃(λ,h) = 0 if such a solution does not exist. We
have that

φω(λ,h) = b̃(λ,h),(1.13)

for everyλ andh.

An immediate consequence of this formula, of the fact thatZ(b,λ, ·) is
decreasing and of Proposition 1.1 is thathc(λ) is uniquely determined by the
equationZ(0, λ,hc(λ)) = 1.
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1.4. Estimates on the critical line.From Theorem 1.2 we extract the precise
asymptotic behavior of the critical curve at small values ofλ.

THEOREM 1.3. For everyω ∈ T , asλ ↘ 0 we have that

hc(λ) = mωλ3(1+ o(1)
)
,(1.14)

where

mω =
(

1

2Tω

∑
α,β

pα,βξ2
α,β

)2

.(1.15)

Moreover, there exists a positive constantMω such that asλ ↗ ∞,

hc(λ) = 1− (
Mω + o(1)

)
λ−1.(1.16)

In Section 5.2 one can find an expression forMω.

1.5. On related copolymer models.A large amount of papers dealing with
periodic copolymers can be found in the literature (mostly in the area of chemistry
and physics). We single out some of them, divided into two categories: results
about systems with period 2 (Tω = 1) and results about more general copolymers.

Period-2 copolymers. We stress once again that theTω = 1 case leads to a
trivial model in our case. This is due to an evident cancellation connected to
the fact that theω-periodicity coincides with the periodicity of the walk. One
may, however, modifyslightly the definition of the model by taking a different
convention for the sign of zero and the situation may change, leading to a
localization–delocalization phenomenon. We mention in particular the work [12]
in which ωx = (−1)x+1 and sign(0) = −1. Since this can be interpreted as
choosing the interface line at height 1/2, we will refer to this model as the
1/2-interface (copolymer) model. The authors point out in particular that such
a model, underone-step decimation, becomes a homogeneous polymer model
at a penetrable attractive interface, which is known to beexactly solvable(we
refer also to [9] and references therein for exact computations on this model). In
probabilistic language,one-step decimationmeans simply to consider the marginal
of the polymer measure over odd (or even) sites. The computation is elementary
and the arising model is simply a random walk that prefers the upper half plane if
h > 0 and that receives a reward each time that crosses the interface. We mention
also the result [15] in which sign(0) = 0, but in which the asymmetry is replaced
by a penalization for the walk to touch zero; in this case, again by one-step
decimation, the system reduces to the walk with a reward (positive or negative)
at the origin. We signal also the complete analysis obtained in [8] for a Gaussian
random walk with alternatingω.
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Some of the results in [12] may at first look to be in contradiction with ours: in
particular, that in [12] it is shown thathc(λ) = (1+o(1))λ asλ ↘ 0. We point out,
however, that if one introduces theh asymmetry for the model with sign(0) = 0
(cf. [15]), one can show thathc(λ) = (1 + o(1))λ3 (we refer to this model as
the neutral interfacemodel). It is, however, not too difficult to understand the
mechanism that leads to the different phenomenology in the 1/2-interface model:

(a) in the 1/2-interface modelany excursion is favorable, in the sense that, if
one considers successive crossings of the 1/2-interface, each time the energetic
gain fromω amounts to+1;

(b) in the neutral interface model this does not happen: crossing the interface
is not enough to get a positive energy contribution or, in other words, there are
favorable and unfavorable excursions.

The two results that we have just mentioned can be established also via our
approach; in theTω = 1 case the arising variational problem can be written in a
fully explicit fashion. This of course leads to results approaching the completeness
of the analysis in [12].

More general periodic polymers.Among the physics papers on the case
Tω > 1 we single out the one of Sommer and Daoud [16], who consider the case
in whichω is made of alternating blocks of lengthTω of the same sign (this model
is referred to asdiblocksmodel). While no mathematically precise model is given,
the authors argue, on the base of scaling arguments and of a renormalization group
analysis, in favor ofhc(λ) ∼ T 3

ωλ3. This agrees with our result not only because
of the correctλ dependence, but also becausemω behaves likeT 3

ω for largeTω; it
must be noted, however, that this behavior is restricted to the diblocks case and it
is rather easy to see that:

(a) fastest growth ofmω in Tω is obtained for the diblocks model;
(b) one can construct any intermediate behavior down to the extreme case of

mω = O(1/Tω) asTω grows. For example, the latter case is achieved by starting
with the periodic (forbidden!) configuration+ − + − + − · · · , and switching
−+ −→ +− at regular intervals (say 2k sites), obtaining thus an elementω ∈ T
with Tω = k and satisfying the desired property.

We signal also that precise large-period developments for the related problem
of copolymeradsorption, for a very special family ofω’s, have been established
by combinatorial methods in [13].

Moreover, it is interesting to recall that ifω is a typical realization of an i.i.d.
sequence of centered random variables, the phase diagram is still split in two
regionsD and L by a continuous functionhc(·) for which a strict analog of
Proposition 1.1 holds (cf. [3]). However, in that case the derivative ofhc(·) in zero
(exists and it) is positive and bounded above by 1 (cf. [3]; see also [11] for various
physical predictions). The appearance of a positive slope in the randomω case is
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nontrivial: an excursion of lengthL, L large, leads to an energetic gain of the order
of

√
L, if the sign of the excursion agrees with the sign of theω fluctuation. This

effect is of course not present in the periodic case, in which the energetic gain is
alwaysO(1). As we have seen, a positive slope phenomenon may (and will) be
observed if the interface is not neutral and attractive.

1.6. Sketch of the proofs: a sharp energy–entropy argument.As already
pointed out, our arguments start with expressing the energy of the copolymer in
terms of the return times to zero ofS. These are defined recursively by

η0
def= 0 and ηk+1

def= inf{x > ηk :Sx = 0} for k ≥ 1.(1.17)

Of course once the sequence{ηk}k is fixed, to determine the energy we need to
know the sign ofSx for x ∈ {ηk + 1, . . . , ηk+1}. However, the sequence of signs is
i.i.d. and centered, so that these degrees of freedom are easily integrated out; see
the beginning of Section 3 for the straightforward details.

It turns out to be practical to consider the sequence{[ηk/2], [ηk+1/2], ηk+1 −
ηk}k=1,2,..., where, forx ∈ N, [x] = [x]S denotes the class inS. This sequence is a
Markov chain inS × S × 2N with transition probabilities

P
(
(α,β, x), (α′, β ′, x′)

) def= δβ,α′pα′,β ′Kα′,β ′(x′).(1.18)

It is immediate to see that the stationary distributionπeq of this Markov chain is
given by

πeq(α,β, x)
def= 1

Tω

pα,βKα,β(x).(1.19)

Since the energy can be essentially expressed in terms of the empirical measure
of this Markov chain [cf. (3.4)], that is, the frequency with which each value of
(α,β, x) is observed in the Markov chain sequence, one can in turn express the
leading asymptotics of the exponential of the energy via a variational formula.
This formula evaluates the competition between the energy and the entropy of the
system, and the latter is the large deviation functional for the empirical measure.

More in detail, if µ is a probability measure onS × S × 2N, we denote
by µ1,µ2,µ3 the marginals onS and 2N, respectively. LetP be the set of
probability measuresµ onS×S×2N satisfyingµ1 = µ2, andµ({(α,β, x) :x/2∈
β − α}) = 1. Note thatπeq∈ P .

We set now

I (µ)
def=


∑

α,β,x

µ(α,β, x) log
(

µ(α,β, x)

µ1(α)pα,βKα,β(x)

)
, if µ ∈ P ,

+∞, if µ /∈ P ,

(1.20)

with 0 log0= 0. If we put

Q(µ)
def= ∑

α,β,x

�
λ,h
α,β(x)µ(α,β, x) − I (µ),(1.21)
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then we have the following variational formula forφω:

PROPOSITION1.4. For everyω ∈ T , λ ≥ 0 andh ≥ 0 we have

φω(λ,h) = sup
t>0

t sup

{
Q(µ) :µ ∈ P ,

∑
x

xµ3(x) ≤ 1/t

}
.(1.22)

REMARK 1.5. We observe that, by (1.9),
∑

α,β,x ξα,βµ(α,β, x) = 0 for
µ ∈ P and it will turn out to be more practical at times to change the definition
of �

λ,h
α,β(x) by addingλξα,β so that

�
λ,h
α,β(x) = ψ(λξα,β + λhx) − λhx,(1.23)

with ψ(·) = logcosh(·), and Proposition 1.4 still holds.

The variational problem in Proposition 1.4 can be solved (almost) explicitly.
In order to explain how the solution looks, let us construct, in a fairly standard
way, a perturbation of the transition probabilities (1.18) by defining the following
family of functions onS × S × 2N:

A(α,β, x) = Ab,λ,h(α,β, x)
def= pα,βKα,β(x)exp

(
�

λ,h
α,β(x) − bx

)
,(1.24)

where b ≥ 0 is a parameter. Of course
∑

x Ab,λ,h(α,β, x) coincides with
Aα,β(b,λ,h). Let us denote by{vα}α∈S the unique (up to scaling) positive
right eigenvector ofA with eigenvalueZ and by{π(α)}α∈S the normalized left
eigenvector of{Aα,βvβ/vα}α,β . Then the measureµλ,h

b onS × S × 2N defined by

µ
λ,h
b (α,β, x)

def= 1

Z
π(α)A(α,β, x)

vβ

vα

(1.25)

is in P .
We are going to show (see Lemma 2.2 in Section 2) that the supremum over

µ ∈ P in (1.22) is attained in the set{µλ,h
b :b > 0}. The computation ofφω(λ,h)

boils down, therefore, to optimizing overb. This can, once again, be done explictly,
obtaining thus Theorem 1.2.

1.7. A (quick) look at pathwise results.For completeness we point out here
that, if (λ,h) ∈ L, for everyε > 0 there existsC > 0 such that

PN,ω,λ,h(|Sx | > L) ≤ C exp
(−(

φω(λ,h) − ε
)
L

)
,(1.26)

for everyN , everyx ≤ N and everyL > 0. This result can be easily extracted
by applying the technique in [14]; see [1] for further results on the localized
phase of the randomω model. On the other side, since we are able to solve
explicitly the variational problem associated to the free energy, if(λ,h) ∈ L by
large deviation arguments we have detailed information on the empirical measure
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of the copolymer, which converges in probability, in theN → ∞ limit, to µ
λ,h

b̃(λ,h)
.

This gives in particular that if we set�N = max{k ∈ N :ηk ≤ N}, then�N/N tends
to 1/

∑
α,β,x xµ

λ,h

b̃(λ,h)
(α,β, x), in PN,ω,λ,h(dS)-probability, or, in other words,

lim
N→∞

1

�N

�N∑
k=1

(ηk − ηk−1) = ∑
α,β,x

xµ
λ,h

b̃(λ,h)
(α,β, x).(1.27)

In particular, one sees that there is a continuous blow-up of the typical excursion
length approaching the delocalization region.

On the other side, if(λ,h) belongs to the interior ofD , one can show (see the
last section of [1]) that for everyL > 0

lim
N→∞

1

N

N∑
x=1

PN,ω,λ,h(Sx > L) = 1.(1.28)

It should be possible to improve (1.28) strongly, leading in particular to the
Brownian scaling results in [9].

The paper is organized as follows: in Section 2 we study the solutions of the
variational problem in Proposition 1.4. We show in particular that the right-hand
side of (1.13) coincides with the right-hand side of (1.22). In Section 3 we prove
our basic variational formula, that is, Proposition 1.4, completing thus the proof of
Theorem 1.2. In Section 4 we study the existence of a critical line for the model
and we partly prove Proposition 1.1. The proof is completed in the last section,
where Theorem 1.3 is established.

2. The variational problem.

2.1. The linear algebra setup.Throughout this work we will make repeated
use of the results of the Perron–Frobenius theory (see, e.g., [5], Chapter 3). Let
us quickly recall these facts. ForT ∈ N let us denote byM+(T ) the set of
T × T matrices with nonnegative entries which are irreducible. IfA ∈ M+(T ),
then there exists a unique right eigenvectorv = v(A) ∈ (0,∞)T , normalized
by

∑T
i=1 vi = ‖v‖1 = 1. The corresponding left eigenvector is denoted byṽ,

‖ṽ‖1 = 1. If we call ρmax = ρmax(A) the associated (positive) eigenvalue (the
maximal eigenvalue), then for any other rootρ ∈ C of the characteristic polynomial
we have that|ρ| ≤ ρmax andρmax is a simple root.

If we have a functionA : I −→ M+(T ), I open interval ofR, then the regularity
of A(·) passes directly to the Perron–Frobenius eigenvalue and eigenvectors; see,
for example, [4], Chapters 2 and 4. In particular, ifA(·) is differentiable, then
ρmax(A(·)) is differentiable, too, and

d

dt
ρmax(A(t)) =

∑
α,β A′

α,β(t)ṽα(A(t))vβ(A(t))∑
α ṽα(A(t))vα(A(t))

.(2.1)
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2.2. Solutions to the variational problem.In order to lighten the exposition
we modify (and, hopefully, simplify) somewhat the notation with respect to the
Introduction. The major change is that for the marginalsµ1, µ2 andµ3 of µ ∈ P
we are going to drop the numerical index. This abuse of notation is of course
partly justified for the first two marginals, but in order to avoid misunderstandings
the argument(s) ofµ will always be explicitly given: soµ(α) is µ1(α) and
µ(x) = µ3(x). In the same way,µ(α,β) is of course a notation for

∑
x µ(α,β, x).

With this convention [cf. with (1.25)]

µb(α,β, x) = µb(α)pα,βKα,β(x)

(
exp(�α,β(x) − bx)

Z

)(
vβ

vα

)
.(2.2)

Notice that we have dropped the dependence onλ andh in �
λ,h
α,β .

If at times we will drop the explicit dependence on one or more parameters, in
other situations the opposite tendency will prevail and we will writeA(b,λ,h),
A(b,λ), v(b,λ), µλ

b, and so on.
Moreover, for the results of this section the details of�

λ,h
α,β(x) are inessential:

all we are going to use is the regularity of� with respect toλ andh and that
supx |�λ,h

α,β(x)| < ∞ for everyα,β,λ andh.
We have the following results:

LEMMA 2.1. For everyb > 0

d

db
logZ(b) = −∑

x

xµb(x).(2.3)

PROOF. We start by observing that one can construct the Markov chain on
S × S × 2N that makes transition from(α,β, x) to (α′, β ′, x′) with probability
µb(α

′, β ′, x′)δβ,α′/µb(α
′). Notice thatµb is invariant for such a chain and we

denote by{αj ,αj+1,�ηj }j the stationary process and by〈·〉 its expectation.
Observe, moreover, that for everyk ∈ N,

1 = ∑
α0,...,αk

x0,...,xk−1

µb(α0, α1, x0)
µb(α1, α2, x1)

µb(α1)
· · · µb(αk−1, αk, xk−1)

µb(αk−1)

= 1

Z(b)k

∑
α0,...,αk

x0,...,xk−1

[
µb(α0)vαk

vα0

]
exp

(
k−1∑
j=0

�αj ,αj+1(xj ) − b

k−1∑
j=0

xj

)
(2.4)

×
k−1∏
j=0

pαj ,αj+1Kαj ,αj+1(xj ).

This formula gives a family of expressions forZ(b), indexed byk. Notice that the
term between brackets[· · ·] depends onb, but it is bounded and its derivative with
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respect tob is bounded, too. By taking the derivative with respect tob and letting
k go to infinity one obtains

d

db
logZ(b) = − lim

k→∞
1

k

〈
k−1∑
j=0

�ηj

〉
= −∑

x

xµb(x).(2.5)

The proof is therefore complete. An alternative proof of (2.3) can of course be
extracted directly from (2.1).�

LEMMA 2.2. Setf (b) = ∑
x xµb(x).

(i) f ∈ C(0,∞) is decreasing. Moreover, limb↗∞ f (b) = 2 and
limb↘0 f (b) = ∞.

(ii) For everyµ ∈ P we have that if
∑

x xµ(x) = ∑
x xµb(x), then

Q(µ) ≤ Q(µb),(2.6)

and equality holds only ifµ = µb.

PROOF. The proof is a bit indirect: we start by establishing the continuity and
the limits claimed in (i). We then prove (ii), that will imply the (strict) monotonicity
of f .

First of all we observe thatAα,β(·) ∈ C0(0,∞) and thereforeZ(·), vβ(·)/vα(·)
and µ·(α) are in C0(0,∞). Recalling that�α,β is bounded, one obtains that
f (·) ∈ C0(0,∞).

In order to deal with the limits off at the boundary of(0,∞), we first remark
that the expression in the right-hand side of (1.12) makes sense forb = 0, thus
defining A(0) ∈ M+(Tω) and limb↘0 A(b) = A(0). This guarantees thatZ(b),
vα(b) and µb(α) tend to finite limits asb vanishes: since

∑
x xKα,β(x) = ∞

we conclude that limb↘0 f (b) = +∞. On the other side, it is rather imme-
diate to see that limb↗∞ µb(α,β, x) = 1/Tω if β − α = 1 and x = 2, and
limb↗∞ µb(α,β, x) = 0 otherwise. This yields limb↗∞ f (b) = 2.

For what concerns (2.6) we first note that

I (µ) = ∑
α,β,x

[
log

(
µb(α,β, x)

µb(α)pα,βKα,β(x)

)

+ log
(

µ(α,β, x)

µb(α,β, x)

)
+ log

(
µb(α)

µ(α)

)]
µ(α,β, x),

(2.7)
= ∑

α,β,x

�α,β(x)µ(α,β, x) − b
∑
x

xµb(x) − logZ(b)

+ ∑
α,β,x

log
(

vβ(b)

vα(b)

)
µ(α,β, x) + H̃ (µ|µb),
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whereH̃ (µ|µb) is the difference of relative entropies∑
α,β,x

log
(

µ(α,β, x)

µb(α,β, x)

)
µ(α,β, x) − ∑

α

log
(

µ(α)

µb(α)

)
µ(α).(2.8)

We claim thatH̃ (µ|µb) > 0, unlessµ = µb (see below for a proof of this claim).
Moreover, we observe that∑

α,β,x

log
(

vβ(b)

vα(b)

)
µ(α,β, x) = ∑

α,β

log
(

vβ(b)

vα(b)

)
µ(α,β) = 0,(2.9)

since the marginals ofµ(α,β) are identical.
Applying these observations to (2.7), we obtain that for everyb

Q(µ) = b
∑
x

xµ(x) + logZ(b) − H̃ (µ|µb),(2.10)

and since by a straightforward computation

Q(µ
λ,h
b ) = b

∑
x

xµ
λ,h
b (x) + logZ(b,λ,h),(2.11)

Part (ii) of the statement is proven. Of part (i) of the statement we are left with
establishing the strict monotonicity off . Sincef is continuous, iff is not strictly
monotonic, there existsb1 < b2 such thatf (b1) = f (b2). By applying (2.10) with
b = b2 and (2.11) we obtain

Q
(
µb1

) = b2f (b2) + logZ(b2) − H̃
(
µb1|µb2

) ≤ Q
(
µb2

)
.(2.12)

Of course, by exchangingb1 and b2 we obtain the reversed inequality, that is,
Q(µb2) ≤ Q(µb1), and therefore that̃H(µb1|µb2) = 0, which, by the claim, forces
µb1 = µb2, which is clearly impossible. Thereforef is strictly monotonic.

Let us now establish the claim that̃H(µ|µb) is positive unlessµ = µb. From
(2.8) we observe that̃H(µ|µb) can be viewed as an average of relative entropies:
setµ(β,x|α) = µ(α,β, x)/µ(α) wheneverµ(α) �= 0, so that

H̃ (µ|µb) = ∑
α,β,x

log
(

µ(β,x|α)

µb(β, x|α)

)
µ(α,β, x)

(2.13)
= ∑

α

µ(α)H
(
µ(·, ·|α)|µb(·, ·|α)

)
,

where H is the standard relative entropy. Notice thatµ � µb by definition
of P and µb. ThereforeH̃ is nonnegative. IfH̃ (µ|µb) = 0, thenH(µ(·, ·|α)|
µb(·, ·|α)) = 0, and thereforeµ(·, ·|α) = µb(·, ·|α), for every α such that
µ(α) �= 0. This implies thatµ(α,β)/µ(α) = µb(α,β)/µb(α) for µ(α) �= 0 and
therefore

∑
α µ(α)(µb(α,β)/µb(α)) = µ(β). If we setAα,β = µb(α,β)/µb(α),
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we see thatA is a stochastic matrix inM+(Tω); µ is therefore the unique
nonnegative normalized left eigenvector. It is, however, immediate to verify that
µb is also a nonnegative normalized left eigenvector; thereforeµ(α) = µb(α) > 0
for everyα, which immediately yieldsµ(α,β, x) = µb(α,β, x). �

We are now ready to prove:

PROPOSITION2.3.

sup
t>0

t sup

{
Q(µ) :µ ∈ P ,

∑
x

xµ(x) ≤ 1/t

}
= b̃(λ,h).(2.14)

PROOF. Lemma 2.2 yields

Q(µ
λ,h
b ) = sup

{
Q(µ) :µ ∈ P ,

∑
x

xµ(x) = ∑
x

xµ
λ,h
b (x)

}
,(2.15)

and that the supremum is uniquely attained. Therefore, by recalling (2.11), we
obtain

sup
t>0

t sup
{
Q(µ) :µ ∈ P ,

∑
x

xµ(x) ≤ 1

t

}
(2.16)

= sup
b>0

Q(µ
λ,h
b )∑

x xµ
λ,h
b (x)

= sup
b>0

(
b + logZ(b,λ,h)∑

x xµ
λ,h
b (x)

)
.

Let us observe that, by Lemma 2.1, the derivative with respect tob of the argument
of the supremum in the right-hand side is equal to

− logZ(b)
f ′(b)

f 2(b)
,(2.17)

where, as before,f (b) = ∑
x xµb(x). Lemma 2.2 guarantees thatf ′(b) < 0 for

everyb > 0 and therefore a pointb > 0 such thatZ(b) = 1 is the maximum. Such
a point may not exist; this is the case ifZ(b) < 1 for everyb > 0, that is,Z(0) ≤ 1,
and in this case the supremum is achieved in the limitb ↘ 0 and it takes of course
the value zero. �

3. From large deviations to the variational problem. In this section we
present a proof of Proposition 1.4. This, coupled with Proposition 2.3, yields
Theorem 1.2. It will be preceded by some straightforward manipulations of the
free energy and by a large deviations principle for suitable Markov processes.
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3.1. Reduction to random walk excursions.We start by recalling that the
reduced free energyφω(λ,h) is defined as limit asN → ∞ of

φN,ω(λ,h) = 1

N
logE

(
exp

(
λ

(
N∑

x=1

(ωx + h)sign(Sx)

)
− λhN

))
.(3.1)

For the arguments in this section there is some technical advantage in using instead

φ̃N,ω(λ,h) = 1

N
logE

(
exp

(
λ

(
N∑

x=1

(ωx + h)
(
sign(Sx) − 1

))))
.(3.2)

Since|∑N
x=1 ωx | ≤ Tω, it is immediate to see that|φ̃N,ω(λ,h) − φN,ω(λ,h)| ≤

λTω/N and the two quantities are therefore equivalent.
Starting from the setup of Section 1.6, recall in particular the sequence of

stopping times defined in (1.17); we introduce also�ηk = ηk+1−ηk , αk = [ηk/2]S
andβk = αk+1, for everyk = 0,1, . . . , and�N = max{j ∈ N ∪ 0 :ηj ≤ N}. By
exploiting the up–down symmetry of the excursions ofS we easily arrive at

φ̃N,ω(λ,h) = 1

N
logE

[
exp

(
�N−1∑
i=0

ϕ
(
λξαi,βi

+ λh�ηi

))
RN

]
,(3.3)

whereϕ(t) = log((1 + exp(−2t))/2), t ∈ R, andRN = exp(ϕ(λ
∑N

x=η�N+1
(ωx +

h))). Since the argument ofϕ(·) in (3.3) is bounded below by−λξ�, we may
redefineϕ(·) by ϕ(·) ∨ ϕ(−λξ�) and therefore now‖ϕ‖∞ < ∞.

3.2. A Donsker–Varadhan large deviations principle.Recall from Section 1.6
the definition ofP , which is a subset of the probability measures onS × S × 2N:
the latter space is endowed with the discrete topology andP is endowed with the
topology of weak convergence.

Form ∈ N introduce the empirical measure

Lm(α,β, x) = 1

m

m−1∑
j=0

1{αj ,βj ,�ηj }(α,β, x).(3.4)

PROPOSITION 3.1. A full large deviations principle with rate functionalI ,
defined as in(1.20),holds for the sequence of empirical measures{Lm}m. More
explicitly, we have

− inf
µ∈A◦ I (µ) ≤ lim inf

m→∞
1

m
logP(Lm ∈ A)

(3.5)

≤ lim sup
m→∞

1

m
logP(Lm ∈ A) ≤ − inf

µ∈A
I (µ),

whereA◦ andA are, respectively, the interior and the closure of the setA.
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PROOF. This result is implicitly contained in [2]: on page 97 one finds the
definition of the functional̃I of which I , that we have introduced in (1.20), is a
particular case. Notice, moreover, that ([2], Lemma 2.1) provides the link between
Ĩ and the standard (variational) Donsker–Varadhan expression.

Nevertheless, we sketch here a proof: let us observe that(αk,�ηk−1)k=1,2,...

is a uniformly ergodic Markov chain onS × 2N with transition probabilities

q((α, x), (α′, x′)) def= pα,α′Kα,α′(x′). So (see [5], Chapter 6), the empirical measure
(1/m)

∑m
k=1 δ(αk,�ηk−1,αk+1,�ηk) satisfies a strong large deviations principle with

rate function

Î (ν)
def=

{
H(ν|ν1 ⊗ q), if ν1 = ν2,

∞, otherwise,
(3.6)

ν a probability measure on(S×2N)2, ν1, ν2 being again the two marginals on
S × 2N andH the usual relative entropy. With standard notation we have used
ν1 ⊗ q(α, x,α′, x′) = ν1(α, x)q((α, x), (α′, x′)). Write ν̂ for the marginal on

S × S × 2N given by ν̂(α,β, x)
def= ∑

z ν(α, z,β, x). By the contraction principle,

Lm satisfies a large deviations principle with rate functionI0(µ)
def= inf{Î (ν) :

ν̂ = µ}, and it remains to show thatI0 = I. Evidently, I0(µ) = ∞ for µ /∈ P .

For a givenµ ∈ P , set

µ̄(α, x,α′, x′) def=
∑

γ µ(γ,α, x)∑
γ,x µ(γ,α, x)

µ(α,α′, x′),(3.7)

which evidently satisfies̄µ1 = µ̄2 if µ ∈ P . Now, for anyν satisfyingν1 = ν2 and
ν̂ = µ one has by an elementary computationÎ (ν) − Î (µ̄) = H(ν|µ̄) ≥ 0, and
thereforeI0(µ) = Î (µ̄) = I (µ). �

PROOF OF PROPOSITION 1.4: UPPER BOUND. Since 1/2 < RN ≤ (1 +
exp(2λξ�))/2, we may safely get rid ofRN in the expression in (3.3) and it suffices
to prove the statement for

φ̂N,ω(λ,h) = 1

N
logE

[
exp

(
�N−1∑
i=0

ϕ
(
λξαi,βi

+ λh�ηi

))]
,(3.8)

rather than forφ̃N,ω(λ,h).
Let us first control lim supN φ̂N,ω(λ,h). We proceed with a discretization

procedure: choose a large integerK and assume for simplicity that 2K dividesN :
we have

φ̂N,ω(λ,h) = 1

N
log

K−1∑
j=0

E

[
exp

(
�N−1∑
i=0

ϕ
(
λξαi,βi

+ λh�ηi

));

�N ∈
(

jN

2K
,
(j + 1)N

2K

]]
,

(3.9)
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≤ 1

N
log

K−1∑
j=0

E

[
exp

(
jN/2K∑

i=0

ϕ
(
λξαi,βi

+ λh�ηi

))
exp

(
N‖ϕ‖∞

2K

)
;

�N ∈
(

jN

2K
,
(j + 1)N

2K

]]
,

from which we obtain that

lim sup
N→∞

φ̂N,ω(λ,h)

≤ ‖ϕ‖∞
2K(3.10)

∨ max
j=1,...,K−1

lim sup
N→∞

1

N
logE

[
exp

(jN/2K∑
i=0

ϕ
(
λξαi,βi

+ λh�ηi

));

jN/2K∑
i=0

�ηi ≤ N

]
.

But the term in the right-hand side can be easily expressed as a functional of the
empirical measure, namely:

q := lim sup
N→∞

1

N
logE

[
exp

(jN/2K∑
i=0

ϕ
(
λξαi,βi

+ λh�ηi

));
jN/2K∑

i=0

�ηi ≤ N

]

= lim sup
N→∞

1

N
logE

[
exp

(
N

(
j

2K

)
(3.11)

× ∑
α,β,x

LjN/2K(α,β, x)ϕ(λξα,β + λhx)

)
;

∑
α,β,x

xLjN/2K(α,β, x) ≤ 2K

j

]
.

Since{µ :
∑

α,β,x xµ(α,β, x) ≤ c} is a closed set, we may apply the upper bound
of the large deviations principle in Proposition 3.1 to obtain

q ≤ sup

{
j

2K

( ∑
α,β,x

µ(α,β, x)ϕ(λξα,β + λhx) − I (µ)

)
:

(3.12) ∑
α,β,x

xµ(α,β, x) ≤ 2K

j

}
.
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Recalling (3.10) and takingK → ∞, we arrive at

lim sup
N→∞

φ̂N,ω(λ,h)

(3.13)
≤ sup

t∈(0,1/2]
sup

µ∈P :∑
x xµ(x)≤1/t

t

( ∑
α,β,x

µ(α,β, x)ϕ(λξα,β + λhx) − I (µ)

)
,

which proves that the left-hand side in (1.22) is not larger than the right-hand side.
�

PROOF OFPROPOSITION1.4: LOWER BOUND. As in the previous proof we
may concentrate on̂φN,ω(λ,h), see (3.8), and on the process{�ηj }j rather than on
the wholeS-path. Forb > 0 we consider the measureµb = µ

λ,h
b , defined in (2.2),

which naturally defines the Markov process{αi, βi,�ηi}i introduced in the proof
of Lemma 2.1. For definiteness we consider the stationary process conditioned
to α0 = 0 and denote byP(N)

b the law of {�N, {�ηj }j=0,...,�N−1}. Notice that if
b = 0 andλ = 0, then the process{αi, βi,�ηi}i is the one associated to the simple
random walkS. We denote byP(N) the measureP(N)

0 with λ = 0.
By applying the Jensen inequality we have

φ̂N,ω(λ,h) ≥ E
(N)
b

[
1

N

�N−1∑
i=0

ϕ
(
λξαi,βi

+ λh�ηi

)] − 1

N
H

(
P

(N)
b |P(N)

)
,(3.14)

in which H still denotes the relative entropy. The relative entropy term can be
evaluated directly and one obtains

lim inf
N→∞ φ̂N,ω(λ,h)

≥ lim inf
N→∞ Eb

[
1

N

�N −1∑
i=0

ϕ
(
λξαi,βi

+ λh�ηi

)]
(3.15)

− lim sup
N→∞

Eb

[
1

N

�N−1∑
i=0

G(αi,βi,�ηi)

]
,

where G(α,β, x) ≡ log(µb(α,β, x)/µb(α)pα,βKα,β(x)) = �
λ,h
α,β(x) − bx −

logZ + log(vα/vβ). By ergodicity limN �N/N = 1/
∑

x xµb(x) Pb-a.s.; this im-

plies that
∑�N−1

i=0 G(αi,βi,�ηi)/N converges a.s. toI (µb)/
∑

x xµb(x). Since
G(α,β, x) is bounded above, by Fatou’s lemma one obtains that the superior limit
of Eb[∑�N−1

i=0 G(αi,βi,�ηi)/N ] is bounded above byI (µb)/
∑

x xµb(x). By re-
calling thatϕ(·) is bounded and by applying once again the ergodic theorem one
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obtains

lim inf
N→∞ φ̂N,ω(λ,h) ≥

∑
α,β,x ϕ(λξα,β + λhx)µb(α,β, x) − I (µb)∑

x xµb(x)
(3.16)

= Q(µb)∑
x xµb(x)

.

Set t = 1/
∑

x xµb(x); Lemma 2.2 allows then to replace in the previous
expressionµb with anyµ ∈ P such that

∑
x xµ(x) = 1/t . Optimizing overt leads

to the desired lower bound and proof of Theorem 1.4 is complete.�

4. Existence and monotonicity of the critical line. We now go through some
soft arguments that yield a partial proof of Proposition 1.1. We prove the following:

LEMMA 4.1. There exists a nondecreasing functionhc(·) : [0,∞) → [0,1],
continuous if its domain is restricted to(0,∞), such thatD = {(λ,h) :h ≥ hc(λ)}.

REMARK 4.2. In order to fill the gap with Proposition 1.1 one needs to show
thathc(λ) vanishes asλ ↘ 0 and that it tends to 1 asλ ↗ 0, as well as the fact that
the image is[0,1) rather than[0,1]. To establish this one needs some quantitative
bounds onφω(·). Theorem 1.3 of course largely provides the needed bound for
smallλ; for largeλ we refer to Section 5.2.

PROOF OFLEMMA 4.1. We first collect some elementary facts:

1. φω(0, h) = 0 for everyh andφω(λ,h) ≥ 0 for everyλ andh.
2. φω(·, h) is a convex function for everyh. This simply follows from the

convexity inλ of logZN,ω, see (1.4).
3. φω(λ, ·) is nonincreasing, besides being convex (proven as in point 2) and

therefore continuous, for everyλ. This follows from (1.22) and the fact that
�̃

λ,·
α,β(x) is nonincreasing for everyα,β,λ andx.

4. If (λ,h) ∈ D and if �λ and �h are two positive numbers such that�h ≥
�λ(1 − h)/λ, then(λ + �λ,h + �h) ∈ D . This follows by (1.22) once we
observe that̃�λ,h

α,β(x) = log(1 + exp(−λ(ξα,β + hx)) − log2 is a decreasing
function of λ(ξα,β + hx). By using thatξα,β ≥ −x one directly verifies
that choosing�λ and�h as above implies(λ + �λ)(ξα,β + (h + �h)x) ≥
λ(ξα,β + hx).

5. If h ≥ 1, thenφω(·, h) is nonincreasing. This again follows from the fact that
�̃

λ,h
α,β(x) is a decreasing function ofλ(ξα,β + hx): if h ≥ 1, thenξα,β + hx ≥ 0,

so that�̃·,h
α,β(x) is nonincreasing and (1.22) implies the result.

Let us use these five facts (points): first of all we observe that point 3 guarantees
the existence ofhc(·) and thathc(λ) = inf{h :φω(λ,h) = 0}. By points 1 and 2
we have thatφω(·, h) is nondecreasing, sohc(·) is nondecreasing. Points 1 and 5



PERIODIC COPOLYMERS 981

guarantee thathc(λ) ≤ 1 for everyλ ≥ 0. Finally, point 4 implies the continuity
of hc(·) on the positive semi-axis because it implies that the incremental ratios of
hc(·) at the pointλ are bounded above by(1− hc(λ))/λ. �

5. Asymptotics for small and large λ: the proof of Theorem 1.3.

5.1. Small λ asymptotics. Set h = mλ3, m a positive number, and write

�α,β(·) = �
λ,mλ3

α,β (·): we choose to work with the latter defined as in (1.23). Set

alsoÃ(λ) = A(0, λ,mλ3). We write

Ãα,β(λ) = pα,β + pα,β

∑
x

Kα,β(x)
[
exp

(
�α,β(x)

) − 1
]
,(5.1)

and we decompose the second term in the right-hand side in three terms:∑
x

Kα,β(x)
[
exp

(
�α,β(x)

) − 1
]

= ∑
x≤λ−5/2

Kα,β(x)
[
exp

(
�α,β(x) + mλ4x

) − 1
]
exp(−mλ4x)

+ ∑
x≤λ−5/2

Kα,β(x)[exp(−mλ4x) − 1](5.2)

+ ∑
x>λ−5/2

Kα,β(x)
[
exp

(
�α,β(x)

) − 1
]

:= T1 + T2 + T3.

By using the fact that forx � λ−3

exp(�α,β(x) + mλ4x) − 1

λ2 = ξ2
α,β

2

(
1+ o(1)

)
,(5.3)

one easily sees that limλ↘0 λ−2T1 = ξ2
α,β/2. Moreover, by using that 1− e−t ≤ t

for t ≥ 0, one directly obtains thatT2 = O(λ11/4) = o(λ2). ForT3 we observe that

T3 = ∑
x>λ−5/2

Kα,β(x)exp(�)
[
exp

(
ψ(mλ4x) − mλ4x

) − 1
]

+ ∑
x>λ−5/2

Kα,β(x)[exp(�) − 1](5.4)

= T4 + T5,

with � = ψ(λξα,β + mλ4x) − ψ(mλ4x). Taylor’s expansion yields immediately
that |�| ≤ ξ�λ. This suffices to show thatT5 is inessential:

|T5| ≤ K
∑

x>λ−5/2

x−3/2|e� − 1| ≤ cλ1+1/4λ = o(λ2).(5.5)
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ForT4 we approximate the sum by an integral using (1.10) and obtain thus

lim
λ↘0

λ−2
∑

x>λ−5/2

Kα,β(x)[cosh(mλ4x)exp(−mλ4x) − 1]

= CK

√
m

2Tωpα,β

∫ ∞
0

1

r3/2 [cosh(r)exp(−r) − 1]dr(5.6)

= −CK

√
2πm

2Tωpα,β

.

The conclusion is that

Ãα,β(λ) = pα,β + λ2
(
pα,β

ξ2
α,β

2
− CK

√
2πm

2Tω

)
+ o(λ2).(5.7)

By applying, for example, (2.1) one directly writes the corresponding expansion
for the maximal eigenvaluẽZ(λ) of Ã(λ) (recall thatpα,β is bi-stochastic):

Z̃(λ) = 1+ λ2

(
1

Tω

∑
α,β

pα,β

ξ2
α,β

2
− CK

√
π

2
m

)
+ o(λ2).(5.8)

In view of Theorem 1.2, formula (1.14) is proven withmω equal to the value ofm
for which the term between brackets in (5.8) is zero.

5.2. Largeλ asymptotics. We seth = 1 − (M/λ), M > 0, and the argument
we are going to use is based on the observation that if we define for[x]S = β − α

�̂α,β(x) = − log 2+
{

0, if ξα,β > −x,

log
(
1+ exp(2Mx)

)
, if ξα,β = −x,

(5.9)

then

0 ≤ �
λ,1−(M/λ)
α,β (x) − �̂α,β(x) ≤ exp(−4λ),(5.10)

with � as in (1.11).
We have therefore thatZ(0, λ,1 − (M/λ)) tends to Ẑ(M), the principal

eigenvalue ofpα,β

∑
x Kα,β(x)exp(�̂α,β(x)). Notice thatẐ(·) is increasing, that

Ẑ(0) = 1/2 and that̂Z(M) tends to infinity asM ↗ ∞ (this can be seen, e.g., by
applying Theorem 1.4 in [10], Chapter 2) so thatMω = Ẑ−1(1). This proves (1.16)
and the proof of Theorem 1.3 is complete.
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