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In this paper we develop a white noise framework for the study of
stochastic partial differential equations driven by-parameter (pure jump)
Lévy white noise. As an example we use this theory to solve the stochastic
Poisson equation with respect to Lévy white noise for any dimensidme
solution is a stochastic distribution process given explicitly. We also show
that if d < 3, then this solution can be represented as a classical random field
in L2(11), wherey is the probability law of the Lévy process. The starting
point of our theory is a chaos expansion in terms of generalized Charlier
polynomials. Based on this expansion we define Kondratiev spaces and the
Lévy Hermite transform.

1. Introduction. White noise analysis has become a subject of much current
interest. This theory was first treated by Hida [14] and extensively studied in
many other works. See [16] and the references therein. These investigations are
based on the concept of a Gaussian measure and the associated expansion into
Hermite polynomials. Later on an extension of white noise theory to non-Gaussian
analysis was established in [4] and developed further by Kondratiev, Da Silva,
Streit and Us [24] and Kondratiev, Da Silva and Streit [23]. The main tool of
this theory is a biorthogonal decomposition, which extends the Wiener—It6 chaos
expansion. White noise analysis has been used in a broad range of applications.
This approach was originally applied in quantum physics. See, for example,
[3] or [2]. Subsequently, new applications have been found in stochastic (partial)
differential equations [17]. See also [21] and [6] to mention a few. More recently,
the theory has been applied to finance [1]. See [18] and [12] for the fractional
Brownian motion case and [10] and [34] in the non-Gaussian case.

The object of this paper is to provide a white noise framework, based on results
in [28, 10, 34] and [17], to study SPDEs driven by (pure jump) Lévy processes. We
apply this theory to solve thgtochastic Poisson equation driven byl garame-
ter (pure jump Lévy white noiseThat is, consider the following model for the
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LEVY SPACE-TIME WHITE NOISE 1507

temperaturel/ (x) at pointx in a bounded domai® in R?. Suppose that the
temperature at the boundady) of D is kept equal to zero and that there is a
random heat source i modeled byLévy white nois@ (x) =7 (x1, ..., x4). Then

U is described by the equation

AU (x) = — 1 (x), x=(x1,...,x5) €D
Ux)=0, x€abD.

It is natural to guess that the solution must be

(1.1)

(1.2) U(x)=U(x,w>=/DG<x,y>dn(y),

whereG (x, y) is the classical Green function f@ and the integral on the right-
hand side is a multiparameter 1td integral with respect todtparameter Lévy
process;(x). But the integral on the right-hand side of (1.2) only makes sense if
G (x, ) is square integrable i with respect to the Lebesgue measure. The latter
is true if and only if the dimensiod is chosen lower than 4. Despite this difficulty
we will show the existence of a unique explicit solution

x—=>Ux,-) e (8)-1,

where(4)_1 is a suitable space of stochastic distributions, called the Kondratiev
space.

The stochastic Poisson equation (1.1) was discussed by Walsh [39] in the case
of Brownian white noiséV. He proved that there exists for alla Sobolev space
H~"(D) and anH ~"(D)-valued stochastic process

U=U(w):Q2— H (D)
such that (1.1) holds in the sense of distributions, for example,
(U, ), Ap) = — (W (-, w), ¢) a.s. forallp € H7*(D).
The solution of Walsh is given explicitly by

@3 W= [, [ GeayewdrdBy: g H D).

The system (1.1) was also studied in [17] in the Gaussian case. There the solution
U (x), which takes values in the Kondratiev space, can be described by its action
on test functions € ($)1,

@4 W= [ GEnWoL s fe@n

If we compare (1.3) and (1.4) we find that the Walsh solution takagerages for
almost allw, whereas the last one takesaverages for alk.

Our solution is an extension of (1.4) to Lévy processes. The approach we use
to solve (1.1) is based on a chaos expansion in terms of generalized Charlier
polynomials (cf. [28]) and on concepts developed in [17, 10] and [34]. Our
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method, which can be applied to other classes of SPDESs, has the advantage that
SPDEs can be interpreted in the usual strong sense with respect to time and
space There is no need for a weak distribution interpretation with respect to
time and space. Furthermore, the Walsh construction reveals the disadvantage
of defining a multiplication of (Sobolev or Schwartz) distributions, if one
considers SPDEs, where the noise is involved multiplicatively. However, on the
Kondratiev spacé$)_1 we can define a multiplication, theévy Wick product.

This gives a natural interpretation of SPDESs, where the noise or other terms appear
multiplicatively. Furthermore, in some cases solutions can be explicitly obtained

in terms of the Wick product. See [17].

The general machinery, developed in this paper, is of independent interest and
we are convinced that it serves a useful tool for the study of a large class of
stochastic partial differential equations driven by Lévy space-time white noise.

Finally, let us mention that there has recently been an increasing interest in
solving SPDEs driven by-parameter Lévy processes. We refer to [5, 29] and the
references therein.

We shall give an overview of the paper. In Section 2 we introduce a white
noise framework for the study of SPDEs driven dyparameter Lévy processes.
The starting point of our theory is a chaos expansion in terms of generalized
Charlier polynomials. Based on this expansion we define Kondratiev spaces,
the Wick product and th@-parameter Lévy white noise. Further, we give the
definition of the Lévy Hermite transform and state a characterization theorem for
the Kondratiev spaceés$)_1. In Section 3 we use the tools developed in Section 2
to apply it to solve the stochastic Poisson equation driven hirparameter
Lévy white noise. Finally, in Section 4 we discuss the solution and its properties.
In particular, we show that if < 3, the solution can be represented as a classical
random field inL2(x), where is the underlying probability law of the Lévy
process.

2. Framework. In this section we give the general framework to be used
later. The starting point for our discussion are white noise concepts for Lévy
processes, developed in [10, 34] and [28]. Actually, we empasize the use of
multidimensional structures, that is, the white noise we intend to consider is
indexed by a multidimensional parameter set. Our presentation and notation will
follow that of [17] closely, where Gaussian white noise theory is treated. For more
information about white noise theory we refer to [16, 26] and [32].

2.1. A white noise construction of Poisson random measures associated with
a Lévy process. In this paper we confine ourselves td-farameter) pure jump
Lévy processes without drift.

A pure jump Lévy process(r) onR with no drift is a process with independent
and stationary incrementsontinuous in probability andith no Brownian motion
part. The characteristic function of such a process is given by the Lévy—Khintchine
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formula in terms of the Lévy measuteof the Lévy process, that is, in terms

of a measurer on Rg := R — {0}, that integrates the function A z2. Hence,
driftless pure jump Lévy processes can be characterized as Lévy processes with
characteristic triplet0, 0, v). For general information about Lévy processes see

[8] and [36]. In general, such processes do not possess the chaotic representation
property, but they admit a chaos representation with respect to Poisson random
measures (see [19]). Therefore, we aim at viewing these processes as elements of
a certain Poisson space. In this framework we will give a white noise construction
of Poisson random measures and, since our emphasis lies on processes indexed
by multidimensional sets, we will defirkparameter (pure jump) Lévy processes.
Further, we prove a chaos expansion in terms of generalized Charlier polynomials.

A usual starting point in white noise analysis is the application of the Bochner—
Minlos theorem to prove the existence of a probability measure on the space
of tempered distributions'(R?). However, it turns out thas'(R?) is not the
most appropriate for dealing with Lévy processes since this choice would require
restrictive conditions to be imposed on the Lévy measure. This circumstance
comes from the fact that the Lévy measure has a singularity at zero. Therefore,
we use the construction of a nuclear algelgl(d(), which is more tractable
for our purpose. In fact, the spaggX) is a variant of the Schwartz space on
X =R? x Ro, more precisel§(X) is a subspace of the Schwartz space modulo a
certain subspace depending on the Lévy measure. Let us first give the construction
of 8(X) (cf. [28]).

In the following let {£,},>0 be the complete orthogonal system bf(R),
consisting of theHermite functions.Then the (countably Hilbertian) nuclear
topology of the Schwartz spacR?) is induced by the compatible system of
norms

(2.1) lpl2 == > A+ (@, 6)20pay, v ENG,

aeNd
whereg, :=[1¢_; &, and(14+a)? := 1% (1+a) ¥ fora = (a1, ..., aq) € N¢
andy =(y1,...,v4) € Ng’. Now let us take a numbering of the normsiin (2.1), say

I - ll;, and define the normigp|l, = > ll¢ll,,, p € N. Then|| - ||,, p € N are
increasing pre-Hilbertian norms of(R?). It is well known that the norm - l»
are equivalent to the normis |4, given by

(2.2) lpllgoo = sup sup|l+ 12997, ¢ €N,
0<k,|ly|<q zeRd

i .
whered? ¢ = mwfory = (Y1, - -» Ya) € NG with |y := y1 4+ + ya. We
1 d

mention the following important property of the norris||, (see [20]): For all
p € N there exists a constai,, > 0 such that for allp, ¢ € S(RY),

(2.3) levlly < Mpllelipllvllp-
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We then define the spa&gX) by

(2.4) 8(X):= {(p e SR :0(z1,..., 24,0 = ( (p)(zl, s 24,0) = o}.

0Z4+1
It follows that8(X) is a closed subspace 6tR¢+1). Thus,$(X) is a (countably
Hilbertian) nuclear space with respect to the restriction of the nofms,.
Moreover, it is a nuclear algebra, that4%,X) is, in addition, a topological algebra
with respect to the multiplication of functions. In the sequel we denotetfythe
Lebesgue measure ®f and byv a Lévy measure of oRg. We setr = A*¢ x v.
We need the following result.

LEMMA 2.1. There exists an element denotedligyv in §'(X) such that
195.9) = [ )

for all ¢ € 8(X), where (1® v, ¢) = (1® v)(¢) is the action ofl® v on ¢.
The notationv shall indicate thatv is the Radon—Nikodym derivative ofin a
generalized sense

PrROOF Without loss of generality we consider the cake 1. SetL(¢) =
Jx ()7 (dz). Let g,, ¢ € $(X) with ¢, — ¢ in 8(X). By Taylor’s formula we
have forp € 8(X) that

d 1/ 9? )
0.2 =00+ (5-0) 02+ 5 (-0 ) .62

1/ 92 )
= E(E(p) (x,8)z
for a point¢ between 0 and. We assume w.l.0.g. that the measurganishes
outside off—1, 0) U (0, 1]. Therefore, it follows by (2.2) that

1
IL(pn — )] < /R /_ 19(.2) = 9. DY)

L1+ |x12+ 1212 |gn(x, 2) — o (x, 2)|
= /R/—l 72
2

<
(1+1x12)

1 1 2
< l¢n — ll2.00 /R R /_ Avda)

-0 forn — co.

v(dz)A(dx)

So the linear functional. is continuous or§(X). O
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Next define the space

By the same arguments as in the proof of Lemma 2.1 it can be showwthista
closed subspace &f(X). Furthermore, one checks that it is a closed idedl(&f).
Now we introduce the spacﬁ(X), which we use to construct the white noise
measure.

DEFINITION 2.2. We define the spaeE{X) as follows,
(2.6) 3(X)=8(X)/Ny.

The spacef(X) is a (countably Hilbertian) nuclear algebra with the compatible
system of norms

(2.7) Il px = w'g:/ﬂ ¢+ ¥lp, peN.
See page 72 in [13]. Further, 1§t X) denote the topological dual &f(X).
We obtain the following corollary to Lemma 2.1:

COROLLARY 2.3. The functionaL(¢) := [x ¢ (z)7 (dz) satisfies the inequal-
ity
IL@)] < Myl p.x
for all p > po, which yields the continuity of the function&lon §(X).

THEOREM2.4. There exists a unique probability measuren the Borel sets
of 8'(X) with the following Poissonian characteristic functional with intensity
such that for allp € 8(X):

i{w,9) — i _
(2.8) /gl(x)e du(w) _eXp</X(e 1) dn),

where (0, ¢) = w(¢) is the action ofw € §'(X) on ¢ € $(X). Moreover there
exists apg € N such thatl ® v € Z_pO(X) and a natural numbelg > po

such that the imbedding operatdf,(X) < 5,,(X) is Hilbert-Schmidt and
n($—40(X)) = 1. The space$,(X) denotes the completion 8i(X) with respect
to || - || 5, and8_,(X) is the corresponding dual with norin- ||, .

PROOF.  Since |¢/? — 1] < |z|, the result follows from Corollary 2.3 and
Bochners theorem for conuclear spaces [18].

We call the probability measure on Q@ = 8'(X) in Theorem 2.4.évy white
noise pobability measure It turns out that this measure satisfiesfingt condition
of analyticityin the following sense (see [23]).
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LEMMA 2.5. The Lévy white noise measuyiesatisfies the first condition of
analyticity, that is there exists > 0 and a pg such that

explello|l=py) di(w) < oco.
[, E¥el0l-po) i)

ProOOF The proof follows the argument of Lemma 3 in [38]. Introduce the
moment functions oft, which by a criterion of Cramér [9] can be expressed by

Mn(¢>)t=/~ (@, ¢)" du(w) = —L(t¢)‘
$1(X) =0

for everyg € $(X), n € N. Define the set

k
(al,...,ozk)eNk:Zai:n}.

i=1

k.
AR =

Then we obtain the following expression fbf;, :

2.9) M,(9) = z 'y denen Sk

= C{GAk/ 1
We get for the numbepg in Theorem 2.4 that
(1@, P} < 11 Q Vl—po,x 1@l po,x < 0.

Next relation (2.3) implies that for ap € N there exists a constaM, > 0 such
that for allg, ¥ € $(X),

(2.10) 16V llpx = Mpll@llpall¥lpn-
Thus, we get that

(1@ 0, %) < 11L& V- po.x (Mpo)“/ 10l
if we chooseM ,, > 1. So we deduce from (2.9) that

11 ™ o n
M, <¢>|<Z EIL ®”” IR®Vpox o gy

= ClGAk j=1

= Fn(”l ® U||—p0,n)cgo||¢”’;;o,n’

where F,, (x) is thenth moment of the Poisson distribution with intensityand
whereC,, is a constant. Further, it is known that for a Poisson distribution with
intensityx = |[1® V||, =, there exists a consta@t, such that for alh € N,

|Fr(I1® V= po.x)| < n!cﬁm”im.
Therefore, we get for & > 0 that
|My(9)| < n!C" ol

po,7*
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The claimed result follows from Lemma 3 in [23]J

Further, consider the functiom defined by« (¢) = log(1 4+ ¢) modw;, for
¢ = ¢ with ¢(x) > —1. Note thate is holomorphic at zero and invertible. With
the help of Lemma 2.5, it can be shown just as in [28] that there exist symmetric
kernelsC, (w) such that for all in an open neighborhood of zero #1X),

~ . expw, a(g)) _ 1 n
(2.11) €(¢7w)-—w—§a(cn(w)7¢® )s

whereg®” e 8(X)®". The symbol§(X)®" denotes theth completed symmetric
tensor product of§(X) with itself. The elements of this space can be seen as
functionsf € 8(X") moduloN, x» suchthatf = f(x1,..., x,) is symmetric with
respect to the variables, ..., x, € X. From (2.11) we conclude that th@, are
generalized Charlier polynomialsee [23]). We have that

(2.12) {(Cu(@). 6™): 0™ € 3(X)®" n € No)

is a total set inL2(x). Furthermore, for alk, m, ¢ € 8(X)®" and y™ ¢
8(X)®™ the orthogonality relation

(2.13) fg(x)(cn (@), $"NC (@), ¥ ) d (@) = 85 mnt (@™, ¥ ™) 2,
holds. See [28].

REMARK 2.6. It can be easily seen from (2.13) and the constructiof( &
that the Lévy white noise measure is nhondegeneratén the following sense
(see [23]): LetF be a continuous polynomial, that i8; is of the form F(w) =
YN (@®, ™) for w € 8'(X), N € No with ™ ¢ 6@(X)®” [complexification
of 5(X)®”] If F =0 u-a.e., thenF(w) =0 for all ® € §'(X). We mention
that this property is essentlal for the construction of certain test function and
distribution spaces (see [23, 28]).

Next, for functionsf : X" — R define thesymmetrizatiori /)" of f by
1
(214) (f)/\(-xlau'a-xn) :=a2n:f(xo’la“'axo‘n)

for all permutationsr of {1, ..., n}. Then a functionf : X" — R is symmetric, if
and only if f = f. Denote byL2(X", = *") the space of all symmetric functions
on X", which are square integrable with respecttd". Let f, € L2(X", 7*").
Smceéf(X) is dense inL2(X, 7) (cf. [28]), we can choose a sequenﬁé) in

5% with £ — £, in L2(X", 7*"). Then (2.13) implies the existence of a
well defined(C,, (w), f,) such that

(2.15) (Cp(w), fn)_llm(Cn(a)) £O)in L2(x", mxm.
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SinceCi(w) = w — 1 v for all ¢ € $(X) (see [28]), we get

(2.16) _{o—=100, 2dp@) = 11724
Further, if we define for Borelial 1 C RY, A> C Rg with 7 (A1 x A2) < oo the
random measures

N(Alv AZ) = (a), XAle2> al’ld
(2.17) ~
N(Alv AZ) = (Cl) -1® f)a XA1><A2>a

we see from their characteristic functions thats a Poisson random measure and

N is the corresponding compensated Poisson random measure. The compensator
of N(A1, Ap) is given byr. Therefore, it is natural to define the stochastic integral

of ¢ € L2(r) with respect taV by

(2.18) /X¢(x,z)ﬁ<dx,dz) = (w—1® . ).
In particular, if we define

x) = / X(Owx1]x (0.1 ) - 2N (dx, d2)
(2.19) X
forx = (x1,...,x7) € R4,

wherel0, x;] is interpreted agx;, 0], if x; < 0 and where the Lévy measurds
assumed to integrate?, thenj(x) has a versiom(x), which is cadlag in each
componenty;. This follows with the help of (2.13). We calj(x) d-parameter
Lévy processr space-time Lévy process.

We conclude this section with a chaos expansion result in terms of the general-
ized Charlier polynomial€’,,. The result is a consequence of (2.12) and (2.13).

__THEOREM 2.7. If F € L?(), then there exists a unique sequenteec
L2(X™) such that

(2.20) F(@) =) (Cp(®), fu)-
n>0
Moreoverwe have the isometry
(2.21) 1E12 2, = Dt fal T2
n>0

2.2. Chaos expansigrkondratiev spaces$),, (§)—, and Lévy white noise.
First we reformulate the chaos expansion of Theorem 2.7. Then we use the new
expansion to define a Wick product on spaces of stochastic test functions and
stochastic distributions. The definitions and results here are analogous to the one-
parameter case, which is treated in [10] and [34].
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From now on we suppose that our Lévy measurgatisfies the condition of
[30], namely, that for every > 0 there exists a > 0 such that

(2.22) /R\(_S | EXHOEDV(d2) < o0,

This implies that our Lévy measure has finite moments of all orge2s

For later use we introduce multi-indices of arbitrary length. To simplify the
notation, we regard multi-indices as elements of the spﬁﬁec of all sequences
a = (a1, az, ...) with elementsy; € Ng and with compact support, that is, with
only finitely manyq; # 0. We define

g =g

Further, we set Index) = maxi :«; # 0} and|e| =", «; for @ € g.

Next we consider two families of orthogonal polynomials. We use these
polynomials to reformulate the chaos expansion of Theorem 2.7. Firgi et 1
be the Hermite functions, just as in Section 2.1. Now choose a bijective map

h:N? > N,

Define the functiongy(x1,...,xq) = &, (x1)--- &, (xa), if k = h(i,...,iq)
fori; € N. Then{¢;}x>1 constitutes an orthonormal basisIA(R?).

Further, let{/,, },,>0 be the orthogonalization ¢t, z, z2, ...} with respect to the
innerproduct off.%(o), whereo(dz) = z?v(dz). Then define the polynomials

1
(2.23) pm(2) = ————2ln-1(2).
-1l 220y

The polynomialsp,, form acompleteorthonormal system ifi2(v) (see [34]). We
shall mention that we could also use any orthonormal basig¥) c L2(v) for
d = 0 instead of the polynomials,,. In this case the integrability condition (2.22)
reduces to the requirement of the existence of the second moment with respect
to v. The choice of the polynomials,, serves to ease notation.

Next define the bijective map

(224) 7z:NxN-—N; G j+0+j=-2G+j—-1/2

Note thatz(i, j) gives the “Cantor diagonalization” &f x N.
Then, ifk = z(i, j) fori, j e N, let

k(x,2) =i () pj(2).

Further, assume Indéx) = j and|«| = m for « € g and identify the functiod®“
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as
8®°‘((x1, 20), s (Xms Zm))

=671 ® - ®8; 7 ((r1. 20). -, (s )
(2.25) <

=81(x1,21) -+ 81(Xayg, Zarg)
e 8/ (x()l1+"'+(1j71+1’ Za1+...+aj71+1) cee 8] (xm’ Zm)v

where the terms with zero-componenis are set equal to 1 in the product
(68 =1).
Finally, we define theymmetrized tensor produsttthes,’s, denoted by®* as

8% ((x1,20)1 - Gt Zm))
(2.26) = (%) ((x1,20)s -+ (o Zm))
— 8?0[1@ e @8?“/ ((XL Zl)’ Ceey (_xm, Zm))-

Forua € g define

(2.27) Ko () :=(Clo)(@), 5°%),
where we letko(w) = 1. For example, iftx = ! with
1 for j =1
2.28 l'={’ T 1,
(2.28) € () 0 else. >
we obtain
S0

(2.29) Ka(®) =(w,8%) = (0,8) = (0, §i(x)p; (2)),
if 1 =20, j). R

By Theorem 2.7 any sequence of functiofis € Lz(nx’”), m=0,12...,
such thatzmzlm!”fm”iz(nxm) < oo defines a random variablE € L?(x) by

F(w) =) n>0(Cn(w), fn). Since eacly,, is contained in the closure of the linear

span of the orthogonal familw@)"‘}w:m in L2(z>™), we get for allm > 1 the
representation

(2.30) fo= 3 cad®

loe|=m
in L2(z*™) for ¢, € R. Hence, we can restate Theorem 2.7 as follows.
THEOREM 2.8. The family {K,}scg constitutes an orthogonal basis for
L?(w) with norm expression

(2.31) 1 Kall7z, =t = oles!-.
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for o = (a1, a2, ...) € §. Thus everyF e L?(u1) has the unique representation
(2.32) F=) caKaq,
aed

wherec, € R for all « and where we seiy = E[F].
Moreoverwe have the isometry

(2.33) ||F||§2(m =Y alc2.
aed

EXAMPLE 2.9. (i) Choosé"(w) = n(x), thed-parameter Lévy process. Then
N = Jiox1)x-x[0,x4]xRo ZN (dX, d2) = (@, X[0,x1]x--x[0.x,1(X) - 2) a.e. and it
follows by (2.29) that

X4 X1
(2.34) n<x>=2m/0 /O oL, ey xg) dxe - dxg - Ko,
k>1

WheI’Em = ||.x||L2(v).
(i) Let A7 Cc R™, Ay C Rg with (A1 x A2) < oo. Set fi(x,z) =
XA1xA,(x, 2). Then by (2.29) and (2.30) we get fér= N (A1, A2) = (v, f1)

235  Nen=Y /A /A e (0) pm (@DV(d2) dx - K yeom -
1 2

k,m>1

Next we define various generalized function spaces that relai€ (o) in a
natural way. These spaces turn out to be a useful tool to study stochastic partial
differential equations. Our spaces are Lévy versions of the Kondratiev spaces,
which were originally introduced in [22]. See also [4] and [25] in the context of
Gaussian analysis. The one-parameter case with respect to the Lévy white noise
measureu can be found in [10] and [34]. The extension to multidimensional
parameter sets is analogous.

DEFINITION 2.10. (i) The stochastic test function spacest 0< p < 1. For
an expansionf = Y ,cq ca Ko € L?(11) define the norm

(2.36) 1F13 =Y (@)t ci@nke

aed
for k € No, where(2N)k = (2. ko1 (2. 2)ke2... (2. mykem | if Index(a) = m.
Let
(B ok =S N1 fllpk <00}
and define
(2.37) $)p:= () ®pu
keNp
endowed with the projective topology.
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(i) The stochastic distribution spacdset 0 < p < 1. In the same manner,
define for a formal expansiofi =}, .4 bo K« the norms

(2.38) IFI2, = @) P2y, k € No.
aed
Set
(B)—p,—k ={F  ||Fll—p,—x <00}
and define
(2.39) B)—p:=J B)—p.—k,

kENo

equipped with the inductive topology.
We can regard$)_, as the dual of$), by the action

(2.40) (F, )= bacq!

aegd
for F = Zaeg boKy € (8)_pand f = Zaeg bo Ky € (8),. Note that for general
0< p <1we have

(2.41) (8)1C (), C (8)0 C L*(1) C (8)—0 C (§)_, C (§) 1.

The spacés) := (8)o, respectively(8)* := (8)_o, is a Lévy version of thélida

test function spacerespectivelyHida stochastic distribution spacé&or more
information about these or related spaces in the Gaussian and Poissonian case we
refer to [16] and [17].

One of the remarkable properties of the spé£¥ is that it accomodates the
(d-parameter) Lévy white noise. See [10].

DEFINITION 2.11. The ¢-parametey Lévy white noisel(x) of the Lévy
process;) (x) (with m = ||zl|2(,) is defined by the formal expansion

(2.42) Nx)=m Yy (K,

k>1
whereg; (x) is defined by Hermite functions(i, j) is the map in (2.24) and where
e e g is defined as in (2.28).

REMARK 2.12. (i) Because of the uniform boundedness of the Hermite
functions (see, e.g., [37]) the Lévy white noisér) takes values iri$)* for all x.
Further, it follows from (2.34) that

d

(2.43) P =i i),
0x1---0x4

This justifies the name white noise fotx).
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(if) Justas in [34] thed-paramete) white noiseiff (x, z) of the Poisson random
measureN (dx, dz) can be defined by

(2.44) ﬁ(x, 7)= Z i (X) pm (2) - K ztem),

k,m>1

wherep,,(z) are the polynomials from (2.23). We have tlfét(x, z) is contained

in (§)*r-a.e. The relation (2.35) admits the interpretatiomVaf, z) as a Radon—
Nikodym derivative, that is, (formally)
N(dx, dz)

(2-45) N(x,z)= m in (8)".

The last relation entitles us to caﬁl(x, z) white noise.
Moreover, (x) is related toN(x, z) by

(2.46) 7 (x) =/Rzﬁ(x,z)v(dz).

The relation above is given in terms of a Bochner integral with respect to
(see [34]).

2.3. Wick product and Hermite transformln this section we define a
(stochasti¢ Wick producion the spacés)_1 with respect to the Lévy white noise
measureu. Then we give the definition of thidermite transformand apply it to
establish a characterization theorem for the sgdge;.

The Wick product was first introduced by Wick [40] and used as a renormaliza-
tion technique in quantum field theory. Later on a (stochastic) Wick product was
considered by Hida and Ikeda [15]. This subject both in mathematical physics and
probability theory is comprehensively treated in Dobroshin and Minlos [11]. To-
day the Wick product provides a useful concept for a variety of applications, for
example, it is important in the study of stochastic ordinary or partial differential
equations (see, e.g., [17]).

The next definition is @-parameter version of Definition 3.11 in [10].

DEFINITION 2.13. TheLévy Wick producf ¢ G of two elements

F=YayKy, G=) bgKge($)_1  Withay, bgeR
acg ped
is defined by

(2.47) FoG= ) agbpKqeip.
a,Bed
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REMARK 2.14. Letf, = 0y cad®* € L2(r*") and gy = - g1=m bp X
§®F ¢ L2(z*™) according to (2.30). Then we have

fn®gm= Z Z Cabﬁ5®(a+ﬁ)= Z Z Cabﬁ5®y

loe|=n|Bl=m ly|l=n+ma+B=y
in L2(z>*(+tm)) Hence,

(2.48) (Ch(w), fu) 0 (Cn(®), gm) = (Chym (@), fn®gm>

REMARK 2.15. A remarkable property of the Wick product is that it is
implicitly contained in the It6—Skorohodtiegrals. The reason for this fact is that
if Y(tr) =Y (¢, w) is Skorohod integrable, then (see [10])

T T .
(2.49) /OY(t)Sn(t):/o Y (1) o0 (1)dt.

The left-hand side denotes the Skorohod integral 6% and the integral on the
right-hand side is the Bochner integral @) *. The Skorohod integral extends the
It6 integral in the sense that both integrals coincid€,(f, ») is adapted, that is,
we then have

T T
(2.50) /OY(t)én(t)zfo Y(@)dn(t).

Note that a version of (2.49) holds for the white no.i%er,x), too (see [34]).
The extension to thé-parameter case is given in [28].

REMARK 2.16. It is important to note that the spad&31, (8)_1 and(4),
(8)* form topological algebras with respect to the Lévy Wick prodei¢tor an
analogous proof see [35] and [17]). For more information about the Wick product
and Skorohod integration in the Poissonian and Gaussian case see, for example,
[16, 17] and [31].

TheHermite transformwhich appeared first in Lindstrem, Jksendal and Ubge
[27], gives the interpretation @&)_1 in terms of elements in the algebra of power
series in infinitely many complex variables. This transform has been applied in
many different directions in the Gaussian and Poissonian case (see, e.g., [17]). Its
definition for (d-parameter) Lévy processes is analogous.

DEFINITION 2.17.  LetF =3, cqaaKq € ($)-1 with a, € R. Then theLévy
Hermite transform ofF, denoted by# F', is defined by

(2.51) HF(2) =) aqz” €C,

acd
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if convergent, where = (z1, zo,...) € CN (the set of all sequences of complex
numbers) and

(252) Za =Z‘Ilzgzzz"’

if o = (01,02,...) €Y, wherez? =1

EXAMPLE 2.18. We want to determine the Hermite transform ofdhgara-
meter Lévy white nois@(x). Sincen(x) =m Y ;-1 & (x) K0, We get
(2.53) HO(x,2)=m Y {(x) - Zew),
k>1
which is convergent for alt e (CY),. (the set of all finite sequences@").

One of the useful properties of the Hermite transform is that it converts the Wick
product into ordinary (complex) products.

PrROPOSITION2.19. If F, G € (8)_1, then
(2.54) H(F o G)(z)=H(F)(2) - H(G)(z)
for all z such that# (F)(z) and #(G)(z) exist

PROOF The proof is an immediate consequence of Definition 2.13.

In the following we define for G< R, ¢ < oo the infinite-dimensional neighbor-
hoodsk,(R) in CY by

(2.55) Kg(R) = (61, 62,...) e CN: Y g 22N)1% < RZ}.
a#0

By the same proof as in the Gaussian case (see Theorem 2.6.11 in [17]) we
deduce the following characterization theorem for the spége;.

THEOREM2.20. ()If F =3 ,cqaaKq € (8)-1, then there are;, M, < oo
such that

1/2
(2.56) |HF (@)<Y lagllz®] < Mq<2<2N>‘f“|z“|2>
aed aeyd

for all z € (CY),.

In particular, # F is a bounded analytic function aki, (R) for all R < oo.

(i) Converselyassume thag(z) = >aeg baz® is a power series af € (CV).
such that there exist < oo, § > O with g(z) Is absolutely convergent and bounded
on K, (8) then there exists a unique € (4)_1 such that¥#G = g, namely

(2.57) G =) byKq.

aed
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3. Application: the stochastic Poisson equation driven by space-time L évy
whitenoise. Let us illustrate how the framework, developed in Section 2, can be
applied to solve thstochastic Poisson equation

AU (x) = — 1 (x), xeD,

(3.2)
U(x)=0, x€adD,

where A = Y¢_, 322 is the Laplace operator iiR?, D is a bounded do-

main with regular boundary (see, e.g., Chapter 9 in [33]) and whére =
mY =1 Sk (x)K 1 is thed-parameter Lévy white noise (Definition 2.11).

As mentioned in the Introduction, the model (3.1) gives a description of the
temperaturd/ (x) in the regionD under the assumption that the temperature at the
boundary is kept equal to zero and that there is a white noise heat soupce in

Note thatAU (x) in (3.1) is defined in the sense of the topology(éi_1.

Now we aim at converting the system (3.1) intdeterministigpartial differen-
tial equation with complex coefficients by applying the Hermite transform (2.51) to
both sides of (3.1). Then we try to solve the resulting PDE, and we take the inverse
Hermite transform of the solution, if existent, to obtain a solution of the original
equation. Before we proceed to realize our strategy, we need the following result.

LEMMA 3.1. SupposeX and F are functions fromD in (3.1)to (8)_1 such
that
(3.2) AHX(x,z2) =HF(x,2)
forall (x,z) € D x K,(8) for someyg <oo §>0.

Furthermore assume for allj that - 2}f’F(x z) is bounded onD x K, (),

continuous with respect to e D for eachz € K, () and analytic with respect to
ze K, (8) forall x e D.
Then

3.3) AX(x)=F(x) forall x € D.

PrROOF Use repeatedly the same proof of Lemma 2.8.4 in [17] in the case of
higher-order derivatives.[]

Now, we take the Hermite transform of (3.1) and we get

Au(x,z) =—H)(x, 2), xeD,

(3.4)
M(X,Z)IO, xeodD,

whereu = HU andH (1) (x,z) =m Y =1 & (x) - zzan) for z € (CV), [see (2.53)].
By comparing the real and imaginary parts of equation (3.4), one checks that

(3.5) u(e.2)= [ Gy 90 (3.2 dy,
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whereG (x, y) is the classical Green function &f with G = 0 outside ofD (see,

e.g., Chapter 9 in [33]). Sinc6(x, -) € L1(R?) for all x, the right-hand side of

(3.5) exists for alk € (CN). andx € D. Henceu(x, z) is defined for such, x.
Further, we see for ajj € (CN), that

w1 = ¥ leen| [ 166G 016001y
k

<const) " |z%]
k

172 172
< const(z |z |2(2N)2E’<> (Z(ZN)_ZG")
k

k

(3.6)

1/2
< const-R - (Z(Zk)_z) <00
P

for all z € K2(R). Besides this (3.5) shows thatx, z) is analytical inz. Thus,

we conclude by the characterization theorem (Theorem 3.8) that there exists a
function U : D — (8)_1 such that#U (x, z) = u(x, z). Next we want to verify

the assumptions of Lemma 3.1 far = U and F = — 1. It is known from the
general theory of deterministic elliptic PDE’s (see, e.g., [7]) that for all open and
relatively compac¥ in D there exists & such that

3.7) luCs Dllezeayy < C1AUC, Dlicavy + u, Dllcw))

for all z € (CN)... SinceAu = —# 1 andu are bounded o® x K»(R), it follows
2 . . .
that%u(x, z) is bounded for such, z. Thus, by Lemma 3.1/ is a solution of
systerrj1 (3.2).
Further, we follow from Lemma 3.18 in [10] that the Bochner integral
Jra G(x, y)7(x) dx exists in(8)* (see Definition 3.16 in [10]) and that

@8 [, Gwyicdy =ny [, 665 dy Kean.

Then one realizes that the right-hand side of (3.5) is the Hermite transform of (3.8).
So we obtain the following result.

THEOREM 3.2. There exists a unique stochastic distribution process
U:D — (8)*, solving systen{3.1). The solution is twice continuously differen-
tiable in ($)* and takes the form

B9 U =/RdG(x,y)ﬁ(y)dy =m§1/Rd G, y)a(y)dy Kz,

wherem = ||z|| 12(,)-



1524 A. LOKKA, B. BKSENDAL AND F. PROSKE

We conclude this section with a remark about an alternative approach to SPDEs
driven by Lévy space-time white noise.

REMARK 3.3. Let us briefly describe how the concepts in [28] can be used to
establish a framework similar to Section 2. Instead of the spéfes,, consider
the distribution spaces in [28] and instead of #iieransform, use thé-transform
in [28]. The -transform, is of the form

S8(F)(¢) = (F(w), (¢, w))

for distributionsF and for¢ in an open neighborhood of zero #(X), where the
functione(¢, w) isasin (2.11) and wherg, -)) is an extension of the innerproduct
on L?(w). Moreover, the process(x) can be replaced by

N(x) == (C1(w), 28;)
and the white nois& can be defined by

N (x,2) i= [C1(@), 8¢x.5)),

where §, is the Dirac measure in a point Further, by the properties of the
S-transform (see [28]) one can prove a similar result as Lemma 3.1. Moreover,
the 8-transform of (x) := (C1(w), z8,) iS

$(1(0))(¢) = /R é(x, 2)v(d2)
0

(see proof of Proposition 7.5 in [28]). Hence, we can solve system (3.1) by finding
a functionu such that

Au(x,d)):—/R ¢(x,2)v(dz), x €D,
u(r ) =0, xeaD.

The obvious candidate far is given by the Green functioG:
w9 = [ GGy [ s v dy.
Rd Ro

Hence, the solution is given by the inver&dransform, yielding the same result

as in Theorem 3.2 for all Lévy measures. Moreover, within a similar setting one
can solve more general versions of the problem. However, the use &f-tihens-

form has some advantages. For instance, it enables the application of methods of
complex analysis.
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4. Discussion of the solution. As mentioned in the Introduction, our inter-
pretation of the solutiol/ (x) = U (x, w) of (3.1) is the following:

For eachx we haveU (x, -) € (8§)* andx — U (x) satisfies (3.1) in the strong
sense as a¥)*-valued function.

Regarding the solution itself, given by (3.9), the interpretation is the following:

For eachx, U (x) is a stochastic distribution whose action on a stochastic test
function f € (8) is

(4.1) W 1) = [ G, fdy,

where

(). 1) = ¥ &)K. 1)

k>1

=m Z Ex(ME[K e f] [see (2.40)].

k>1

Relation (4.1) gives rise to the intepretation that the soluiitfx, w) takes
w-averages for alt.

In general, we are not able to represent this stochastic distribution as a classical
random variabld/ (x, ). However, if the space dimensiehis low, we can say
more:

COROLLARY 4.1. Suppose < 3. Then the solutio/ (x, -) given by(3.9)in

TheorenB.2belongs taL2(w) for all x and is continuous ir.
Moreover

(4.2) v = [ Gy dnw).
PrROOFE Since the singularity of; (x, y) aty = x has the order of magnitude

|x — y|>~4 ford > 3 and Iogﬁ for d = 2 (with no singularity ford = 1), we
see by using polar coordinates that

1
_/ Gz(x,y)dy < C/ p2A2=d),d-1 4,
b 0
1
:/ r3ddr
0
< 00

for d < 3. Hence, by Remark 2.15 we get

v = [ Gyoimdy=[ Gy dno)
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and

2
et =|( [ Guyanm) |=u [ 62wy <oo
ford <3. O

Some remaining natural questions are the following:

Ql. Ifd>4,isU(x) € LP(u) forsomep = p(d) > 17? N
Q2. Is it possible to prove that equation (3.3) also has a soluti¢n) =
U (x, w) of Walsh type, that is, such that, for some

x> U(x,w) e H"(D) fora.aw

andU (x) solves (3.1) in the (classical) sense of distributions, fora?dSee (1.3)
in the analogous Brownian motion case.]
We will not pursue any of these questions here.
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