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In this paper we develop a white noise framework for the study of
stochastic partial differential equations driven by ad-parameter (pure jump)
Lévy white noise. As an example we use this theory to solve the stochastic
Poisson equation with respect to Lévy white noise for any dimensiond. The
solution is a stochastic distribution process given explicitly. We also show
that if d ≤ 3, then this solution can be represented as a classical random field
in L2(µ), whereµ is the probability law of the Lévy process. The starting
point of our theory is a chaos expansion in terms of generalized Charlier
polynomials. Based on this expansion we define Kondratiev spaces and the
Lévy Hermite transform.

1. Introduction. White noise analysis has become a subject of much current
interest. This theory was first treated by Hida [14] and extensively studied in
many other works. See [16] and the references therein. These investigations are
based on the concept of a Gaussian measure and the associated expansion into
Hermite polynomials. Later on an extension of white noise theory to non-Gaussian
analysis was established in [4] and developed further by Kondratiev, Da Silva,
Streit and Us [24] and Kondratiev, Da Silva and Streit [23]. The main tool of
this theory is a biorthogonal decomposition, which extends the Wiener–Itô chaos
expansion. White noise analysis has been used in a broad range of applications.
This approach was originally applied in quantum physics. See, for example,
[3] or [2]. Subsequently, new applications have been found in stochastic (partial)
differential equations [17]. See also [21] and [6] to mention a few. More recently,
the theory has been applied to finance [1]. See [18] and [12] for the fractional
Brownian motion case and [10] and [34] in the non-Gaussian case.

The object of this paper is to provide a white noise framework, based on results
in [28, 10, 34] and [17], to study SPDEs driven by (pure jump) Lévy processes. We
apply this theory to solve thestochastic Poisson equation driven by ad-parame-
ter ( pure jump) Lévy white noise. That is, consider the following model for the
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temperatureU(x) at point x in a bounded domainD in Rd . Suppose that the
temperature at the boundary∂D of D is kept equal to zero and that there is a
random heat source inD modeled byLévy white noise

.
η(x) = .

η(x1, . . . , xd). Then
U is described by the equation

�U(x) = − .
η(x), x = (x1, . . . , xd) ∈ D

U(x) = 0, x ∈ ∂D.
(1.1)

It is natural to guess that the solution must be

U(x) = U(x,ω) =
∫
D

G(x, y) dη(y),(1.2)

whereG(x,y) is the classical Green function forD and the integral on the right-
hand side is a multiparameter Itô integral with respect to thed-parameter Lévy
processη(x). But the integral on the right-hand side of (1.2) only makes sense if
G(x, ·) is square integrable inD with respect to the Lebesgue measure. The latter
is true if and only if the dimensiond is chosen lower than 4. Despite this difficulty
we will show the existence of a unique explicit solution

x �→ U(x, ·) ∈ (S)−1,

where(S)−1 is a suitable space of stochastic distributions, called the Kondratiev
space.

The stochastic Poisson equation (1.1) was discussed by Walsh [39] in the case
of Brownian white noiseW . He proved that there exists for alld a Sobolev space
H−n(D) and anH−n(D)-valued stochastic process

U = U(ω) :� → H−n(D)

such that (1.1) holds in the sense of distributions, for example,

〈U(·,ω),�φ〉 = −〈W(·,ω),φ〉 a.s. for allφ ∈ H−n(D).

The solution of Walsh is given explicitly by

〈U,φ〉 =
∫

Rd

∫
Rd

G(x, y)φ(x) dx dB(y); φ ∈ H−n(D).(1.3)

The system (1.1) was also studied in [17] in the Gaussian case. There the solution
U(x), which takes values in the Kondratiev space, can be described by its action
on test functionsf ∈ (S)1,

〈U(x), f 〉 =
∫

Rd
G(x, y)〈W(y),f 〉dy; f ∈ (S)1.(1.4)

If we compare (1.3) and (1.4) we find that the Walsh solution takesx-averages for
almost allω, whereas the last one takesω-averages for allx.

Our solution is an extension of (1.4) to Lévy processes. The approach we use
to solve (1.1) is based on a chaos expansion in terms of generalized Charlier
polynomials (cf. [28]) and on concepts developed in [17, 10] and [34]. Our



1508 A. LØKKA, B. ØKSENDAL AND F. PROSKE

method, which can be applied to other classes of SPDEs, has the advantage that
SPDEs can be interpreted in the usual strong sense with respect to time and
space. There is no need for a weak distribution interpretation with respect to
time and space. Furthermore, the Walsh construction reveals the disadvantage
of defining a multiplication of (Sobolev or Schwartz) distributions, if one
considers SPDEs, where the noise is involved multiplicatively. However, on the
Kondratiev space(S)−1 we can define a multiplication, theLévy Wick product.
This gives a natural interpretation of SPDEs, where the noise or other terms appear
multiplicatively. Furthermore, in some cases solutions can be explicitly obtained
in terms of the Wick product. See [17].

The general machinery, developed in this paper, is of independent interest and
we are convinced that it serves a useful tool for the study of a large class of
stochastic partial differential equations driven by Lévy space-time white noise.

Finally, let us mention that there has recently been an increasing interest in
solving SPDEs driven byd-parameter Lévy processes. We refer to [5, 29] and the
references therein.

We shall give an overview of the paper. In Section 2 we introduce a white
noise framework for the study of SPDEs driven byd-parameter Lévy processes.
The starting point of our theory is a chaos expansion in terms of generalized
Charlier polynomials. Based on this expansion we define Kondratiev spaces,
the Wick product and thed-parameter Lévy white noise. Further, we give the
definition of the Lévy Hermite transform and state a characterization theorem for
the Kondratiev space(S)−1. In Section 3 we use the tools developed in Section 2
to apply it to solve the stochastic Poisson equation driven by ad-parameter
Lévy white noise. Finally, in Section 4 we discuss the solution and its properties.
In particular, we show that ifd ≤ 3, the solution can be represented as a classical
random field inL2(µ), whereµ is the underlying probability law of the Lévy
process.

2. Framework. In this section we give the general framework to be used
later. The starting point for our discussion are white noise concepts for Lévy
processes, developed in [10, 34] and [28]. Actually, we empasize the use of
multidimensional structures, that is, the white noise we intend to consider is
indexed by a multidimensional parameter set. Our presentation and notation will
follow that of [17] closely, where Gaussian white noise theory is treated. For more
information about white noise theory we refer to [16, 26] and [32].

2.1. A white noise construction of Poisson random measures associated with
a Lévy process. In this paper we confine ourselves to (d-parameter) pure jump
Lévy processes without drift.

A pure jump Lévy processη(t) onR with no drift is a process with independent
and stationary increments, continuous in probability and with no Brownian motion
part. The characteristic function of such a process is given by the Lévy–Khintchine
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formula in terms of the Lévy measureν of the Lévy process, that is, in terms
of a measureν on R0 := R − {0}, that integrates the function 1∧ z2. Hence,
driftless pure jump Lévy processes can be characterized as Lévy processes with
characteristic triplet(0,0, ν). For general information about Lévy processes see
[8] and [36]. In general, such processes do not possess the chaotic representation
property, but they admit a chaos representation with respect to Poisson random
measures (see [19]). Therefore, we aim at viewing these processes as elements of
a certain Poisson space. In this framework we will give a white noise construction
of Poisson random measures and, since our emphasis lies on processes indexed
by multidimensional sets, we will defined-parameter (pure jump) Lévy processes.
Further, we prove a chaos expansion in terms of generalized Charlier polynomials.

A usual starting point in white noise analysis is the application of the Bochner–
Minlos theorem to prove the existence of a probability measure on the space
of tempered distributionsS �(Rd). However, it turns out thatS �(Rd) is not the
most appropriate for dealing with Lévy processes since this choice would require
restrictive conditions to be imposed on the Lévy measure. This circumstance
comes from the fact that the Lévy measure has a singularity at zero. Therefore,
we use the construction of a nuclear algebraS̃(X), which is more tractable
for our purpose. In fact, the spacẽS(X) is a variant of the Schwartz space on
X = Rd × R0, more preciselỹS(X) is a subspace of the Schwartz space modulo a
certain subspace depending on the Lévy measure. Let us first give the construction
of S̃(X) (cf. [28]).

In the following let {ξn}n≥0 be the complete orthogonal system ofL2(R),
consisting of theHermite functions.Then the (countably Hilbertian) nuclear
topology of the Schwartz spaceS(Rd) is induced by the compatible system of
norms

‖ϕ‖2
γ := ∑

α∈Nd

(1+ α)2γ (ϕ, ξα)2
L2(Rd)

, γ ∈ N
d
0,(2.1)

whereξα := ∏d
i=1 ξαi

and(1+α)2γ := ∏d
i=1(1+αi)

2γi for α = (α1, . . . , αd) ∈ Nd

andγ = (γ1, . . . , γd) ∈ N
d
0. Now let us take a numbering of the norms in (2.1), say

‖ · ‖γi
, and define the norms‖ϕ‖p = ∑p

i=1 ‖ϕ‖γi
, p ∈ N. Then‖ · ‖p, p ∈ N are

increasing pre-Hilbertian norms onS(Rd). It is well known that the norms‖ · ‖p

are equivalent to the norms‖ · ‖q,∞, given by

‖ϕ‖q,∞ := sup
0≤k,|γ |≤q

sup
z∈Rd

|(1+ |z|k)∂γ ϕ(z)|, q ∈ N0,(2.2)

where∂γ ϕ = ∂ |γ |
∂z

γ1
1 ··· ∂z

γd
d

ϕ for γ = (γ1, . . . , γd) ∈ N
d
0 with |γ | := γ1 +· · · + γd. We

mention the following important property of the norms‖ · ‖p (see [20]): For all
p ∈ N there exists a constantMp > 0 such that for allϕ,ψ ∈ S(Rd),

‖ϕψ‖p ≤ Mp‖ϕ‖p‖ψ‖p.(2.3)
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We then define the spaceS(X) by

S(X) :=
{
ϕ ∈ S(Rd+1) :ϕ(z1, . . . , zd,0) =

(
∂

∂zd+1
ϕ

)
(z1, . . . , zd,0) = 0

}
.(2.4)

It follows thatS(X) is a closed subspace ofS(Rd+1). Thus,S(X) is a (countably
Hilbertian) nuclear space with respect to the restriction of the norms‖ · ‖p.

Moreover, it is a nuclear algebra, that is,S(X) is, in addition, a topological algebra
with respect to the multiplication of functions. In the sequel we denote byλ×d the
Lebesgue measure onRd and byν a Lévy measure of onR0. We setπ = λ×d × ν.

We need the following result.

LEMMA 2.1. There exists an element denoted by1⊗ .
ν in S �(X) such that

〈1⊗ .
ν,φ〉 =

∫
X

φ(y)π(dy)

for all φ ∈ S(X), where 〈1⊗ .
ν,φ〉 = (1⊗ .

ν)(φ) is the action of1⊗ .
ν on φ.

The notation
.
ν shall indicate that

.
ν is the Radon–Nikodym derivative ofν in a

generalized sense.

PROOF. Without loss of generality we consider the cased = 1. SetL(ϕ) =∫
X ϕ(z)π(dz). Let ϕn, ϕ ∈ S(X) with ϕn → ϕ in S(X). By Taylor’s formula we

have forϕ ∈ S(X) that

ϕ(x, z) = ϕ(x,0) +
(

∂

∂z
ϕ

)
(x,0)z + 1

2

(
∂2

∂2z
ϕ

)
(x, ξ)z2

= 1

2

(
∂2

∂2z
ϕ

)
(x, ξ)z2

for a point ξ between 0 andz. We assume w.l.o.g. that the measureν vanishes
outside of[−1,0) ∪ (0,1]. Therefore, it follows by (2.2) that

|L(ϕn − ϕ)| ≤
∫

R

∫ 1

−1
|ϕn(x, z) − ϕ(x, z)|ν(dz)λ(dx)

≤
∫

R

∫ 1

−1

(1+ |x|2 + |z|2)|ϕn(x, z) − ϕ(x, z)|
z2

× z2

(1+ |x|2)ν(dz)λ(dx)

≤ ‖ϕn − ϕ‖2,∞
∫

R

1

(1+ |x|2)λ(dx)

∫ 1

−1
z2ν(dz)

→ 0 for n → ∞.

So the linear functionalL is continuous onS(X). �
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Next define the space

Nπ := {
φ ∈ S(X) :‖φ‖L2(π) = 0

}
.(2.5)

By the same arguments as in the proof of Lemma 2.1 it can be shown thatNπ is a
closed subspace ofS(X). Furthermore, one checks that it is a closed ideal ofS(X).

Now we introduce the spacẽS(X), which we use to construct the white noise
measure.

DEFINITION 2.2. We define the spacẽS(X) as follows,

S̃(X) = S(X)/Nπ .(2.6)

The spacẽS(X) is a (countably Hilbertian) nuclear algebra with the compatible
system of norms

‖φ̂‖p,π := inf
ψ∈Nπ

‖φ + ψ‖p, p ∈ N.(2.7)

See page 72 in [13]. Further, let̃S �(X) denote the topological dual of̃S(X).

We obtain the following corollary to Lemma 2.1:

COROLLARY 2.3. The functionalL(φ̂) := ∫
X φ(z)π(dz) satisfies the inequal-

ity

|L(φ̂)| ≤ Mp‖φ̂‖p,π

for all p ≥ p0, which yields the continuity of the functionalL on S̃(X).

THEOREM 2.4. There exists a unique probability measureµ on the Borel sets
of S̃ �(X) with the following Poissonian characteristic functional with intensityπ

such that for allφ ∈ S̃(X):∫
S̃�(X)

ei〈ω,φ〉 dµ(ω) = exp
(∫

X
(eiφ − 1) dπ

)
,(2.8)

where〈ω,φ〉 = ω(φ) is the action ofω ∈ S̃ �(X) on φ ∈ S̃(X). Moreover, there
exists ap0 ∈ N such that1 ⊗ ν̇ ∈ S̃−p0(X) and a natural numberq0 > p0

such that the imbedding operator̃Sq0(X) ↪→ S̃p0(X) is Hilbert–Schmidt and
µ(S̃−q0(X)) = 1. The spacẽSp(X) denotes the completion of̃S(X) with respect
to ‖ · ‖p,π andS̃−p(X) is the corresponding dual with norm‖ · ‖−p,π .

PROOF. Since |eiz − 1| ≤ |z|, the result follows from Corollary 2.3 and
Bochners theorem for conuclear spaces [13].�

We call the probability measureµ on � = S̃ �(X) in Theorem 2.4Lévy white
noise probability measure. It turns out that this measure satisfies thefirst condition
of analyticityin the following sense (see [23]).
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LEMMA 2.5. The Lévy white noise measureµ satisfies the first condition of
analyticity, that is, there existsε > 0 and ap0 such that∫

S̃�(X)
exp

(
ε‖ω‖−p0

)
dµ(ω) < ∞.

PROOF. The proof follows the argument of Lemma 3 in [38]. Introduce the
moment functions ofµ, which by a criterion of Cramér [9] can be expressed by

Mn(φ) :=
∫
S̃�(X)

〈ω,φ〉n dµ(ω) = d

dtn
L(tφ)

∣∣∣∣
t=0

for everyφ ∈ S̃(X), n ∈ N. Define the set

�k
n :=

{
(α1, . . . , αk) ∈ N

k :
k∑

i=1

αi = n

}
.

Then we obtain the following expression forMn:

Mn(φ) =
n∑

k=1

n!
k!

∑
α∈�k

n

k∏
j=1

〈1⊗ ν̇, φαj 〉
αj ! .(2.9)

We get for the numberp0 in Theorem 2.4 that

|〈1⊗ ν̇, φ〉| ≤ ‖1⊗ ν̇‖−p0,π‖φ‖p0,π < ∞.

Next relation (2.3) implies that for allp ∈ N there exists a constantMp > 0 such
that for allφ,ψ ∈ S̃(X),

‖φψ‖p,π ≤ Mp‖φ‖p,π‖ψ‖p,π .(2.10)

Thus, we get that

|〈1⊗ ν̇, φαj 〉| ≤ ‖1⊗ ν̇‖−p0,π

(
Mp0

)αj ‖φ‖αj
p0,π ,

if we chooseMp0 ≥ 1. So we deduce from (2.9) that

|Mn(φ)| ≤
n∑

k=1

n!
k!

∑
α∈�k

n

k∏
j=1

‖1⊗ ν̇‖−p0,π

αj ! Cn
p0

‖φ‖n
p0,π

= Fn

(‖1⊗ ν̇‖−p0,π

)
Cn

p0
‖φ‖n

p0,π
,

whereFn(x) is thenth moment of the Poisson distribution with intensityx and
whereCp0 is a constant. Further, it is known that for a Poisson distribution with
intensityx = ‖1⊗ ν̇‖−p0,π , there exists a constantCx such that for alln ∈ N,∣∣Fn

(‖1⊗ ν̇‖−p0,π

)∣∣ ≤ n!Cn‖1⊗ν̇‖−p0,π
.

Therefore, we get for aC > 0 that

|Mn(φ)| ≤ n!Cn‖φ‖n
p0,π

.



LÉVY SPACE-TIME WHITE NOISE 1513

The claimed result follows from Lemma 3 in [23].�

Further, consider the functionα defined byα(φ) = log(1 + ϕ)modNπ for
φ = ϕ̂ with ϕ(x) > −1. Note thatα is holomorphic at zero and invertible. With
the help of Lemma 2.5, it can be shown just as in [28] that there exist symmetric
kernelsCn(ω) such that for allφ in an open neighborhood of zero iñS(X),

ẽ(φ,ω) := exp〈ω,α(φ)〉
Eµ[e〈ω,α(φ)〉] = ∑

n≥0

1

n! 〈Cn(ω),φ⊗n〉,(2.11)

whereφ⊗n ∈ S̃(X)⊗̂n. The symbol̃S(X)⊗̂n denotes thenth completed symmetric
tensor product of̃S(X) with itself. The elements of this space can be seen as
functionsf ∈ S(Xn) moduloNπ×n such thatf = f (x1, . . . , xn) is symmetric with
respect to the variablesx1, . . . , xn ∈ X. From (2.11) we conclude that theCn are
generalized Charlier polynomials(see [23]). We have that{〈

Cn(ω),φ(n)
〉
:φ(n) ∈ S̃(X)⊗̂n, n ∈ N0

}
(2.12)

is a total set inL2(µ). Furthermore, for alln, m, φ(n) ∈ S̃(X)⊗̂n and ψ(m) ∈
S̃(X)⊗̂m the orthogonality relation∫

S̃�(X)

〈
Cn(ω),φ(n)〉〈Cm(ω),ψ(m)〉dµ(ω) = δn,mn!(φ(n),ψ(n))

L2(Xn)(2.13)

holds. See [28].

REMARK 2.6. It can be easily seen from (2.13) and the construction ofS̃(X)

that the Lévy white noise measureµ is nondegeneratein the following sense
(see [23]): LetF be a continuous polynomial, that is,F is of the formF(ω) =∑N

n=1〈ω⊗n,φ(n)〉 for ω ∈ S̃ �(X), N ∈ N0 with φ(n) ∈ S̃C(X)⊗̂n [complexification
of S̃(X)⊗̂n]. If F = 0 µ-a.e., thenF(ω) = 0 for all ω ∈ S̃ �(X). We mention
that this property is essential for the construction of certain test function and
distribution spaces (see [23, 28]).

Next, for functionsf : Xn → R define thesymmetrization(f )∧ of f by

(f )∧(x1, . . . , xn) := 1

n!
∑
n

f
(
xσ1, . . . , xσn

)
(2.14)

for all permutationsσ of {1, . . . , n}. Then a functionf :Xn → R is symmetric, if
and only if f̂ = f . Denote bŷL2(Xn,π×n) the space of all symmetric functions
on Xn, which are square integrable with respect toπ×n. Let fn ∈ L̂2(Xn,π×n).

SinceS(X) is dense inL2(X,π) (cf. [28]), we can choose a sequencef
(i)
n in

S̃(X)⊗̂n with f
(i)
n → fn in L2(Xn,π×n). Then (2.13) implies the existence of a

well defined〈Cn(ω),fn〉 such that

〈Cn(ω),fn〉 = lim
i

〈
Cn(ω),f (i)

n

〉
in L2(Xn,π×n).(2.15)
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SinceC1(ω) = ω − 1⊗ ν̇ for all φ ∈ S̃(X) (see [28]), we get∫
S̃�(X)

〈ω − 1⊗ ν̇, f 〉2dµ(ω) = ‖f ‖2
L2(π)

.(2.16)

Further, if we define for Borelian�1 ⊂ Rd, �2 ⊂ R0 with π(�1 × �2) < ∞ the
random measures

N(�1,�2) := 〈
ω,χ�1×�2

〉
and

(2.17)
Ñ(�1,�2) := 〈

ω − 1⊗ ν̇, χ�1×�2

〉
,

we see from their characteristic functions thatN is a Poisson random measure and
Ñ is the corresponding compensated Poisson random measure. The compensator
of N(�1,�2) is given byπ . Therefore, it is natural to define the stochastic integral
of φ ∈ L2(π) with respect toÑ by∫

X
φ(x, z)Ñ(dx, dz) := 〈ω − 1⊗ ν̇, φ〉.(2.18)

In particular, if we define

η̃(x) :=
∫
X

χ[0,x1]×···×[0,xd ](x) · zÑ(dx, dz)

(2.19)
for x = (x1, . . . , xd) ∈ R

d,

where[0, xi] is interpreted as[xi,0], if xi < 0 and where the Lévy measureν is
assumed to integratez2, then η̃(x) has a versionη(x), which is cadlag in each
componentxi. This follows with the help of (2.13). We callη(x) d-parameter
Lévy processor space-time Lévy process.

We conclude this section with a chaos expansion result in terms of the general-
ized Charlier polynomialsCn. The result is a consequence of (2.12) and (2.13).

THEOREM 2.7. If F ∈ L2(µ), then there exists a unique sequencefn ∈
L̂2(Xn) such that

F(ω) = ∑
n≥0

〈Cn(ω),fn〉.(2.20)

Moreover, we have the isometry

‖F‖2
L2(µ)

= ∑
n≥0

n!‖fn‖2
L2(Xn)

.(2.21)

2.2. Chaos expansion, Kondratiev spaces(S)ρ, (S)−ρ and Lévy white noise.
First we reformulate the chaos expansion of Theorem 2.7. Then we use the new
expansion to define a Wick product on spaces of stochastic test functions and
stochastic distributions. The definitions and results here are analogous to the one-
parameter case, which is treated in [10] and [34].
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From now on we suppose that our Lévy measureν satisfies the condition of
[30], namely, that for everyε > 0 there exists aλ > 0 such that∫

R\(−ε,ε)
exp(λ|z|)ν(dz) < ∞.(2.22)

This implies that our Lévy measure has finite moments of all orders≥ 2.

For later use we introduce multi-indices of arbitrary length. To simplify the
notation, we regard multi-indices as elements of the space(NN

0 )c of all sequences
α = (α1, α2, . . . ) with elementsαi ∈ N0 and with compact support, that is, with
only finitely manyαi �= 0. We define

J = (NN
0 )c.

Further, we set Index(α) = max{i :αi �= 0} and|α| = ∑
i αi for α ∈ J.

Next we consider two families of orthogonal polynomials. We use these
polynomials to reformulate the chaos expansion of Theorem 2.7. First let{ξk}k≥1

be the Hermite functions, just as in Section 2.1. Now choose a bijective map

h :Nd → N.

Define the functionζk(x1, . . . , xd) = ξi1(x1) · · · ξid (xd), if k = h(i1, . . . , id)

for ij ∈ N. Then{ζk}k≥1 constitutes an orthonormal basis ofL2(Rd).

Further, let{lm}m≥0 be the orthogonalization of{1, z, z2, . . .} with respect to the
innerproduct ofL2(�), where�(dz) = z2ν(dz). Then define the polynomials

pm(z) = 1

‖lm−1‖L2(ρ)

z · lm−1(z).(2.23)

The polynomialspm form acompleteorthonormal system inL2(ν) (see [34]). We
shall mention that we could also use any orthonormal basis inS(X) ⊂ L2(ν) for
d = 0 instead of the polynomialspm. In this case the integrability condition (2.22)
reduces to the requirement of the existence of the second moment with respect
to ν. The choice of the polynomialspm serves to ease notation.

Next define the bijective map

z :N × N → N; (i, j) �→ j + (i + j − 2)(i + j − 1)/2.(2.24)

Note thatz(i, j) gives the “Cantor diagonalization” ofN × N.

Then, ifk = z(i, j) for i, j ∈ N, let

δk(x, z) = ζi(x)pj (z).

Further, assume Index(α) = j and|α| = m for α ∈ J and identify the functionδ⊗α
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as

δ⊗α(
(x1, z1), . . . , (xm, zm)

)
= δ

⊗α1
1 ⊗ · · · ⊗ δ

⊗αj

j

(
(x1, z1), . . . , (xm, zm)

)
(2.25)

= δ1(x1, z1) · · · δ1
(
xα1, zα1

)
· · · δj

(
xα1+···+αj−1+1, zα1+···+αj−1+1

) · · · δj (xm, zm),

where the terms with zero-componentsαi are set equal to 1 in the product
(δ⊗0

i = 1).
Finally, we define thesymmetrized tensor productof theδk ’s, denoted byδ⊗̂α as

δ⊗̂α
(
(x1, z1), . . . , (xm, zm)

)
= (δ⊗α)∧

(
(x1, z1), . . . , (xm, zm)

)
(2.26)

= δ
⊗̂α1
1 ⊗̂ · · · ⊗̂δ

⊗̂αj

j

(
(x1, z1), . . . , (xm, zm)

)
.

Forα ∈ J define

Kα(ω) := 〈
C|α|(ω), δ⊗̂α〉

,(2.27)

where we letK0(ω) = 1. For example, ifα = εl with

εl(j) =
{

1, for j = l,

0, else,
l ≥ 1,(2.28)

we obtain

Kεl (ω) = 〈
ω, δ⊗̂εl 〉 = 〈ω, δl〉 = 〈ω, ζi(x)pj (z)〉,(2.29)

if l = z(i, j).

By Theorem 2.7 any sequence of functionsfm ∈ L̂2(π×m), m = 0,1,2, . . . ,

such that
∑

m≥1 m!‖fm‖2
L2(π×m)

< ∞ defines a random variableF ∈ L2(µ) by
F(ω) = ∑

m≥0〈Cm(ω),fm〉. Since eachfm is contained in the closure of the linear
span of the orthogonal family{δ⊗̂α}|α|=m in L2(π×m), we get for allm ≥ 1 the
representation

fm = ∑
|α|=m

cαδ⊗̂α(2.30)

in L2(π×m) for cα ∈ R. Hence, we can restate Theorem 2.7 as follows.

THEOREM 2.8. The family {Kα}α∈J constitutes an orthogonal basis for
L2(µ) with norm expression

‖Kα‖2
L2(µ)

= α! := α1!α2! · · · ,(2.31)
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for α = (α1, α2, . . . ) ∈ J. Thus, everyF ∈ L2(µ) has the unique representation

F = ∑
α∈J

cαKα,(2.32)

wherecα ∈ R for all α and where we setc0 = E[F ].
Moreover, we have the isometry

‖F‖2
L2(µ)

= ∑
α∈J

α!c2
α.(2.33)

EXAMPLE 2.9. (i) ChooseF(ω) = η(x), thed-parameter Lévy process. Then
η(x) = ∫

[0,x1]×···×[0,xd ]×R0
zÑ(dx, dz) = 〈ω,χ[0,x1]×···×[0,xd ](x) · z〉 a.e. and it

follows by (2.29) that

η(x) = ∑
k≥1

m

∫ xd

0
· · ·

∫ x1

0
ζk(x1, . . . , xd) dx1 · · · dxd · Kεz(k,1) ,(2.34)

wherem = ‖x‖L2(ν).

(ii) Let �1 ⊂ Rm, �2 ⊂ R0 with π(�1 × �2) < ∞. Set f1(x, z) =
χ�1×�2(x, z). Then by (2.29) and (2.30) we get forF = Ñ(�1,�2) = 〈ω,f1〉

Ñ(t,�) = ∑
k,m≥1

∫
�1

∫
�2

ζk(x)pm(z)ν(dz) dx · Kεz(k,m) .(2.35)

Next we define various generalized function spaces that relate toL2(µ) in a
natural way. These spaces turn out to be a useful tool to study stochastic partial
differential equations. Our spaces are Lévy versions of the Kondratiev spaces,
which were originally introduced in [22]. See also [4] and [25] in the context of
Gaussian analysis. The one-parameter case with respect to the Lévy white noise
measureµ can be found in [10] and [34]. The extension to multidimensional
parameter sets is analogous.

DEFINITION 2.10. (i)The stochastic test function spaces.Let 0≤ ρ ≤ 1. For
an expansionf = ∑

α∈J cαKα ∈ L2(µ) define the norm

‖f ‖2
ρ,k := ∑

α∈J

(α!)1+ρc2
α(2N)kα(2.36)

for k ∈ N0, where(2N)kα = (2 · 1)kα1(2 · 2)kα2 · · · (2 · m)kαm , if Index(α) = m.
Let

(S)ρ,k := {f :‖f ‖ρ,k < ∞}
and define

(S)ρ := ⋂
k∈N0

(S)ρ,k,(2.37)

endowed with the projective topology.
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(ii) The stochastic distribution spaces.Let 0 ≤ ρ ≤ 1. In the same manner,
define for a formal expansionF = ∑

α∈J bαKα the norms

‖F‖2−ρ,−k := ∑
α∈J

(α!)1−ρc2
α(2N)−kα, k ∈ N0.(2.38)

Set

(S)−ρ,−k := {F : ‖F‖−ρ,−k < ∞}
and define

(S)−ρ := ⋃
k∈N0

(S)−ρ,−k,(2.39)

equipped with the inductive topology.
We can regard(S)−ρ as the dual of(S)ρ by the action

〈F,f 〉 = ∑
α∈J

bαcαα!(2.40)

for F = ∑
α∈J bαKα ∈ (S)−ρ andf = ∑

α∈J bαKα ∈ (S)ρ . Note that for general
0 ≤ ρ ≤ 1 we have

(S)1 ⊂ (S)ρ ⊂ (S)0 ⊂ L2(µ) ⊂ (S)−0 ⊂ (S)−ρ ⊂ (S)−1.(2.41)

The space(S) := (S)0, respectively,(S)∗ := (S)−0, is a Lévy version of theHida
test function space, respectively,Hida stochastic distribution space.For more
information about these or related spaces in the Gaussian and Poissonian case we
refer to [16] and [17].

One of the remarkable properties of the space(S)∗ is that it accomodates the
(d-parameter) Lévy white noise. See [10].

DEFINITION 2.11. The (d-parameter) Lévy white noise
.
η(x) of the Lévy

processη(x) (with m = ‖z‖L2(ν)) is defined by the formal expansion
.
η(x) = m

∑
k≥1

ζk(x)Kεz(k,1) ,(2.42)

whereζk(x) is defined by Hermite functions,z(i, j) is the map in (2.24) and where
εl ∈ J is defined as in (2.28).

REMARK 2.12. (i) Because of the uniform boundedness of the Hermite
functions (see, e.g., [37]) the Lévy white noise

.
η(x) takes values in(S)∗ for all x.

Further, it follows from (2.34) that

∂d

∂x1 · · · ∂xd

η(x) = .
η(x) in (S)∗.(2.43)

This justifies the name white noise for
.
η(x).
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(ii) Just as in [34] the (d-parameter) white noise
.

Ñ (x, z) of the Poisson random
measurẽN(dx, dz) can be defined by

.

Ñ (x, z) = ∑
k,m≥1

ζk(x)pm(z) · Kεz(k,m) ,(2.44)

wherepm(z) are the polynomials from (2.23). We have that
.

Ñ (x, z) is contained

in (S)∗π -a.e. The relation (2.35) admits the interpretation of
.

Ñ (x, z) as a Radon–
Nikodym derivative, that is, (formally)

.

Ñ (x, z) = Ñ(dx, dz)

dx × ν(dz)
in (S)∗.(2.45)

The last relation entitles us to call
.

Ñ(x, z) white noise.

Moreover,
.
η(x) is related to

.

Ñ(x, z) by

.
η(x) =

∫
R

z
.

Ñ (x, z)ν(dz).(2.46)

The relation above is given in terms of a Bochner integral with respect toν

(see [34]).

2.3. Wick product and Hermite transform.In this section we define a
(stochastic) Wick producton the space(S)−1 with respect to the Lévy white noise
measureµ. Then we give the definition of theHermite transformand apply it to
establish a characterization theorem for the space(S)−1.

The Wick product was first introduced by Wick [40] and used as a renormaliza-
tion technique in quantum field theory. Later on a (stochastic) Wick product was
considered by Hida and Ikeda [15]. This subject both in mathematical physics and
probability theory is comprehensively treated in Dobroshin and Minlos [11]. To-
day the Wick product provides a useful concept for a variety of applications, for
example, it is important in the study of stochastic ordinary or partial differential
equations (see, e.g., [17]).

The next definition is ad-parameter version of Definition 3.11 in [10].

DEFINITION 2.13. TheLévy Wick productF � G of two elements

F = ∑
α∈J

aαKα, G = ∑
β∈J

bβKβ ∈ (S)−1 with aα, bβ ∈ R

is defined by

F � G = ∑
α,β∈J

aαbβKα+β.(2.47)
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REMARK 2.14. Letfn = ∑
|α|=n cαδ⊗̂α ∈ L̂2(π×n) andgm = ∑

|β|=m bβ ×
δ⊗̂β ∈ L̂2(π×m) according to (2.30). Then we have

fn⊗̂gm = ∑
|α|=n

∑
|β|=m

cαbβδ⊗̂(α+β) = ∑
|γ |=n+m

∑
α+β=γ

cαbβδ⊗̂γ

in L2(π×(n+m)). Hence,

〈Cn(ω),fn〉 � 〈Cm(ω), gm〉 = 〈Cn+m(ω),fn⊗̂gm〉.(2.48)

REMARK 2.15. A remarkable property of the Wick product is that it is
implicitly contained in the Itô–Skorohod integrals. The reason for this fact is that
if Y (t) = Y (t,ω) is Skorohod integrable, then (see [10])∫ T

0
Y (t)δη(t) =

∫ T

0
Y (t)� .

η(t) dt.(2.49)

The left-hand side denotes the Skorohod integral ofY (t) and the integral on the
right-hand side is the Bochner integral on(S)∗. The Skorohod integral extends the
Itô integral in the sense that both integrals coincide, ifY (t,ω) is adapted, that is,
we then have ∫ T

0
Y (t)δη(t) =

∫ T

0
Y (t) dη(t).(2.50)

Note that a version of (2.49) holds for the white noise
.

Ñ(t, x), too (see [34]).
The extension to thed-parameter case is given in [28].

REMARK 2.16. It is important to note that the spaces(S)1, (S)−1 and(S),
(S)∗ form topological algebras with respect to the Lévy Wick product� (for an
analogous proof see [35] and [17]). For more information about the Wick product
and Skorohod integration in the Poissonian and Gaussian case see, for example,
[16, 17] and [31].

TheHermite transform, which appeared first in Lindstrøm, Øksendal and Ubøe
[27], gives the interpretation of(S)−1 in terms of elements in the algebra of power
series in infinitely many complex variables. This transform has been applied in
many different directions in the Gaussian and Poissonian case (see, e.g., [17]). Its
definition for (d-parameter) Lévy processes is analogous.

DEFINITION 2.17. LetF = ∑
α∈J aαKα ∈ (S)−1 with aα ∈ R. Then theLévy

Hermite transform ofF , denoted byHF , is defined by

HF(z) = ∑
α∈J

aαzα ∈ C,(2.51)
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if convergent, wherez = (z1, z2, . . . ) ∈ CN (the set of all sequences of complex
numbers) and

zα = z
α1
1 z

α2
2 · · · zαn

n · · · ,(2.52)

if α = (α1, α2, . . . ) ∈ J, wherez0
j = 1.

EXAMPLE 2.18. We want to determine the Hermite transform of thed-para-
meter Lévy white noise

.
η(x). Since

.
η(x) = m

∑
k≥1 ζk(x)Kεz(k,1) , we get

H(
.
η)(x, z) = m

∑
k≥1

ζk(x) · zz(k,1) ,(2.53)

which is convergent for allz ∈ (CN)c (the set of all finite sequences inCN).

One of the useful properties of the Hermite transform is that it converts the Wick
product into ordinary (complex) products.

PROPOSITION2.19. If F , G ∈ (S)−1, then

H(F � G)(z) = H(F )(z) · H(G)(z)(2.54)

for all z such thatH(F )(z) andH(G)(z) exist.

PROOF. The proof is an immediate consequence of Definition 2.13.�

In the following we define for 0< R,q < ∞ the infinite-dimensional neighbor-
hoodsKq(R) in CN by

Kq(R) =
{
(ξ1, ξ2, . . . ) ∈ C

N :
∑
α �=0

|ξα|2(2N)qα < R2

}
.(2.55)

By the same proof as in the Gaussian case (see Theorem 2.6.11 in [17]) we
deduce the following characterization theorem for the space(S)−1.

THEOREM 2.20. (i) If F = ∑
α∈J aαKα ∈ (S)−1, then there areq, Mq < ∞

such that

|HF(z)| ≤ ∑
α∈J

|aα||zα| ≤ Mq

(∑
α∈J

(2N)qα|zα|2
)1/2

(2.56)

for all z ∈ (CN)c.
In particular, HF is a bounded analytic function onKq(R) for all R < ∞.
(ii) Conversely, assume thatg(z) = ∑

α∈J bαzα is a power series ofz ∈ (CN)c
such that there existq < ∞, δ > 0 with g(z) is absolutely convergent and bounded
onKq(δ) then there exists a uniqueG ∈ (S)−1 such thatHG = g, namely,

G = ∑
α∈J

bαKα.(2.57)
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3. Application: the stochastic Poisson equation driven by space-time Lévy
white noise. Let us illustrate how the framework, developed in Section 2, can be
applied to solve thestochastic Poisson equation

�U(x) = − .
η(x), x ∈ D,

U(x) = 0, x ∈ ∂D,
(3.1)

where � = ∑d
k=1

∂2

∂x2
k

is the Laplace operator inRd , D is a bounded do-

main with regular boundary (see, e.g., Chapter 9 in [33]) and where
.
η(x) =

m
∑

k≥1 ζk(x)Kεz(k,1) is thed-parameter Lévy white noise (Definition 2.11).
As mentioned in the Introduction, the model (3.1) gives a description of the

temperatureU(x) in the regionD under the assumption that the temperature at the
boundary is kept equal to zero and that there is a white noise heat source inD.

Note that�U(x) in (3.1) is defined in the sense of the topology on(S)−1.

Now we aim at converting the system (3.1) into adeterministicpartial differen-
tial equation with complex coefficients by applying the Hermite transform (2.51) to
both sides of (3.1). Then we try to solve the resulting PDE, and we take the inverse
Hermite transform of the solution, if existent, to obtain a solution of the original
equation. Before we proceed to realize our strategy, we need the following result.

LEMMA 3.1. SupposeX andF are functions fromD in (3.1) to (S)−1 such
that

�HX(x, z) = HF(x, z)(3.2)

for all (x, z) ∈ D × Kq(δ) for someq < ∞, δ > 0.

Furthermore, assume for allj that ∂2

∂x2
j

HF(x, z) is bounded onD × Kq(δ),

continuous with respect tox ∈ D for eachz ∈ Kq(δ) and analytic with respect to
z ∈ Kq(δ) for all x ∈ D.

Then

�X(x) = F(x) for all x ∈ D.(3.3)

PROOF. Use repeatedly the same proof of Lemma 2.8.4 in [17] in the case of
higher-order derivatives.�

Now, we take the Hermite transform of (3.1) and we get

�u(x, z) = −H(
.
η)(x, z), x ∈ D,

u(x, z) = 0, x ∈ ∂D,
(3.4)

whereu = HU andH(
.
η)(x, z) = m

∑
k≥1 ζk(x) · zz(k,1) for z ∈ (CN)c [see (2.53)].

By comparing the real and imaginary parts of equation (3.4), one checks that

u(x, z) =
∫

Rd
G(x, y) · H(

.
η)(y, z) dy,(3.5)
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whereG(x,y) is the classical Green function ofD with G = 0 outside ofD (see,
e.g., Chapter 9 in [33]). SinceG(x, ·) ∈ L1(Rd) for all x, the right-hand side of
(3.5) exists for allz ∈ (CN)c andx ∈ D. Hence,u(x, z) is defined for suchz, x.

Further, we see for allz ∈ (CN)c that

|u(x, z)| ≤ ∑
k

∣∣zz(k,1)

∣∣ ∫
Rd

|G(x,y)||ζk(y)|dy

≤ const.
∑
k

|zεk |
(3.6)

≤ const.

(∑
k

|zεk |2(2N)2εk

)1/2(∑
k

(2N)−2εk

)1/2

≤ const. ·R ·
(∑

k

(2k)−2

)1/2

< ∞

for all z ∈ K2(R). Besides this (3.5) shows thatu(x, z) is analytical inz. Thus,
we conclude by the characterization theorem (Theorem 3.8) that there exists a
function U :D → (S)−1 such thatHU(x, z) = u(x, z). Next we want to verify
the assumptions of Lemma 3.1 forX = U andF = − .

η. It is known from the
general theory of deterministic elliptic PDE’s (see, e.g., [7]) that for all open and
relatively compactV in D there exists aC such that

‖u(·, z)‖C2+α(V ) ≤ C
(‖�u(·, z)‖Cα(V ) + ‖u(·, z)‖C(V )

)
(3.7)

for all z ∈ (CN)c. Since�u = −H
.
η andu are bounded onD × K2(R), it follows

that ∂2

∂x2
j

u(x, z) is bounded for suchx, z. Thus, by Lemma 3.1U is a solution of

system (3.1).
Further, we follow from Lemma 3.18 in [10] that the Bochner integral∫

Rd G(x, y)
.
η(x) dx exists in(S)∗ (see Definition 3.16 in [10]) and that∫

Rd
G(x, y)

.
η(y) dy = m

∑
k≥1

∫
Rd

G(x, y)ζk(y) dy Kz(k,1) .(3.8)

Then one realizes that the right-hand side of (3.5) is the Hermite transform of (3.8).
So we obtain the following result.

THEOREM 3.2. There exists a unique stochastic distribution process
U :D → (S)∗, solving system(3.1). The solution is twice continuously differen-
tiable in (S)∗ and takes the form

U(x) =
∫

Rd
G(x, y)

.
η(y) dy = m

∑
k≥1

∫
Rd

G(x, y)ζk(y) dy Kz(k,1) ,(3.9)

wherem = ‖z‖L2(ν).
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We conclude this section with a remark about an alternative approach to SPDEs
driven by Lévy space-time white noise.

REMARK 3.3. Let us briefly describe how the concepts in [28] can be used to
establish a framework similar to Section 2. Instead of the spaces(S)−ρ , consider
the distribution spaces in [28] and instead of theH -transform, use theS-transform
in [28]. TheS-transform, is of the form

S(F )(φ) = 〈〈F(ω), ẽ(φ,ω)〉〉
for distributionsF and forφ in an open neighborhood of zero iñS(X), where the
functionẽ(φ,ω) is as in (2.11) and where〈〈·, ·〉〉 is an extension of the innerproduct
onL2(µ). Moreover, the process

.
η(x) can be replaced by

.
η(x) := 〈C1(ω), zδx〉

and the white noise
.

Ñ can be defined by

.

Ñ (x, z) := 〈
C1(ω), δ(x,z)

〉
,

where δy is the Dirac measure in a pointy. Further, by the properties of the
S-transform (see [28]) one can prove a similar result as Lemma 3.1. Moreover,
theS-transform of

.
η(x) := 〈C1(ω), zδx〉 is

S
( .
η(x)

)
(φ) =

∫
R0

φ(x, z)ν(dz)

(see proof of Proposition 7.5 in [28]). Hence, we can solve system (3.1) by finding
a functionu such that

�u(x,φ) = −
∫

R0

φ(x, z)ν(dz), x ∈ D,

u(x,φ) = 0, x ∈ ∂D.

The obvious candidate foru is given by the Green functionG:

u(x,φ) =
∫

Rd
G(x, y)

∫
R0

φ(x, z)ν(dz) dy.

Hence, the solution is given by the inverseS-transform, yielding the same result
as in Theorem 3.2 for all Lévy measures. Moreover, within a similar setting one
can solve more general versions of the problem. However, the use of theH -trans-
form has some advantages. For instance, it enables the application of methods of
complex analysis.



LÉVY SPACE-TIME WHITE NOISE 1525

4. Discussion of the solution. As mentioned in the Introduction, our inter-
pretation of the solutionU(x) = U(x,ω) of (3.1) is the following:

For eachx we haveU(x, ·) ∈ (S)∗ andx �→ U(x) satisfies (3.1) in the strong
sense as an(S)∗-valued function.

Regarding the solution itself, given by (3.9), the interpretation is the following:
For eachx,U(x) is a stochastic distribution whose action on a stochastic test

functionf ∈ (S) is

〈U(x), f 〉 =
∫

Rd
G(x, y)〈 .

η(y), f 〉dy,(4.1)

where

〈 .
η(y), f 〉 =

〈
m

∑
k≥1

ξk(y)Kεz(k,1) , f

〉

= m
∑
k≥1

ξk(y)E
[
Kεz(k,1) f

]
[see (2.40)].

Relation (4.1) gives rise to the intepretation that the solutionU(x,ω) takes
ω-averages for allx.

In general, we are not able to represent this stochastic distribution as a classical
random variableU(x,ω). However, if the space dimensiond is low, we can say
more:

COROLLARY 4.1. Supposed ≤ 3. Then the solutionU(x, ·) given by(3.9) in
Theorem3.2belongs toL2(µ) for all x and is continuous inx.

Moreover,

U(x) =
∫

Rd
G(x, y) dη(y).(4.2)

PROOF. Since the singularity ofG(x,y) at y = x has the order of magnitude
|x − y|2−d for d ≥ 3 and log 1

|x−y| for d = 2 (with no singularity ford = 1), we
see by using polar coordinates that∫

D
G2(x, y) dy ≤ C

∫ 1

0
r2(2−d)rd−1dr

=
∫ 1

0
r3−d dr

< ∞
for d ≤ 3. Hence, by Remark 2.15 we get

U(x) =
∫

Rd
G(x, y)� .

η(y) dy =
∫

Rd
G(x, y) dη(y)
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and

E[U2(x)] = E

[(∫
Rd

G(x, y) dη(y)

)2]
= M

∫
D

G2(x, y) dy < ∞
for d ≤ 3. �

Some remaining natural questions are the following:

Q1. If d ≥ 4, is U(x) ∈ Lp(µ) for somep = p(d) ≥ 1?
Q2. Is it possible to prove that equation (3.3) also has a solutionŨ(x) =

Ũ (x,ω) of Walsh type, that is, such that, for somen,

x �→ Ũ (x,ω) ∈ H−n(D) for a.a.ω

andŨ (x) solves (3.1) in the (classical) sense of distributions, for a.a.ω? [See (1.3)
in the analogous Brownian motion case.]

We will not pursue any of these questions here.
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