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WHEN CAN THE TWO-ARMED BANDIT ALGORITHM
BE TRUSTED?

BY DAMIEN LAMBERTON, GILLES PAGÈS AND PIERRE TARRÈS

Université de Marne-la-Vallée, Université Paris 6 and Université Paul Sabatier

We investigate the asymptotic behavior of one version of the so-called
two-armed bandit algorithm. It is an example of stochastic approximation
procedure whose associated ODE has both a repulsive and an attractive
equilibrium, at which the procedure is noiseless. We show that if the gain
parameter is constant or goes to 0 not too fast, the algorithm does fall in the
noiseless repulsive equilibrium with positive probability, whereas it always
converges to its natural attractive target when the gain parameter goes to zero
at some appropriate rates depending on the parameters of the model. We also
elucidate the behavior of the constant step algorithm when the step goes to 0.
Finally, we highlight the connection between the algorithm and the Polya urn.
An application to asset allocation is briefly described.

Introduction. The aim of this paper is to deeply investigate the asymptotic be-
havior of the so-called two-armed bandit algorithm. This stochastic approximation
procedure is widely known in the fields of mathematical psychology and learning
automata (see [13] and [15]). Our own motivations are both theoretical and prac-
tical as it will be seen further on. Let us first introduce the algorithm itself in a
financial context, namely as an adaptive optimal asset allocation model.

Imagine a fund managed by only two traders, sayA andB: every day each
of them is in charge of a percentage of the fund, which may vary from day to
day. The few wealthy investors (the shareholders) who created the fund wish
ideally to allocate the whole fund to the most efficient trader, but of course they
do not know who he is. They simultaneously want to make some advantage of
the performances of the best trader as soon as possible. This means they need
to devise a periodic re-allocation procedure of the fund to the traders based on
their (daily or monthly) performances. On the other hand, this procedure should
be not too “upsetting” to the traders in order to preserve their motivation and
self-confidence: one way is to enhance reward rather than punishment. Taking
all these specifications into account suggests to proceed as follows: letXn be
the fraction of the fund managed by traderA during dayn, the fraction 1− Xn

being managed by traderB. Every day, one trader is chosenat randomand his
performances of the day are evaluated. Assume it isA for a moment. If they are
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considered as outstanding, traderA is rewarded by an extra-allocation for day
n + 1 of γn+1 timesthe fraction managed by traderB during dayn (whatever the
performances of traderB are since he was not checked). So traderA will manage a
fractionXn + γn+1(1− Xn) of the fund during the dayn + 1. If his performances
are not high enough to deserve a reward, nothing happens. The same procedure
is applied to traderB when he is checked: ifB has outstanding performances,
he is awarded an extra allocationγn+1 times the share managed byA during
day n so that, during dayn + 1, the share managed byA will be reduced to
Xn+1 = Xn − γn+1Xn (whatever his performances on dayn were). One models
the daily performance evaluations ofA andB by two sequences of events(An)n≥1
and(Bn)n≥1, respectively:An = {A’s performances on dayn are outstanding} and
Bn = {B ’s performances on dayn are outstanding}.

A natural policy for the investors of the fund is to reduce the risks induced
by this strategy by controlling the largest possible part (in average) of the whole
fund. So tossing up for the checked trader with a fair coin is not appropriate. What
seems more efficient is to use for the daily toss a biased (virtual) coin so that the
probability for traderA or B to be checked at the end of dayn is equal to the
share of the fund they managed that day, namelyXn and 1− Xn, respectively.
This virtual coin can be tossed by generating on a computer some i.i.d. random
numbersUn, n ≥ 1 and by setting

{A is checked at the end of dayn} = {Un+1 ≤ Xn},
{B is checked at the end of dayn} = {Un+1 > Xn}.

All this leads to the following dynamics forXn: for everyn ≥ 0,

Xn+1 = Xn + γn+1
(
(1− Xn)1{Un+1≤Xn}∩An+1 − Xn1{Un+1>Xn}∩Bn+1

)
,

(1)
X0 = x ∈ [0,1],

where(γn)n≥1 is the sequence of gain parameters (orsteps) satisfying

∀n ∈ N
∗, γn ∈ (0,1) and �n := γ1 + · · · + γn → +∞ asn → +∞.(2)

[Note this includes the constant step settingγn = γ ∈ (0,1).] The fact thatγn lies
in (0,1) is induced by the modelling (it is a percentage). On the other hand, the
fact that�n goes to infinity is a necessary condition to “forget” the starting value:
if lim n �n < +∞, Xn would still converge a.s. toward a random variableX∞ , but
one could not show thatX∞ takes its values in{0,1}.

This recursive random procedure was first introduced by Norman in mathemat-
ical psychology (see [13]) and then, independently, by Shapiro and Narendra in
the engineering literature as a linear learning automata (see [15]). In this field it
is known as the Linear Reward-Inaction(LR−I ) scheme (see the survey [10] and
the book [11] by Narendra and Thathachar about learning automata theory). In
both cases, only the constant step setting is considered. The application to optimal
adaptive asset allocation in a financial context has been developed in [12].
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The algorithm (1) is often mentioned in the literature about stochastic approxi-
mation and recursive stochastic algorithms, this time mainly in its decreasing step
version (see [5]), as thetwo-armed bandit. In fact, from a mathematical point of
view, it is one of the simplest examples of a stochastic approximation algorithm
having a “noiseless trap.” We will come back further on this property which was
another motivation for investigating this algorithm.

The sequence(Un)n≥1 and the eventsAn, Bn, n ≥ 1 are defined on a probability
space(�,A,P). We will make some further assumptions on the eventsAn andBn,
namely that the sequence(

1An,1Bn

)
n≥1 is i.i.d.

This assumption corresponds to a “stationary” situation: the traders’ daily
performances are supposed to be independent and “statistically invariant,” that is,
identically distributed: so one sets

P(A1) = pA and P(B1) = pB.

Of course, the owners of the fund do not know whetherpA > pB or pA < pB .
Finally, one assumes that the sequences

(Un)n≥1 and
(
1An,1Bn

)
n≥1 are independent,

that is, the daily tosses are in no way influenced by the respective past (and future)
performances ofA andB except for the shares respectively managed that day.

To elucidate the a.s. asymptotic behavior of this allocation procedure, one could
call upon classical stochastic approximation methods like the so-called ordinary
differential equation (ODE) method. It consists in comparing the asymptotic
behavior of the algorithm(Xn)n≥1 with that of the relatedODE ≡ ẋ = πh(x)

whereπ := pA − pB and πh(x) := 1
γn+1

E(Xn+1 − Xn|Xn = x) = π x(1 − x)

is the meanfunction of the algorithm (see Section 2). One readily checks that
this ODE admits two equilibria, 0 and 1, and that, whenpA > pB , its flow
�(x, t) = x

(1−x)e−πt+x
uniformly converges on compact sets of(0,1] toward 1 as

t → ∞: the equilibrium 1 is stable with an attraction interval(0,1]; on the other
hand 0 is repulsive (0 is then called atrap for the algorithm). Thus, the celebrated
“conditional convergence” theorem due to Kushner and Clark in [8] says that,
under technical assumptions fulfilled here, almost every path of the algorithm that
visits infinitely many times a compact subset of the attracting interval of a stable
equilibrium will converge toward it. Applying that to a path of the two-armed
bandit algorithm shows thatif it does not converge to0, then it necessarily visits
infinitely often the compact interval[ε,1] for someε > 0 and, hence, converges
toward 1.

In some way it is not really surprising that this approach fails since stability
is a second-order property, whereas the ODE method is based on a first-order
approximation. Recent sophisticated first-order approaches like [2] cannot be more
efficient for the same reason.
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There is a wide literature in stochastic approximation about traps and how not
to fall into them (see [3, 6, 9, 14, 16, 17]). They all rely on the fact that, if the noise
is exciting enough at a repulsive equilibriumx∗, then a.s., the algorithm will not
converge to it. By “exciting enough” one means that a conditional variance term
atx∗ is positive. But the main feature of the two-armed bandit algorithm is that its
two equilibria (0 and 1) lie at the boundary of its state space[0,1], so the above
conditional variance term is necessarily identically 0 at the repulsive equilibrium
x∗ = 0 (and atx∗ = 1 as well). So, the behavior of the two-armed bandit algorithm
cannot be solved using these approaches.

As far as we know, from a mathematical point of view, the asymptotic behavior
of the algorithm has not been elucidated in the literature. The present paper derives
from results obtained independently by the third author in [17] and the other two
authors.

Heuristics, probably suggested by the behavior of the mean algorithm, seems to
consider that the procedure described above works well in practice.

It is interesting for both theoretical and practical motivations to analyze the
behavior of the two-armed bandit algorithm, that is:

• Is it possible to choose the gain parameter sequence so that the algorithm a.s.
never fails?

• Conversely, does the algorithm “fall in its noiseless trap 0” for some
sequences of gain parameters?

This leads to introduce the following terminology when 0≤ pB < pA ≤ 1.
(Inverting the rôle played byA andB solves the case 0≤ pA < pB ≤ 1.) The
two-armed bandit algorithm is:

• fallible when starting fromx ∈ (0,1) if Px(Xn → 0) > 0,
• a.s.infallible if Px(Xn → 0) = 0 for everyx ∈ (0,1).

Although not directly interested by the critical casepA = pB , we will deeply
investigate it since it is a key to solve the general case thanks to a comparison
result.

The paper is organized as follows. In Section 1 is stated the main theoretical
result of the paper, namely Theorem 1, concerning the convergence and the
fallibility of the algorithm. Two corollaries show its consequences on usual
parametrized families of steps for which some necessary and sufficient conditions
of infallibility are derived.

Section 2 is devoted to some elementary, although important, facts on which
relies the proof of Theorem 1, Proposition 2 on onehand and the comparison
result stated in Proposition 3 on the otherhand. Section 3 is mainly devoted to the
proof of items (b) and (c) of Theorem 1 [item (a) is elementary]: Section 3.1 solves
item (b) and Section 3.3 solves item (c). Section 3.2 has a particular status: it is a
kind of bridge between Sections 3.1 and 3.3: we focus on the special case where
the stepγn is constant which is the historical setting considered by those who
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devised the procedure. It is shown in Theorem 2 that the (positive) probability of
failure for the algorithm with constant stepγ goes to 0 asγ goes to zero. Some
bounds are displayed, the optimality of which are not known to us. Section 4 makes
a connection between regular Pólya urns and the two-armed bandit algorithm: we
show that the two-armed bandit algorithm can be seen as a generalized Pólya urn.
Thus, we retrieve partially the infallibility results of Theorem 1 using standard
methods of proof for the Pólya urns like the “moment method” and the log-method.
In the martingale case (pA = pB) these approaches yield some more information
about the distribution of the a.s. limitX∞ of Xn. In Section 5 some first elements
about the rate of convergence of the algorithm are provided that emphasize its
nonstandard behavior among stochastic approximation procedures. Furthermore,
some stopping rules are derived for the algorithm, inspired by some method of
proof for infallibility. The last section contains some provisional remarks and
additional results.

Note that, except for the notations and the elementary facts contained in
Section 2, other sections are self-contained and can be read independently.

NOTATION. (i) The letterC will denote a positive real constant that may
change from line to line.

(ii) The letterξ will denote arandompositive real constant that may change
from line to line.

(iii) Let (an)n≥0 and(bn)n≥0 be two sequences of positive real numbers. The
symbolan 
 bn is for an = O(bn) andbn = O(an), whereas the symbolan ∼ bn

means limn an/bn = 1.

1. The main result.

THEOREM 1. (a) Almost sure convergence.
(i) If 0 < pB < pA ≤ 1 andx ∈ (0,1), (Xn)n≥0 is a bounded submartingale,

hencePx -a.s. converging toward a random variableX∞. The random variableX∞
takes values in{0,1} and

Px(X∞ = 1) = x + π
∑
n≥0

γn+1Ex(h(Xn)) > x + π γ1x(1− x) > x.

(If pB = 0 andpA > 0, then, Xn is nondecreasing and converges toward1.)
(ii) If 0 < pB = pA ≤ 1 andx ∈ (0,1), then(Xn)n≥0 is a bounded martingale

Px -a.s. converging toward a random variableX∞.
Moreover, if

∑
n≥0 γ 2

n+1 = +∞, X∞ is {0,1}-valued with distribution Bernoulli(x).
(If pB = pA = 0, thenXn = x, Px -a.s. for everyn ≥ 0.)

(iii) If x ∈ {0,1}, thenXn = x, Px -a.s. for everyn ≥ 0.
(b) Convergence to 0 with positive probability.If∑

n≥0

n∏
k=1

(1− pBγk) < +∞(3)
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then, for everyx ∈ [0,1)

Px(X∞ = 0) > 0.

In particular:

(i) if 0 < pB < pA ≤ 1, then, for every x ∈ (0,1), the two-armed bandit
algorithm starting fromx is fallible;

(ii) if 0 < pB = pA ≤ 1 and
∑

n γ 2
n < +∞, then, for everyx ∈ (0,1),

Px(X∞ = 0), Px(X∞ = 1) and Px

(
X∞ ∈ (0,1)

)
> 0.

(c) Convergence to a nonzero value.Assume0≤ pB ≤ pA ≤ 1 and

γn = O(�ne
−pB�n).(4)

Then, for everyx ∈ (0,1],
Px(X∞ = 0) = 0.

In particular:

(i) if 0 ≤ pB < pA ≤ 1 then, for everyx ∈ (0,1],
X∞ = 1 Px-a.s., that is, the algorithm is a.s. infallible,

(ii) when0 ≤ pB = pA ≤ 1 then, for everyx ∈ (0,1),

X∞ ∈ (0,1), Px-a.s.

PROOF. This theorem follows from Propositions 2, 4 and 5. These proposi-
tions can be seen as steps of the proofs of the theorem.�

We will derive in Corollaries 1 and 2 how the above step assumptions (3) and (4)
for fallibility or infallibility read on some natural parametrized families of step
sequences.

But, first, we will shortly enlighten some connections between the different step
assumptions appearing in the statements of the above Theorem 1.

(i) γn = O(�ne
−pB�n) ⇒ ∑

n γ 2
n < +∞: see the remark after Proposition 5,

Section 3.3.
(ii)

∑
n

∏n
k=1(1 − pBγk) = +∞ 
⇒ ∑

n γ 2
n < +∞: a counter-example is

provided by

γ2n = 1√
n + 1

, n ≥ 0 andγk = 0 if k /∈ {2n, n ≥ 0}.
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COROLLARY 1 (Fallibility). LetpB ∈ (0,1].
(a) Constant step.If the stepγn := γ ∈ (0,1), the two-armed bandit algorithm

does converge toward0 with positive probability. Namely,

∀x ∈ (0,1), Px(X∞ = 0) ≥ (1− x)1/pBγ > 0.

(b) Power step (I).One considers the family of“power” stepsγn := ( C
n+C

)α,
0 < α ≤ 1, C > 0, n ≥ 1. These step sequences satisfy assumption(2). If

(0 < α < 1) or (α = 1 andC > 1/pB),

then, for everyx ∈ [0,1), Px(X∞ = 0) > 0 (i.e., the algorithm is fallible fromx).
(c) In particular, if 0 < pB < pA ≤ 1, the two-armed bandit algorithm is

fallible starting from anyx ∈ [0,1) for the step sequences specified in the above
items(a)and(b).

PROOF. (b) The above condition onC andα implies that assumption (3) of
Theorem 1 is fulfilled.

(a) The lower bound forPx(X∞ = 0) needs further care. It relies on (9)
established in the proof of Proposition 4: settingγn = γ ∈ (0,1), it reads

Px(X∞ = 0) ≥ Ex

( ∏
n≥1

(
1− x

n−1∏
k=1

(1− 1Bk
γk)

))
.

Then the computations can easily be carried on: the Jensen inequality yields

Px(X∞ = 0) ≥ exp

(∑
n≥1

Ex log(1− xZn)

)
with Zn :=

n−1∏
k=1

(
1− γ 1Bk

)
.

Now

Ex

(
log(1− xZn)

) = − ∑
m≥1

xm

m
E(Zm

n )

= − ∑
m≥1

xm

m

(
(1− γ )mpB + 1− pB

)n−1

so that ∑
n≥1

Ex

(
log(1− xZn)

) = − 1

pB

∑
m≥1

xm

m(1− (1− γ )m)

≥ 1

pBγ
log(1− x).

Finally, for everyx ∈ [0,1],
Px(X∞ = 0) ≥ (1− x)1/pBγ .(5) �
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COROLLARY 2 (Infallibility). Let 0< pB ≤ pA ≤ 1.

(a) Power step (II).Let γn := ( C
n+C

)α, 0 < α ≤ 1, C > 0, n ≥ 1. Then,
Px(X∞ = 0) = 0 for everyx ∈ (0,1] if and only if

α = 1 and C ≤ 1

pB

.

(b) Power step (III).Set γn := 	n

1+	1+···+	n
, n ≥ 1, where (	n)n≥1 is a se-

quence of positive real numbers satisfying	n ∼ Cn1/pB−1 logα n for someα > 0
and C > 0. These step sequences satisfy assumption(2) sinceγn ∼ 1

npB
. Then,

Px(X∞ = 0) = 0 for everyx ∈ (0,1] if and only if

α ≤ 1

pB

.

(c) In particular, if 0 < pB < pA ≤ 1, the two-armed bandit algorithm isa.s.

infallible for the step sequences specified in the above items(a)and(b), that is,

∀x ∈ (0,1], Px(X∞ = 1) = 1.

Note for practical implementation that the step sequenceγn = 1
n+1, n ≥ 1,

corresponding toC = 1 always satisfies item(a) regardless of the value ofpB

since1 < 1/pB .

PROOF. (a) First, assumption (2) is clearly fulfilled. Now, in view of
Corollary 1(b), we just need to prove that assumption (4) of Theorem 1 is satisfied
if α = 1 and CpB ≤ 1. If α = 1, �n = C logn + C′ + o(1). Consequently,
assumption (4) reads 1/n = O(log(n)n−C pB ), that is,CpB ≤ 1.

(b) One hasSn := 1 + 	1 + · · · + 	n ∼ CpBn1/pB logα n so thatγn ∼ 1
pB

1
n
.

Now assume thatαpB ≤ 1. We need to check assumption (4) of Theorem 1. Notice
thatSn 
 e�n [see the preliminary remark after Lemma 1 in Section 3.3 for more
details, especially (15)]. Therefore, assumption (4) reduces toγn = O(�nS

−pB
n ),

which follows from�n ∼ 1
pB

logn andS
−pB
n ∼ (CpB)−pB 1

logαpB n
. We now prove

that if αpB > 1, assumption (3) holds. We have
n∏

k=1

(1− pBγk) ≤ e−pB�n = O(S−pB
n ) = O

(
1

n logαpB n

)
.

�

FURTHER REMARKS ON THE STEP ASSUMPTIONS. (i) It follows from
Corollary 2 that there exist sequences of stepsγn andγ ′

n satisfyingγn ∼ γ ′
n ∼ 1

pBn

and such that the corresponding algorithmsXn andX′
n are fallible and infallible,

respectively. In fact, the critical case for infallibility is not entirely elucidated by
the above results.

(ii) The asymptotics of the constant step setting when the stepγ goes to 0 is
elucidated in Theorem 2, Section 3.2.
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2. Some elementary facts. The random innovation at timen is clearly
εn := (Un,1An,1Bn) (the εn’s are i.i.d.). SetFn := σ(ε1, . . . , εn), n ≥ 1 and
F0 := {∅,�). We denote byF the filtration (Fn)n≥0. It follows from (1)
that (Xn)n≥1 is obviously a [0,1]-valued F -Markov chain (homogeneous if
γn = γ ). For notational convenience, we will denote byPx the distribution of the
whole sequence(Xn)n≥0 starting atx ∈ [0,1]. One also derives from (1) some
straightforward properties of the algorithm.

PROPOSITION 1. For everyx ∈ (0,1) and everyn ≥ 1, Xn ∈ (0,1). On the
other hand, both states0 and 1 are absorbing, that is, if x ∈ {0,1}, Xn = x for
everyn ≥ 1, Px-a.s.

Viewed as a stochastic approximation procedure, its canonical form reads

Xn = Xn−1 + γnπh(Xn−1) + γn	Mn,(6)

where

π := pA − pB, h(x) := x(1− x)

and

	Mn := (1− Xn−1)1{Un≤Xn−1}∩An − Xn−11{Un>Xn−1}∩Bn − π h(Xn−1)

is anF -martingale increment.

REMARK. Themeanalgorithm associated with(Xn)n≥1 is the deterministic
recursive procedure defined by

xn+1 = xn + γn+1πh(xn), x0 ∈ [0,1].

It can be solved very easily: whenπ = pA − pB > 0 andx0 ∈ (0,1], the sequence
xn is [0,1]-valued and nondecreasing, hence converging towardx∞ . Since the
series

∑
n γnh(xn−1) < +∞, whereas

∑
n γn = +∞, it is obvious thath(x∞) = 0.

Hence,x∞ = 1 sincex∞ ≥ x0 > 0. So, the mean algorithm never fails in pointing
out the best trader since it asymptotically assigns the whole fund to be managed
by A whenpA > pB (and byB whenpB > pA). Unfortunately, it needs to know
a priori who is the best trader, that is, whetherpA > pB or pB > pA.

Similarly, (6) shows that(Xn)n≥1 is a bounded submartingale and one derives
(see Proposition 2) that thenPx -a.s.Xn converges toward a{0,1}-valued random
variable X∞ if pA 
= p

B
. But this time, there is no straightforward argument

showing that the procedure always points out the best trader, for example,X∞ = 1
Px -a.s. whenpA > pB and x ∈ (0,1]. The next proposition yields some first
answers about the behavior of the algorithm.
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PROPOSITION 2. (a) Submartingale case.If 0 < pB < pA ≤ 1 and x ∈
(0,1), (Xn)n≥0 is a boundedF -submartingale, hencePx -a.s. converging toward
a random variableX∞, taking values in{0,1} and

Px(Xn → 1) = x + π
∑
n≥0

γn+1Ex(h(Xn)) > x + πγ1x(1− x) > x.

(If pB = 0 andpA > 0, then, Xn is nondecreasing and converges toward1.)
(b) Martingale case.If 0 < pB = pA ≤ 1 and x ∈ (0,1), then (Xn)n≥0 is

a boundedF -martingale Px-a.s. converging toward a random variableX∞.
Moreover:

(i) if
∑

n≥0 γ 2
n+1 = +∞, thenX∞ is {0,1}-valued with Bernoulli distribu-

tion B(x),
(ii) if

∑
n≥0 γ 2

n+1 < +∞, thenX∞ is [0,1]-valued and satisfiesPx(X∞ ∈
(0,1)) > 0.

(If pB = pA = 0, thenXn = x, Px -a.s.)

PROOF. (a) (Xn)n≥0 is obviously a boundedF -submartingale. Furthermore,
its a.s. limit, sayX∞, satisfies

Ex(X∞) = lim
n

Ex(Xn)

= x + lim
n

Ex

(
n−1∑
k=0

γk+1πh(Xk) + γk+1	Mk+1

)

= x + π
∑
n≥0

γn+1Exh(Xn).

Hence,
∑

n≥0γn+1Ex(h(Xn)) < +∞ since π > 0 and consequently,∑
n≥0 γn+1h(Xn) < +∞ a.s., which in turn implies lim infn h(Xn) = 0 sinceh is

nonnegative and
∑

n≥0 γn+1 = +∞. It follows thath(X∞) = 0 so thatX∞ ∈ {0,1}
a.s. Finally,Px(X∞ = 1) = Ex(X∞).

(b) (Xn)n≥0 is obviously a boundedF -martingale. WhenpA = pB , an
elementary computation shows that

Ex

(
Xn(1− Xn)

) = (1− pAγ 2
n )Ex

(
Xn−1(1− Xn−1)

)
(7)

= x(1− x)

n∏
k=1

(1− pAγ 2
k )

so that

Ex

(
X∞(1− X∞)

) = x(1− x)
∏
n≥1

(1− pAγ 2
n ).

The announced result follows since the infinite product converges toward a
nonzero limit iff

∑
n γ 2

n < +∞. �
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One may specify without loss of generality the definition of eventsAn andBn:
these two events never interact so only the marginal distributions of1A1 and1B1

are involved in the distribution of the whole sequence(Xn)n≥0. So, one sets

An := {Vn ≤ pA} and Bn := {Vn ≤ pB},(8)

where (Un)n≥1, (Vn)n≥1 are two independent i.i.d.U([0,1])-distributed se-
quences.

Then, this “coupled” algorithm is pathwise monotonous as a function ofpA, the
parameterpB being fixed. This is established in the proposition below.

PROPOSITION 3 (Pathwise comparison result).Let x ∈ (0,1). Let (Xn) and
(X′

n) denote two“coupled” two-armed bandit algorithms built from the sequences
(Un) and (Vn), starting fromx ≤ x′ and associated to the parameters(pB,pA)

and(pB,p′
A), respectively, with pA ≤ p′

A. Then for everyn ∈ N,

Xn ≤ X′
n.

In particular,

{X′
n → 0} ⊂ {Xn → 0}.

PROOF. The result follows from what happens between time 0 and 1. One
inspects the four possible cases following:

(i) On {U1 ≤ x′}∩{V1 ≤ p′
A}, X′

1 = x′ +γ1(1−x′) andX1 ≤ x +γ1(1−x) ≤
X′

1.
(ii) On {U1 ≤ x′} ∩ {V1 > p′

A}, X′
1 = x′ andX1 ≤ x ≤ x′.

(iii) On {U1 > x′} ∩ {V1 ≤ pB}, X′
1 = (1− γ1)x

′ andX1 = (1− γ1)x ≤ X′
1.

(iv) On {U1 > x′} ∩ {V1 > pB}, X′
1 = x′ ≥ x = X1. �

REMARK. One checks that, whenpA ≥ pB , the trajectories of the general
form of the algorithm are nondecreasing as a function of their starting value.

In particular,the functionx �→ Px(X∞ = 1) is nondecreasing.

3. When does the two-armed bandit algorithm fail?

3.1. Quite often . . .

PROPOSITION4. If
∑

n≥0
∏n

k=1(1− pBγk) < +∞ then,

Px(Xn → 0) > 0 for everyx ∈ [0,1).

PROOF. One considers the event

D∞ :=
{
Un > x

n−1∏
k=1

(
1− γk1Bk

)
for everyn ≥ 1

}
,
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where
∏0

k=1 = 1. One checks by induction that, onD∞, Xn = x
∏n

k=1(1−γk1Bk
).

The algorithm is nonincreasing toward its limitX∞. Hence,

Ex

(
1D∞X∞

) ≤ lim
n

Ex

(
1D∞Xn

) ≤ lim
n

Ex

(
x

n∏
k=1

(
1− γk1Bk

))

= x
∏
n≥1

(1− pBγn) = 0

sincepB > 0, so thatX∞ = 0 surD∞. On the other hand,(Un)n≥1 being i.i.d.,
uniformly distributed and independent of the sequence(Bn)n≥1,

Px(D∞) = Ex

(
Px

(
D∞/σ (Bn, n ≥ 1)

)) = Ex

( ∏
n≥1

(
1− x

n−1∏
k=1

(
1− 1Bk

γk

)))
.

Consequently,

Px(X∞ = 0) ≥ Ex

( ∏
n≥1

(
1− x

n−1∏
k=1

(
1− 1Bk

γk

)))
.(9)

Now, the eventsBk are independent, hence

Ex

(∑
n≥1

n−1∏
k=1

(
1− 1Bk

γk

)) = ∑
n≥1

n−1∏
k=1

(1− pBγk) < +∞

so that
∑

n≥1
∏n−1

k=1(1 − 1Bk
γk) < +∞ Px -a.s. Consequently the infinite product∏

n≥1(1 − x
∏n−1

k=1(1 − 1Bk
γk)) converges toward aPx -a.s. positive random

variable. Hence,Px(D∞) > 0. �

3.2. Especially with constant step although. . . The fallibility result obtained
in Corollary 1(b) for the algorithm with “slowly” decreasing step is to be
compared with the asymptotics of its behavior with constant step. We know from
Corollary 1(a) that, if 0< pB ≤ pA ≤ 1 andγn = γ ∈ (0,1), then, for every
x ∈ (0,1], the algorithm with stepγ [denoted(X

γ
n )n≥0 in this paragraph] does

fail with positive probability: namely, it convergesPx -a.s. toward a{0,1}-valued
random variableXγ∞ satisfyingP(X

γ∞ = 0) > 0. The following theorem shows,
however, that the probability of failure goes to 0 asγ → 0.

The fallibility of the algorithm with constant step and this property is known by
specialists in Learning Automata theory (see the discussion in Chapter 5 in [11]),
although not clearly established mathematically in full generality.

THEOREM 2. Assume that0 ≤ pB < pA ≤ 1 and γn = γ ∈ (0,1). Then, for
everyx ∈ (0,1],

Px(X
γ∞ = 1) ≥ 1− 2pAγ

π(1− γ )2

(
1

x
− 1

)
,



1436 D. LAMBERTON, G. PAGÈS AND P. TARRÈS

hence,

lim
γ→0+

Px(X
γ∞ = 1) = 1.

PROOF. We focus on the function

ψγ (x) := Ex

(∑
n≥0

h(Xn)

)
= ∑

n≥0

P n
γ h(x),

where Pγ (x, dy) denotes the Markov transition probability of the two-armed
bandit algorithm with constant stepγ ∈ (0,1). A straightforward computation
shows that for any functionf : [0,1] → R,

Pγ (f )(x) := Ex(f (X1))

= pAxf
(
x + γ (1− x)

) + pB(1− x)f
(
x(1− γ )

)
+ (

1− pAx − pB(1− x)
)
f (x).

At this stage, it is convenient to observe that, for every functiong : [0,1] → R,

Pγ (gh) = hQγ (g),

where the operatorQγ is defined by

Qγ (g)(x) = (1− γ )
(
pA

(
x + γ (1− x)

)
g
(
x + γ (1− x)

)
+ pB

(
1− x(1− γ )

)
g
(
x(1− γ )

))
+ (

1− pAx − pB(1− x)
)
g(x).

It is clear thatψγ satisfiesψγ = hχγ , whereχγ := ∑
n≥0Qn

γ (1). One shows
by successive inductions and a little elementary Calculus thatχγ and x �→

1
πγ x

− χγ (x) are absolutely decreasing functions [an infinitely differentiable

function f is absolutely decreasingon (0,1) if its successive derivativesf (n)

satisfy (−1)nf (n) ≥ 0 for everyn ≥ 0]. On one hand, one derives thatψγ is
indefinitely differentiable on(0,1] and, on the other hand, that

0≤ χγ (x) ≤ 1

πγ x
, |χ ′

γ (x)| ≤ 1

πγ x2 and 0≤ χ ′′
γ (x) ≤ 2

πγ x3 .(10)

Then, it follows from the definition ofψγ that

ψγ − Pγ ψγ = h and Px(X
γ∞ = 1) = x + πγψγ (x).(11)

The first of these two identities reads

pAx
(
ψγ (x) − ψγ

(
x + γ (1− x)

)) + pB(1− x)
(
ψγ (x) − ψγ

(
(1− γ )x

))
= x(1− x),
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that is,

pA x

∫ 0

γ
ψ ′

γ

(
x + t (1− x)

)
(1− x) dt + pB(1− x)

∫ 0

γ
ψ ′

γ (x − tx)(−x) dt

= x(1− x).

Hence, simplifying byx(1− x) for everyx ∈ (0,1), yields

pA

∫ γ

0
ψ ′

γ

(
x + t (1− x)

)
dt − pB

∫ γ

0
ψ ′

γ (x − tx) dt = −1.

Now,

ψ ′
γ

(
x + t (1− x)

) = ψ ′
γ (x) +

∫ t

0
ψ ′′

γ

(
x + s(1− x)

)
(1− x) ds,

ψ ′
γ (x − tx) = ψ ′

γ (x) +
∫ t

0
ψ ′′

γ

(
x(1− s)

)
(−x) ds

so that

πγψ ′
γ (x) + pA(1− x)

∫ γ

0

∫ t

0
ψ ′′

γ

(
x + s(1− x)

)
ds dt

+ pBx

∫ γ

0

∫ t

0
ψ ′′

γ (x − sx) ds dt = −1.

Combining a rewriting of this identity with an obvious inequality leads to

−ψ ′
γ (x) = 1

πγ

(
1+

∫ γ

0

∫ t

0

(
pA(1− x)ψ ′′

γ

(
x + s(1− x)

)
+ pBxψ ′′

γ

(
x(1− s)

))
ds dt

)

≥ 1

πγ
− pA(1− x) + pBx

πγ

γ 2

2
sup

u>x(1−γ )

|ψ ′′
γ (u)|.

Plugging inequalities (10) in the equalityψ ′′
γ = χ ′′

γ h + 2χ ′
γ h′ + χγ h′′ yields

|ψ ′′
γ (x)| ≤ 2(1− x)

πγ x2
+ 2|1− 2x|

πγ x2
+ 2

πγ x
≤ 4

πγ x2

and consequently,

−ψ ′
γ (x) ≥ 1

πγ
− pA − πx

πγ

2γ 2

πγ (1− γ )2x2
.

Now ψγ (y) = ψγ (1) + ∫ 1
y (−ψ ′

γ (u)) du = ∫ 1
y (−ψ ′

γ (u)) du (ψγ (1) = 0), hence,

ψγ (x) ≥ 1− x

π γ
+ 2pA

π2(1− γ )2

(
1− 1

x

)
.
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Finally, one comes to

Pγ (Xγ
n → 1) ≥ x + 1− x − 2pAγ

π(1− γ )2

(
1

x
− 1

)
. �

3.3. But not always!

PROPOSITION 5. Assume0 ≤ pB ≤ pA ≤ 1 and assumption(4). Then, for
everyx ∈ (0,1],

Px(X∞ = 0) = 0.(12)

REMARK. As soon aspB > 0, assumption (4) implies
∑

n≥1γ 2
n < +∞: for

n ≥ 1,
n∑

k=1

γ 2
k ≤ C

n∑
k=1

(�k − �k−1)�ke
−pB�k

≤ C

∫ �n

0
ue−pBu du ≤ C

∫ +∞
0

ue−pBu du < +∞,

sinceu �→ ue−pBu is nonincreasing foru large enough.

LEMMA 1 (CasepA = pB = 1). AssumepA = pB = 1 and set	0 := 1 and
	n := γn∏n

k=1(1−γk)
, for n ≥ 1. If the sequence(	n)n∈N satisfies

	n = O(�n),(13)

then, for everyx ∈ (0,1], Px(X∞ = 0) = 0.

PRELIMINARY REMARK. With the notation of the lemma, we have

γn = 	n

Sn

with Sn =
n∑

k=0

	k.(14)

The partial sumsSn and�n satisfy, for everyn ≥ 1,

logSn −
n∑

k=1

γ 2
k

1− γk

≤ �n ≤ logSn.(15)

This follows from the easy comparisons (withS0 = 	0 = 1),

�n =
n∑

k=1

	k

Sk



≤
∫ Sn

1

du

u
= logSn,

≥
n∑

k=1

Sk−1

Sk

∫ Sk

Sk−1

du

Sk−1
≥

n∑
k=1

(1− γk)

∫ Sk

Sk−1

du

u

≥ logSn −
n∑

k=1

γ 2
k

1− γk

.
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Hence,Sn → ∞ as n → ∞ since�n → ∞ and γn ≤ C�n/Sn ≤ C�ne
−�n .

Consequently, the former remark applies withpB = 1 and shows that∑
n≥1

γ 2
n < +∞.

Finally, assumption (13) implies

�n ∼ logSn and Sn 
 e�n asn → ∞.(16)

PROOF OF LEMMA 1. The algorithm can now be rewritten as follows (we
assumepA = pB = 1):

Sn+1Xn+1 = Sn+1Xn + 	n+1
(
1{Un+1≤Xn} − Xn

)
.

Hence,

Sn+1Xn+1 = SnXn + 	n+11{Un+1≤Xn}.

Let Yn := SnXn. We will first prove that limn Yn = +∞, a.s. Since the sequence
(	n/�n)n≥1 is bounded andE(1{Un+1≤Xn}|Fn) = Xn, we have (see, e.g., Theo-
rem 2.7.33 in [4]){ ∞∑

n=0

	n+1

�n+1
1{Un+1≤Xn} = ∞

}
=

{ ∞∑
n=0

	n+1

�n+1
Xn = ∞

}
a.s.

But

	n+1Xn ≥ 	n+1x

n∏
k=1

(1− γk) ≥ 	n+1x

n+1∏
k=1

(1− γk) = γn+1x

so that
∞∑

n=0

	n+1

�n+1
Xn ≥ x

∞∑
n=0

γn+1

�n+1
= +∞,

since�n → ∞ andγn → 0 asn → ∞. Consequently, the nondecreasing sequence
(Yn)n≥0 satisfies

lim sup
n

Yn = lim sup
n

n−1∑
k=0

	k+11{Uk+1≤Xk} ≥ γ1
∑
n≥0

	n+1

�n+1
1{Un+1≤Xk} = +∞.

Next, we prove that lim supn
Yn

logSn
= +∞ a.s. One may writeYn = x +∑n−1

k=0 	k+11{Uk+1≤Yk/Sk} so that for anyλ > 0,

lim sup
n

Yn

logSn

≥ lim sup
n

Zλ
n

logSn

whereZλ
n =

n−1∑
k=0

	k+11{Uk+1≤λ/Sk}.
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We have

EZλ
n =

n−1∑
k=0

	k+1 min
(

1,
λ

Sk

)

and

Var(Zλ
n) =

n−1∑
k=0

	2
k+1 min

(
1,

λ

Sk

)(
1− min

(
1,

λ

Sk

))

≤ C logSn

n−1∑
k=0

	k+1 min
(

1,
λ

Sk

)
= C logSnEZλ

n.

Consequently,

P(|Zλ
n − EZλ

n | ≥ ρEZλ
n) ≤ C

logSnEZλ
n

ρ2(EZλ
n)2 ≤ C

logSn

ρ2 ∑n−1
k=0 	k+1 min(1, λ/Sk)

.

One checks that limn
∑n−1

k=0 	k+1 min(1,λ/Sk)

logSn
= λ, since 	n min(1, λ/Sn−1) ∼

λ
γn

1−γn
∼ λγn.

Let Aλ
n = {|Zλ

n − EZλ
n | < ρEZλ

n}. For λ large enough,P(Aλ
n) ≥ 1/2, so that

P(lim supn Aλ
n) ≥ 1/2. Now, on the event lim supn Aλ

n,

Zλ
n ≥ (1− ρ)EZλ

n ≥ λ(1− ρ) logSn for infinitely manyn.

Hence,P(lim supn
Zλ

n
logSn

≥ λ(1−ρ)) ≥ 1/2. But the random variable lim supn
Zλ

n
logSn

lies in the asymptoticσ -field of the i.i.d. random variablesUn’s, hence,

lim sup
n

Zλ
n

logSn

≥ λ(1− ρ), Px-a.s.

This holds for everyρ > 0 andλ > 0 so that lim supn
Yn

logSn
= +∞, Px-a.s.

On the other hand, for any positive integerp,

E
(
(X∞ − Xp)2|Fp

) = E

( ∞∑
k=p

γ 2
k+1Xk(1− Xk)

∣∣∣∣Fp

)

≤ E

( ∞∑
k=p

γ 2
k+1Xk

∣∣∣∣Fp

)
= Xp

∞∑
k=p

γ 2
k+1.
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Now observe that

P(X∞ = 0|Fp) = E(1{X∞=0}X2
p|Fp)

X2
p

≤ E((X∞ − Xp)2|Fp)

X2
p

≤
∑∞

k=p γ 2
k+1

Xp

= Sp

∑∞
k=p γ 2

k+1

Yp

≤ C
Sp

Yp

∑
k≥p+1

�k

S2
k

	k ≤ C
Sp

Yp

∫ +∞
Sp

logu

u2 du

≤ C
Sp

Yp

× logSp

Sp

= C
logSp

Yp

.

One concludes by noting that the bounded martingalePx(X∞ = 0|Fp), Px -a.s.,
converges to1{X∞=0} so that

P(X∞ = 0) = lim
p

E
(
P(X∞ = 0|Fp)

) ≤ C lim inf
p

logSp

Yp

= 0. �

LEMMA 2. Assume0 < pA = pB < 1 and assumption(4). Then, for every
x ∈ (0,1],

Px(X∞ = 0) = 0.(17)

PROOF OFLEMMA 2. In that case, the algorithm can be written as follows
[see the specification of the algorithm in (8)]:

Xn+1 = Xn + γn+11Bn+1

(
1{Un+1≤Xn} − Xn

)
with Bn+1 = {Vn+1 ≤ pB}.

By conditioning on theσ -field generated by the eventsBn, n ≥ 1, we easily deduce
from Lemma 1 that if the sequences(	B

n )n∈N, defined by	B
n = γn1Bn/

∏n
k=1(1−

γk1Bk
) andγ B

n = γn1Bn satisfy assumption (13) in Lemma 1, the announced result
is proved.

Now, for n ≥ 1, define

Mn =
n∑

k=1

log
(
1− γk1Bk

) − pB log(1− γk) =
n∑

k=1

log(1− γk)
(
1Bk

− pB

)
.

The sequence(Mn) is a martingale and supn EM2
n < +∞ because

∑
n γ 2

n < ∞ (as
follows from the remark below Proposition 5). Therefore, the ratio∏n

k=1(1− γk)
pB∏n

k=1(1− γk1Bk
)

is a.s. bounded.

Consequently, there exists aσ(Bn,n ≥ 1)-measurable random positive constantξ

such that,Px-a.s.,

	B
n ≤ ξ

γ B
n∏n

k=1(1− γk)pB
= ξγ B

n SpB
n ≤ ξγnS

pB
n .
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Inequality (15) and
∑

n≥1γ 2
n < +∞ imply thatSn ≤ Ce�n . In turn, assumption (4)

yields

	B
n ≤ ξ�ne

−pB�n(e�n)pB ≤ ξ�n.

Now, a straightforward martingale argument shows that, a.s.,

n∑
k=1

γ B
k ∼ pB

n∑
k=1

γk

so that	B
n = O(γ B

1 + · · · + γ B
n ) and the proposition follows from Lemma 1.�

PROOF OF PROPOSITION 5. Using Proposition 3 (pathwise comparison
result), one may assume without loss of generality thatpA = pB > 0. Lemma 2
completes the proof.�

4. The two-armed bandit algorithm as a generalized Pólya urn. In this
section we propose two proofs of Proposition 5—in some special cases—in which
the martingale case is based on methods directly inspired by the Pólya urn.

4.1. Short background on Pólya urn.Assume that an urn contains at time 0,
r red balls andb black balls. At every timen one draws at random a ball from the
urn and then puts it back in the urn with another ball of the same color. Then, at
every timen, the urn contains (once the new ball has been put in the urn) exactly
r + b + n balls. Letβn denote the number of black balls inside the urn at timen,
let Xn := βn

r+b+n
denote the proportion of black balls at timen andYn := βn

r+b
.

One models the drawings using a sequence(Un)n≥1 of i.i.d. random variables
uniformly distributed over[0,1] as follows: ifUn+1 ≤ Xn, the ball drawn at time
n + 1 is black, otherwise it is red. Then, these sequences satisfy, respectively,

β0 := b and βn+1 = βn + 1{Un+1≤Xn},

Y0 := b

r + b
and Yn+1 = Yn + 1

r + b
1{Un+1≤Xn},

X0 := b

r + b
and Xn+1 = Xn + 1

r + b + n + 1

(
1{Un+1≤Xn} − Xn

)
.

Consequently, the regular Pólya urn appears as a special case of the two-armed-
bandit algorithm (in the martingale settingpA = pB = 1) corresponding to a
rational starting valueX0 = b

r+b
and a stepγn := 1

r+b+n
, that is,	n = 1

r+b
.

This suggests to try extending some classical methods of proof devised for the
Pólya urn to solve the martingale case of the two-armed bandit algorithm, with
the hope, in some cases, to get more accurate results, for example, concerning the
distribution of the limitX∞.
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4.2. The moment approach.Following a classical method devised to solve
the Pólya urn (see, e.g., [1]), it is possible to obtain some moment estimates for
the limiting distribution of theXn’s in the martingale casepA = pB = 1. When
	n = 	 > 0, this limiting distribution is even explicit.

PROPOSITION 6. Assume thatpA = pB = 1 and that the sequence(	n)n≥1

is nonincreasing(	1 may be greater than	0 = 1).

(a) For everyx ∈ [0,1] and for every integerm ≥ 1,

Ex(X
m+1∞ ) ≤

m∏
k=0

(
1− 1− x

Sk

)
and Ex

(
(1−X∞)m+1) ≤

m∏
k=0

(
1− x

Sk

)
.(18)

In particular, for everyx ∈ (0,1),

Px(X∞ = 1) ≤ inf
m

Ex(X
m∞) = 0 and Px(X∞ = 0) ≤ inf

m
Ex

(
(1− X∞)m

) = 0

since
∑

k≥1
1
Sk

≥ ∑
k≥1

1
1+k	1

= +∞.

(b) If, moreover	n = 	 > 0, n ≥ 1 (and	0 = 1), thenγn = 	
n	+1 and

X∞
L∼ β

(
x

	
; 1− x

	

)
.

REMARK. Item (b) is a classical result about Pólya urn.

PROOF. (a) One uses the notationYn = SnXn of Lemma 1 and sets

Z(m)
n := Yn

Sn

Yn + 	n+1

Sn+1
× · · · × Yn + 	n+1 + · · · + 	n+m

Sn+m

,

Ex

(
Z

(m)
n+1/Fn

)
= Ex

(
Z

(m)
n+11{Un+1>Xn}/Fn

) + Ex

(
Z

(m)
n+11{Un+1≤Xn}/Fn

)
= Yn

Sn+1

Yn + 	n+2

Sn+2
× · · · × Yn + 	n+2 + · · · + 	n+m+1

Sn+m+1
(1− Xn)

+ Yn + 	n+1

Sn+1

Yn + 	n+1 + 	n+2

Sn+2
× · · ·

× Yn + 	n+1 + · · · + 	n+m+1

Sn+m+1
Xn.
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Recall thatXn = Yn

Sn
and 1− Xn = Sn−Yn

Sn
. Hence,

Ex

(
Z

(m)
n+1/Fn

)
= Sn − Yn

Sn+m+1
× Yn

Sn

Yn + 	n+2

Sn+1
× · · · × Yn + 	n+2 + · · · + 	n+m+1

Sn+m︸ ︷︷ ︸
≤Z

(m)
n since	n+i+1≤	n+i

+ Yn + 	n+1 + · · · + 	n+m+1

Sn+m+1

× Yn

Sn

Yn + 	n+1

Sn+1
× · · · × Yn + 	n+1 + · · · + 	n+m

Sn+m︸ ︷︷ ︸
Z

(m)
n

≤ Z(m)
n .

The sequence(Z(m)
n )n≥0 is then a super-martingale. On the other handZ

(m)
n

obviously converges towardXm+1
∞ since, for everyk ≤ m, 	n+k

Sn+m
≤ 	1

Sn+m
→ 0 as

n → +∞ because the sequence(	n)n≥1 is nonincreasing andSn ↑ +∞ [see (15)]
in the preliminary remark following Lemma 1. Consequently, for instance, via
Fatou’s lemma, for everym ∈ N,

Ex(X
m+1
∞ ) ≤ Z

(m)
0 = x

m∏
k=1

x + 	1 + · · · + 	k

1+ 	1 + · · · + 	k

= x

m∏
k=1

x − 1+ Sk

Sk

=
m∏

k=0

(
1− 1− x

Sk

)
.

One proceeds symmetrically with̃Xn := 1− Xn andỸn = Sn − Yn to establish the
moment inequalities concerning 1− X∞ .

Hence, the Lebesgue dominated convergence theorem implies that when
m → ∞,

Px(X∞ = 0) = lim
m

Ex

(
(1− X∞)m+1) ≤ ∏

k≥0

(
1− x

Sk

)
= 0

since
∑

n≥0
1
Sn

≥ ∑
n≥0

1
1+n	1

= +∞.

(b) When	n = 	, n ≥ 1, the same proof shows that(Z
(m)
n )n≥0 is a martingale,

hence, for everym ≥ 0,

Ex(X
m+1∞ ) =

m∏
k=0

(
1− 1− x

1+ k	

)
=

m∏
k=0

x/	 + k

(1− x)/	 + x/	 + k
.
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Hence, X∞ has the moments of aβ(x/	; (1 − x)/	) distribution. Both
distributions have compact support, hence, they are equal.�

The above result can be extended to the general martingale case.

COROLLARY 3. If pA = pB ∈ (0,1] and the sequence(	n)n≥1 is nonincreas-
ing (	1 may be greater than	0 = 1). Then, for everyx ∈ (0,1) Px(X∞ = 1) =
Px(X∞ = 0) = 0 and, for everym ∈ N,

Ex(X
m+1∞ ) ≤

m∏
k=0

(
1− (1− x)

k∏
�=1

(1− γ�)

)
(19)

Ex

(
(1− X∞)m+1) ≤

m∏
k=0

(
1− x

k∏
�=1

(1− γ�)

)
.(20)

PROOF. Dealing with the casep := pA = pB < 1 still needs conditioning with
respect to theσ -algebra generated by the eventsBn. However, we will proceed
slightly differently from in the proof of Proposition 5. We introduce the successive
stopping times

∀ω ∈ �, τB
0 (ω) := 0, τB

n (ω) := min{k > τB
n−1/ω ∈ Bk}, n ≥ 1.

The τn’s are Px -a.s. finite iff pB > 0. Then, set̃γn := γτB
n

and 	̃n and S̃n :=
1+ 	̃1 + · · · + 	̃n, n ≥ 1, as in Lemma 1 so that̃γn = 	̃n/S̃n. One checks that

	̃n+1

	̃n

=
	τB

n+1

	τB
n

τB
n+1−1∏

k=τB
n +1

(1− γk) ≤
	τB

n+1

	τB
n

,

so that	̃n is nonincreasing as long as	n is. It follows from Proposition 6 and
obvious equalities that, for everym ≥ 0,

Ex(X
m+1∞ ) ≤ Ex

(
m∏

k=0

(
1− 1− x

S̃k

))
and

Ex

(
(1− X∞)m+1) ≤ Ex

(
m∏

k=0

(
1− x

S̃k

))
.

Now S̃n ≤ 1 + n	̃1, n ≥ 1. Then, proceeding as in the proof of Proposition 6(a)
yields

Px(X∞ = 0) = lim
m

Ex

(
(1− X∞)m+1) ≤ ∏

k≥0

(
1− x

1+ k	1

)
= 0.

One gets similarly thatPx(X∞ = 1) = 0. The moment bounds follow from the
easy fact that̃	n ≤ 	n so that̃Sn ≤ Sn = (

∏n
k=1(1− γk))

−1. �
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REMARK. The above bounds (19) and (20) do not involvepB . In fact, they
can be improved by replacingγn by γτB

n
in their right-hand side and taking the

expectation with respect toEx . Then, one may use thatτB
n − τB

n−1 is i.i.d. with
Geometric distributionG(pB).

4.3. The log-martingale approach. The log-martingale method is another
classical approach to Pólya urn. It also yields a new proof of Lemma 1 when the
sequence(	n)n≥1 is bounded. We use the same notations as in the original lemma.

PROPOSITION7. AssumepA = pB = 1 and(	n)n≥1 is bounded.

(a) Then, there exists a martingale(Nn)n≥1 with bounded increments such that,
for everyx ∈ (0,1),

sup
n

∣∣∣∣log
(

Xn

1− Xn

)
− Nn

∣∣∣∣ < +∞, Px-a.s.

(b) Consequently, for everyx ∈ (0,1), Px(X∞ = 0) = Px(X∞ = 1) = 0.

PROOF. (a) SetZn := log( Xn

1−Xn
) = log( Yn

Sn−Yn
) = logYn − log(Sn − Yn).∣∣∣∣∣logYn −

(
logx +

n∑
k=1

	Yk

Yk−1

)∣∣∣∣∣
≤

n∑
k=1

∣∣∣∣log
(

Yk

Yk−1

)
− 	Yk

Yk−1

∣∣∣∣ ≤ 1

2

n∑
k=1

(
	Yk

Yk−1

)2

≤ supn 	n

2

n∑
k=1

	Yk

Y 2
k−1

≤ c2 supn 	n

2

∑
k≥1

	Yk

Y 2
k

< +∞,

wherec := 1+ supn 	n/x satisfiesYk/Yk−1 ≤ 1+ 	k/Yk−1 ≤ c. Similarly,∣∣∣∣∣log(Sn − Yn) −
(

log(1− x) +
n∑

k=1

	k − 	Yk

Sk−1 − Yk−1

)∣∣∣∣∣
≤ supn 	n

2

∑
k≥1

(	k − 	Yk)

(Sk−1 − Yk−1)
2 < +∞.

Combining these inequalities yields

sup
n

∣∣∣∣∣Zn −
n∑

k=1

(
	Yk

Yk−1
− 	k − 	Yk

Sk−1 − Yk−1

)∣∣∣∣∣ < +∞, Px-a.s.
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Now Nn := ∑n
k=1(

	Yk

Yk−1
− 	k−	Yk

Sk−1−Yk−1
) is a martingale since

Ex(	Nn/Fn−1)

= Ex(	Yn/Fn−1)
1

Yn−1
− (

	n − Ex(	Yn/Fn−1)
) 1

Sn−1 − Yn−1

= Xn−1	n

Yn−1
− (1− Xn−1)	n

Sn−1 − Yn−1
= 	n

Sn−1
− 	n

Sn−1
= 0.

Furthermore, its increments are bounded. As a matter of fact	Yk and	k −	Yk

are never simultaneously zero and are upper-bounded by	k ; on the other hand,
Yk−1 andSk−1 − Yk−1 are lower bounded byx and 1− x, respectively, hence, for
everyk ≥ 1,

|	Nk| ≤ 	k

Yk−1 ∧ (Sk−1 − Yk−1)
≤ ‖	‖∞

x ∧ (1− x)
.

(b) Let (〈N〉n)n≥1 denote the conditional variance increment process of the
martingale(Nn)n≥1 and let 〈N〉∞ denote its limit asn goes to infinity. The
law of iterated logarithm for martingales with bounded increments says that, on
the event{〈N〉∞ = +∞}, the martingale(Nn) satisfies lim infn Nn = −∞ and
lim supn Nn = +∞ a.s. MeanwhileZn converges toward log( X∞

1−X∞ ) ∈ R a.s. The
difference of these two quantities remaining bounded, it follows that〈N〉∞ < +∞,
Px -a.s. Hence, the martingaleNn converges toward a finite limit and, consequently,
X∞ ∈ (0,1), Px-a.s. �

REMARK. The above assumption in Proposition 7 does not embody the Power
step (III) setting of Corollary 2(b), (pA = pB = 1 and)	n ∼ C logn, that is, the
closest case to the critical case that we can get.

The extension to generalpA andpB , 0< pB ≤ pA, in that framework consists
in proving that the sequence(	B

n )n≥1 is a.s. bounded. One shows using martingale
methods of Lemma 2 that this leads to the conditionγn = O(e−pB�n) which is, as
expected, more stringent than assumption (4).

5. Rate of convergence, stopping rules.

5.1. Rate of convergence.The aim of this section is not to elucidate com-
pletely the rate of convergence of the two-armed bandit algorithm but to draw
some first conclusions from some by-products of the convergence proof. They
emphasize that the two-armed bandit algorithm does not behave like a standard
stochastic approximation algorithm in terms of rate of convergence. In particular,
in some natural situations it may converge infinitely faster than its associated de-
terministic algorithm in average. This enlightens that the usual CLT for stochastic
algorithms proposed in the literature (see, e.g., [5]) does not apply.
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First, let us have a look at the algorithmin average,

xn+1 = xn + πγn+1xn(1− xn), x0 = x ∈ (0,1) with π = pA − pB > 0.

One has by a straightforward induction that the sequence(xn)n≥0 is increasing and
that

0 ≤ 1− xn = (1− x)

n∏
k=1

(1− πγkxk−1)

≤ (1− x)exp

(
−π

∑
1≤k≤n

γkxk−1

)
(21)

≤ (1− x)exp(−πx�n).(22)

Plugging (22) into (21) yields

0 ≤ 1− xn ≤ (1− x)exp

(
−π�n + π(1− x)

∑
1≤k≤n

γke
−πx�k−1

)

≤ (1− x)exp
(
−π�n + π(1− x)eπx

∫ �n

0
e−πxu du

)
≤ (1− x)exp

((
1

x
− 1

)
eπx

)
e−π�n

= O(e−π�n).(23)

On the other hand, for everyn ≥ 1,

1− xn ≥ (1− x)

n∏
k=1

(1− πγk).

In particular, if one assumes that
∑

n γ 2
n < +∞, then there are some positive real

constantsC(x) andC′(x) such that, for everyn ≥ 1,

C(x) ≤ eπ�n(1− xn) ≤ C′(x).(24)

Now, let us come back to the original procedure with the specification given
by (8). By an obvious symmetry argument, one shows, as in the proof of
Proposition 4, that the events

I∞,x :=
{
Un < 1− (1− x)

n−1∏
k=1

(
1− γk1Ak

)
for everyn ≥ 1

}

and

X↑∞,x :=
{
Xn = 1− (1− x)

n∏
k=1

(
1− γk1Ak

)
for everyn ≥ 0

}
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satisfy

I∞,x ⊂ X↑∞,x .

Now, still following the proof of Proposition 4,Px(I∞,x) > 0 as soon as∑
n

∏n
k=1(1 − pAγk) < +∞. Moreover, if

∑
n γ 2

n < +∞, the proof of Lemma 2
shows that ∏n

k=1(1− γk1Ak
)∏n

k=1(1− γk)
pA

a.s.→ ζ ∈ (0,+∞) asn → ∞.

Hence, ∏n
k=1(1− γk1Ak

)∏n
k=1(1− pAγk)

a.s.→ ζ ′ ∈ (0,+∞) asn → ∞

so that

epA�n

n∏
k=1

(
1− γk1Ak

) a.s.→ ζ ′′ ∈ (0,+∞) asn → ∞.(25)

This leads to the following result concerning the rate of convergence of the
algorithm (stated here in the infallible case, but an analogous phenomenon occurs
in the fallible case for the equilibrium 0).

PROPOSITION8. Assume that0< pB < pA ≤ 1 and that

γn = O(�ne
−pB�n) and

∑
n≥1

n∏
k=1

(1− pAγk) < +∞.(26)

Then, the two-armed bandit algorithm is a.s. infallible and, for everyx ∈ (0,1),
there exists an event of positivePx-probabilityI∞,x on whichXn is nondecreasing
and

epA�n(1− Xn)
a.s.→ ξ ∈ (0,+∞) asn → +∞.(27)

Assumption(26) is fulfilled, for example, whenγn = C
C+n

, with 1
pA

< C ≤ 1
pB

.

REMARK. (i) Comparing the rates obtained in (24) and in (27), respectively,
shows that, for step sequences satisfying (26), the two-armed bandit algorithm
converges toward its “target” equilibrium 1 on an event with positive probability
infinitely faster than the corresponding algorithm “in average.” More generally, the
same phenomenon occurs at least at one of the equilibrium points as soon as∑

n

γ 2
n < +∞ and

∑
n≥1

n∏
k=1

(
1− max(pA,pB)γk

)
< +∞.

This unusual behavior in the field of stochastic approximation is confirmed by
the fact that the assumptions of the standard central limit theorem for recursive
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stochastic algorithms (at rate
√

γn, see [5] among others) are never fulfilled by
the two-armed bandit algorithm: whenpA 
= pB the martingale increment	Mn

involved in the canonical decomposition (6) of the algorithm satisfies

Ex

(
(	Mn+1)

2/Fn

) ≤ Xn(1− Xn)
a.s.→ 0 asn → +∞,

whereas this term is supposed to converge toward some positive real number to
apply the CLT.

(ii) Proposition 4 can be slightly improved using the same ingredients as above.
Namely, if

∑
n γ 2

n < +∞, then, for everyx ∈ (0,1),

Px({Xn goes to 0 monotonously for large enoughn}) > 0

iff
∑
n≥1

n∏
k=1

(1− pBγk) < +∞

and

Px({Xn goes to 1 monotonously for large enoughn}) > 0

iff
∑
n≥1

n∏
k=1

(1− pAγk) < +∞.

By symmetry, it suffices to establish the equivalence, for example, for the equilib-
rium 0. By the Markov property this amounts to showing that if

∑
n γ 2

n < +∞,

Px(I∞,x) > 0 if and only if
∑
n≥1

n∏
k=1

(1− pAγk) < +∞.

The equivalence follows from (25) and the Lebesgue dominated convergence
Theorem applied to the identity

Px(I∞,x) = Ex

( ∏
n≥1

(
1−

n∏
k=1

(
1− γk1Ak

)))
.

5.2. Stopping rules. The proposition below derives an upper-bound for the
conditional error probability at timen based on some inequality used in the proof
of Lemma 1.

PROPOSITION 9. Assume thatpA,pB ∈ [0,1] and pA 
= pB . Let X∞ =
a.s.- limn Xn and letx∞ = 1{pA>pB } be the“ target” parameter of the algorithm.
Then, for everyn ≥ 1,

Px(X∞ 
= x∞/Fn)

≤ max

(
min

(
1− Xn

Xn

,

∑
k≥n γ 2

k+1

Xn

)
,min

(
Xn

1− Xn

,

∑
k≥n γ 2

k+1

1− Xn

))
.



TWO-ARMED BANDIT 1451

PROOF. Assume for the sake of simplicity thatpA > pB so thatx∞ = 1.
Assume that the eventsAn and Bn involved in the dynamics of(Xn)n≥0 are
specified by (8). Then, for everyn ≥ 1, one considers(X̄(n)

k )k≥n the (martingale)
algorithm defined for everyk ≥ n by

X̄(n)
n = Xn,

(28)
X̄

(n)
k+1 = X̄

(n)
k + γk+11Bk+1

(
1{Uk+1≤X̄

(n)
k } − X̄

(n)
k

)
.

It follows from Proposition 3 that, for everyn ≥ 0 and for everyk ≥ n, X̄
(n)
k ≤ Xk ,

so thatX̄(n)∞ := a.s.- limk X̄
(n)
k ≤ X∞.

Now, as in the proof of Lemma 1, one notices that

Px(X∞ = 0/Fn) ≤ Px(X̄
(n)∞ = 0/Fn)

≤ Ex((X̄
(n)∞ − X̄

(n)
n )2/Fn)

X2
n

.

A straightforward computation based on (28) then shows that the conditional
variance increment process ofX̄(n) is given for everyk ≥ n by

〈
X̄(n)〉

k = pB

k−1∑
�=n

γ 2
�+1X̄

(n)
�

(
1− X̄

(n)
�

)
.

Consequently, still as in the proof of Lemma 1,

Px(X∞ = 0/Fn) ≤ pB

∑
k≥n γ 2

k+1Ex(X̄
(n)
k (1− X̄

(n)
k )/Fn)

X2
n

(29)

≤ pB

∑
k≥n γ 2

k+1Ex(X̄
(n)
k /Fn)

X2
n

= pBX̄
(n)
n

∑
k≥n γ 2

k+1

X2
n

≤
∑

k≥n γ 2
k+1

Xn

.

On the other hand, we know from (7) that

Ex

(
X̄

(n)
k

(
1− X̄

(n)
k

)/
Fn

) = Xn(1− Xn)

k∏
�=n+1

(1− pBγ 2
� )

so that

pB

∑
k≥n

γ 2
k+1Ex

(
X̄

(n)
k

(
1− X̄

(n)
k

)/
Fn

) = Xn(1− Xn)

(
1− ∏

k≥n+1

(1− pBγ 2
k )

)
.
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Plugging this identity in (29) yields

Px(X∞ = 0/Fn) ≤ 1− Xn

Xn

(
1− ∏

k≥n+1

(1− pBγ 2
k )

)
≤ 1− Xn

Xn

.

The upper-bound forPx(X∞ = 1/Fn) follows from a symmetry argument.�

6. Additional results.

Regularity of x �→ Px(X∞ = 1) when pA > pB . One can obtain some
regularity results for the functionx �→ Px(X∞ = 1) as soon aspA 
= pB (keep
in mind that in that setting,X∞ is {0,1}-valued). Namely,

PROPOSITION10. If pA > pB , the functionx �→ Px(X∞ = 1) is nondecreas-
ing and analytic on(0,1].

PROOF. The only point to establish is analyticity. We sketch the proof in the
case of a constant step sequence. One starts from the second equality in (11) and
the tools developed in the proof of Theorem 2. We also adopt the same notations.
Indeed, functionχγ is analytic on(0,1] since it is an absolutely decreasing
function. Then,ψγ is analytic as well and consequently so isx �→ Px(Xn → 1).
The extension to nonconstant step sequences is straightforward.�

About the distribution ofX∞. When 0< pA = pB ≤ 1 and
∑

n≥1 γ 2
n < +∞,

the conditional distribution ofX∞ given{X∞ 
= 0,1} is continuous. This follows
from Theorem 3.IV.13 in [5].

Still open questions. . . The main open question is, of course, to find a
necessary and sufficient condition for the algorithm to be a.s. infallible. For
example, whenpA = pB = 1, assumption (3) is easier to express using the partial
sumsSn of the	n ’s by ∑

n≥1

1

Sn

< +∞.(30)

If 	n = logn logβ
2 n, assumption (30) is equivalent toβ > 1, whereas	n =

O(�n) in Lemma 1 readsβ = 0. So we are facing a log log problem.
Furthermore, it follows from the Borel–Cantelli lemma for independent events

that

lim sup
n

Yn

	n

≥ lim sup
n

1{Un≥x/Sn−1} = 1, Px-a.s.

when
∑

n≥1 1/Sn = +∞.
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It is to be noticed that, when	n = logn logβ
2 n for someβ ∈ (0,1), this

straightforwardly implies that lim supn Yn/ logSn = +∞ (which was the key step
of Lemma 1). Unfortunately, for such sequences	n, Lemma 1 only implies that
Px(X∞ = 0) = 0 iff lim supn

Yn

	n
> 1, Px-a.s.

The last remark. Let σn := min{k > σn−1/Uk < Xk−1} andσ0 := 0 denote the
increasing break times. Assumption (30) is equivalent toPx(σ1 = +∞) > 0 for
everyx ∈ (0,1).

Otherwise, all theσn’s arePx -a.s. finite for everyx ∈ (0,1): this follows from
the expression ofPx(σ1 ≥ k) and from the Markov property.

Acknowledgment. The authors are grateful to Jean-Claude Fort for stimulat-
ing discussions.
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[17] TARRÈS, P. (2001). Pīeges des Algorithmes stochastiques et marches aléatoires renforcées par

sommets. Thèse de l’ENS Cachan, France.

D. LAMBERTON

LABORATOIRE D’ ANALYSE

ET DE MATHÉMATIQUES APPLIQUÉES

UMR 8050
UNIVERSITÉ MARNE-LA -VALLÉE

CITÉ DESCARTES5, BLD DESCARTES

CHAMPS-SUR-MARNE

F-77454 MARNE-LA -VALLÉE CEDEX 2
FRANCE

E-MAIL : dlamb@math.univ-mlv.fr

G. PAGÈS

LABORATOIRE DE PROBABILITÉS

ET MODÉLISATION ALÉATOIRE

UMR 7599
UNIVERSITÉ PARIS 6
CASE 188
4 PL. JUSSIEU

F-75252 PARIS CEDEX 5
FRANCE

E-MAIL : gpa@ccr.jussieu.fr

P. TARRÈS

LABORATOIRE DE STATISTIQUE

ET PROBABILITÉS

UMR CNRS C5583
UNIVERSITÉPAUL SABATIER

118ROUTE DENARBONNE

F-31062 TOULOUSECEDEX 4
FRANCE

E-MAIL : tarres@math.ups-tlse.fr


