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OPTIMAL SCALING OF MALA FOR NONLINEAR REGRESSION?
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We address the problem of simulating efficiently from the posterior
distribution over the parameters of a particular class of nonlinear regression
models using a Langevin—Metropolis sampler. It is shown that as the
number N of parameters increases, the proposal variance must scale as
N~1/3in order to converge to a diffusion. This generalizes previous results
of Roberts and Rosenthal.[R. Stat. Soc. Ser. B Stat. Methodol. 60 (1998)
255-268] for the i.i.d. case, showing the robustness of their analysis.

1. Introduction. The motivation for the study of the kind of models analyzed
in the present paper is the following. We consider a sequence of nonlinear
regression models (indexed hy) relating a scalar response variablewith
a vector of covariates

1 N £
(1) yzﬁgh(z’xi)+ﬁ’

whereh(-; x) is some function depending ondadimensional vector of parame-
tersx (weights) andt has a standard Gaussian distribution. If we takedepen-
dent measuremen¥ = (Y4, ..., ¥;,) on the response variable, corresponding to
the values(z, ..., z,) for the covariates, and define the veckbrwith compo-
nentsHi (x) = h(zx; x), k=1,...,n, we get the measurement equation

&
VN’

wheree = (¢1, ..., &,) is a vector of i.i.d. standard Gaussians.

Following the Bayesian approach we take the vector of weigtys. .., X ) to
be random with i.i.du distributed components. Then the measurement equation
induces the following posterior distribution (i.e., conditional ¥rn=y) on the
weights

1N
(2) Y==3 Hux)+
N3

N

1 N N
() nndx)= C,glexp(Zw, Hx) — o > (Hx, H(x{,-») Q) u(dx;),
i,j=1 i=1

i=1
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where(-, -) stands for the usual scalar productrif.

These kind of distributions are known in the statistical mechanics setting
as “mean field” models [12]. The study of such distributions with a general
nonlinearH is made complicated by the interaction term which destroys the a
priori independence among the weights. In Appendix A we recall that propagation
of chaos holds for the sequence of distributions (3WVas> oo (Proposition 3,
see also [1, 9]), which means that in the limit any finite collection of variables
behaves as if the individual components had been drawn independently from a
single probability measure. This is characterized by

log(dm/du)(x) <y — / Hdr, H(x)>.

Moreover, we prove a moderate deviations result (Proposition 5) which will be
useful for the sequel.

In the rest of the paper we shall analyze the behavior of the Metropolis-adjusted
Langevin algorithm (MaLa) [16] for distributions of the type (3). In order to
simplify our analysis we shall consider the simplest case in whiehl and the
weights are one-dimensional. Moreover, we shall assumethas an everywhere
positive density w.r.t. the Lebesgue measure so the measure (3) has in this case the
following N-dimensional posterior density

1

N N
(4) 7y (x) o<eXp<Z U(x;) — N Z H(x:‘)H(x‘,')),
i=1 ij=1

where
du
U(x)=yH(x) +log—(x)
dx

and the limiting probability measure on the real line has a positive density as
well (called againt to keep the notation simpler) with the property

logrm(x) o U(x) — H(x) / Hdm =:y(x).

In the following X will always denote a random variable with densityand
expected values of measurable functigtX') will be written asn ( f (X)).
The Mala for the above density is a Markovian algorithm implemented in the

following way. In order to computﬁ’ﬂ)l given X‘E.N), first generate

2
(N) _ y(N) o (N)
(5) Y,V =X;"+oW+ ZVIognN(Xj ),

where W is a standard Gaussian @1 independent o . The law of v "’
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givenx " = x, thus, has the density

gN (xv y)
1 2
(6) X GX%—? )

1 X o2 1Y 2
:exp(—ﬁi:X;(yi — X —?U (x,-)—N;H (xi)-H(xJ')> )

0.2
y—x— ?VlognN(x)

The proposaY;N) is accepted or rejected according to the following rule:

N N N
an (Y Mg (v, x M)

(N) Y}N), if §j+1< %) %) N
(7) XY= T an X Manx v Yy
XE.N), otherwise

where§; are i.i.d.U[0, 1].

In order to make the algorithm efficient the parametdnas to scale withv.
A thorough discussion of this problem is reported in the recent survey [15], to
which the reader is referred for more details. In the i.i.d. c&ke-=(0), the optimal
solution for the MalLa has been given by Roberts and Rosenthal [14]. Our main
result is a generalization of theirs for sequences of densities of the type44is if
taken proportional to a suitable inverse power of the number of variables then the
rescaled path of the algorithm converges weakly to a product of one-dimensional
diffusions with the same stationary densitgx). The choice of the proportionality
factor only changes the (constant) speed at which the paths of the diffusions are
travelled.

THEOREM 1 (Weak convergence of the MalLa)Assume:

(HP) The functions H and U have bounded derivatives of all orders; moreover,
H itself is bounded, whereas lim || oo U (x) = —o0.

Let XM = (x {1 x{MV) bethe MaLa defined by (7), with X§"” ~ 7y and

o2 = ¢2/N/3, Thefollowing weak convergenceresult holdsin the space D[O, T'],

N),1 N)k .
(8) {(X[(tNl/3]7 '“’X[(tNl/s])'t € [07 T]}
= {(Zyoyr - Zhy) it €10, T1},

for anyinteger k, where{Z! :i = 1, 2, ...} areindependent copies of the process Z,
which is the unique solution to the SDE

9) dZ, = 3(logn)'(Z,)dt +d B, Zo~,
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with v = v(¢) := 2¢2d(—¢31/2), T being a constant depending on 7 (explicitly
givenin Lemma 7 in Appendix B). Moreover, the acceptance probability converges
as N — oo,

lim P(x") =v™)=20(-%1/2) = a(0).

N—o00

An implication of this result is that a8 — oo, for anyT > 0

TNY/3 (N) w(O)T
(10) N3 Z U(E)T/ §(Zy)ds

weakly, if ¢ is bounded and continuous and depends only oamponents. Now,
by the propagation of chaos, whahis sufficiently large, the asymptotic bias

/g(xl, e XN (X, .o, xN)dxy - dxy

—L/gﬁﬂn-~,xUﬂ(Mdel“'ﬂCW)dxk

is small. On the other hand, by ergodicity of (9), wheis large enough the right-
hand side of (10) will be close t g(x1, ..., xg)w(x1) - - - 7w (xg) dx1- - - dxg With
arbitrarily high probability [see, e.g., [17], Theorem (53.1)]. Hence, (10) may be
loosely interpreted as stating that the Monte Carlo estimate

1 [
(N1 (N).k
(12) 728X X

of [g(x1,...,xp)n(x1,...,xy)dx1---dxy requires a number of iterations
proportional toNY/3. How large T must be depends on the mixing properties
of the diffusion Z, but it is, however, clear that for any fixed value Bfit is
convenient to have(¢) as large as possible in order to enlarge as much as possible
the integration window. We can give an analytic expression for the maximizer
? of v(£), but this is, in practice, useless since it cannot be computed easily
(except by Monte Carlo methods, which defeats somewhat the purpose). Luckily,
the functionsv(¢) anda(¢) have the same form as in [14], even if the constant
T is different in general. Hence, we can exploit the fact thas a bijective
function of £ in order to maximize easily as a function ofz. Indeed,v(a)
a{®1(a/2)}?/3, up to a constant factor depending onSince this function has

a unigue maximum i ~ 0.574, in practice it suffices to monitor the acceptance

rate% Z ]l{X(N) #+ X(N)} of the MalLa and tuné until a(£) equals (674.

As in the I cf case, |t is worth noticing the superiority of the MalLa over the
random walk Metropolis (RWM) algorithm. In the RWM algorithm the proposal
vector YN) has zero mean and, in order to obtain convergence to a diffusion
N3 has to be replaced by, both in the scaling for the variance and for the
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time. The original result in [13] has been extended in [2] to Gibbs fields with no
phase transition, and it could be proved for mean field models like (4) as well. As
a consequence, (10) essentially holds with® replaced byV, which implies that
the required number of steps has the omlemther thanv/3, The only difference
is that the functiorv(£) has to be replaced by some other function, which this time
is maximized when the acceptance rate is roughly equal®40

A final comment concerns the assumption made in Theorem 1 that the initial
value X((JN) is already distributed according to the target density, which is
clearly unrealistic. This means that, in practice, the partial sums in (10) do not
start from 1, but typically from some large valug which ensures that the effect
of the initial valueX(()N) can be neglected. A deeper study of the scaling behavior
of the MaLa and the RWM when started in the tails of the target densithas
been initiated in [3].

2. A quantitative central limit theorem for the log-acceptance ratio.
A fundamental step towards the proof of Theorem 1 is to establish a quantitative
central limit theorem (CLT) for the log-acceptance ratio

aN Yo (x, W)gn (Yo (x, W), x)
N (xX)gN (x, Yo (x, W))
wherex = (x1,...,xy) is fixed, W = (W1, ..., Wy) is a random vector having

i.i.d. N(0,1) components defined on some probability spate F,P) and
Y, (x, W) is the proposal vector given by

(12) GonN(x, W)=log

’

2 N
(13) Yoi(x,W)=Yi=x;i +o W+ %(U/(x,-) - H%x»% > H(x»),
j=1

fori:l,...,N,witho=aN:ﬁ,forsome€>0.

ProPoOsSITIONZ2 (CLT for the acceptance ratio).There exist measurable sets
Fy C RN, with ny (F§) = o(N~") for any ¢ > 0, such that

3
(14) im N? sup sudP(M + % < u) —dw)| =0

|
N—>0o  yeFyueR 37

for any g > 0O sufficiently small, where 7 is some positive constant.

Before starting the proof we set up a convenient notation. First, we shall denote
by Ey empirical averages w.r.t. the vectar, W, Y), that is,

1 N
(15) ENfW.Y) =5 f(xi Wi Y.
i=1
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In order to shorten the notation even further the funcifda allowed to contain
empirical averages as arguments as well, in which case they have to be considered
as constants. In particular, for

(16) YN x)=U@) —H)EnH (x),

we define
1 N 2
(ENYN)(x) = N Z YN (xi;x) = EnU(x) — (ExH(x))7,
i=1

and we apply the same convention to empirical averages of derivatives
k
Uy @) =UR ) - HO()ExH(x)

and to their products. Finally, we use the shortened notation

1 N
(17) Eng(OW' =13 g(x)W;
i=1
and
N
(18) Exh(Y)W! = %Zh(mwﬁ

i=1
Moreover, we will always use the same let€@for several constants appearing in
the estimates.

PROOF OFPROPOSITION2. By direct computation the first two derivatives of
Go n(x, W) w.r.t. o vanish atb = 0. Consequently, we have the Taylor expansion

6 7
1 o d
(19) GO’,N(-X’ W) = § Gkgk,N(xv W) + g/ (G - u)6 d 7GM,N(-x5 W) dua
k=3 +JO u

whereg; n(x, W) = k—l!ﬁGu,N(x, W)(0) for k =3, ..., 6. For completeness the

explicit form of these functions is given in Lemma 6 in Appendix B. Setting
o = ¢/NV® and standardizing as in (14), we have

Goyn 01 1 ¢
B o = mg&/v(x, W)+ mgAN(X, W)
@2 W 63 W 'L’Z
+mg5,1v(x, )+?(86,N(x7 )+3)
1 e d’
- W/o (eN~V6 u)GmGu,N(x, W) du

=:AN+ By +Cn+ Dy + Iy.
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By using a a standard lemma on distribution functions ([11], Lemma 1.9, page 20)
we obtain the following estimate:

G 3
sudl@( ovnN | ET u) — O (u)

ueRr 637 2
(20) <sup|P(Ay <u) — ®w)|+P(Bn|>¢en) +P(Cn|>en)
ueR
L B(Dy| = o) + P(Iy| = ox) + 2N

where(ey) is an arbitrary sequence of positive numbers to be chosenin the sequel.
In Appendix B various lemmas are proven in order to estimate separately each
term appearing on the right-hand side of (20). By Lemma 7, forldiande y > 0,
SUp|P(An <u) — @ (u)|
ueR

(21)

1 1 EN
< c(ﬁ + 812\,—N> Hhe(Fs(Enrs()) + 2

whereF3 is polynomial,rs is a vector of bounded measurable functions ants
a locally Lipschitz function vanishing at

2= F3(7‘[ (r3(X))).
Denote byCs the inverse of the local Lipschitz constantoft t2. Therefore, for
x € Fy3(en) = {x:|Enra(x) —m(r3(X))| < Caen},

it holds

1 1
22 Sup|P(Ay <u) — @ <Cl—+4+ — 4+ ,
) ueRpl Ay =m0 (Wl = <«/N 812\,N 8N>

providedey goes to zero. By Lemma 11, for aiy andey > 0,

(23) P(IBnl=en) =

2 ’
N1/3¢5,
(24) PlCyIzen) = o5 2
Cc
(25) P(IDN| =z en) = —,
Ney

for x e NS_, Fn.x(en), where

Fyx(en) = {x:|Enti(x) — m(re(X))| < Cren N*/671),
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r. being a vector of functions fdr=4, 5, 6, andCy, k = 4, 5, 6, are suitably small
constants. Furthermore, by Lemma 12,

(26) IP)(|IN|Z<‘3N)§NT%N-

Finally, setFy = NP_3 Fyx(en), and choosey = N~%9. In order to estimate

N (F (N7Y/9) we need to control deviations of empirical averages from

expected values under of the orderN ~*, whereasz = ag = 1/9, a5 = 5/18 and
a4 =4/9. Since the latter is the largest, it is enough to apply Proposition 5 in

Appendix A withay = N1/18, in which caseV—1/2yy = N—4/°. By consequence,

6
N (Fg) < Y an(Fyx(N"Y9) < exp(—eNY® + o(NY9)),
k=3

which iso(N ) for anyr > 0 as claimed.
Using the bounds (20), (22)—(26) we get that

SURP(Go,n (x, W) <ut) — D _y6,2/9 g6,2(1)| = O(NH9).

UER

g

3. Proof of Theorem 1. Let f be any smooth function with compact support
from R" to R. Define onf the discrete generator,

Ao f () =B (X)) = FooX =x]
= E[(f(yo) - f(x))l/\ eGa,N(x,W)]’

and the infinitesimal generator of the proce&s),),

(27)

; N
(28) Af(x)= KZ) |:fxpxp(x) + (U/(xp) - H/(xp) / Hdn)fxp(x)]-
p=1
By [7], Corollary 8.9, page 233, the weak convergence (8) holds, provided we
exhibit measurable sef§y c R such that

(29) Jlim ]P’(X[(j\\,?/3t] cFyforallr<T)=1
—00
and
(30) lim sup|NY2A, e y f (x) = Af ()| =0
- xeFy

for any smoothf (x) = f(x1,...,x;) with compact support. Notice that since
x§V) ~ 7y andny is stationary,

P(X\)e,, ¢ F for somer < T) < [INY3Tlmy (x ix ¢ Fiy).
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Thus, in order to ensure (29) it is enough to check thatF§) = o(N~Y/3).
By [18], Proposition 2.2, pag&77, it is enough to prove (30), fér= 2, in order
to get the convergence (8) for any integer

For a fixedx € RY we expandd,. y f (x) in powers ofo, which is obtained by
recalling thatt, 1 is defined in (13),

Ao N f () =E[(f (Yo,1. Yo.2) — f(x1, x2)) L A 9oV 5]

2 2
o2
=E{[§ :(o—wl-fxi + W

i=1

2
(31) + %fxi(U/(x,-) — H/(x,-)ENH(x))) + 02W1W2fxlx2i|

x E(1A eGoN W) |W1, Wz)}

+ 03N (o, x),

where partial derivatives of are always evaluated &k1, x2) if not specified
otherwise, and

2
rn(o,x) = gE[ (Z[fxi,xi,xi(Ya,l, Ys.2)

3 |\&
x (W; +3(U'(x)) — H' () EyH(x)))®
+ 32 (Y51, Yz.2) - (U'(x;) — H'(x;) En H (x))
X (Wi + (U (i) = H' () EnH () |

+ 33 [ S (Wi + 5 (U () — H'(x) Ex H(x))?
i#]
< (Wj+8(U'(xj) — H'(x)) Ey H(x)))
+ fxiox; (Wi + 8 (U'(xi) = H'(xi) Ex H ()

x (U'(x;) — H/(xi)ENH(x))]>
X 1/\eG"’N(x’W)},

where 0< & < 0. By assumption (HP), plugging i = oy = ¢N~Y6, the
remaindery (o, x) is uniformly bounded inv andx.
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Next, observe that if"(«) is an absolutely continuous function of the real
variableu, then

1
1anelD =10 +/ ﬂ{r(u)<o}r/(u)er(“) du.
0

Now we apply this formula to the functiof (1) = Gon(x,uWi,uWy, W),

whereW©) = (Ws, ..., Wy), and take conditional expectations w.¢i/1, Wo):
E(1A %W w1, W)
(32) =E(LAeCoNEWIw, =0, Wo=0)

2 1 _ N
+ ZW‘/o E(1 5y 0y G oy (6 uWa, uWa, WO)e | Wy, Wa) du,
i=1

where Gf,’,)N denotes the partial derivative @, y(x, w1, wz, w©) w.rt. the
variablew;.

We now substitute (32) into the expression (31) so we obtain the following
expression:

2

1
Ao f () =5 D[ Frm E(LA OV W[ Wy =0, Wp = 0)
i=1

(33) + £ (U'(x;) — H' () Eny H (x))E(L A eCo W))]
+ Ry (0, x),
where
Ry (o, x)

2 1
:a‘lzfxiE[WiZ/O (P <0 Gory (X, uWr, uWa, W©)e W)du]

ZfXI X; |:W2/ ]]- F(u)<0 (x uWy, uWo, W(C)) L) dui|

l ~
1
+ fxl,xz{E[WfWZ/O ]l{l:(u)<O}Gc(y,3\/(x’ uWaq, uWo, W(C))ef‘(u) du:|

1 -
- E[Wlwzzfo L <01 G ooy (%2 1t W, uWa, W©)el du“

+ory(o, x).

Now we concentrate on the 1 term in the above expression, since the others are
more easily controlled with similar arguments. First, bouifid| with a constant,
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then we are left to bound far=1, 2,

1 T [* 0) P
EE[WI' /o Ly <0, G oy (6. W1, uWa, W)e (u)du]
(34) )
< —IE(WZ-2 sup |Go v (x, uWr, uWo, W(C))|>-
o

O<u<1
Let us write explicitly
Gon® (x, W)

o

2(U/(Yi) —U'(xi) = H'(YDENH(Y) + H'(x;) Ey H (x))

- (Wl-(U’%Yl-) — H'(YENH(Y)) = H'(Y) = 3 WkH%Yk))
k=1
3
+ %(U”(Ya ~ H'(Y)EyH(Y) — H'(Y)ExyH'(Y)),

where we have writteir; for Y, ;. Using (HP), we can rewrite the right-hand side
of (34) as

1 .
—E(Wiz sup |Gy (x, uWq, uWp, W<C))|)
o

O<u<1

= %E(Wiz sup [U'(Y;(w)) = U'(x;)

O<u<1
~ H(V@)EVH(Y @) + H ) EyH ) ) + (D),
whereYy(u) =Yy + ou Y2 1 6, W;, k=1,..., N. We have now

E(WﬁE( sup [U'(Yi(w)) — U’ (x;)

O<u<l

— H'(Yi ) Ey H(Y W) + H/(xi>ENH<x>|))

(35) < E(W,? sup |U'(Y; (w)) — U’(x,-)|)

O<u<l

+ E(W,? sup |H'(x;) — H'(Y; (u))|ENH(x)>

O<u<l

+E<Wl-2 sup (|H'(Y;(w))|En|H (Y (u)) — H(x)|)>.

O<u<1
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Observe that, wheff is eitherU’, H' or H andi = 1, 2, we can write, using the
fundamental theorem of calculus,

T(Yi(u)) — T (x;)

02 / /
= T|:xi + 7(U (x;)) —H (xi)ENH(x))] —T(x;) +T(Yi(w)

02 ’ /
— T[x,- + ?(U xj))—H (xi)ENH(x))]

02 ’ /
= - (U'x) — H' () Ex H (x)

x /1 T/<x- + ULZ(U/(x-) - H/(x-)ENH(x))> dv
0 1 2 1 1
+oW; / < U (xi) — H'(x;)Ex H (x)) —{—sch,-)ds.

By bounding the derivative df and substitutingy = ¢N %6, we have

sup | T (Y ) — T (x;)| < CN~Y8(@+ |W;)).

O<u<1
By substituting this bound int¢35) and, subsequentin (34), the right-hand
side is bounded by (N ~1/6) uniformly overx. Similar arguments allow us to
conclude thaRy (o, x) — 0 asN — oo, uniformly overx as well.
Now let & be a Gaussian random variable with meaf®z2/2 and vari-
ancer®72. Itisimmediately seen th@(1Ae") = 2d(—¢£37/2). By an integration
by parts we have

[E(L A eCon W) —E(LAeY)|
< CsupP(Gon(x, W) <u) — ®_s6,2/7 6,

ueR

which goes to zero uniformly for € Fy by Lemma 7. Moreover,

IE(L A eCon W)Wy =0, Wo = 0) — E(1 A eCon W)
<E|Go.n(x,0,0, W) — Gy y(x, W)|

2 1 .
SZEfO Wi G @ (x, uWe, uWa, W) du,

and by the same argument as before, the right-hand side goes to zero uniformly



OPTIMAL SCALING OF MALA 1491

overx. Finally, we have
INYBA, n f(x) — Af ()]
= 2oy ?Ag N f(X) — ET2Af (1)

2
< 30723 [ fuio 01, 2 [E(L A eFoVEW Wy =0, Wo = 0)
i=1

—E@AreM)|
+ | fr k1, x| U )| [E(L A eCo¥ @ W) _E(1 A V)|
+ | fr; (x1, x2) || H' (x) |
x (1EN HOIE(LA eConEW) (1A e)|

+ENH(x) = 7 (HOO)[E@ A eV)]) ]

+ [Rn(x, f)I.

Next defineFy = Fy N {x:|EyH(x) — 7 (H(X))| < N~Y%}. By using Proposi-

tion 5 in Appendix A it is immediately verified thaty (Fy) = o(N~) for any

t > 0. The proof is complete since the right-hand side of the last expression goes
to zero uniformly onFy.

APPENDIX A

In this appendix we discuss the asymptotic behavior of sequences of distribu-
tionsy defined in (3) for a general measurable functibnFor ease of notation
we drop from now on boldfaces used to indicatdimensional vectors. First let
us introduce the exponential family of probability measure®R6rgenerated by
w andH, which is defined by

po(dx) =@ HO=KO gx),  peo,

where K (8) = log [ ') (dx) is the cumulant generating function &f
under u. We assume thak is finite only in an open se® of R"” and that
no hyperplane ofR” containsH (x) u-almost surely (in the case = 1 this is
equivalent to assume that is nonconstant). Moreover, in the paper we assumed
that H is bounded s& is defined on the whole space.

Consider now the strictly convex functiah(6) = %ne —y|2 + K(9), where
K is extended to the complement éf by setting its value equal teé-co. This
function has a unique minimum, = 6,(y) in R" (as it is strictly convex and
lower semicontinuous with compact level sets), that is the unique solution of the
equation

(36) 0+VK®©®) =y,
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which implies, by the properties of exponential families, that
37) 9*=y—/Hdn.

We can now state the following:

PROPOSITION 3 (Propagation of chaos).Whenever f:(RY)® — R is
a bounded measurable local function (i.e., it depends only on a finite number of
components), then

lim /fan:/fdn®°O,

N—o00
wherer = g, .
PROOF We can easily bound the Kullback—Leibler divergence
D(ry|ln®) = f log(dry /dn®Y)dmy.
In fact, by using (37) and setting (x) = H(x) — [ H d,
dT[N
Og(dn®N>
N

N
1
=logCyt + NK () + > (m — 6, H(x;)) — o > (H(xi), H(x}))
i=1 i,j=1

. N ?
=logCy'+ NK (6 + EH/HdnH
N 2 | N H(x) H(x) N H (x;)
_E<H/Hd” +<,Z T’T>_ZZ< N ’/Hd”»

i j=1 i=1
- 1 1 M o
:IOQCN_EHWZH()Q)
i=1

2

’

where
~ 3 N 2
logCy =logCy +NK(9*)+§ /Ha’rr

=logCyt+ NJ (6

1 1 M 2, N
= —|Og/eXp<—§“ﬁ§H(xi) )gﬂ(dxi),
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and, therefore, by the CLT, the right-hand side of the above expression converges
to

—log E (exp(—3122)),

where Z is a zero mean Gaussian vector. Hence, it is bounded uniformly in
by some constan¥o. By consequenc® (ry [|[7®V) < Mo. It follows that if we
denote byry x the marginal ofry for the firstk components, then an inequality
of Csiszar [5] equation (2.11), page 772, yields

1 M
Oy < = D(ay|n®) < —2

[N/k] [N/kI

D(mw k|l
and now the stated convergence follows by [4], Lemma 3[1.
In the forthcoming Proposition 5, we shall need the following technical lemma.

LEMMA 4. For any symmetric nonnegative definite matrix A of order s, the
convex conjugate of 6 — 3 (9 A6) isgiven by

%(Z, A7z), if z € RanA,

M*(z) = )
00, otherwise,

where A~ is the pseudo-inverse of A. As a consequence, the origin is the unique
minimizer of M*.

PROOF LetA =U'LU, with L a diagonal matrix with the diagonal elements
equal to the eigenvalués;) of A. ThenA~ = U'L~U, whereL~ is the diagonal
matrix with diagonal elements equal to the reciprocal of the eigenvalues (if
positive) of A and zero otherwise. By definition,

N N
M*(2) = sup{(z, 0) — 3(0, A8)) = sup > viw; — %ZA,-w?),
¢ Wo\i=1 =1
wherev = Uz andw = U#. If there existgg such that,;; = 0 andv;, # 0 (which
happens if and only it ¢ RanA), it is immediately seen thaf*(z) =
Otherwise, the function between round brackets has a maximuea X—' for i
such that; > 0, w; = 0 otherwise. Finally, it is easily seen that

M*(z) = Z T z A7Z)

1A>0

forz e RanA. O
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PrROPOSITION 5 (Moderate deviations).If the sequence {Ay} is such that
AN — oo but Ajzv/N — 0, then for any bounded measurable function g :R? —

R™,
1N
7TN< NZg(xi)—/gdn
i—1

where ¢ > 0 isa constant and = = ..

> AN ) Se—cklz\,—&—o(kzz\,)’

PROOF Defineg(x;) = g(x;) — [ gdm, H(xi)=H(x;) — [ Hdm and
N
(Zn, Yn) = (Y N) Y (@), H ).

i=1

Now it is easy to compute (see, e.qg., [6])

1
A@©. ) = lim —log [ expi (8. Zu) + (¥ Y)) dx ™
N

1
= E((e,w), Z0,9)),

where ¥ is the covariance matrix ofg(x), H(x)) underx. By applying the
Gartner—Ellis theorem and Lemma 4, we prove t{iay, Yy) satisfies underr
an LDP with speed?, and rate function

Jyy=132@y. 27 @), if 2,y eRanz,
’ 00, otherwise

We want to prove the same result for the sequenigaundersy. Decompose
into blocks as

Yo1: oo fﬁg’dn fI-NIﬁ’dJT
and write
AN ) :logé,glfexp{,\,zv((e,zm — 1Ynl?))dn®
:Iog/exp{k,zv(e, Zn)Ydmy.

Next apply Varadhan’s lemma ([6], Theorem 4.3.1, page 137) to the continuous
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functiong(z, y) = (0, z) — %||y||2, which satisfies the moment condition

N—oo

— 1
lim gIog/exp(a)nlz\,w(ZN, Yy))dn®V

N—o0

— 1
< Tim —Zlog/exp(aklzv(e,ZN))dn®N
Ay

—im Yo exp()\—N 0,3( )) dxq)
_N—>OO)\,]2\/ g/ ﬁ<a ’gx].) JT( xl

N A2 a? A2
= Im —(1+-2—(, =110 (—N)>
N—>ooA]2v(+2N< 110) + o N

< 00,
for any constant. SinceGN is bounded inV, we obtain

~ 1 ~
A@):= Iim —ApnN(@©
( ) NI—>OO)\,]2\/ N( )

. 1
= lim —2Iog/expx\,2\,<p(ZN,YN)dn®N
My

N—o0
= Szllyp[w(z, ») = J@
In order to maximize the right-hand side, writg y) as X (u, v), without loss of
generality since is equal to+oo out of the range ok. Now
SZUyHGO(Z’ »=J@zy}= iuvﬂ (0, S11u + 12v) — 31| B2au + Taov]|?

- %((M, S1au) + (v, Toov) + 2(u, T12v))}.

The function to be maximized is concave(in v) and it is immediately checked
that (—6, (I + £22)~1%210) is a stationary point. Substituting this back into the
above expression, we finally arrive at

A(©) = 3(6, BY),

whereB = £11— Z1o(1 4+ £22) 1 51. In order to apply the Gartner—Ellis theorem,
we need only to check thdt is nonnegative definite and apply Lemma 4. 8et
¥12%,,. Since Ke[Xz;] = Ker[X17], we haveXio = AX,. As a consequence,

Vary [g(x;) — AH (x;)] = X11 — £12%,,%21 > 0.
Now consider the difference
D = $1555,%01 — T12(I + T22) 1801 = T12(25, — (I + T22) ) Tou,

and notice that the matrix between round brackets is nonnegative definite on
RanX,». But since RafX»;] € RanXss (as a consequence of the inclusion
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KerXos C KerXiz), D is honnegative definite, and~, hence, s®BisThe explicit
estimate in Proposition 5 follows by taking= inf{A*(z):z ¢ B1} > 0, where
B1 is the unit sphere iR™. [

The results of this appendix can be directly applied to the sequence of densities
y defined in (4) by setting: = 0 andu(dx) = exp{U (x)} dx.

APPENDIX B
Let D be the set of monomials in the derivativesfandU. By assumption
(HP) functions inD are bounded. The following lemma is the result of a tedious

but a straightforward computation, whose details are omitted.

LEMMA 6. Forh=0,12,...,

h h+2
(38) 5 Gon(x. W)=N Y o FPUENpe) o (Y)W =1, .mp),
k=0

for some integers my, where Pk is a polynomial and p;,¢; € D. In particular,

the derivatives gx ny(x, W) = k,d kGu N(x, W)(0), for k =3,...,6, have the
following explicit form:;

N
— (ENGYRUNW +yi W)

gS’N(.X, W) = 12
(39)
3EN(H'W)Ex(H'Wy) — 3En(H' W) Ex(H'W)).
N
gaN = _ﬂ(EN(&ﬁU + BW//ZWZ + Gw///w_N W2 + w////W4)
(0) — 3{(Ex H'V)? + 2N H WA (ENH' V)

+ (EyH'W?)?) +54,N),
(41) gs5.n = Nés n,

and
N
1440

[ (4510//2 + GW/// + 90‘//]/\/[/1//]\/1#1\/
+ 180y e W2 + eow;gu//,v
(42) + GOWW‘#N W4 + 4w]/\/////W6)

86,N = —
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— [O0(ENH'Y ) (EnH' ) + 180 Ex H'yr\P) (Ex H'Yr},)
+90(En Y H' W) (ExH'Yly)
+90(EN H'Y i) (Ex H'W?)
+ 180 EN H"Y\)(En H'Yryy) + O En Yy H' W2)(Ey H'W?)
+ 360 EN H" Yy W?(ExH'Yryy)
+180ENH W) (ENH"Y}?)
+ 180 Ey H'W2)(ExH" Y, W?)
+60(ENH"" WH(ENH YY)
+ 360 ExH"W2)(EyH" )y W?)
+60(EyH"" WH(EyH"W?)]
+[45(Ex H'?)(En H'Yriy)? + 90(Ey H'?) (Ey H'W?) (Ex H'Yry)
+45(Ey H'?)(EyH'W?)?]

+36,N],

whereds n, 85 x and g, v are sumsof monomialsin empirical averages of the type
(15) and (18) and each of them has at least a factor with an odd value of /.

LEMMA 7. Set
v? = ga{ 97 (¥ 20O 2(X) + 18 (¥ (XY OY" (X)) + 157 (¥ 2(X))
@3) — 187 (H"(X) + H'(X)y' (X)) (H' X)) (v" (X) + ¥ (X)y" (X))
+ 97 (H"200) (7 (H" (X)) + 7 (H' ()9 (X)))?}

=: Fg(n (I‘3(X)))

for some polynomial F3 and some vector r3 with componentsin D.
Then for any N and ey > 0,

4P<N_1/283,N(x, W)

Su

u T

§u) — ®(u)

o <c(i+i>+h (Fa(EnTa(x))) + —oe
= \/N 8]2\,N T\ '3\ ENT3X \/E’

where h;(x) = |1V gnl — %| is a continuous Lipschitz function vanishing
at 72.
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PrRoOF Letus define

N
Xy = £{3EN(wm<x>W) + En (U () W?)

— BEN(H Yy (0) Ex(H' ()W) = BEy H' (x) Ex (H' ()W) }

and

3N
Yy = 1—CEN(H//(x)(W2 —D)En(H' (x)W).

From the expression @k x given in (39), we find that

1
ﬁgs,zv(x, W)=Xn+7Yn.

The termYy has zero mean, and we bound its variance as follows:

C
> H"2(x) H (1 E((WE — D?W?) < —.

9
45 EYy2=
(45) N 144N3 & N

The expressiolX y is a sum of independent random variables, whose mean under
the measur@ is zero. We compute its varian¢§ directly as follows:

1 = | En(OUAR U () + 180}, v R ) + 15052(0)
— 18EN[H'(x) Y}y (x) + H" ()]
x En[Wy Y ) H' () + Y () H' (0]
+9ENH'2(x) (ExnH" (1))
+18EN H" (x)Ey (H' (x)¥ryy (x)) Ex H'?(x)
+9ENH'2(x) (En(H' (1) ¥y (1))

1
(46)  + [ -36EN (YN )Y H (1) H ()

N
—48E N (Yy (x)H" (x)H'(x))
—12EN(Yy )Yy () H' (x)H" (x))
—48E N (Yy (x)H" (x)H'(x))
+36Ey(H'(x)¥y(x))Ex(H" (x)H'?(x))

(

+18EN(H'2(x)H" (x)) Ex H' (x) + 36EN(H”2(x)H’2(x))]

1
+ 72mEN(H”2(x)H/2(x))].
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By inserting into the above terms the explicit formula ip§ given in (16),
expanding the products and rearranging terms, we get the represem;étien
F3(Enr3(x)). By replacing the vector of empirical averagégr 3(x) with that of
expected values w.r., the expression (43) is obtained.

Next, setting: = v, we obtain

SU#P(% < u) — ®(u)
XN N
< Su#]P’(— < v) — d(v) +Su#<l><v—) — d(v)
v N v T
< su#]P’(ﬁ < v) —dw)|+1vVv (T—N> . ’1— <L>
v N T N

where the last line has been obtained by a straightforward Lipschitz estimate.
By using the formula given in [11], Lemma 1.9, page 20, again and the above
estimate

’

SUpIP(Ay < u) — P (u)l

= su#P(M < u) — ®(u)

XN EN
<su ]P’(—Su)—cbu +P(YN| > ent) + —
A o~ (u) (I¥Yn] > enT) Nz

and by means of Esseen’s inequality ([11], Theorem 5.4, page 14Xty ,
Chebyshev’s inequality and the estimate (45)¥qr, we arrive at

SUpIP(Ay <u) — ®(u)|

< — SN v P + Eny P
— \/ﬁl’f] N N N

+ ENIH' @) Y(Ex (| H @)y )12+ [H'(0)[)}

w ‘ ¢ "2 /2 EN
V(=) == )|+ =z En(H"*@)ENn(H &
i V<r> ’ <‘L’N>‘+N.L—2812v N(H" () En( (X))+@,

from which the estimate (44) is obtained.

REMARK 8. Itis worth noting that whei#? = 0, that is, the target distribution
has independent components, an easy integration by parts yields

% = 2o {9 (¥ 2OV 2(X)) + 187 (¥ (X)y" (X)¥" (X)) + 157 (v 2(X)) }
— 4_18{577(1#”/2()()) _ 37‘[(1#”3()())},
which coincides with the constatif appearing in the paper [14].
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LEMMA 9. Let F:R™ — R bea polynomial and r, R2> R h=1,...,m,
be of the form r,(x;, W;) = bh(x,-)Wiﬂh, where b;, belongs to D. Define the
vector Er with the componentsin D by (Er),(x;) = E{r,(x;, W;)}. Then for any
O<y<l/2ande >0,

C

holds for all x € Fy(¢), where
Fy(e) =[x :|EN(Er)(x) — 7 ((Er)(X))| <N~ 2K},
and K is a local Lipschitz constant for F in a neighborhood of the point
7 ((Er)(X)).
PrROOFE Let us notice that, when ¢ fN(s), we have
P(N”|F(Ent (x, W)) — F(z((Er)(X)))| > ¢)
<P(NY|F(EN(Er)(x)) — F(Ent(x, W))| > &/2).

Let us consider a generic monomial appearing’iws, .. ., v, ), which will be
of the form[T;"_; vzh. By simple algebraic manipulations,

m
vah _
iy

Now substitute the empirical averageyr,(x, W) into v, and its centering
En(Er);,(x) intouy. Denoting bys=r — Er, the above expression becomes

m m

o 1—[ ap I, oap—l
uhh Z (lh>(vh Mh)huhh h-
1

(1seeishm) 1441y >0h=1

) IT(5") (Ewsn e W) En B0,

(1sersd) Il >0 h=1

We proceed to bound the second moment of each term of the above sum in the
following way. The termEr | is bounded by a constant so we are left to bound the
second moment

2
Mhl,...,hk(x) = E[(ENShl(X, W))Oll T (ENShk(X, W))ak] s
where s;,(x;, W;) = bh(x,-)Z,.(h) with Zl.(h) = W — EW". By using next

Lemma 10, we finally get the bound

X .
hy,...,hi =N

The proof is complete by an application of Chebyshev’s inequaliiy.
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LEMMA 10. Let (Z;:i=1,...,N) bei.i.d. centered r-dimensional random
vectors. For any j = 1,...,r define Yl.(]) = b(f)(xl-)Zl.(’). Then for any «; > 0,
j=1,...,r suchthat Z;Zloej =k, it holds

A6y

< 3F Xk: N > (% i bAl(xhl)) (% % bA’"(th)>,

m=1 |P|=m

where b4 (x) =E[];ca, Ib(j)(x)Z£])| and the sum is taken over partitions » =
{A1,..., A} of the set of repeated indices I ={1,...,1,2,...,2,...,r,...,r}
(where® 1" isrepeated 2u1 times, ..., “r” isrepeated 2, times) such that each
A, contains at least two elements of 1.

PROOF  Begin by writing

1 AR A @) ) ) )
r r
(48) = 2 Z Z Z Z Yl Ylal ’ Yial+~~+ar71 o Yik
1 1
% Ys(l) e YS(al) . Ysgl)+“‘+ar—1 e Ys(kr))'

A summand in the last expression is zero as soon as there exists an index
(i1, ..., ik, s1,...,5:) whose value imot repeated by another. This follows by

the independence and zero mean property oYﬂﬂié Another way of rearranging

this sum is therefore as follows: partition the debof the upper indices of the
formula (48) into a finite uniod = A, U --- U A,,, where|A;| > 2 for eachs. We

write Yl.A" =[ljea, Yl.(") to simplify notation. Then the sum on the left-hand side

is bounded above in absolute value by

A Am
(49) Z > Z ZE|Y1 |y
m=1|P|=mh,=1 hm=1
e e
hiF#hy if k#i
Since the sum is over nonrepeating indiges. . ., 4,,, we have, by independence,
B[V Y| = bA3(xpy) - b4 (xp,). Now the summand in (49) is positive,
so we can bound the sum from above by a sum over all (possibly repeating) indices
h1, ..., h,, and after rearranging the sum, we obtain (47
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LEMMA 11. It holdsthat

lgan(x, W)| _ _
(50) [[D(|BN|Z(9N):IP’<WZE 1r8N)§NT3£]2V’

W, c
6 Pacylzen =F(EAEI s 2y ) < F

x, W 72
g6,N ( ) s

(52)  P(Dyl>en) :p(’ - :

for x € Fy x(en), where
~ TE _ _
Fyalen) = {x |ENEr () = w(Br(0) | £ 2 3ENHe 1},

for k = 4,5, 6, where K is the smallest of the local Lipschitz constants for Fj
at 7 (Erp (X)), for k=4,5,6.

PrROOF By Lemma 6 we havgy y(x, W) = NF(Enri(x, W)) for k =4,
5, 6. The vectors; and polynomialsF; are of the type required by Lemma 9. In
order to computd (7w (Er;(X))) for k = 4,5, 6 we need to replace in (40)—(42),
of Lemma 6 the empirical averages with expectations with respect:tdP. By
a straightforward computation,

Fa(m (Era(X))) = —2—14[[3E (¥ (X)P'2(X) + BE (¥ *(X))
+6E (v (X)¥' (X)) +3E(y""(X))]
— (ELH' () (X) + H" (X))}

+00 oo 2
_ _2_14[3c i Y o dx - (c |G H’)%x)dx) ]

—0o0

sinceX has the density (x) = ce?¥ ™ with ¢ = e =X @) Since by assumption (HP)

both (e¥ ") (x) ande?¥ ™) H'(x) are of the formf (x)e?¥ ™ with f bounded and

¥ (x) — —oo as|x| — +o0, the right-hand side of the previous expression is zero.
Next F5(r (Ers5(X))) = 0, since each monomial iy contains at least one factor

which is an odd power o, hence, it has mean zero. Finally,

Fe(m (Ere(X)))
= — i 45E (¥ 2(X)¥'2(0) + B0E (¥ (X)y'3(X)
+ 270E(1//”(X)1ﬁ”(X)1ﬁ’(X)) + 135E(1ﬁ”’2(X))
+ 180E(1//W(X)1p/2(X)) + 180E(1//W(X)1//”(X))
+ 180E (""" (X)y' (X)) + 60E (""" (X))
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—90[E(H"(X)+ H' (X)¥'(X))
x E(H'(X)(y""(X) + ¥/ (X)y" (X)))]
— 90[2E (H"(X)¥'*(X)) + 2E(H" (X)) (X))
+4E(H" (X)¥' (X)) +2E(H""(X))]
x E(H"(X) + H'(X)y'(X))

+45E (H'2(X))(E(H" (X)) + E(H/(X)x//(X)))Z]

= — g (45E (¥ (0w (X)?)
+90E (' (X)y" (X)y" (X)) + T5E (¥""4(X)))
—90E(H"(X) + H'(X)y' (X))
+E(H' X)W (X) +v'(X)y" (X))
+45E (H'2(X)) (E(H" (X)) + E(H' (X)y' (X)))?]
— 1350l @ (X)¥300) + BE (' ()" (0¥ (X))
+ E("200) + 3E (" (X)y'2(X))
+BE (" (X)¥"(X0) + BE(¥"" OV (X)) + E(y"" (X)) ]
+ fom| [E(H" COY' (X)) + E(H" (X9 (X))
+2E(H"(X)y'(X)) + E(H""(X))]
x [E(H"(X) + H' 0Oy’ (X)]},
and this simplifies to

.2
Fe(Ere(X)) = 5

because the first term in curly braces equal%2 by (43), the second term is
proportional to

E(W///(X)l///3(X) + 3y (XY (XD (X) + v 2X)3E (Y (X)y" (X))
+ 31#””(X)W2(X) + 3w/////(X)w/(X) + WWW(X)>

+00
— C/ (elp'l/////)/// dx = O,

—00
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and the third term in curly braces contains the multiplicative factor
+o00
EH"(X)+H X)¢¥' (X)) =c / (eYH'Y dx = 0.
—00

The last two displays equal zero by the same argument used before. Therefore,
w
P<|g4’N(x’ ) 25_11'81\/)

N2/3
P(NY3| Fy(Enra(x, W))| = £ Lzey),

85N, W)
P(W Zﬁ TSN)

]P’(N1/6|F5(ENr5(x, W))| = € 2tey),

ge,N(x, W) )
Pl|Z——— >
(‘ N + > - TSN

=P(|Fs(Enre(x, W)) — Fe(Erg(X))| = £ 3zey)

so that the stated estimates follow directly from the previous lemrha.
LEMMA 12. For oy =¢/N*/8 it holds

1 [on cd’
(53) ]P)|: 6_/0 (O'N —u) WGM’N(X’ W)du

- C
>EN _W

PROOF By Markov’s inequality and Lemma 6, we have

p[| 2 [ 6.4 G (e W)d

[g/ (on —u) a7 uN(x, W)du
6 d’

‘/ (ony —u) a7 Gy nx,W)du

> 8N1|

< —IE
- 6'8/\/

6
6'8 _/ (N_M)E

1 ON 6
< / (oy —u)°’NE
6ley Jo

d’

Gun(x, W)‘ du

9
Y uf P(Enpe)oe (Y)W e=1,....m)|du
k=0

< g f (o — 0N 3" W E P Ewpr e YW €= L)
k=0

<CN 7_ C
—INO E—
= &N N = ey N1/6 O
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