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OPTIMAL SCALING OF MALA FOR NONLINEAR REGRESSION1

BY LAIRD ARNAULT BREYER, MAURO PICCIONI AND SERGIO SCARLATTI

University of Lancaster, University of Rome La Sapienza and
University G. D’Annunzio Chieti

We address the problem of simulating efficiently from the posterior
distribution over the parameters of a particular class of nonlinear regression
models using a Langevin–Metropolis sampler. It is shown that as the
number N of parameters increases, the proposal variance must scale as
N−1/3 in order to converge to a diffusion. This generalizes previous results
of Roberts and Rosenthal [J. R. Stat. Soc. Ser. B Stat. Methodol. 60 (1998)
255–268] for the i.i.d. case, showing the robustness of their analysis.

1. Introduction. The motivation for the study of the kind of models analyzed
in the present paper is the following. We consider a sequence of nonlinear
regression models (indexed byN ) relating a scalar response variabley with
a vector of covariatesz

y = 1

N

N∑
i=1

h(z;xi) + ε√
N

,(1)

whereh(·;x) is some function depending on ad-dimensional vector of parame-
tersx (weights) andε has a standard Gaussian distribution. If we taken indepen-
dent measurementsY = (Y1, . . . , Yn) on the response variable, corresponding to
the values(z1, . . . , zn) for the covariates, and define the vectorH with compo-
nentsHk(x) = h(zk;x), k = 1, . . . , n, we get the measurement equation

Y = 1

N

N∑
i=1

H(xi) + ε√
N

,(2)

whereε = (ε1, . . . , εn) is a vector of i.i.d. standard Gaussians.
Following the Bayesian approach we take the vector of weights(X1, . . . ,XN) to

be random with i.i.d.µ distributed components. Then the measurement equation
induces the following posterior distribution (i.e., conditional onY = y) on the
weights

πN(dx) = C−1
N exp

(
N∑

i=1

〈y,H(xi)〉 − 1

2N

N∑
i,j=1

〈H(xi),H(xj )〉
)

N⊗
i=1

µ(dxi),(3)
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where〈·, ·〉 stands for the usual scalar product inR
n.

These kind of distributions are known in the statistical mechanics setting
as “mean field” models [12]. The study of such distributions with a general
nonlinearH is made complicated by the interaction term which destroys the a
priori independence among the weights. In Appendix A we recall that propagation
of chaos holds for the sequence of distributions (3) asN → ∞ (Proposition 3,
see also [1, 9]), which means that in the limit any finite collection of variables
behaves as if the individual components had been drawn independently from a
single probability measureπ . This is characterized by

log(dπ/dµ)(x) ∝
〈
y −

∫
Hdπ,H(x)

〉
.

Moreover, we prove a moderate deviations result (Proposition 5) which will be
useful for the sequel.

In the rest of the paper we shall analyze the behavior of the Metropolis-adjusted
Langevin algorithm (MaLa) [16] for distributions of the type (3). In order to
simplify our analysis we shall consider the simplest case in whichn = 1 and the
weights are one-dimensional. Moreover, we shall assume thatµ has an everywhere
positive density w.r.t. the Lebesgue measure so the measure (3) has in this case the
following N -dimensional posterior density

πN(x) ∝ exp

(
N∑

i=1

U(xi) − 1

2N

N∑
i,j=1

H(xi)H(xj )

)
,(4)

where

U(x) = yH(x) + log
dµ

dx
(x)

and the limiting probability measureπ on the real line has a positive density as
well (called againπ to keep the notation simpler) with the property

logπ(x) ∝ U(x) − H(x)

∫
H dπ =: ψ(x).

In the following X will always denote a random variable with densityπ and
expected values of measurable functionsf (X) will be written asπ(f (X)).

The MaLa for the above density is a Markovian algorithm implemented in the
following way. In order to computeX(N)

j+1 givenX
(N)
j , first generate

Y
(N)
j = X

(N)
j + σW + σ 2

2
∇ logπN

(
X

(N)
j

)
,(5)

whereW is a standard Gaussian onRN independent ofX(N)
j . The law ofY (N)

j
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givenX
(N)
j = x, thus, has the density

qN(x, y)

∝ exp
(
− 1

2σ 2

∥∥∥∥y − x − σ 2

2
∇ logπN(x)

∥∥∥∥2)
(6)

= exp

(
− 1

2σ 2

N∑
i=1

(
yi − xi − σ 2

2
U ′(xi) − 1

N

N∑
j=1

H ′(xi) · H(xj )

)2)
.

The proposalY (N)
j is accepted or rejected according to the following rule:

X
(N)
j+1 =


Y

(N)
j , if ξj+1 <

πN(Y
(N)
j )qN(Y

(N)
j ,X

(N)
j )

πN(X
(N)
j )qN(X

(N)
j , Y

(N)
j )

,

X
(N)
j , otherwise,

(7)

whereξj are i.i.d.U [0,1].
In order to make the algorithm efficient the parameterσ has to scale withN .

A thorough discussion of this problem is reported in the recent survey [15], to
which the reader is referred for more details. In the i.i.d. case (H = 0), the optimal
solution for the MaLa has been given by Roberts and Rosenthal [14]. Our main
result is a generalization of theirs for sequences of densities of the type (4): ifσ is
taken proportional to a suitable inverse power of the number of variables then the
rescaled path of the algorithm converges weakly to a product of one-dimensional
diffusions with the same stationary densityπ(x). The choice of the proportionality
factor only changes the (constant) speed at which the paths of the diffusions are
travelled.

THEOREM 1 (Weak convergence of the MaLa).Assume:

(HP) The functions H and U have bounded derivatives of all orders; moreover,
H itself is bounded, whereas lim |x|→∞ U(x) = −∞.

Let X
(N)
j = (X

(N),1
j , . . . ,X

(N),N
j ) be the MaLa defined by (7),with X

(N)
0 ∼ πN and

σ 2 = �2/N1/3. The following weak convergence result holds in the space D[0, T ],{(
X

(N),1
[tN1/3], . . . ,X

(N),k

[tN1/3]
)
: t ∈ [0, T ]}

(8)
�⇒ {(

Z1
v(�)t , . . . ,Z

k
v(�)t

)
: t ∈ [0, T ]},

for any integer k, where {Zi
t : i = 1,2, . . .} are independent copies of the process Zt

which is the unique solution to the SDE

dZt = 1
2(logπ)′(Zt ) dt + dBt, Z0 ∼ π,(9)
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with v = v(�) := 2�2�(−�3τ/2), τ being a constant depending on π (explicitly
given in Lemma 7 in Appendix B). Moreover, the acceptance probability converges
as N → ∞,

lim
N→∞P

(
X

(N)
j+1 = Y

(N)
j

) = 2�(−�3τ/2) =: a(�).

An implication of this result is that asN → ∞, for anyT > 0

1

T N1/3

T N1/3∑
j=1

g
(
X

(N)
j

) → 1

v(�)T

∫ v(�)T

0
g(Zs) ds(10)

weakly, if g is bounded and continuous and depends only onk components. Now,
by the propagation of chaos, whenN is sufficiently large, the asymptotic bias∫

g(x1, . . . , xk)πN(x1, . . . , xN) dx1 · · ·dxN

−
∫

g(x1, . . . , xk)π(x1) dx1 · · ·π(xk) dxk

is small. On the other hand, by ergodicity of (9), whenT is large enough the right-
hand side of (10) will be close to

∫
g(x1, . . . , xk)π(x1) · · ·π(xk) dx1 · · ·dxk with

arbitrarily high probability [see, e.g., [17], Theorem (53.1)]. Hence, (10) may be
loosely interpreted as stating that the Monte Carlo estimate

1

I

I∑
j=1

g
(
X

(N),1
j , . . . ,X

(N),k
j

)
(11)

of
∫

g(x1, . . . , xk)πN(x1, . . . , xN) dx1 · · ·dxN requires a number of iterationsI
proportional toN1/3. How largeT must be depends on the mixing properties
of the diffusionZ, but it is, however, clear that for any fixed value ofT it is
convenient to havev(�) as large as possible in order to enlarge as much as possible
the integration window. We can give an analytic expression for the maximizer
�̂ of v(�), but this is, in practice, useless since it cannot be computed easily
(except by Monte Carlo methods, which defeats somewhat the purpose). Luckily,
the functionsv(�) anda(�) have the same form as in [14], even if the constant
τ is different in general. Hence, we can exploit the fact thata is a bijective
function of � in order to maximize easilyv as a function ofa. Indeed,v(a) ∝
a{�−1(a/2)}2/3, up to a constant factor depending onτ . Since this function has
a unique maximum ina ≈ 0.574, in practice it suffices to monitor the acceptance
rate 1

k

∑k
j=11{X(N)

j+1 �= X
(N)
j } of the MaLa and tune� until a(�) equals 0.574.

As in the i.i.d. case, it is worth noticing the superiority of the MaLa over the
random walk Metropolis (RWM) algorithm. In the RWM algorithm the proposal
vector Y (N) has zero mean and, in order to obtain convergence to a diffusion
N1/3 has to be replaced byN , both in the scaling for the variance and for the
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time. The original result in [13] has been extended in [2] to Gibbs fields with no
phase transition, and it could be proved for mean field models like (4) as well. As
a consequence, (10) essentially holds withN1/3 replaced byN , which implies that
the required number of steps has the orderN rather thanN1/3. The only difference
is that the functionv(�) has to be replaced by some other function, which this time
is maximized when the acceptance rate is roughly equal to 0.234.

A final comment concerns the assumption made in Theorem 1 that the initial
value X

(N)
0 is already distributed according to the target densityπN , which is

clearly unrealistic. This means that, in practice, the partial sums in (10) do not
start from 1, but typically from some large valuet0, which ensures that the effect
of the initial valueX

(N)
0 can be neglected. A deeper study of the scaling behavior

of the MaLa and the RWM when started in the tails of the target densityπN has
been initiated in [3].

2. A quantitative central limit theorem for the log-acceptance ratio.
A fundamental step towards the proof of Theorem 1 is to establish a quantitative
central limit theorem (CLT) for the log-acceptance ratio

Gσ,N(x,W) = log
πN(Yσ (x,W))qN(Yσ (x,W), x)

πN(x)qN(x,Yσ (x,W))
,(12)

wherex = (x1, . . . , xN) is fixed,W = (W1, . . . ,WN) is a random vector having
i.i.d. N(0,1) components defined on some probability space(	,F ,P) and
Yσ (x,W) is the proposal vector given by

Yσ,i(x,W) = Yi = xi + σWi + σ 2

2

(
U ′(xi) − H ′(xi)

1

N

N∑
j=1

H(xj )

)
,(13)

for i = 1, . . . ,N , with σ = σN = �
N1/6 , for some� > 0.

PROPOSITION2 (CLT for the acceptance ratio).There exist measurable sets
FN ⊂ R

N , with πN(F c
N) = o(N−t ) for any t > 0, such that

lim
N→∞Nβ sup

x∈FN

sup
u∈R

∣∣∣∣P(
GσN,N (x,W)

�3τ
+ �3τ

2
≤ u

)
− �(u)

∣∣∣∣ = 0(14)

for any β > 0 sufficiently small, where τ is some positive constant.

Before starting the proof we set up a convenient notation. First, we shall denote
by EN empirical averages w.r.t. the vector(x,W,Y ), that is,

ENf (x,W,Y ) = 1

N

N∑
i=1

f (xi,Wi, Yi).(15)
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In order to shorten the notation even further the functionf is allowed to contain
empirical averages as arguments as well, in which case they have to be considered
as constants. In particular, for

ψN(t;x) = U(t) − H(t)ENH(x),(16)

we define

(ENψN)(x) = 1

N

N∑
i=1

ψN(xi;x) = ENU(x) − (
ENH(x)

)2
,

and we apply the same convention to empirical averages of derivatives

ψ
(k)
N (t;x) = U(k)(t) − H(k)(t)ENH(x)

and to their products. Finally, we use the shortened notation

ENg(x)Wl = 1

N

N∑
i=1

g(xi)W
l
i(17)

and

ENh(Y )Wl = 1

N

N∑
i=1

h(Yi)W
l
i .(18)

Moreover, we will always use the same letterC for several constants appearing in
the estimates.

PROOF OFPROPOSITION2. By direct computation the first two derivatives of
Gσ,N(x,W) w.r.t. σ vanish atσ = 0. Consequently, we have the Taylor expansion

Gσ,N(x,W) =
6∑

k=3

σ kgk,N (x,W) + 1

6!
∫ σ

0
(σ − u)6 d7

du7Gu,N(x,W)du,(19)

wheregk,N(x,W) = 1
k!

dk

duk Gu,N(x,W)(0) for k = 3, . . . ,6. For completeness the
explicit form of these functions is given in Lemma 6 in Appendix B. Setting
σ = �/N1/6 and standardizing as in (14), we have

GσN,N

�3τ
+ �3τ

2
= 1

N1/2τ
g3,N (x,W) + �

N2/3τ
g4,N (x,W)

+ �2

N5/6τ
g5,N (x,W) + �3

τ

(
g6,N (x,W) + τ2

2

)

+ 1

6!τ�3

∫ �N−1/6

0
(�N−1/6 − u)6 d7

du7
Gu,N(x,W)du

=: AN + BN + CN + DN + IN .
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By using a a standard lemma on distribution functions ([11], Lemma 1.9, page 20)
we obtain the following estimate:

sup
u∈R

∣∣∣∣P(
GσN,N

�3τ
+ �3τ

2
≤ u

)
− �(u)

∣∣∣∣
≤ sup

u∈R

|P(AN ≤ u) − �(u)| + P(|BN | ≥ εN) + P(|CN | ≥ εN)(20)

+ P(|DN | ≥ εN) + P(|IN | ≥ εN) + 4εN√
2π

,

where(εN ) is an arbitrary sequence of positive numbers to be chosen in the sequel.
In Appendix B various lemmas are proven in order to estimate separately each

term appearing on the right-hand side of (20). By Lemma 7, for anyN andεN > 0,

sup
u∈R

|P(AN ≤ u) − �(u)|
(21)

≤ C

(
1√
N

+ 1

ε2
NN

)
+ hτ

(
F3

(
ENr3(x)

)) + εN√
2π

,

whereF3 is polynomial,r3 is a vector of bounded measurable functions andhτ is
a locally Lipschitz function vanishing at

τ2 = F3
(
π
(
r3(X)

))
.

Denote byC3 the inverse of the local Lipschitz constant ofh at τ2. Therefore, for

x ∈ FN,3(εN ) = {
x :

∣∣ENr3(x) − π
(
r3(X)

)∣∣ ≤ C3εN

}
,

it holds

sup
u∈R

|P(AN ≤ u) − �(u)| ≤ C

(
1√
N

+ 1

ε2
NN

+ εN

)
,(22)

providedεN goes to zero. By Lemma 11, for anyN andεN > 0,

P(|BN | ≥ εN) ≤ C

N1/3ε2
N

,(23)

P(|CN | ≥ εN) ≤ C

N2/3ε2
N

,(24)

P(|DN | ≥ εN) ≤ C

Nε2
N

,(25)

for x ∈ ⋂6
k=4 FN,k(εN), where

FN,k(εN ) = {
x :

∣∣ENrk(x) − π
(
rk(X)

)∣∣ ≤ CkεNNk/6−1},
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rk being a vector of functions fork = 4,5,6, andCk , k = 4,5,6, are suitably small
constants. Furthermore, by Lemma 12,

P(|IN | ≥ εN) ≤ C

N1/6εN

.(26)

Finally, setFN = ⋂6
k=3FN,k(εN ), and chooseεN = N−1/9. In order to estimate

πN(F c
N,k(N

−1/9)) we need to control deviations of empirical averages from
expected values underπ of the orderN−αk , whereα3 = α6 = 1/9, α5 = 5/18 and
α4 = 4/9. Since the latter is the largest, it is enough to apply Proposition 5 in
Appendix A withλN = N1/18, in which caseN−1/2λN = N−4/9. By consequence,

πN(F c
N) ≤

6∑
k=3

πN

(
FN,k(N

−1/9)
) ≤ exp

(−cN1/9 + o(N1/9)
)
,

which iso(N−t ) for anyt > 0 as claimed.
Using the bounds (20), (22)–(26) we get that

sup
u∈R

∣∣P(
Gσ,N(x,W) ≤ u

)− �−�6τ2/2,�6τ2(u)
∣∣ = O(N−1/9). �

3. Proof of Theorem 1. Let f be any smooth function with compact support
from R

N to R. Define onf the discrete generator,

Aσ,Nf (x) = E
[
f
(
X

(N)
t+1

) − f (x)
∣∣X(N)

t = x
]

(27)
= E

[(
f (Yσ ) − f (x)

)
1∧ eGσ,N(x,W)

]
,

and the infinitesimal generator of the process(Zv(�)t ),

Af (x) = v(�)

2

N∑
p=1

[
fxpxp(x) +

(
U ′(xp) − H ′(xp)

∫
H dπ

)
fxp(x)

]
.(28)

By [7], Corollary 8.9, page 233, the weak convergence (8) holds, provided we
exhibit measurable sets̃FN ⊂ R

N such that

lim
N→∞ P

(
X

(N)

[N1/3t] ∈ F̃N for all t ≤ T
) = 1(29)

and

lim
N→∞ sup

x∈F̃N

∣∣N1/3A�N−1/6,Nf (x) − Af (x)
∣∣ = 0(30)

for any smoothf (x) = f (x1, . . . , xk) with compact support. Notice that since
X

(N)
0 ∼ πN andπN is stationary,

P
(
X

(N)

[N1/3t] /∈ F̃N for somet ≤ T
) ≤ [N1/3T ]πN(x :x /∈ F̃N).
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Thus, in order to ensure (29) it is enough to check thatπN(F̃ c
N) = o(N−1/3).

By [18], Proposition 2.2, page177, it is enough to prove (30), fork = 2, in order
to get the convergence (8) for any integerk.

For a fixedx ∈ R
N we expandAσ,Nf (x) in powers ofσ , which is obtained by

recalling thatYσ,1 is defined in (13),

Aσ,Nf (x) = E
[(

f (Yσ,1, Yσ,2) − f (x1, x2)
)
1∧ eGσ,N(x,W)]

= E

{[ 2∑
i=1

(
σWifxi

+ σ 2

2
W2

i fxixi

+ σ 2

2
fxi

(
U ′(xi) − H ′(xi)ENH(x)

)) + σ 2W1W2fx1x2

]
(31)

× E
(
1∧ eGσ,N(x,W)

∣∣W1,W2
)}

+ σ 3rN(σ, x),

where partial derivatives off are always evaluated at(x1, x2) if not specified
otherwise, and

rN(σ, x) = σ

3!E
{( 2∑

i=1

[
fxi,xi ,xi

(Yσ̃ ,1, Yσ̃ ,2)

× (
Wi + σ̃

(
U ′(xi) − H ′(xi)ENH(x)

))3
+ 3fxi,xi

(Yσ̃ ,1, Yσ̃ ,2) · (U ′(xi) − H ′(xi)ENH(x)
)

× (
Wi + σ̃

(
U ′(xi) − H ′(xi)ENH(x)

))]
+ 3

∑
i �=j

[
fxi,xi ,xj

(
Wi + σ̃

(
U ′(xi) − H ′(xi)ENH(x)

))2
× (

Wj + σ̃
(
U ′(xj ) − H ′(xj )ENH(x)

))
+ fxi,xj

(
Wi + σ̃

(
U ′(xi) − H ′(xi)ENH(x)

))
× (

U ′(xi) − H ′(xi)ENH(x)
)])

× 1∧ eGσ,N(x,W)

}
,

where 0≤ σ̃ ≤ σ . By assumption (HP), plugging inσ = σN = �N−1/6, the
remainderrN(σ, x) is uniformly bounded inN andx.
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Next, observe that if
(u) is an absolutely continuous function of the real
variableu, then

1∧ e
(1) = 1∧ e
(0) +
∫ 1

0
1{
(u)<0}
′(u)e
(u) du.

Now we apply this formula to the functioñ
(u) = Gσ,N(x,uW1, uW2,W
(c)),

whereW(c) = (W3, . . . ,WN), and take conditional expectations w.r.t.(W1,W2):

E
(
1∧ eGσ,N(x,W)

∣∣W1,W2
)

= E
(
1∧ eGσ,N(x,W)

∣∣W1 = 0,W2 = 0
)

(32)

+
2∑

i=1

Wi

∫ 1

0
E
(
1{
̃(u)<0}G

(i)
σ,N

(
x,uW1, uW2,W

(c)
)
e
̃(u)

∣∣W1,W2
)
du,

where G
(i)
σ,N denotes the partial derivative ofGσ,N(x,w1,w2,w

(c)) w.r.t. the
variablewi .

We now substitute (32) into the expression (31) so we obtain the following
expression:

1

σ 2
Aσ,Nf (x) = 1

2

2∑
i=1

[
fxi,xi

E
(
1∧ eGσ,N(x,W)

∣∣W1 = 0,W2 = 0
)

+ fxi

(
U ′(xi) − H ′(xi)ENH(x)

)
E
(
1∧ eGσ,N (x,W))](33)

+ RN(σ, x),

where

RN(σ, x)

= σ−1
2∑

i=1

fxi
E

[
W2

i

∫ 1

0
1{
̃(u)<0}G

(i)
σ,N

(
x,uW1, uW2,W

(c)
)
e
̃(u) du

]

+ 1
2

2∑
i=1

fxi,xi
E

[
W2

i

∫ 1

0
1{
̃(u)<0}G

(i)
σ,N

(
x,uW1, uW2,W

(c)
)
e
̃(u) du

]

+ fx1,x2

{
E

[
W2

1W2

∫ 1

0
1{
̃(u)<0}G

(1)
σ,N

(
x,uW1, uW2,W

(c))e
̃(u) du

]

+ E

[
W1W

2
2

∫ 1

0
1{
̃(u)<0}G

(2)
σ,N

(
x,uW1, uW2,W

(c)
)
e
̃(u) du

]}
+ σrN(σ, x).

Now we concentrate on theσ−1 term in the above expression, since the others are
more easily controlled with similar arguments. First, bound|fxi

| with a constant,



OPTIMAL SCALING OF MALA 1489

then we are left to bound fori = 1,2,

1

σ
E

[
W2

i

∫ 1

0
1{
̃(u)<0}G

(i)
σ,N

(
x,uW1, uW2,W

(c)
)
e
̃(u) du

]
(34)

≤ 1

σ
E

(
W2

i sup
0≤u≤1

∣∣Gσ,N
(i)

(
x,uW1, uW2,W

(c)
)∣∣).

Let us write explicitly

Gσ,N
(i)(x,W)

= σ

2

(
U ′(Yi) − U ′(xi) − H ′(Yi)ENH(Y ) + H ′(xi)ENH(x)

)
− σ 2

2

(
Wi

(
U ′′(Yi) − H ′′(Yi)ENH(Y )

) − H ′(Yi)
1

N

N∑
k=1

WkH
′(Yk)

)

+ σ 3

8

(
U ′′(Yi) − H ′′(Yi)ENH(Y ) − H ′(Yi)ENH ′(Y )

)
,

where we have writtenYi for Yσ,i . Using (HP), we can rewrite the right-hand side
of (34) as

1

σ
E

(
W2

i sup
0≤u≤1

∣∣Gσ,N
(i)

(
x,uW1, uW2,W

(c)
)∣∣)

= 1

2
E

(
W2

i sup
0≤u≤1

∣∣U ′(Yi(u)
)− U ′(xi)

− H ′(Yi(u)
)
ENH(Y (u)) + H ′(xi)ENH(x)

∣∣) + o(1),

whereYk(u) = Yk + σu
∑2

i=1 δkiWi , k = 1, . . . ,N . We have now

E

(
W2

i E

(
sup

0≤u≤1

∣∣U ′(Yi(u)
) − U ′(xi)

− H ′(Yi(u)
)
ENH(Y (u)) + H ′(xi)ENH(x)

∣∣))
≤ E

(
W2

i sup
0≤u≤1

∣∣U ′(Yi(u)
) − U ′(xi)

∣∣)(35)

+ E

(
W2

i sup
0≤u≤1

∣∣H ′(xi) − H ′(Yi(u)
)∣∣ENH(x)

)

+ E

(
W2

i sup
0≤u≤1

(∣∣H ′(Yi(u)
)∣∣EN |H(Y (u)) − H(x)|)).
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Observe that, whenT is eitherU ′, H ′ or H andi = 1,2, we can write, using the
fundamental theorem of calculus,

T
(
Yi(u)

) − T (xi)

= T

[
xi + σ 2

2

(
U ′(xi) − H ′(xi)ENH(x)

)] − T (xi) + T
(
Yi(u)

)
− T

[
xi + σ 2

2

(
U ′(xi) − H ′(xi)ENH(x)

)]

= σ 2

2

(
U ′(xi) − H ′(xi)ENH(x)

)
×

∫ 1

0
T ′

(
xi + vσ 2

2

(
U ′(xi) − H ′(xi)ENH(x)

))
dv

+ σWi

∫ u

0
T ′

(
xi + σ 2

2

(
U ′(xi) − H ′(xi)ENH(x)

) + sσWi

)
ds.

By bounding the derivative ofT and substitutingσN = �N−1/6, we have

sup
0≤u≤1

∣∣T (
Yi(u)

)− T (xi)
∣∣ ≤ CN−1/6(1+ |Wi |).

By substituting this bound into(35) and, subsequentlyin (34), the right-hand
side is bounded byO(N−1/6) uniformly overx. Similar arguments allow us to
conclude thatRN(σ, x) → 0 asN → ∞, uniformly overx as well.

Now let N be a Gaussian random variable with mean−�6τ2/2 and vari-
ance�6τ2. It is immediately seen thatE(1∧eN ) = 2�(−�3τ/2). By an integration
by parts we have∣∣E(

1∧ eGσ,N(x,W)
)− E(1∧ eN )

∣∣
≤ C sup

u∈R

∣∣P(
Gσ,N(x,W) ≤ u

) − �−�6τ2/2,�6τ2(u)
∣∣,

which goes to zero uniformly forx ∈ FN by Lemma 7. Moreover,∣∣E(
1∧ eGσ,N (x,W)

∣∣W1 = 0,W2 = 0
)− E

(
1∧ eGσ,N (x,W)

)∣∣
≤ E

∣∣Gσ,N

(
x,0,0,W(c)

) − Gσ,N(x,W)
∣∣

≤
2∑

i=1

E

∫ 1

0

∣∣WiGσ,N
(i)

(
x,uW1, uW2,W

(c)
)∣∣du,

and by the same argument as before, the right-hand side goes to zero uniformly
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overx. Finally, we have

|N1/3Aσ,Nf (x) − Af (x)|
= �2|σ−2

N Aσ,Nf (x) − �−2Af (x)|

≤ 1
2�−2

2∑
i=1

[∣∣fxi,xi
(x1, x2)

∣∣∣∣E(
1∧ eGσ,N (x,W)

∣∣W1 = 0,W2 = 0
)

− E(1∧ eN )
∣∣

+ ∣∣fxi
(x1, x2)

∣∣|U ′(xi)|
∣∣E(

1∧ eGσ,N(x,W)
) − E(1∧ eN )

∣∣
+ ∣∣fxi

(x1, x2)
∣∣|H ′(xi)|

×
(
|ENH(x)|∣∣E(

1∧ eGσ,N(x,W)
) − E(1∧ eN )

∣∣
+ |ENH(x) − π(H(X))||E(1∧ eN )|

)]
+ |RN(x,f )|.

Next defineF̃N = FN ∩ {x : |ENH(x) − π(H(X))| ≤ N−1/9}. By using Proposi-
tion 5 in Appendix A it is immediately verified thatπN(F̃ c

N) = o(N−t ) for any
t > 0. The proof is complete since the right-hand side of the last expression goes
to zero uniformly onF̃N .

APPENDIX A

In this appendix we discuss the asymptotic behavior of sequences of distribu-
tionsπN defined in (3) for a general measurable functionH. For ease of notation
we drop from now on boldfaces used to indicaten-dimensional vectors. First let
us introduce the exponential family of probability measures onR

d generated by
µ andH , which is defined by

µθ(dx) = e〈θ,H(x)〉−K(θ)µ(dx), θ ∈ �,

where K(θ) = log
∫

e〈θ,H(x)〉µ(dx) is the cumulant generating function ofH

under µ. We assume thatK is finite only in an open set� of R
n and that

no hyperplane ofRn containsH(x) µ-almost surely (in the casen = 1 this is
equivalent to assume thatH is nonconstant). Moreover, in the paper we assumed
thatH is bounded soK is defined on the whole space.

Consider now the strictly convex functionJ (θ) = 1
2‖θ − y‖2 + K(θ), where

K is extended to the complement of� by setting its value equal to+∞. This
function has a unique minimumθ∗ = θ∗(y) in R

n (as it is strictly convex and
lower semicontinuous with compact level sets), that is the unique solution of the
equation

θ + ∇K(θ) = y,(36)
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which implies, by the properties of exponential families, that

θ∗ = y −
∫

H dπ.(37)

We can now state the following:

PROPOSITION 3 (Propagation of chaos).Whenever f : (Rd)∞ → R is
a bounded measurable local function (i.e., it depends only on a finite number of
components), then

lim
N→∞

∫
f dπN =

∫
f dπ⊗∞,

where π = µθ∗ .

PROOF. We can easily bound the Kullback–Leibler divergence

D(πN‖π⊗N) =
∫

log(dπN/dπ⊗N)dπN.

In fact, by using (37) and setting̃H(x) = H(x) − ∫
H dπ ,

log
(

dπN

dπ⊗N

)

= logC−1
N + NK(θ∗) +

N∑
i=1

〈m − θ∗,H(xi)〉 − 1

2N

N∑
i,j=1

〈H(xi),H(xj )〉

= logC−1
N + NK(θ∗) + N

2

∥∥∥∥∫ H dπ

∥∥∥∥2

− N

2

(∥∥∥∥∫ H dπ

∥∥∥∥2

+
〈

N∑
i,j=1

H(xi)

N
,
H(xj )

N

〉
− 2

N∑
i=1

〈
H(xi)

N
,

∫
H dπ

〉)

= logC̃N − 1

2

∥∥∥∥∥ 1√
N

N∑
i=1

H̃ (xi)

∥∥∥∥∥
2

,

where

logC̃N = logC−1
N + NK(θ∗) + N

2

∥∥∥∥∫ H dπ

∥∥∥∥2

= logC−1
N + NJ(θ∗)

= − log
∫

exp

(
−1

2

∥∥∥∥∥ 1√
N

N∑
i=1

H̃ (xi)

∥∥∥∥∥
2) N⊗

i=1

π(dxi),
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and, therefore, by the CLT, the right-hand side of the above expression converges
to

− logE
(
exp

(−1
2|Z2|)),

whereZ is a zero mean Gaussian vector. Hence, it is bounded uniformly inN

by some constantM0. By consequenceD(πN‖π⊗N) ≤ M0. It follows that if we
denote byπN,k the marginal ofπN for the firstk components, then an inequality
of Csiszar [5] equation (2.11), page 772, yields

D(πN,k‖π⊗k) ≤ 1

[N/k]D(πN‖π⊗N) ≤ M0

[N/k] ,

and now the stated convergence follows by [4], Lemma 3.1.�

In the forthcoming Proposition 5, we shall need the following technical lemma.

LEMMA 4. For any symmetric nonnegative definite matrix A of order s, the
convex conjugate of θ �→ 1

2〈θ,Aθ〉 is given by

M∗(z) =
{

1
2〈z,A−z〉, if z ∈ RanA,

+∞, otherwise,

where A− is the pseudo-inverse of A. As a consequence, the origin is the unique
minimizer of M∗.

PROOF. LetA = UtLU , with L a diagonal matrix with the diagonal elements
equal to the eigenvalues(λi) of A. ThenA− = UtL−U , whereL− is the diagonal
matrix with diagonal elements equal to the reciprocal of the eigenvalues (if
positive) ofA and zero otherwise. By definition,

M∗(z) = sup
θ

(〈z, θ〉 − 1
2〈θ,Aθ〉) = sup

w

(
s∑

i=1

viwi − 1
2

s∑
i=1

λiw
2
i

)
,

wherev = Uz andw = Uθ . If there existsi0 such thatλi0 = 0 andvi0 �= 0 (which
happens if and only ifz /∈ RanA), it is immediately seen thatM∗(z) = +∞.
Otherwise, the function between round brackets has a maximumwi = vi

λi
for i

such thatλi > 0, wi = 0 otherwise. Finally, it is easily seen that

M∗(z) = 1

2

∑
i : λi>0

v2
i

λi

= 1

2
〈z,A−z〉

for z ∈ RanA. �
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PROPOSITION 5 (Moderate deviations). If the sequence {λN } is such that
λN → ∞ but λ2

N/N → 0, then for any bounded measurable function g :Rd →
R

m,

πN

(∣∣∣∣∣ 1

N

N∑
i=1

g(xi) −
∫

g dπ

∣∣∣∣∣ ≥ λN√
N

)
≤ e−cλ2

N+o(λ2
N),

where c > 0 is a constant and π = µθ∗.

PROOF. Defineg̃(xi) = g(xi) − ∫
g dπ , H̃ (xi) = H(xi) − ∫

H dπ and

(ZN,YN) = (
λN

√
N

)−1
N∑

i=1

(
g̃(xi), H̃ (xi)

)
.

Now it is easy to compute (see, e.g., [6])

�(θ,ψ) = lim
N→∞

1

λ2
N

log
∫

expλ2
N(〈θ,ZN 〉 + 〈ψ,YN 〉) dπ⊗N

= 1

2
〈(θ,ψ),�(θ,ψ)〉,

where � is the covariance matrix of(g̃(x), H̃ (x)) under π . By applying the
Gärtner–Ellis theorem and Lemma 4, we prove that(ZN,YN) satisfies underπ
an LDP with speedλ2

N and rate function

J (z, y) =
{

1
2〈(z, y),�−(z, y)〉, if (z, y) ∈ Ran�,

+∞, otherwise.

We want to prove the same result for the sequenceZN underπN . Decompose�
into blocks as

� =

�11
... �12

. . . . . . . . .

�21
... �22

 =


∫

g̃g̃t dπ
...

∫
g̃H̃ t dπ

. . . . . . . . . . . . . . . . . . . . .∫
H̃ g̃t dπ

...
∫

H̃ H̃ t dπ


and write

�̃N(θ) = logC̃−1
N

∫
exp

{
λ2

N

(〈θ,ZN 〉 − 1
2|YN |2)}dπ⊗N

= log
∫

exp{λ2
N 〈θ,ZN 〉}dπN.

Next apply Varadhan’s lemma ([6], Theorem 4.3.1, page 137) to the continuous
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functionϕ(z, y) = 〈θ, z〉 − 1
2‖y‖2, which satisfies the moment condition

lim
N→∞

1

λ2
N

log
∫

exp
(
aλ2

Nϕ(ZN,YN)
)
dπ⊗N

≤ lim
N→∞

1

λ2
N

log
∫

exp(aλ2
N 〈θ,ZN 〉) dπ⊗N

= lim
N→∞

N

λ2
N

log
∫

exp
(

λN√
N

〈aθ, g̃(x1)〉
)
π(dx1)

= lim
N→∞

N

λ2
N

(
1+ λ2

Na2

2N
〈θ,�11θ〉 + o

(
λ2

N

N

))
< ∞,

for any constanta. SinceC̃N is bounded inN , we obtain

�̃(θ) := lim
N→∞

1

λ2
N

�̃N(θ)

= lim
N→∞

1

λ2
N

log
∫

expλ2
Nϕ(ZN,YN)dπ⊗N

= sup
z,y

{ϕ(z, y) − J (z, y)}.
In order to maximize the right-hand side, write(z, y) as�(u,v), without loss of
generality sinceJ is equal to+∞ out of the range of�. Now

sup
z,y

{ϕ(z, y) − J (z, y)} = sup
u,v

{〈θ,�11u + �12v〉 − 1
2‖�21u + �22v‖2

− 1
2

(〈u,�11u〉 + 〈v,�22v〉 + 2〈u,�12v〉)}.
The function to be maximized is concave in(u, v) and it is immediately checked
that (−θ, (I + �22)

−1�21θ) is a stationary point. Substituting this back into the
above expression, we finally arrive at

�̃(θ) = 1
2〈θ,Bθ〉,

whereB = �11−�12(I +�22)
−1�21. In order to apply the Gartner–Ellis theorem,

we need only to check thatB is nonnegative definite and apply Lemma 4. SetA =
�12�

−
22. Since Ker[�22] = Ker[�12], we have�12 = A�22. As a consequence,

Varπ [g(xi) − AH(xi)] = �11 − �12�
−
22�21 ≥ 0.

Now consider the difference

D = �12�
−
22�21 − �12(I + �22)

−1�21 = �12
(
�−

22 − (I + �22)
−1)�21,

and notice that the matrix between round brackets is nonnegative definite on
Ran�22. But since Ran[�21] ⊂ Ran�22 (as a consequence of the inclusion
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Ker�22 ⊂ Ker�12), D is nonnegative definite, and, hence, so isB. The explicit
estimate in Proposition 5 follows by takingc = inf{�̃∗(z) : z /∈ B1} > 0, where
B1 is the unit sphere inRm. �

The results of this appendix can be directly applied to the sequence of densities
πN defined in (4) by settingm = 0 andµ(dx) = exp{U(x)}dx.

APPENDIX B

Let D be the set of monomials in the derivatives ofH andU . By assumption
(HP) functions inD are bounded. The following lemma is the result of a tedious
but a straightforward computation, whose details are omitted.

LEMMA 6. For h = 0,1,2, . . . ,

dh

dσh
Gσ,N(x,W) = N

h+2∑
k=0

σ kPk

(
ENρ�(x)ϕ�(Yσ )Wr�; � = 1, . . . ,mk

)
,(38)

for some integers mk , where Pk is a polynomial and ρl ,ϕl ∈ D . In particular,
the derivatives gk,N (x,W) = 1

k!
dk

duk Gu,N(x,W)(0), for k = 3, . . . ,6, have the
following explicit form:

g3,N (x,W) = − N

12

(
EN(3ψ ′′

Nψ ′
NW + ψ ′′′

N W3)

(39)
− 3EN(H ′W)EN(H ′ψ ′

N) − 3EN(H ′′W2)EN(H ′W)
)
,

g4,N = − N

24

(
EN(3ψ ′′

Nψ ′2
N + 3ψ ′′2

N W2 + 6ψ ′′′
N ψ ′

NW2 + ψ ′′′′
N W4)

− 3
{
(ENH ′ψ ′

N)2 + 2(ENH ′′W2)(ENH ′ψ ′
N)(40)

+ (ENH ′′W2)2} + δ4,N

)
,

g5,N = Nδ5,N ,(41)

and

g6,N = − N

1440

×
{
EN

(
45ψ ′′2

N ψ ′2
N + 60ψ ′′′

N ψ ′3
N + 90ψ ′′′

N ψ ′′
Nψ ′

NW2

+ 180ψ ′′′
N ψ ′′

Nψ ′
N + 45(ψ ′′′

N )2W4

+ 180ψ ′′′′
N ψ ′2

N W2 + 60ψ ′′′′
N ψ ′′

NW4

+ 60ψ ′′′′′
N ψ ′

NW4 + 4ψ ′′′′′′
N W6)(42)
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− [
90(ENH ′ψ ′

Nψ ′′
N)(ENH ′ψ ′

N) + 180(ENH ′′ψ ′2
N )(ENH ′ψ ′

N)

+ 90(ENψ ′′′
N H ′W2)(ENH ′ψ ′

N)

+ 90(ENH ′ψ ′′
Nψ ′

N)(ENH ′′W2)

+ 180(ENH ′′ψ ′′
N)(ENH ′ψ ′

N) + 90(ENψ ′′′
N H ′W2)(ENH ′′W2)

+ 360(ENH ′′′ψ ′
NW2)(ENH ′ψ ′

N)

+ 180(ENH ′′W2)(ENH ′′ψ ′2
N )

+ 180(ENH ′′W2)(ENH ′′ψ ′′
NW2)

+ 60(ENH ′′′′W4)(ENH ′ψ ′
N)

+ 360(ENH ′′W2)(ENH ′′′ψ ′
NW2)

+ 60(ENH ′′′′W4)(ENH ′′W2)
]

+ [
45(ENH ′2)(ENH ′ψ ′

N)2 + 90(ENH ′2)(ENH ′′W2)(ENH ′ψ ′
N)

+ 45(ENH ′2)(ENH ′′W2)2]
+ δ6,N

}
,

where δ4,N , δ5,N and δ6,N are sums of monomials in empirical averages of the type
(15) and (18) and each of them has at least a factor with an odd value of l.

LEMMA 7. Set

τ2 = 1
144

{
9π

(
ψ ′′2(X)ψ ′2(X)

) + 18π
(
ψ ′(X)ψ ′′(X)ψ ′′′(X)

) + 15π
(
ψ ′′′2(X)

)
− 18π

(
H ′′(X) + H ′(X)ψ ′(X)

)
π
(
H ′(X)

(
ψ ′′′(X) + ψ ′(X)ψ ′′(X)

))
(43)

+ 9π
(
H ′2(X)

)(
π
(
H ′′(X)

) + π
(
H ′(X)ψ ′(X)

))2}
=: F3

(
π
(
r3(X)

))
for some polynomial F3 and some vector r3 with components in D .

Then for any N and εN > 0,

sup
u

∣∣∣∣P(
N−1/2g3,N (x,W)

τ
≤ u

)
− �(u)

∣∣∣∣
(44)

≤ C

(
1√
N

+ 1

ε2
NN

)
+ hτ

(
F3

(
ENr3(x)

)) + εN√
2π

,

where hτ (x) = |1∨
√

x
τ

||1− τ√
x
| is a continuous Lipschitz function vanishing

at τ2.
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PROOF. Let us define

XN = −
√

N

12

{
3EN

(
ψ ′′

Nψ ′
N(x)W

) + EN

(
ψ ′′′

N (x)W3)
− 3EN

(
H ′ψ ′

N(x)
)
EN

(
H ′(x)W

) − 3ENH ′′(x)EN

(
H ′(x)W

)}
and

YN = 3
√

N

12
EN

(
H ′′(x)(W2 − 1)

)
EN

(
H ′(x)W

)
.

From the expression ofg3,N given in (39), we find that

1√
N

g3,N (x,W) = XN + YN.

The termYN has zero mean, and we bound its variance as follows:

EYN
2 = 9

144N3

∑
i,j

H ′′2(xi)H
′2(xj )E

(
(W2

i − 1)2W2
j

) ≤ C

N
.(45)

The expressionXN is a sum of independent random variables, whose mean under
the measureP is zero. We compute its varianceτ2

N directly as follows:

τ2
N = 1

144

{
EN

(
9ψ ′′2

N (x)ψN
′2(x) + 18ψ ′

N(x)ψ ′′
N(x)ψ ′′′

N (x) + 15ψ ′′′2
N (x)

)
− 18EN [H ′(x)ψ ′

N(x) + H ′′(x)]
× EN [ψ ′

N(x)ψ ′′
N(x)H ′(x) + ψ ′′′

N (x)H ′(x)]
+ 9ENH ′2(x)

(
ENH ′′(x)

)2
+ 18ENH ′′(x)EN

(
H ′(x)ψ ′

N(x)
)
ENH ′2(x)

+ 9ENH ′2(x)
(
EN

(
H ′(x)ψ ′

N(x)
))2

+ 1

N

[
−36EN

(
ψ ′′

N(x)ψ ′
N(x)H ′′(x)H ′(x)

)
(46)

− 48EN

(
ψ ′′′

N (x)H ′′(x)H ′(x)
)

− 12EN

(
ψ ′

N(x)ψ ′′
N(x)H ′(x)H ′′(x)

)
− 48EN

(
ψ ′′′

N (x)H ′′(x)H ′(x)
)

+ 36EN

(
H ′(x)ψ ′

N(x)
)
EN

(
H ′′(x)H ′2(x)

)
+ 18EN

(
H ′2(x)H ′′(x)

)
ENH ′′(x) + 36EN

(
H ′′2(x)H ′2(x)

)]
+ 72

1

N2EN

(
H ′′2(x)H ′2(x)

)}
.
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By inserting into the above terms the explicit formula forψN given in (16),
expanding the products and rearranging terms, we get the representationτ2

N =
F3(ENr3(x)). By replacing the vector of empirical averagesENr3(x) with that of
expected values w.r.t.π , the expression (43) is obtained.

Next, settingu = v
τN

τ
, we obtain

sup
u

∣∣∣∣P(
XN

τ
≤ u

)
− �(u)

∣∣∣∣
≤ sup

v

∣∣∣∣P(
XN

τN

≤ v

)
− �(v)

∣∣∣∣ + sup
v

∣∣∣∣�(
v
τN

τ

)
− �(v)

∣∣∣∣
≤ sup

v

∣∣∣∣P(
XN

τN

≤ v

)
− �(v)

∣∣∣∣ + 1∨
(

τN

τ

)
·
∣∣∣∣1−

(
τ

τN

)∣∣∣∣,
where the last line has been obtained by a straightforward Lipschitz estimate.

By using the formula given in [11], Lemma 1.9, page 20, again and the above
estimate

sup
u

|P(AN ≤ u) − �(u)|

= sup
u

∣∣∣∣P(
XN + YN

τ
≤ u

)
− �(u)

∣∣∣∣
≤ sup

u

∣∣∣∣P(
XN

τN

≤ u

)
− �(u)

∣∣∣∣ + P(|YN | > εNτ) + εN√
2π

and by means of Esseen’s inequality ([11], Theorem 5.4, page 149) forXN/τN ,
Chebyshev’s inequality and the estimate (45) forYN , we arrive at

sup
u

|P(AN ≤ u) − �(u)|

≤ 1√
N

C

τ3
N

{
EN |ψ ′′

N(x)ψ ′
N(x)|3 + EN |ψ ′′′

N (x)|3

+ EN |H ′(x)|3(EN

(|H ′(x)ψ ′
N(x)|3 + |H ′′(x)|3))}

+ 1∨
(

τN

τ

)
·
∣∣∣∣1−

(
τ

τN

)∣∣∣∣ + C

Nτ2ε2
N

EN

(
H ′′2(x)

)
EN

(
H ′2(x)

) + εN√
2π

,

from which the estimate (44) is obtained.�

REMARK 8. It is worth noting that whenH = 0, that is, the target distribution
has independent components, an easy integration by parts yields

τ2 = 1
144

{
9π

(
ψ ′′2(X)ψ ′2(X)

) + 18π
(
ψ ′(X)ψ ′′(X)ψ ′′′(X)

) + 15π
(
ψ ′′′2(X)

)}
= 1

48

{
5π

(
ψ ′′′2(X)

) − 3π
(
ψ ′′3(X)

)}
,

which coincides with the constantJ 2 appearing in the paper [14].
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LEMMA 9. Let F :Rm → R be a polynomial and rh :R2 → R, h = 1, . . . ,m,
be of the form rh(xi,Wi) = bh(xi)W

βh

i , where bh belongs to D . Define the
vector Er with the components in D by (Er)h(xi) = E{rh(xi,Wi)}. Then for any
0 ≤ γ < 1/2 and ε > 0,

P
[
Nγ

∣∣F (
ENr(x,W)

) − F
(
π
(
(Er)(X)

))∣∣ > ε
] ≤ C

N(1−2γ )ε2

holds for all x ∈ F̂N(ε), where

F̂N(ε) = {
x :

∣∣EN(Er)(x) − π
(
(Er)(X)

)∣∣ < εN−γ /2K
}
,

and K is a local Lipschitz constant for F in a neighborhood of the point
π((Er)(X)).

PROOF. Let us notice that, whenx ∈ F̂N(ε), we have

P
(
Nγ

∣∣F (
ENr(x,W)

) − F
(
π
(
(Er)(X)

))∣∣ > ε
)

≤ P
(
Nγ

∣∣F (
EN(Er)(x)

) − F
(
ENr(x,W)

)∣∣ > ε/2
)
.

Let us consider a generic monomial appearing inF(v1, . . . , vm), which will be
of the form

∏m
h=1v

αh

h . By simple algebraic manipulations,

m∏
h=1

v
αh

h −
m∏

h=1

u
αh

h = ∑
(l1,...,lm) : l1+···+lm>0

m∏
h=1

(
αh

lh

)
(vh − uh)

lhu
αh−lh
h .

Now substitute the empirical averageENrh(x,W) into vh and its centering
EN(Er)h(x) into uh. Denoting bys = r − Er, the above expression becomes

∑
(l1,...,lm) : l1+···+lm>0

m∏
h=1

(
αh

lh

)(
ENsh(x,W)

)lhEN(Er)h(x)αh−lh .

We proceed to bound the second moment of each term of the above sum in the
following way. The term|Er| is bounded by a constant so we are left to bound the
second moment

Mh1,...,hk
(x) = E

[(
ENsh1(x,W)

)α1 · · · (ENshk
(x,W)

)αk
]2

,

where sh(xi,Wi) = bh(xi)Z
(h)
i with Z

(h)
i = W

αh

i − EW
αh

i . By using next
Lemma 10, we finally get the bound

Mh1,...,hk
(x) ≤ C

N
.

The proof is complete by an application of Chebyshev’s inequality.�
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LEMMA 10. Let (Zi : i = 1, . . . ,N) be i.i.d. centered r-dimensional random
vectors. For any j = 1, . . . , r define Y

(j)
i = b(j)(xi)Z

(j)
i . Then for any αj > 0,

j = 1, . . . , r, such that
∑r

j=1αj = k, it holds

E

(
r∏

j=1

(
1

N

N∑
i=1

Y
(j)
i

)αj
)2

(47)

≤ 1

Nk

k∑
m=1

1

Nk−m

∑
|P |=m

(
1

N

N∑
h1=1

bA1
(
xh1

)) · · ·
(

1

N

N∑
hm=1

bAm
(
xhm

))
,

where bAk(x) = E
∏

j∈Ak
|b(j)(x)Z

(j)
1 | and the sum is taken over partitions P =

{A1, . . . ,Am} of the set of repeated indices I = {1, . . . ,1,2, . . . ,2, . . . , r, . . . , r}
(where “1” is repeated 2α1 times, . . . , “r” is repeated 2αr times) such that each
As contains at least two elements of I .

PROOF. Begin by writing

E

[
r∏

j=1

(
1

N

N∑
i=1

Y
(j)
i

)αj
]2

= 1

N2k

N∑
i1=1

· · ·
N∑

ik=1

N∑
s1=1

· · ·
N∑

sk=1

E
(
Y

(1)
i1

· · ·Y (1)
iα1

· · ·Y (r)
iα1+···+αr−1

· · ·Y (r)
ik

(48)

× Y (1)
s1

· · ·Y (1)
sα1

· · ·Y (r)
sα1+···+αr−1

· · ·Y (r)
sk

)
.

A summand in the last expression is zero as soon as there exists an index
(i1, . . . , ik , s1, . . . , sk) whose value isnot repeated by another. This follows by
the independence and zero mean property of theY

(j)
i . Another way of rearranging

this sum is therefore as follows: partition the setI of the upper indices of the
formula (48) into a finite unionI = A1 ∪ · · · ∪ Am, where|As | ≥ 2 for eachs. We
write Y

Ak

i = ∏
j∈Ak

Y
(j)
i to simplify notation. Then the sum on the left-hand side

is bounded above in absolute value by

k∑
m=1

∑
|P |=m

N∑
h1=1

· · ·
N∑

hm=1︸ ︷︷ ︸
hi �=hk if k �=i

E
∣∣YA1

h1

∣∣ · · · ∣∣YAm

hm

∣∣.(49)

Since the sum is over nonrepeating indicesh1, . . . , hm, we have, by independence,
E|YA1

h1
| · · · |YAm

hm
| = bA1(xh1) · · ·bAm(xhm). Now the summand in (49) is positive,

so we can bound the sum from above by a sum over all (possibly repeating) indices
h1, . . . , hm, and after rearranging the sum, we obtain (47).�
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LEMMA 11. It holds that

P(|BN | ≥ εN) = P

( |g4,N (x,W)|
N2/3

≥ �−1τεN

)
≤ C

N1/3ε2
N

,(50)

P(|CN | ≥ εN) = P

( |g5,N (x,W)|
N5/6

≥ �−2τεN

)
≤ C

N2/3ε2
N

,(51)

P(|DN | ≥ εN) = P

(∣∣∣∣g6,N (x,W)

N
+ τ2

2

∣∣∣∣ ≥ �−3τεN

)
≤ C

Nε2
N

,(52)

for x ∈ F̂N,k(εN ), where

F̂N,k(εN ) =
{
x :

∣∣ENErk(x) − π
(
Erk(X)

)∣∣ ≤ τεN

2K
�3−kNk/6−1

}
,

for k = 4,5,6, where K is the smallest of the local Lipschitz constants for Fk

at π(Erk(X)), for k = 4,5,6.

PROOF. By Lemma 6 we havegk,N(x,W) = NFk(ENrk(x,W)) for k = 4,

5,6. The vectorsrk and polynomialsFk are of the type required by Lemma 9. In
order to computeFk(π(Erk(X))) for k = 4,5,6 we need to replace in (40)–(42),
of Lemma 6 the empirical averages with expectations with respect toπ × P. By
a straightforward computation,

F4
(
π
(
Er4(X)

)) = − 1
24

{[
3E

(
ψ ′′(X)ψ ′2(X)

) + 3E
(
ψ ′2(X)

)
+ 6E

(
ψ ′′′(X)ψ ′(X)

) + 3E
(
ψ ′′′′(X)

)]
− (

E[H ′(X)ψ ′(X) + H ′′(X)])2
}

= − 1
24

[
3c

∫ +∞
−∞

(eψψ ′′)′′(x) dx −
(
c

∫ +∞
−∞

(eψH ′)′(x) dx

)2]
,

sinceX has the densityπ(x) = ceψ(x) with c = e−K(θ∗). Since by assumption (HP)
both (eψψ ′′)′(x) andeψ(x)H ′(x) are of the formf (x)eψ(x) with f bounded and
ψ(x) → −∞ as|x| → +∞, the right-hand side of the previous expression is zero.

NextF5(π(Er5(X))) = 0, since each monomial inr5 contains at least one factor
which is an odd power ofW , hence, it has mean zero. Finally,

F6
(
π
(
Er6(X)

))
= − 1

1440

{
45E

(
ψ ′′2(X)ψ ′2(X)

) + 60E
(
ψ ′′′(X)ψ ′3(X)

)
+ 270E

(
ψ ′′′(X)ψ ′′(X)ψ ′(X)

) + 135E
(
ψ ′′′2(X)

)
+ 180E

(
ψ ′′′′(X)ψ ′2(X)

) + 180E
(
ψ ′′′′(X)ψ ′′(X)

)
+ 180E

(
ψ ′′′′′(X)ψ ′(X)

) + 60E
(
ψ ′′′′′′(X)

)
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− 90
[
E
(
H ′′(X) + H ′(X)ψ ′(X)

)
× E

(
H ′(X)

(
ψ ′′′(X) + ψ ′(X)ψ ′′(X)

))]
− 90

[
2E

(
H ′′(X)ψ ′2(X)

) + 2E
(
H ′′(X)ψ ′′(X)

)
+ 4E

(
H ′′′(X)ψ ′(X)

) + 2E
(
H ′′′′(X)

)]
× E

(
H ′′(X) + H ′(X)ψ ′(X)

)
+ 45E

(
H ′2(X)

)(
E
(
H ′′(X)

) + E
(
H ′(X)ψ ′(X)

))2}
= − 1

1440

{(
45E

(
ψ ′′2(X)ψ ′(X)2)

+ 90E
(
ψ ′(X)ψ ′′(X)ψ ′′′(X)

) + 75E
(
ψ ′′′2(X)

))
− 90E

(
H ′′(X) + H ′(X)ψ ′(X)

)
+ E

(
H ′(X)

(
ψ ′′′(X) + ψ ′(X)ψ ′′(X)

))
+ 45E

(
H ′2(X)

)(
E
(
H ′′(X)

) + E
(
H ′(X)ψ ′(X)

))2}
− 60

1440

{
E
(
ψ ′′′(X)ψ ′3(X)

) + 3E
(
ψ ′(X)ψ ′′(X)ψ ′′′(X)

)
+ E

(
ψ ′′′2(X)

) + 3E
(
ψ ′′′′(X)ψ ′2(X)

)
+ 3E

(
ψ ′′′′(X)ψ ′′(X)

) + 3E
(
ψ ′′′′′(X)ψ ′(X)

) + E
(
ψ ′′′′′′(X)

)}
+ 180

1440

{[
E
(
H ′′(X)ψ ′2(X)

) + E
(
H ′′(X)ψ ′′(X)

)
+ 2E

(
H ′′′(X)ψ ′(X)

) + E
(
H ′′′′(X)

)]
× [

E
(
H ′′(X) + H ′(X)ψ ′(X)

)]}
,

and this simplifies to

F6
(
Er6(X)

) = −τ2

2
,

because the first term in curly braces equals− τ2

2 by (43), the second term is
proportional to

E
(
ψ ′′′(X)ψ ′3(X) + 3ψ ′(X)ψ ′′(X)ψ ′′′(X) + ψ ′′′2(X)3E

(
ψ ′′′′(X)ψ ′′(X)

)
+ 3ψ ′′′′(X)ψ ′2(X) + 3ψ ′′′′′(X)ψ ′(X) + ψ ′′′′′′(X)

)
= c

∫ +∞
−∞

(eψψ ′′′)′′′ dx = 0,
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and the third term in curly braces contains the multiplicative factor

E
(
H ′′(X) + H ′(X)ψ ′(X)

) = c

∫ +∞
−∞

(eψH ′)′ dx = 0.

The last two displays equal zero by the same argument used before. Therefore,

P

( |g4,N (x,W)|
N2/3 ≥ �−1τεN

)
= P

(
N1/3∣∣F4

(
ENr4(x,W)

)∣∣ ≥ �−1τεN

)
,

P

( |g5,N |(x,W)

N5/6
≥ �−2τεN

)
= P

(
N1/6∣∣F5

(
ENr5(x,W)

)∣∣ ≥ �−2τεN

)
,

P

(∣∣∣∣g6,N (x,W)

N
+ τ2

2

∣∣∣∣ ≥ �−3τεN

)
= P

(∣∣F6
(
ENr6(x,W)

) − F6
(
Er6(X)

)∣∣ ≥ �−3τεN

)
so that the stated estimates follow directly from the previous lemma.�

LEMMA 12. For σN = �/N1/6, it holds

P

[∣∣∣∣ 1

6!
∫ σN

0
(σN − u)6 d7

du7Gu,N(x,W)du

∣∣∣∣ > εN

]
≤ C

εNN1/6 .(53)

PROOF. By Markov’s inequality and Lemma 6, we have

P

[∣∣∣∣ 1

6!
∫ σN

0
(σN − u)6 d7

du7Gu,N(x,W)du

∣∣∣∣ > εN

]

≤ 1

6!εN

E

∣∣∣∣∫ σN

0
(σN − u)6 d7

du7
Gu,N(x,W)du

∣∣∣∣
≤ 1

6!εN

∫ σN

0
(σN − u)6

E

∣∣∣∣∣ d7

du7
Gu,N(x,W)

∣∣∣∣∣du

≤ 1

6!εN

∫ σN

0
(σN − u)6NE

∣∣∣∣∣
9∑

k=0

ukPk

(
ENρ�(x)ϕ�(Yu)W

r�; � = 1, . . . ,m
)∣∣∣∣∣du

≤ 1

6!εN

∫ σN

0
(σN − u)6N

9∑
k=0

uk
E
∣∣Pk

(
ENρ�(x)ϕ�(Yu)W

r�; � = 1, . . . ,m
)∣∣du,

≤ C

εN

NσN
7 ≤ C

εNN1/6 . �
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