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PERIODIC COPOLYMERS AT SELECTIVE INTERFACES:
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We analyze a(l + 1)-dimension directed random walk model of
a polymer dipped in a medium constituted by two immiscible solvents
separated by a flat interface. The polymer chain is heterogeneous in the sense
that a single monomer may energetically favor one or the other solvent. We
focus on the case in which the polymer types are periodically distributed
along the chain or, in other words, the polymer is constituted of identical
stretches of fixed length. The phenomenon that one wants to analyze is the
localization at the interfaceenergetically favored configurations platest
of the monomers in the preferred solvent and this can be done only if the
polymer sticks close to the interface.

We investigate, by means of large deviations, the energy—entropy compe-
tition that may lead, according to the value of the parameters (the strength of
the coupling between monomers and solvents and an asymmetry parameter),
to localization. We express the free energy of the system in terms of a varia-
tional formula that we can solve. We then use the result to analyze the phase
diagram.

1. Introduction and results.

1.1. The model. Let S = {Sy}x=0,1.... be a simple symmetric random walk
starting at 0, that isSo =0, Sy = 3>7_; ¥;, where{Y;} ;=12 are i.i.d. variables
such thatP(Y, = +1) = 1/2. For adeterministicsequencey = {wy }xeN, @y €
{—1,1} and a parametér > 0, we introduce thélamiltonian

N
(1.1) Hy o1 () £ (@ + 1) sign(s,),

x=1
and the probability measui®y , 1 »

dAPN o h , o def EXPAHN 0 1(S))

(1.2) 8 = ;
dp ZN w.h
wherei > 0 is the coupling constant, arfly ,.» 5 is the normalization
def
(1.3) ZNwin = E[exp(AHy o»4(S))]-
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964 E. BOLTHAUSEN AND G. GIACOMIN

We make the convention that §, = 0, then sigiiS,) = sign(Sy_1), which
amounts to assigning the sign to the b@td— 1, S,_1), (x, Sy)) rather than to the
vertex(x, Sy); see Figure 1. Our basic assumption on the sequere¢w, } <N IS
that it iscenteredandperiodic that is, there exist§ € N such thatv, = w427 for
everyx € N andY"?L, w, = 0. We write 7,, for the smallest sucii. We exclude
from our analysis thérivial w’s for which wor_1w2r = —1 for everyk € N and in
particular the case df, = 1, thatis,w, = £(—21)*. In this casezi\’zl wy SIgN(Sy)
is 0 or£1, due to the 2-periodicity of the random walk, and therefore, the influence
of w on the path measure is asymptotically negligible. We wfitéor the set of
centered periodic sequencesvhich are nontrivial. This is theeriodic version
of the random model considered in [3], wheke,}, is a typical realization of
a sequence of i.i.d. centered variables taking vali&sWe will often drop the
dependence ok, i for notational convenience.

Py.» is our model for a heterogeneous polymer near an interface, the
x-axis, separating two media that interact with the monomers according to their
w-Ccharacteristics. Possibly enlightening is the analogy with an oil/water interface
and monomers, that ig,S,_1, Sy), that are either hydrophobies( = +1) or
hydrophilic @, = —1).

The free energy of such a model in the infinite volume limit is defined as

1
(1.4) fo(h, h) = ngnoo ~ log Zy -

The limit in (1.4) is easily seen to exist. We omit a direct proof as it follows
from our more precise results, see Proposition 1.4. (An elementary direct proof
can be given as in [3]; see, e.g., [7].)

S | +2¢+2) +2 (-2 +4 (+4) -2 (+2) 0 (0)

Fic. 1. A polymer path the quantitis appearing on top of each excursion are
Z’;:jﬂwx sign(Sy) (Z§:j+lwx), with j and k, respectively the beginning and the end
point of the excursian



PERIODIC COPOLYMERS 965

1.2. Localization and delocalization regions and the critical linedn elemen-
tary estimate is

(1.5) Jo(A,h) = Ah,
for everyw, A andh. This follows by observing that 2}, def{S Sy > 0 for every

x=12,...,N}, then

1 Iog INw > 1 IogE[exp(k > (o + h)3|gn(Sx)> N}

x=1

Pl 1
(1.6) NZ (wy +h) + — Iog]P’(Q )
|
:Ah+0<09N), N — o0,
N

by the well-known estimate/P(Q},) = O(N/?) (cf. [6], Chapter 3).
As in [3], motivated by the steps in (1.6), we partition the parameter space
{(A, h): x>0, >0} into two regionsL£ andD:

() thelocalizedregionL ={(x,h): f,(A, h) > Ah};
(ii) the delocalizedegionD = L ={(A,h): f,(A, h) = Ah}.

We will discuss in Section 1.7 why and how (de)localization in the free energy
sense igquivalento pathwise de(localization). We set

1.7) Ou(X, h) = f,(X, h) — Ah.

The first result is:

PrRopPoOSITION1.1. For everyw € T there exists a continuous nondecreasing
function h.:[0,c0) — [0,1) such that.f = {(A,h):h < h.(A)}. Moreover
he(0)=0andlim;_ s h.(A) =1

We are going to focus on getting precise estimates owtritieal curveh(-).

1.3. A formula for the free energy.We now give a series of definitions that
lead to a rather explicit formula for the free energy. In Section 1.6 one can find an
outline of the proof; this yields some intuition on this formula.

The basic idea of our approach is to split the Hamiltonian (1.1) as a sum of the
contributions coming from the excursions of the random walk. An excursion is a
portion Sp, = 0, S2,41, ..., S2p_1, Sop = 0 of the walk, whereS, # 0 for 2a <
x < 2b. Evidently, the relevant contribution coming fromto one excursion is
+ Z)%b:lex, and this depends anandb only through their values modulf,.
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It is therefore natural to define the following matrix indexed by the Abelian group

s®'71,7: fora, feS

2b
def
(18) EC{,,B :e E Wy,
x=2a+1

which is well defined by choosing representatives « andb € 8 with a < b.
Evidently

(1.9) Eu.p =08 — £0.a-

We sett, def max,, g |60, 81 < 2T,,. Notice that for every e 7 the matrix{&, gla,p
is not identically zero.

As an example, take the simplest case ofeaBequencex, +, —, —, +, +,
—, —, -+ (T,, = 2), which yieldss = (_%%).

We need also some notation for the random w&lk et n be the first return
time to O, that isy d=efinf{x >1:5, =0}, and setK(x)dzef]P(n = x) for x € 2N,

Pap ZP(n/2€ B —a) fora, peS, andKq 5(x) B P = x|y/2 € p —a). Note
that{py g}a,p is bistochastic. As it is well known,

(1.10) lim  x3?K(x)=+2/7 =: Ckg,

xe2N,x—o00

see, for example, [6], Chapter 3.
We set forx e Nanda, 8 €S

1+ exp(—2(A&, Mh
(1.11) @y (x) d=ef|og( rom (; Las x))),
and in turn theS x S matrix with positive entries

def
(1.12)  Agp=Aapb. A h) = papd Kaplx)exp@yhx) —bx),
X

with b > 0. Let us denote byZ = Z(b, 1, h) (> 0) the Perron—Frobenius
(maximal) eigenvalue. We observe thaf 4(-, A, h) is a decreasing function for
everya andg. This implies thatZ (-, A, h) is decreasing (cf. [10], Chapter 1). For
the same reasan(b, A, -) is decreasing, too. We have the following:

THEOREM 1.2. Denote byb = b(x, h) the unique solution oZ (b, A, h) = 1,
if such a solution exisfsand seth(A, #) = 0 if such a solution does not exist/e
have that
(1.13) bw(X, h) =b(), h),

for everyi andh.
An immediate consequence of this formula, of the fact tA&b, A, ) is

decreasing and of Proposition 1.1 is tai{)) is uniquely determined by the
equationZ (0, A, k(1)) = 1.



PERIODIC COPOLYMERS 967

1.4. Estimates on the critical line. From Theorem 1.2 we extract the precise
asymptotic behavior of the critical curve at small values of

THEOREM1.3. Foreveryw € 7, asi \, 0 we have that

(1.14) he(A) = mpA3(1+0(1)),
where

1 >\
(1.15) Mgy = (ﬁ %pa,,ﬁa’ﬁ) .
Moreoverthere exists a positive constaift, such that as. oo,
(1.16) he(h) =1— (M, + o)L,

In Section 5.2 one can find an expressionf#y.

1.5. On related copolymer modelsA large amount of papers dealing with
periodic copolymers can be found in the literature (mostly in the area of chemistry
and physics). We single out some of them, divided into two categories: results
about systems with period Zf = 1) and results about more general copolymers.

Period2 copolymers. We stress once again that tilg = 1 case leads to a
trivial model in our case. This is due to an evident cancellation connected to
the fact that thew-periodicity coincides with the periodicity of the walk. One
may, however, modifyslightly the definition of the model by taking a different
convention for the sign of zero and the situation may change, leading to a
localization—delocalization phenomenon. We mention in particular the work [12]
in which o, = (—1)**! and sigri0) = —1. Since this can be interpreted as
choosing the interface line at height2, we will refer to this model as the
1/2-interface (copolymer) model. The authors point out in particular that such
a model, undeonestep decimationbecomes a homogeneous polymer model
at a penetrable attractive interfagavhich is known to beexactly solvablgwe
refer also to [9] and references therein for exact computations on this model). In
probabilistic languag@ne step decimatiomeans simply to consider the marginal
of the polymer measure over odd (or even) sites. The computation is elementary
and the arising model is simply a random walk that prefers the upper half plane if
h > 0 and that receives a reward each time that crosses the interface. We mention
also the result [15] in which sigf) = 0, but in which the asymmetry is replaced
by a penalization for the walk to touch zero; in this case, again by one-step
decimation, the system reduces to the walk with a reward (positive or negative)
at the origin. We signal also the complete analysis obtained in [8] for a Gaussian
random walk with alternating.
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Some of the results in [12] may at first look to be in contradiction with ours: in
particular, thatin [12] it is shown that. (1) = (14 0(1))A asi N\ 0. We point out,
however, that if one introduces tlieasymmetry for the model with sig@) =0
(cf. [15]), one can show thai. (1) = (1 + o(1))23 (we refer to this model as
the neutral interfacemodel). It is, however, not too difficult to understand the
mechanism that leads to the different phenomenology in tReiriterface model:

(a) in the Y2-interface mode&any excursion is favorablen the sense that, if
one considers successive crossings of tha-ifiterface, each time the energetic
gain fromw amounts to+1;

(b) in the neutral interface model this does not happen: crossing the interface
is not enough to get a positive energy contribution or, in other words, there are
favorable and unfavorable excursions.

The two results that we have just mentioned can be established also via our
approach; in thél,, = 1 case the arising variational problem can be written in a
fully explicit fashion. This of course leads to results approaching the completeness
of the analysis in [12].

More general periodic polymers.Among the physics papers on the case
T,, > 1 we single out the one of Sommer and Daoud [16], who consider the case
in which w is made of alternating blocks of lengll, of the same sign (this model
is referred to adliblocksmodel). While no mathematically precise model is given,
the authors argue, on the base of scaling arguments and of a renormalization group
analysis, in favor ofi (1) ~ T3A3. This agrees with our result not only because
of the correct. dependence, but also becausg behaves likel’S for largeT,,; it
must be noted, however, that this behavior is restricted to the diblocks case and it
is rather easy to see that:

(a) fastest growth afz,, in T, is obtained for the diblocks model;

(b) one can construct any intermediate behavior down to the extreme case of
m, = 0(1/T,) asT, grows. For example, the latter case is achieved by starting
with the periodic (forbidden!) configurationr — + — + — ---, and switching
—+ —> + — atregular intervals (saykzsites), obtaining thus an element 7
with T,, = k and satisfying the desired property.

We signal also that precise large-period developments for the related problem
of copolymeradsorption for a very special family oéo’s, have been established
by combinatorial methods in [13].

Moreover, it is interesting to recall thatd is a typical realization of an i.i.d.
sequence of centered random variables, the phase diagram is still split in two
regionsD and L by a continuous functiork.(-) for which a strict analog of
Proposition 1.1 holds (cf. [3]). However, in that case the derivative. 69 in zero
(exists and it) is positive and bounded above by 1 (cf. [3]; see also [11] for various
physical predictions). The appearance of a positive slope in the randcase is
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nontrivial: an excursion of length, L large, leads to an energetic gain of the order
of +/L, if the sign of the excursion agrees with the sign of éhBuctuation. This
effect is of course not present in the periodic case, in which the energetic gain is
always O (1). As we have seen, a positive slope phenomenon may (and will) be
observed if the interface is not neutral and attractive.

1.6. Sketch of the proofsa sharp energy—entropy arguments already
pointed out, our arguments start with expressing the energy of the copolymer in
terms of the return times to zero §f These are defined recursively by

1.17) 10 %0 and ns Einflx > S, =0  fork>1.

Of course once the sequenpg}; is fixed, to determine the energy we need to
know the sign ofS, for x € {nx +1, ..., nx+1}. However, the sequence of signs is
i.i.d. and centered, so that these degrees of freedom are easily integrated out; see
the beginning of Section 3 for the straightforward details.

It turns out to be practical to consider the sequefigge/2], [nx+1/2], Nk+1 —
nk}k=1.2..., Where, forx € N, [x] = [x]s denotes the class B This sequenceis a
Markov chain inS x S x 2N with transition probabilities

def
(1.18) P((o, B.x), (@', B/ X)) E g 0 Par g Ko,y ().

It is immediate to see that the stationary distributiqi of this Markov chain is
given by

def 1
(1.19) Teq(et, . %) = P p Ko p ().
w

Since the energy can be essentially expressed in terms of the empirical measure

of this Markov chain [cf. (3.4)], that is, the frequency with which each value of

(«, B, x) is observed in the Markov chain sequence, one can in turn express the

leading asymptotics of the exponential of the energy via a variational formula.

This formula evaluates the competition between the energy and the entropy of the

system, and the latter is the large deviation functional for the empirical measure.
More in detail, if u is a probability measure o8 x S x 2N, we denote

by w1, n2, u3 the marginals orS and N, respectively. Let? be the set of

probability measureg onS x S x 2N satisfyingu1 = w2, andu ({(«, 8, x) :x/2 €

B — a}) = 1. Note thatreqe 2.

We set now
p(et, B ) .
o, B,x)lo ( ) if wue P,
(1.20) 1w E %“ P00 @) Py K p ) g
+OO, |f ,LL ¢ j),
with 0log 0= 0. If we put
(1.22) o) B Y ol hmue pox) — 1),

o, B,x
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then we have the following variational formula fey,:

PrROPOSITION1.4. Foreveryw e 7,1 >0andhk > 0 we have
(122)  o(r. h) =supisup) Q(w): e P, D xus(x) <1/t
1> X

REMARK 1.5. We observe that, by (1.9%, 4 &a.pi(a, B,x) = 0 for
wn € P and it will turn out to be more practical at times to change the definition

of d%ZZ(x) by addingi&, 4 so that

(1.23) O % (x) = (Aba,p + Ahx) — Ahx,
with v (-) = log cosli-), and Proposition 1.4 still holds.

The variational problem in Proposition 1.4 can be solved (almost) explicitly.
In order to explain how the solution looks, let us construct, in a fairly standard
way, a perturbation of the transition probabilities (1.18) by defining the following
family of functions orfS x S x 2N:

def
(1.24) A, B,x) = Apsn(@, B, %) = papKep(x) exp®)h(x) — bx),

where b > 0 is a parameter. Of cours®, A, n(a, B, x) coincides with
Aq.p(b, X, h). Let us denote by{v,}ees the unique (up to scaling) positive
right eigenvector ofdA with eigenvalueZ and by{m(«)},cs the normalized left
eigenvector of A, gvg/ve}e,g- Then the measurpaz’h onS x S x 2N defined by

def 1

ah def 1
(1.25) Wy (@ Bx) = —

VB
() A, B, x) =

isin P.

We are going to show (see Lemma 2.2 in Section 2) that the supremum over
u € P in (1.22) is attained in the S({apz’h :b > 0}. The computation o, (1, k)
boils down, therefore, to optimizing over This can, once again, be done explictly,
obtaining thus Theorem 1.2.

1.7. A (quicK) look at pathwise results.For completeness we point out here
that, if (A, h) € £, for everye > 0 there exist€ > 0 such that

(1.26) PN.wan (S| > L) < Cexp(—(¢o(r, h) —€)L),

for every N, everyx < N and everyL > 0. This result can be easily extracted

by applying the technique in [14]; see [1] for further results on the localized
phase of the random model. On the other side, since we are able to solve
explicitly the variational problem associated to the free energ.ih) € £ by

large deviation arguments we have detailed information on the empirical measure
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of the copolymer, which converges in probability, in tNe— oo limit, to M (

This givesin partlcular that if we sély = max(k e N:n; < N}, thenfy/N tends
t01/3 2 g.x XME(A h)(a, B,x),inPy 1.1 (dS)-probability, or, in other words,

1w
(1.27) Jm =D = men) = 3 g (@B,
k=1 o, f,x
In particular, one sees that there is a continuous blow-up of the typical excursion
length approaching the delocalization region.
On the other side, ifx, #) belongs to the interior af), one can show (see the
last section of [1]) that for everf > 0

(1.28) lim 1 ZIP’N wah(Sy>L)=

N—oo N 1

It should be possible to improve (1.28) strongly, leading in particular to the
Brownian scaling results in [9].

The paper is organized as follows: in Section 2 we study the solutions of the
variational problem in Proposition 1.4. We show in particular that the right-hand
side of (1.13) coincides with the right-hand side of (1.22). In Section 3 we prove
our basic variational formula, that is, Proposition 1.4, completing thus the proof of
Theorem 1.2. In Section 4 we study the existence of a critical line for the model
and we partly prove Proposition 1.1. The proof is completed in the last section,
where Theorem 1.3 is established.

2. Thevariational problem.

2.1. The linear algebra setup.Throughout this work we will make repeated
use of the results of the Perron—Frobenius theory (see, e.g., [5], Chapter 3). Let
us quickly recall these facts. Fdf € N let us denote byM™(T) the set of
T x T matrices with nonnegative entries which are irreducibled ¥ M™(T),
then there exists a unique right eigenvectoe v(A) € (0,00)”, normalized
by ZiTzl v; = |lv]l1 = 1. The corresponding left eigenvector is denoteduhy
lv]l1 = 1. If we call pmax = pmax(A) the associated (positive) eigenvalue (the
maximal eigenvaldethen for any other roqs € C of the characteristic polynomial
we have thatp| < pmax andpmax is a simple root.

If we have a functiom : I — M (T), I open interval ofR, then the regularity
of A(-) passes directly to the Perron—Frobenius eigenvalue and eigenvectors; see,
for example, [4], Chapters 2 and 4. In particularAif.) is differentiable, then
omax(A(+)) is differentiable, too, and

d S Al g O (A (AD)
@1) A ) = e R A
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2.2. Solutions to the variational problemlIn order to lighten the exposition
we modify (and, hopefully, simplify) somewhat the notation with respect to the
Introduction. The major change is that for the marginas2 andus of u € P
we are going to drop the numerical index. This abuse of notation is of course
partly justified for the first two marginals, but in order to avoid misunderstandings
the argument(s) ofx will always be explicitly given: sou(«) is u1(e) and
w(x) = u3(x). Inthe same wayy («, B) is of course a notation fox_, u(«, 8, x).
With this convention [cf. with (1.25)]

d, —-b
(2.2) ub(oe,ﬂ,x)=Mb(05)Pa,ﬂKa,ﬁ(x)<exp( ’ﬂZ(X) X))Cj_ﬁ)

Notice that we have dropped the dependencg andi in <I> ﬁ
If at times we will drop the explicit dependence on one or more parameters, in
other situations the opposite tendency will prevail and we will wAt®, X, i),
A, )), v(b, ), 'U“b’ and so on.
Moreover, for the results of this section the detalls;hﬁ)‘h(x) are inessential:
all we are going to use is the regularity &f with respect tor ands and that
sup, |<I>a’ﬂ(x)| < oo for everya, 8, A andh.
We have the following results:

LEMMA 2.1. Foreveryb >0

d
(2.3) - logZ(b) == xpp(x).

PROOF We start by observing that one can construct the Markov chain on
S x S x 2N that makes transition froni, 8, x) to (a’, B/, x") with probability
up(e’, B’ x")8p o /i (). Notice thatu,, is invariant for such a chain and we
denote byf{«;, a1, An;}; the stationary process and Iy its expectation.
Observe, moreover, that for evere N,

wp(og, a2, x1)  pp(Qg—1, ok, Xk—1)
1= > wms(ao, a1, x0)

@0,y mp(a1) wp(otg—1)
XOyeresXg—1
1 wp()v = =
(24) = 7k Z [70”(] EeXp Z Py (xj) —b Z Xj
( ) aQ,..., 0k UC‘O j=0 j=0
X0yeres Xk—1 | |
k-1
< [ Pajajir Keajaryin (5.
j=0

This formula gives a family of expressions f@(b), indexed byk. Notice that the
term between brackels. -] depends o, but it is bounded and its derivative with
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respect ta is bounded, too. By taking the derivative with respech tand letting
k go to infinity one obtains

o0

d I L
(2.5) %IogZ(b) = —lem z<J§JA;7]->: —;x,ub(x).

The proof is therefore complete. An alternative proof of (2.3) can of course be
extracted directly from (2.1).0

LEMMA 2.2. Setf(h) =), xup(x).
(i) f € C(@,00) is decreasing Moreover lim, o f(b) = 2 and

limp 0 f (b) = 0.
(i) Foreveryu e # we havethatib, xu(x) =3, xup(x), then
(2.6) o) = Q(up),

and equality holds only ift = wp.

PrROOF The proof is a bit indirect: we start by establishing the continuity and
the limits claimed in (i). We then prove (ii), that will imply the (strict) monotonicity
of f.

First of all we observe that, g(-) € C%(0, 00) and thereforez (), vg(+)/ve ()
and u.() are in C%(0, 00). Recalling thatd, g is bounded, one obtains that
f() €00, 00).

In order to deal with the limits of at the boundary of0, co), we first remark
that the expression in the right-hand side of (1.12) makes senge=fdd, thus
defining A(0) € M*(7,,) and lim,\ 0 A(b) = A(0). This guarantees tha (b),
vy (b) and up(a) tend to finite limits ash vanishes: sincg_, xK, g(x) = oo
we conclude that ligh o f(b) = +o0o. On the other side, it is rather imme-
diate to see that ligyoo up(e, B, x) = 1/T;, if B —a =1 andx =2, and
limy, 700 i (e, B, x) = 0 otherwise. This yields ligy - f(b) = 2.

For what concerns (2.6) we first note that

I(mzz[bg( wp(, B, %) )

P Wb (@) par,p Ko p(x)

u(e, B, x) ) <Mb(a)
| -7 |
* °g<ub<a,ﬂ,x) 9 @

= ) Papnl@ B,x) =Y xup(x) —l0gZ(b)

a,B,x

. ) |t .0,

Uﬁ(b)> 5
+0¢§x |Og<va () mle, B, x) + H(plps),
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whereH (| is the difference of relative entropies

(2.8) Zlg(“(“ﬁ”) (a,ﬂ,X)—%2'09(:;2))#(00-

S (e, )

We claim thatH (u|up) > 0, unlesse = wp (see below for a proof of this claim).
Moreover, we observe that

b b
@9 Y tog( 22 Y. pox) = Llog( 227 )t p) =0,
a,B.x a,B

Vo (D) vy (D)

since the marginals qf («, 8) are identical.
Applying these observations to (2.7), we obtain that for every

(2.10) Q) =bY xu(x) +log Z(b) — H(ulms),

and since by a straightforward computation

(2.11) 0™ =b> " xuy" (x) +logZ(b, i, h),

Part (ii) of the statement is proven. Of part (i) of the statement we are left with
establishing the strict monotonicity gf. Sincef is continuous, iff is not strictly
monotonic, there exisis; < bp such thatf (b1) = f(b2). By applying (2.10) with

b =by and (2.11) we obtain

(2.12) O(upy) = baf(b2) +10g Z(b2) — H (1p, | tn,) < O(in,)-

Of course, by exchanginbg; and b, we obtain the reversed inequality, that is,
O(p,) < Q(up,), and therefore thaﬁ(ublmhz) = 0, which, by the claim, forces
by = Kby, Which is clearly impossible. Therefopeis strictly monotonic.

Let us now establish the claim that(w|wp) is positive unlesgt = . From
(2.8) we observe thalf (1|11;,) can be viewed as an average of relative entropies:
setu (B, x|a) = u(w, B, x)/u(ax) whenevem () # 0, so that

n(pB, xla)
up(B, x|a)

= ZM(Q)H(M(', Jo) | pp (-, -|e)),

i) = 3 log( L4250

o, f,x

) (o, B, x)
(2.13)

where H is the standard relative entropy. Notice that« w; by definition
of # and u,. ThereforeH is nonnegative. IfH (u|wp) = 0, then H (u (-, <o)
up(-,-J@)) = 0, and thereforeu(-, -la) = up(-,-|a), for every a such that
w(a) # 0. This implies thatu(a, 8)/u(a) = up(e, B)/up(e) for p(a) £ 0 and
therefore}_, u(a) (up(a, B)/mp(@)) = n(B). If we setAy g = pp(er, B)/mp(@),
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we see thatA is a stochastic matrix ifMM*(7T,); u is therefore the unique
nonnegative normalized left eigenvector. It is, however, immediate to verify that
Wup is also a nonnegative normalized left eigenvector; thergi@o® = pp(a) >0

for everya, which immediately yieldsc(«, 8, x) = up (e, B, x). O

We are now ready to prove:
PrRoOPOSITIONZ2.3.

(2.14) Suptsup{Q(u):ue?, > xp(x) 51/1‘} =b(r, h).

t>0

PROOF Lemma 2.2 yields

(215) Q" = sup{ QW ipeP, Y xux)= quz’hoc)},

and that the supremum is uniquely attained. Therefore, by recalling (2.11), we
obtain

1
supr Sup{ O(w):ipeP,y xu(x) < ;}
>0

(2.16) ’ o

) logZ(b, A, h)
b>03 , Xy (X)  b>0 2o Xy (X)
Let us observe that, by Lemma 2.1, the derivative with respecbfdhe argument
of the supremum in the right-hand side is equal to

S

f2by’

where, as beforef (b) = >, xup(x). Lemma 2.2 guarantees that(b) < 0 for
everyb > 0 and therefore a poirit > 0 such thatZ (b) = 1 is the maximum. Such
a point may not exist; this is the caseZtb) < 1 for everyb > 0, that is,Z(0) < 1,
and in this case the supremum is achieved in the bmit O and it takes of course
the value zero. OJ

(2.17) —logZ(b)

3. From large deviations to the variational problem. In this section we
present a proof of Proposition 1.4. This, coupled with Proposition 2.3, yields
Theorem 1.2. It will be preceded by some straightforward manipulations of the
free energy and by a large deviations principle for suitable Markov processes.
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3.1. Reduction to random walk excursiondMe start by recalling that the
reduced free energy,, (A, h) is defined as limit a&v — oo of

N
(3.1) N, h)= % IogE(exp(A(Z(wx + h) sign(Sx)> — AhN)).

x=1
For the arguments in this section there is some technical advantage in using instead

N
(3.2) N, h)= % IogIE(exp(k( Z(a)x + h)(sign(Sy) — 1)))).

x=1

Since| YN_, wy| < T, it is immediate to see thapy ,(r, h) — ¢y (R, h)| <
AT, /N and the two quantities are therefore equivalent.

Starting from the setup of Section 1.6, recall in particular the sequence of
stopping times defined in (1.17); we introduce alsg = ng+1—nk, ok = [0k /2]s
and By = ay41, for everyk =0,1,..., and¢y =max,j e NUO:n; < N}. By
exploiting the up—down symmetry of the excursionsafe easily arrive at

) 1 ty—1
(3-3) ¢N,w()‘v h) = N |09E|:exp< Z @(kgdisﬂi + )‘hAni)>RNi|,
i=0
whereg(t) = log((1 + exp(—21))/2), t € R, andRy = exp(p (A ZQ’ZWNH(CUX +
h))). Since the argument af(-) in (3.3) is bounded below by-1&,, we may
redefinep(-) by ¢ () vV ¢ (—A&,) and therefore nowWge || < oo.

3.2. A Donsker—Varadhan large deviations principleRecall from Section 1.6
the definition of#, which is a subset of the probability measuresSon S x 2N:
the latter space is endowed with the discrete topologyansl endowed with the
topology of weak convergence.

Form € N introduce the empirical measure

m—1

1
(3.4) Lne, B,x) = — > L8580 (@ B, x).
j=0

PrROPOSITION3.1. A full large deviations principle with rate functiondl,
defined as in1.20), holds for the sequence of empirical measulles},,. More
explicitly, we have

. o1
— 'Qjol(“) < Ihnll&f - logP(L,, € A)
(3.5) 1
<limsup—IlogP(L,, € A) < — inf T(w),

m—oo0 M neA

whereA° and A are, respectivelythe interior and the closure of the sét
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PrROOF This result is implicitly contained in [2]: on page 97 one finds the
definition of the functionall of which I, that we have introduced in (1.20), is a
particular case. Notice, moreover, that ([2], Lemma 2.1) provides the link between
T and the standard (variational) Donsker—Varadhan expression.

Nevertheless, we sketch here a proof: let us observe(@hathni_1)r=1.2....

is a uniformly ergodic Markov chain of§ x 2N with transition probabilities

q((a, x), (o, x’))d_efpa o Koo (x"). SO (see [5], Chapter 6), the empirical measure

(L/m) 331 8oy, Amp_r. 1. Anp) SatiSTies a strong large deviations principle with
rate function

Hv1®q), if vi =y,

(3.6) T & .
00, otherwise

v a probability measure ofSx2N)?2, vy, v being again the two marginals on
S x 2N andH the usual relative entropy. With standard notation we have used
V1 ® g, x,d, x") = vi(a, x)q((a x), (@', x")). Write v for the marginal on

S x S x 2N given by (a, 8, x) ZZ v(a, z, B, x). By the contractlon principle,
Lm satisfies a large deviations principle with rate functllmm mf{I(v)

v = u}, and it remains to show thay = I. Evidently, Ip(i) = oo for u ¢ P
For a givenu € 2, set

- def Zy M(]ﬂ a’x)
37 M(O{,x,a/,x/ = =
(3.7) Zyx/f‘(y7a x)

which evidently satisfief1 = 2 if u € #. Now, for anyv satisfyingv1 = v and
D = n one has by an elementary computatllo(m) —I() = Hw|p) > 0, and
thereforelp(w) = I(in) =1 (). O

l‘l’(a’ O/v x/)’

PROOF OF PROPOSITION 1.4: UPPER BOUND Since ¥2 < Ry < (1 +
exp(2ré,))/2, we may safely getrid ok in the expression in (3.3) and it suffices
to prove the statement for

) 1 tn—1

(3-8) ¢N,w()‘v h) = N |09E|:ex Z @(kgai,ﬁi + )‘hAni)>i|,
i=0

rather than fopy (1, h).

Let us first control limsup q@N,w(k,h). We proceed with a discretization
procedure: choose a large intedgéiand assume for simplicity thatk2 dividesN:
we have

R 1 K-1 In— 1
éN,w(h, h) = |09 Z E|:exp( Y p(heay +/\hAm)>

i=0

. e(ﬂ (]+1)N]
(3.9) M=\2k> 2k ’
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jiN/2K

Nllglloo
< oo L o 1 o0+ tnam) o Vi)

i=0
o e (ﬂ (j—i—l)NH’

ZI'—‘

2K’ 2K
from which we obtain that

lim supéy o (A, h)

N—o0

el
(3.10) =k

1 jN/2K
v max limsup—logE|ex My, g +AhAN;) |
j=1,...K-1 N—>oopN 9 [ p( Z(:) ¢ (Aa; 5 + m))

jN/2K
Z An; < Ni|.
i=0

But the term in the right-hand side can be easily expressed as a functional of the
empirical measure, namely:

1 jN/2K jN/2K
q = Iimsupﬁ IogE[exp( Z (p(/\gm,ﬁi+/\hAm)>; Z AmSN}

N—o00 i=0

J
=i logE L
msup; g {eXp( (%)

x > szv/zx(oe,ﬂ,x)w(kéa,ﬁ+khx)>;
o, B,x

(3.11)

2K
> xljnjzk (e B.x) < 7}

o,B.x

Sincefun 3y g xu(a, B, x) < c}is aclosed set, we may apply the upper bound
of the large deviations principle in Proposition 3.1 to obtain

q <sup[ ZK( > i, B, x)@(Aq,p + Mhx) —um)
o, f,x

(3.12)

) xu(a,ﬁ,X)SZTI.(}.

o,B,x
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Recalling (3.10) and taking — oo, we arrive at

lim supdy o (A, h)

N—o0

(3.13)
{

< sup sup

> e, B x)p(Aq, g + Mhx) — 1(#)),

te(0,1/2] HUEP: o, B.x

o xp(x)<1/t

which proves that the left-hand side in (1.22) is not larger than the right-hand side.
O

PROOF OFPROPOSITION1.4: LOWER BOUND. As in the previous proof we
may concentrate aﬁN,w(/\, h), see (3.8), and on the procgss);} ; rather than on
the wholeS-path. Forb > 0 we consider the measung = Mz’h, defined in (2.2),
which naturally defines the Markov procegs, 8;, An;}; introduced in the proof
of Lemma 2.1. For definiteness we consider the stationary process conditioned
to g = 0 and denote bjP,(yN) the law of {¢y, {An;};=0,...exy—1}. Notice that if
b =0 andr =0, then the proceds;, 8;, An;}; is the one associated to the simple
random walks. We denote by?") the measur@]"’ with 1 = 0.

By applying the Jensen inequality we have

\ 1 =t 1
(3.14) fn.w(h.h) = E,&”[ﬁ > (M, +khAm)} - S HEEY),
i=0
in which H still denotes the relative entropy. The relative entropy term can be
evaluated directly and one obtains

liminf ¢n (1, i)
N—o00

In—1
(3.15) > liminf Eb[ﬁ 2 oloas +khAn,-)}

1 in—1
- IimsupIEb[ﬁ > Glai. Bi. Am)},

N—oo i=0

where G(a. B.x) = log(us(@. B. )/ mp(@) po.pKa p(x) = @ h(x) — bx —

log Z + log(ve /vg). By ergodicity limy £y /N =1/%", xup(x) Pp-a.s.; this im-
plies thatzfgo_lG(ai, Bi, An;)/N converges a.s. td(up)/ Y xup(x). Since
G(a, B8, x) is bounded above, by Fatou’s lemma one obtains that the superior limit
of Ey[XY5 G (ai, Bi, Ani)/N1 is bounded above b¥(e)/ 3, xjup(x). By re-
calling thate(-) is bounded and by applying once again the ergodic theorem one
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obtains
Ijvminf Iyl > Ya.px ¥ Aéap -i-zkhxm(b()a, B,x) —1(up)
—00 XUp(X
(3.16) x XM
_ O(up)
Zx X//Lb(x)'

Settr =1/) ,xup(x); Lemma 2.2 allows then to replace in the previous
expressiomn;, with anyu € # such thad", xu(x) = 1/¢. Optimizing over leads
to the desired lower bound and proof of Theorem 1.4 is compléie.

4. Existenceand monotonicity of thecritical line. We now go through some
soft arguments that yield a partial proof of Proposition 1.1. We prove the following:

LEMMA 4.1. There exists a nondecreasing functibg-) : [0, co) — [0, 1],
continuous if its domain is restricted {6, co), suchthatD = {(A, h) :h > h.(A)}.

REMARK 4.2. In order to fill the gap with Proposition 1.1 one needs to show
thath.(A) vanishes as \ 0 and thatittendsto 1 as_~ 0, as well as the fact that
the image i40, 1) rather thar0, 1]. To establish this one needs some quantitative
bounds ony,,(-). Theorem 1.3 of course largely provides the needed bound for
smalli; for largex we refer to Section 5.2.

PROOF OFLEMMA 4.1. We first collect some elementary facts:

. ¢4, (0, h) = 0 for everyh and¢,, (A, h) > O for everyr andh.

2. ¢,(-,h) is a convex function for every:. This simply follows from the
convexity inA of logZy ,,, see (1.4).

3. ¢, (X, -) is nonincreasing, besides being convex (proven as in point 2) and
therefore continuous, for every. This follows from (1.22) and the fact that
52:;3(;0 is nonincreasing for every, 8, A andx.

4. If (A, h) € D and if AL and Ah are two positive numbers such that >
AL — h)/A, then(h + AL, h + Ah) € D. This follows by (1.22) once we
observe thaﬁ)é:’é(x) = log(1 + exp(—A (&5 + hx)) — log2 is a decreasing
function of A(&, s + hx). By using thaté, g > —x one directly verifies
that choosingAi and Ak as above impliegi + AL) (&, + (B + Ah)x) >
)\(got,ﬁ + hx).

5. If h > 1, theng, (-, ) is nonincreasing. This again follows from the fact that

52:2@) is a decreasing function af(¢, g + hx): if h > 1, then&, g + hx >0,

S0 thatEIVJ;f’ﬁ (x) is nonincreasing and (1.22) implies the result.

=

Let us use these five factpg@int9: first of all we observe that point 3 guarantees
the existence ofi.(-) and thath (1) = inf{h: ¢, (1, h) = 0}. By points 1 and 2
we have that,, (-, h) is nondecreasing, So.(-) is nondecreasing. Points 1 and 5
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guarantee thak. (1) < 1 for everyx > 0. Finally, point 4 implies the continuity
of h.(-) on the positive semi-axis because it implies that the incremental ratios of
h.(-) at the pointr are bounded above i — 4.(1))/A. O

5. Asymptoticsfor small and large A: the proof of Theorem 1.3.

5.1. Small » asymptotics. Set 7 = mA3, m a positive number, and write
3
D p(-) = @, 5" (-): we choose to work with the latter defined as in (1.23). Set
alsoA(L) = A(0, », mA3). We write

(5.1) Awp(V) = Pap+ Pap Y Ko p(x)[eXp(®q p(x)) — 1],

and we decompose the second term in the right-hand side in three terms:

> Ko p(x)[exp(@e,p(x)) — 1]

= Z K g(x)[exp(Pq,p(x) + mk4x) —1] exp(—mA’tx)

xEA—S/Z

(5.2) + Y Kaplexp(—matx) — 1]

xi)\—S/Z
+ ) Kap@)[exp®qpx)) — 1]
x>A—5/2
=T1+ 1+ Ts.
By using the fact that fox < A~3
eXP(a,p(x) +mitx) —1 &g
A2 2
one easily sees that lim o A2 = g;ﬁ/z. Moreover, by using that + e~ <t
for + > 0, one directly obtains thab = 0 (A1Y/4) = 0(A?). For T3 we observe that
Ts= Y  Kopx) exp)[exp(y(mrtx) —mrty) — 1]

x>A—5/2
(5.4) + ) Kapx)lexpA) —1]
x>A—5/2
=T34+ T,
with A = ¥ (A&, g + mr*x) — ¥ (mr%x). Taylor's expansion yields immediately
that|A| < &,A. This suffices to show thdis is inessential:

(5.5) Tsl <K Y x732e” — 1 <A™ = 0(3?).

x>A"5/2

(5.3)

(1+0(D)),
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For T, we approximate the sum by an integral using (1.10) and obtain thus

im 3 —2 4 iy
l@ok > Kqp(x)[coshmix) exp(—mA*x) — 1]

x>A1"5/2
CK\/% > 1
5.6 = cosh(r)exp(—r) — 1]d
(5.6) TTpey Jo Fo72ICOST exp—r) = Ldr
_ C[(\/Z?Tm
B 2Ta)pot,;3 '

The conclusion is that

- 52 CxA/2mm
B7)  Aup)=pag +x2(pa,ﬁ ap _ CK
2 2T,

By applying, for example,~(2.1) one directly writes the corresponding expansion
for the maximal eigenvalug (1) of A(1) (recall thatp, g is bi-stochastic):

~ 1 52 T
(5.8) Z(A) = 1+X2<T— ZPa,ﬁaT’ﬁ —Cg /Em) +0(12).
w 0{,,3

In view of Theorem 1.2, formula (1.14) is proven with, equal to the value oh
for which the term between brackets in (5.8) is zero.

)+o@%.

5.2. Large A asymptotics. We seth =1 — (M/1), M > 0, and the argument
we are going to use is based on the observation that if we defielfo= 8 — «

0, if &5 > —x,

5.9 60[ =—log2
(5.9) BX) 09 e+ log(1+exp2Mx)),  if &y p=—x,

then
(5.10) 0= @b MM () = B p(x) < exp(—4n),
with ® asin (1.11). R

We have therefore thaZ (0, A1 — (M/2)) tends to Z(M), the principal
eigenvalue ofpy g Y, Ko p(x) exp(Pq, g(x)). Notice thatZ(-) is increasing, that
Z(0) = 1/2 and thatZ (M) tends to infinity as’ ~ oo (this can be seen, e.g., by
applying Theorem 1.4 in [10], Chapter 2) so thgt, = Z~1(1). This proves (1.16)
and the proof of Theorem 1.3 is complete.

Acknowledgment. We are grateful to Massimiliano Gubinelli for having
pointed out the result in Lemma 2.1.
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