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WHEN CAN THE TWO-ARMED BANDIT ALGORITHM
BE TRUSTED?

By DAMIEN LAMBERTON, GILLES PAGES AND PIERRE TARRES
Université de Marne-la-VallédJniversité Paris 6 and Université Paul Sabatier

We investigate the asymptotic behavior of one version of the so-called
two-armed bandit algorithm. It is an example of stochastic approximation
procedure whose associated ODE has both a repulsive and an attractive
equilibrium, at which the procedure is noiseless. We show that if the gain
parameter is constant or goes to 0 not too fast, the algorithm does fall in the
noiseless repulsive equilibrium with positive probability, whereas it always
converges to its natural attractive target when the gain parameter goes to zero
at some appropriate rates depending on the parameters of the model. We also
elucidate the behavior of the constant step algorithm when the step goes to 0.
Finally, we highlight the connection between the algorithm and the Polya urn.
An application to asset allocation is briefly described.

Introduction. The aim of this paper is to deeply investigate the asymptotic be-
havior of the so-called two-armed bandit algorithm. This stochastic approximation
procedure is widely known in the fields of mathematical psychology and learning
automata (see [13] and [15]). Our own motivations are both theoretical and prac-
tical as it will be seen further on. Let us first introduce the algorithm itself in a
financial context, namely as an adaptive optimal asset allocation model.

Imagine a fund managed by only two traders, gawnd B: every day each
of them is in charge of a percentage of the fund, which may vary from day to
day. The few wealthy investors (the shareholders) who created the fund wish
ideally to allocate the whole fund to the most efficient trader, but of course they
do not know who he is. They simultaneously want to make some advantage of
the performances of the best trader as soon as possible. This means they need
to devise a periodic re-allocation procedure of the fund to the traders based on
their (daily or monthly) performances. On the other hand, this procedure should
be not too “upsetting” to the traders in order to preserve their motivation and
self-confidence: one way is to enhance reward rather than punishment. Taking
all these specifications into account suggests to proceed as followX; lbe
the fraction of the fund managed by tradérduring dayr, the fraction 1- X,
being managed by tradét. Every day, one trader is chosahrandomand his
performances of the day are evaluated. AssumeAt fer a moment. If they are
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considered as outstanding, tradéris rewarded by an extra-allocation for day
n + 1 of y,,1 1 timesthe fraction managed by trad8rduring dayn (whatever the
performances of trade® are since he was not checked). So tradlevill manage a
fraction X,, + y,,+1(1 — X,,) of the fund during the day + 1. If his performances
are not high enough to deserve a reward, nothing happens. The same procedure
is applied to tradeB when he is checked: iB has outstanding performances,
he is awarded an extra allocatign1 timesthe share managed by during
day n so that, during day: + 1, the share managed by will be reduced to
Xu+1 = X, — yn+1X, (Whatever his performances on daywere). One models
the daily performance evaluations#fandB by two sequences of everis,),>1
and(B,),>1, respectivelyA, = {A’s performances on dayare outstandingand
B, = {B’s performances on day are outstanding

A natural policy for the investors of the fund is to reduce the risks induced
by this strategy by controlling the largest possible part (in average) of the whole
fund. So tossing up for the checked trader with a fair coin is not appropriate. What
seems more efficient is to use for the daily toss a biased (virtual) coin so that the
probability for traderA or B to be checked at the end of dayis equal to the
share of the fund they managed that day, nanilyand 1— X,,, respectively.
This virtual coin can be tossed by generating on a computer some i.i.d. random
numberdJ,, n > 1 and by setting

{A is checked at the end of day = {U,,11 < X, },
{B is checked at the end of day = {U,+1 > X, }.

All this leads to the following dynamics fox,,: for everyn > 0,

(1) X"+1 - Xn + yn+l((1 - Xn)l{Un+1§Xn}mAn+l - X” 1{Un+l>xn}mBn+l)’
Xo=x¢€[0,1],

where(y,),>1 is the sequence of gain parameterssf@p$ satisfying
(2) VneN* y,€(0,1) and T,:=p1+ -+ y —> +00 asn — +oo.

[Note this includes the constant step setting= y € (0, 1).] The fact thaty, lies

in (0, 1) is induced by the modelling (it is a percentage). On the other hand, the
fact thatl',, goes to infinity is a necessary condition to “forget” the starting value:
if lim,, I';, < +00, X,, would still converge a.s. toward a random variakle, but

one could not show that __ takes its values if0, 1}.

This recursive random procedure was first introduced by Norman in mathemat-
ical psychology (see [13]) and then, independently, by Shapiro and Narendra in
the engineering literature as a linear learning automata (see [15]). In this field it
is known as the Linear Reward-Inactiohz_;) scheme (see the survey [10] and
the book [11] by Narendra and Thathachar about learning automata theory). In
both cases, only the constant step setting is considered. The application to optimal
adaptive asset allocation in a financial context has been developed in [12].
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The algorithm (1) is often mentioned in the literature about stochastic approxi-
mation and recursive stochastic algorithms, this time mainly in its decreasing step
version (see [5]), as thisvo-armed banditin fact, from a mathematical point of
view, it is one of the simplest examples of a stochastic approximation algorithm
having a “noiseless trap.” We will come back further on this property which was
another motivation for investigating this algorithm.

The sequencé/,),>1 and the eventd,,, B,, n > 1 are defined on a probability
spacg €2, 4, P). We will make some further assumptions on the evdntandB,,,
namely that the sequence

(14,.18,),1  isiid.

This assumption corresponds to a “stationary” situation: the traders’ daily
performances are supposed to be independent and “statistically invariant,” that is,
identically distributed: so one sets

P(A))=pa and P(B1) = ps.

Of course, the owners of the fund do not know whethgr> pg or pa < pp.
Finally, one assumes that the sequences

(Un)n=1 and (1a,, 13,1)71Zl are independent

that is, the daily tosses are in no way influenced by the respective past (and future)
performances oA and B except for the shares respectively managed that day.

To elucidate the a.s. asymptotic behavior of this allocation procedure, one could
call upon classical stochastic approximation methods like the so-called ordinary
differential equation (ODE) method. It consists in comparing the asymptotic
behavior of the algorithn(X,),>1 with that of the relatedODE = x = wh(x)
wherer := py — pp andh(x) = yn—1+lE(X,,+1 — XXy =x)=7x(1—x)
is the meanfunction of the algorithm (see Section 2). One readily checks that
this ODE admits two equilibria, 0 and 1, and that, when > ppg, its flow
D(x,1) = m uniformly converges on compact sets(6f 1] toward 1 as
t — oo: the equilibrium 1 is stable with an attraction interv@] 1]; on the other
hand 0 is repulsive (0 is then calledrap for the algorithm). Thus, the celebrated
“conditional convergence” theorem due to Kushner and Clark in [8] says that,
under technical assumptions fulfilled here, almost every path of the algorithm that
visits infinitely many times a compact subset of the attracting interval of a stable
equilibrium will converge toward it. Applying that to a path of the two-armed
bandit algorithm shows thaftit does not converge t0, then it necessarily visits
infinitely often the compact intervak, 1] for somes > 0 and, hence, converges
toward 1.

In some way it is not really surprising that this approach fails since stability
is a second-order property, whereas the ODE method is based on a first-order
approximation. Recent sophisticated first-order approaches like [2] cannot be more
efficient for the same reason.
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There is a wide literature in stochastic approximation about traps and how not
to fall into them (see [3, 6, 9, 14, 16, 17]). They all rely on the fact that, if the noise
is exciting enough at a repulsive equilibriurfi, then a.s., the algorithm will not
converge to it. By “exciting enough” one means that a conditional variance term
atx™ is positive. But the main feature of the two-armed bandit algorithm is that its
two equilibria (0 and 1) lie at the boundary of its state sp@cé], so the above
conditional variance term is necessarily identically O at the repulsive equilibrium
x* =0 (and atc* = 1 as well). So, the behavior of the two-armed bandit algorithm
cannot be solved using these approaches.

As far as we know, from a mathematical point of view, the asymptotic behavior
of the algorithm has not been elucidated in the literature. The present paper derives
from results obtained independently by the third author in [17] and the other two
authors.

Heuristics, probably suggested by the behavior of the mean algorithm, seems to
consider that the procedure described above works well in practice.

It is interesting for both theoretical and practical motivations to analyze the
behavior of the two-armed bandit algorithm, that is:

e Isit possible to choose the gain parameter sequence so that the algorithm a.s.
never fails?

e Conversely, does the algorithm “fall in its noiseless trap 0” for some
seqguences of gain parameters?

This leads to introduce the following terminology when<Opg < ps < 1.
(Inverting the réle played byl and B solves the case 8 p4 < pg < 1.) The
two-armed bandit algorithm is:

o fallible when starting fromx € (0, 1) if P,(X,, — 0) > 0,
e a.s.infallible if P, (X, — 0) =0 for everyx € (0, 1).

Although not directly interested by the critical cagg = pp, we will deeply
investigate it since it is a key to solve the general case thanks to a comparison
result.

The paper is organized as follows. In Section 1 is stated the main theoretical
result of the paper, namely Theorem 1, concerning the convergence and the
fallibility of the algorithm. Two corollaries show its consequences on usual
parametrized families ottgps for which some necesgand sufficient conditions
of infallibility are derived.

Section 2 is devoted to some elementary, although important, facts on which
relies the proof of Theorem 1, Proptisn 2 on onehand and the comparison
result stated in Proposition 3 on the otlhand. Section 3 is mainly devoted to the
proof of items (b) and (c) of Theorem 1 [item (a) is elementary]: Section 3.1 solves
item (b) and Section 3.3 solves item (c). Section 3.2 has a particular status: itis a
kind of bridge between Sections 3.1 and 3.3: we focus on the special case where
the stepy, is constant which is the historical setting considered by those who
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devised the procedure. It is shown in Theorem 2 that the (positive) probability of
failure for the algorithm with constant stgpgoes to 0 a3’ goes to zero. Some
bounds are displayed, the optimality of which are not known to us. Section 4 makes
a connection between regular Pélya urns and the two-armed bandit algorithm: we
show that the two-armed bandit algorithm can be seen as a generalized Pélya urn.
Thus, we retrieve partially the infallibility results of Theorem 1 using standard
methods of proof for the Pélya urns like the “moment method” and the log-method.
In the martingale caseps = pp) these approaches yield some more information
about the distribution of the a.s. limi_ of X,,. In Section 5 some first elements
about the rate of convergence of the algorithm are provided that emphasize its
nonstandard behavior among stochastic approximation procedures. Furthermore,
some stopping rules are derived for the algorithm, inspired by some method of
proof for infallibility. The last section contains some provisional remarks and
additional results.

Note that, except for the notations and the elementary facts contained in
Section 2, other sections are self-contained and can be read independently.

NOTATION. (i) The letter C will denote a positive real constant that may
change from line to line.

(i) The letteré will denote arandompositive real constant that may change
from line to line.

(iii) Let (an)n>0 and(b,),>0 be two sequences of positive real numbers. The
symbola, =< b, is for a, = O(b,) andb, = O(a,), whereas the symbal, ~ b,
means lim a, /b, = 1.

1. Themain result.

THEOREM 1. (@) Almost sure convergence.
(i) fO0< pp <pa<landxe(0,1), (X,)u>0Iis abounded submartingale
henceP, -a.s. converging toward a random variablé,,. The random variablé
takes values if0, 1} and

Pi(Xoo =1 =x +7 ) Vus1Ex(h(Xn) > x + 7 y1x(1 = x) > x.
n>0

(If pp =0andpy4 > 0,then X, is nondecreasing and converges towarj

(i) If 0< pp=pa <landx e (0,1),then(X,),>o0is a bounded martingale
P, -a.s. converging toward a random variablé,,.

Moreoveyif 3_,-o ynz+1 = 400, X iS {0, 1}-valued with distribution Bernoul(x).
(If pp = pa =0,thenX, = x, P,-a.s. for everyn > 0.)

(i) If x €{0, 1}, thenX,, = x, P,-a.s. for everyn > 0.

(b) Convergence to 0 with positive probabilitylf

(3) Yo T1@—pev) <400

n>0k=1
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then for everyx € [0, 1)
P,(X,=0)>0.
In particular:

() if 0 < pp < pa <1, then for everyx € (0,1), the two-armed bandit
algorithm starting fromx is fallible;
(i) if 0< pp=pa<landy,y? < +oo, then for everyx € (0, 1),

Py (Xoo = 0), P.(Xeo =1 and P,(Xo €(0,1))>0.
(c) Convergence to a nonzero valueAssumé < pp < pa <1and
(4) Yn= O (e P50,
Then for everyx € (0, 1],
Py (Xoo =0)=0.
In particular:
(i) if 0< pp < pa < 1then for everyx € (0, 1],
Xoo=1 P.-a.s, that is the algorithm is a.s. infallible
(i) whenO < pg = pa < 1thenforeveryx € (0, 1),
X0 €(0,1), P,.-a.s.

PrRoOOF This theorem follows from Propositions 2, 4 and 5. These proposi-
tions can be seen as steps of the proofs of the theorem.

We will derive in Corollaries 1 and 2 how the above step assumptions (3) and (4)
for fallibility or infallibility read on some natural parametrized families of step
sequences.

But, first, we will shortly enlighten some connections between the different step
assumptions appearing in the statements of the above Theorem 1.

() yo=0T e Pelny=3y, ynz < +o0: see the remark after Proposition 5,
Section 3.3.

(i) Y, T1ie1(X — peyx) = +00 % Y, %2 < +oo: a counter-example is
provided by

1
on = )
v vn+1

n>0andy, =0if k ¢ {2",n > 0}.
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COROLLARY 1 (Fallibility). Letpg € (0, 1].

(a) Constant steplf the stepy, :=y € (0, 1), the two-armed bandit algorithm
does converge towar@with positive probabilityNamely

(b) Power step (1).0One considers the family dfpower’ stepsy, := (nfc)“,
O<a<1,C >0,n> 1. These step sequences satisfy assumipf

O<a<1 or (@=1andC>1/pp),

then for everyx € [0, 1), P, (X_ =0) > O (i.e,, the algorithm is fallible fromx).

(c) In particular, if 0 < pp < pa < 1, the two-armed bandit algorithm is
fallible starting from anyx € [0, 1) for the step sequences specified in the above
items(a) and (b).

PrROOF (b) The above condition o6 and« implies that assumption (3) of
Theorem 1 is fulfilled.

(@) The lower bound fofP, (X, = 0) needs further care. It relies on (9)
established in the proof of Proposition 4: setting=y € (0, 1), it reads

n—1
Py (X0 =0) z&(]‘[ (1—x [Ja- 1Bkyk))).

n>1 k=1
Then the computations can easily be carried on: the Jensen inequality yields

n—1
Py (Xoo =0) > exp(Z E, log(1l— xZn)> with Z, :=[[(1 - y1g,).

n>1 k=1
Now
x
log(1—xZ, —E(Z)")
E,(log(l—xZ,)) = X; . (
x _
Z— (A=y)"ps+1—pp)""
me1 m
so that

1 x™

‘p:n;ma—a—wm)

> Ex(log(l—xZ,)) =

n>1

> i log(1— x).
PBY

Finally, for everyx € [0, 1],
(5) Py (Xoo = 0) > (1 — x)Y/P57, m
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COROLLARY 2 (Infallibility). LetO< pp < pa <1.

(a) Power step (Il).Let y, := (;5:)%, 0 <a <1, C >0, n > 1. Then

P, (X = 0) = 0for everyx € (0, 1] if and only if

1
a=1 and C<—.
PB

(b) Power step (Ill).Set y,, := m, n > 1, where (A,),>1 IS a se-
quence of positive real numbers satisfying ~ Cn/P8~1log* n for somew > 0
and C > 0. These step sequences satisfy assumg#dsincey, ~ M%B. Then
P, (Xoo = 0) = 0 for everyx € (0, 1] if and only if

1

a<—.
PB
(¢) In particular, if 0 < pp < pa < 1, the two-armed bandit algorithm ig.s.
infallible for the step sequences specified in the above ifaj@sd (b), that is

Vx e (0,1], P.(Xeo=1) =1

Note for practical implementation that the step sequepge= n—-lu n>1,
corresponding toC = 1 always satisfies iter{a) regardless of the value gfg
sincel <1/pp.

PROOF (a) First, assumption (2) is clearly fulfiled. Now, in view of
Corollary 1(b), we just need to prove that assumption (4) of Theorem 1 is satisfied
if a=1andCpp <1. If a =1, T, = Clogn + C’ + 0o(1). Consequently,
assumption (4) reads'a = O (log(n)n—C78), thatis,Cpp < 1.

(b) One hasS, ;=14 Ay + --- + A, ~ Cppn/P8log® n so thaty, ~ piB%

Now assume thatpg < 1. We need to check assumption (4) of Theorem 1. Notice
thatS, = e'” [see the preliminary remark after Lemma 1 in Section 3.3 for more
details, especially (15)]. Therefore, assumption (4) reduces te O(I',, S, %),
which follows fromT,, ~ piB logn ands;, 72 ~ (Cpp) "B ——. \We now prove

_ _ 10g°7B n
that if app > 1, assumption (3) holds. We have

n 1
1-— < _pBF"ZO S—PB :0(*)
k|:|1( pBYK) =e (5, 7%) nTog% n

O
FURTHER REMARKS ON THE STEP ASSUMPTIONS (i) It follows from

Corollary 2 that there exist sequences of stgpandy, satisfyingy, ~ y, ~ p—llgn

and such that the corresponding algorithi)sand X,, are fallible and infallible,
respectively. In fact, the critical case for infallibility is not entirely elucidated by
the above results.

(i) The asymptotics of the constant step setting when the jstgpes to 0 is
elucidated in Theorem 2, Section 3.2.
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2. Some elementary facts. The random innovation at time is clearly
en = (Uy, 1a,,1p,) (the g,’s are i.i.d.). Set¥, := o(e1,...,&,), n > 1 and
Fo := {2,2). We denote byF the filtration (¥,),>0. It follows from (1)
that (X,),>1 is obviously alO0, 1]-valued ¥ -Markov chain (homogeneous if
v», = y). For notational convenience, we will denote By the distribution of the
whole sequencéX,),>o starting atx € [0, 1]. One also derives from (1) some
straightforward properties of the algorithm.

PrRopPOSITION1. For everyx € (0,1) and everyn > 1, X, € (0,1). On the
other hand both state€0 and 1 are absorbingthat is, if x € {0, 1}, X,, = x for
everyn > 1,P,-as.

Viewed as a stochastic approximation procedure, its canonical form reads
(6) Xp=Xn-1+ yumh(Xy—1) + vn AM,,
where
T :=pAs— PB, h(x):=x(1—x)
and
AM, =1 - X, ) u,<x,_yna, — Xn—1lw,>x,_1)nB, — T h(X,—1)

is anF -martingale increment.

REMARK. Themeanalgorithm associated withX,,),>1 is the deterministic
recursive procedure defined by

Xn+l =X, + Vn—i—lnh(xn)a xo0 € [0, 1].

It can be solved very easily: when= p4 — pp > 0 andxg € (0, 1], the sequence

x, is [0, 1]-valued and nondecreasing, hence converging towardSince the
seriesy_, ynh(x,—1) < +00, whereas_, y, = +oo, it is obvious that (x,) = 0.
Hencex», = 1 sincexy, > xo > 0. So, the mean algorithm never fails in pointing
out the best trader since it asymptotically assigns the whole fund to be managed
by A whenps > pp (and byB whenppg > p4). Unfortunately, it needs to know

a priori who is the best trader, that is, whether > pg or pg > pa.

Similarly, (6) shows thatX,),>1 is a bounded submartingale and one derives
(see Proposition 2) that théh.-a.s.X,, converges toward £0, 1}-valued random
variable X, if ps # p,. But this time, there is no straightforward argument
showing that the procedure always points out the best trader, for exakyple,1
P.-a.s. whenps > pp andx € (0,1]. The next proposition yields some first
answers about the behavior of the algorithm.
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PROPOSITION 2. (a) Submartingale caself 0 < pp < pa <1l andx €
(0, 1), (X»)n>0 is @ boundedfF -submartingalehenceP,-a.s. converging toward
a random variableX ., taking values ir{0, 1} and

Py(Xy = D =x+7 ) yu1Ec(h(Xp) > x +wy1x(1—x) > x.
n>0
(If pp =0andp,4 > 0,then X, is nondecreasing and converges towarj

(b) Martingale caself 0 < pgp = pa <1 and x € (0, 1), then (X,),>0 iS
a bounded# -martingale P,-a.s. converging toward a random variabl& ..
Moreover

() ifX,50 ynz+1 = 400, then X is {0, 1}-valued with Bernoulli distribu-
tion B(x),

(i) if Y2021 < +00, thenX. is [0, 1]-valued and satisfieB, (Xo €
(0,1)) > 0.

(If ppg = pa =0,thenX, =x,P,-as)

PROOF (@) (X,)n>0 iS Obviously a bounded -submartingale. Furthermore,
its a.s. limit, sayX ., satisfies

Ex(Xoo) = Ilrrzn Ex(Xn)

n—1
=x +ImE, (Z Yeramh(Xg) + Vk+1AMk+1)
k=0

=x+7 Z Yn+1Exh(Xy).
n>0

Hence, ) ,-ovu+1Ex(h(X,)) < 400 since =7 > 0 and consequently,
Y =0 VYn+1h(Xy) < o0 a.s., which in turn implies liminfa(X,) = 0 sinceh is
nonnegative aniy’,,- o ¥»1+1 = +oo. It follows that(X ) = 0 so thatX, € {0, 1}
a.s. FinallyP, (Xoo =1) = E, (Xo0).

(b) (X,)n>0 is obviously a boundedf-martingale. Whenps = pp, an
elementary computation shows that

Eo(Xp(1— X)) = 1= pavEc(Xp—1(1— Xp—1))

™) " )
=x(1—x) H(l—PAVk)
k=1

so that
Ex(Xoo(1— Xoo)) =x(1—x) [ (X = payd.
n>1

The announced result follows since the infinite product converges toward a
nonzero limit iffy°,, 2 < +00. O
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One may specify without loss of generality the definition of evehtandB,;:
these two events never interact so only the marginal distributiodg 0dnd 1,
are involved in the distribution of the whole sequen&g),>o. So, one sets

(8) Ap:={V, < pa} and B, ={Vu < pB},
where (Uy,),>1, (Va)n>1 are two independent i.i.dU ([0, 1])-distributed se-
guences.

Then, this “coupled” algorithm is pathwise monotonous as a functigrnyothe
parametepp being fixed. This is established in the proposition below.

ProPoOsITION 3 (Pathwise comparison result)Let x € (0, 1). Let (X,,) and
(X,) denote twd coupled two-armed bandit algorithms built from the sequences
(U,) and (V,), starting fromx < x” and associated to the parametdsg, p4)
and(pg, p)), respectivelywith p4 < p/,. Then for every: € N,

Xn <X,
In particular,
{X, — 0} C {X, — O}
PrOOF The result follows from what happens between time 0 and 1. One
inspects the four possible cases following:

/ (i) On{UL <x"IN{vi<p)}, X)=x"+y(1—x)andX1 <x+y1(1—x) <
X;.
(i) On{Ur<x"}N{Vi> p,}, X]=x"andX; <x <x'.
(i) On {U1>x"}N{V1<pp}, X]=A—y)x"andX; = (1 - ypx < X3.
(iv) On{Ur>x"}N{Vi>pp}, X1 =x">x=X1. O

REMARK. One checks that, whepsy > pp, the trajectories of the general
form of the algorithm are nondecreasing as a function of their starting value.
In particularthe functionx — P, (X = 1) is nondecreasing

3. When does the two-armed bandit algorithm fail?
3.1. Quite often...

PROPOSITION4. If 3°, o[1{=1(1— pByi) < +oo then
P, (X,—0>0 for everyx € [0, 1).

PrRooFr One considers the event
n—1
Doo := U, > x [ [ (1— w1g,) for everyn > 11,
k=1
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where]‘[,?:1 = 1. One checks by induction that, @, X, = x [1;_1(1— v 1g,).
The algorithm is nonincreasing toward its liniit,,. Hence,

n
Ex(1p, X.) <IME(1p Xn) <liME, (x []a- ylek)>
k=1

=x[[@—psyn) =0
n>1

sincepp > 0, so thatX,, = 0 sur D4,. On the other handU,),>1 being i.i.d.,
uniformly distributed and independent of the sequei®;g,>1,

Py (Do) = Ex (P (Doo/0 (By, n > 1))) = Ex<]_[ (1— xnl:[l(l— lgkyk)>>.

n>1 k=1
Consequently,
n—1
9) Px(Xoozo)ZEx(H(1_x1_[(1_13kyk)>>'
n>1 k=1

Now, the events; are independent, hence

n—1 n—1
Ex(Z []- 1Bk)/k)> =Y [1@=pan) <+

n>1k=1 n>1k=1

so thaty_, ., ]"[Z;i(l — 1p, ) < +oo Py-a.s. Consequently the infinite product
[T>1(1 — x]'[z;}(l — 1p,7x)) converges toward &.-a.s. positive random
variable. HenceP, (D) > 0. O

3.2. Especially with constant step although The fallibility result obtained
in Corollary 1(b) for the algorithm with “slowly” decreasing step is to be
compared with the asymptotics of its behavior with constant step. We know from
Corollary 1(a) that, if O< pp < pa <1 andy, = y € (0, 1), then, for every
x € (0, 1], the algorithm with step [denoted(X}),=0 in this paragraph] does
fail with positive probability: namely, it convergés.-a.s. toward g0, 1}-valued
random variablex, satisfyingP(X%, = 0) > 0. The following theorem shows,
however, that the probability of failure goes to 0jas> 0.

The fallibility of the algorithm with constant step and this property is known by
specialists in Learning Automata theory (see the discussion in Chapter 5 in [11]),
although not clearly established mathematically in full generality.

THEOREM 2. Assume thab < pp < pa <landy, =y € (0,1). Then for
everyx € (0, 1],

2 1
P(X,=1)>1- 7n<1p$>2(} - 1),
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hence

lim Py(XL =1 =1
y—>04

Proor We focus on the function
Uy (x) =By (Z h(xn)) =Y Plh(x),
n>0 n>0

where P, (x,dy) denotes the Markov transition probability of the two-armed
bandit algorithm with constant step € (0,1). A straightforward computation
shows that for any functionf : [0, 1] — R,

Py (f)(x) :==Ex(f(X1)
= paxflx+y@A—x)+ppl—x)f(x1—-y))
+ (1= pax — pp(1—x)) f (x).
At this stage, it is convenient to observe that, for every funcgiofd, 1] — R,
P,(gh) =hQ,(g),
where the operatop,, is defined by

0y () =1 —y)(palx +r(A—0)g(x +yA-1x))

+pp(l—x(1—y))g(x(1— y)))

+ (1= pax — pp(1—x))g(x).

It is clear thaty,, satisfiesy, = hy,, where x, :=3",.9 07 (1). One shows
by successive inductions and a little elementary Calculus ghatnd x —
Lo xy(x) are absolutely decreasing functions [an infinitely differentiable

Tyx
function f is absolutely decreasingn (0, 1) if its successive derivativeg™
satisfy (—1)" f™ > 0 for everyn > 0]. On one hand, one derives that, is
indefinitely differentiable orf0, 1] and, on the other hand, that

1
(10) 0<yxy(x)<—1, Ix,, ()| < and 0< x(x) <
Tyx Y Y

TYyX Tyx3
Then, it follows from the definition of, that
(12) vy, — Py, =h and P (X} =1)=x+myy, (x).
The first of these two identities reads
pax(Wy (1) = ¥y (x + ¥ (L= 1)) + pp(L— ) (¥ (x) — ¥, (L = y)x))
=x(1-x),
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that is,
0 0
pr/ lﬁ}’,(x +1t(1—x))(1—x)dt + pp(l—x) / w;(x —tx)(—x)dt
14 14

=x(1—x).
Hence, simplifying byx (1 — x) for everyx € (0, 1), yields

Y / Y /
pA/o 1//y(x+t(l—x))dt—p3/0 Yy, (x —tx)dt = —1.
Now,
t
w}/,(x+t(l—x)):1//;(x)+/o 1//;/()6 +s5s(1—x))(1—x)ds,
t
¥y, (x —1x) =1p)//(x)+/o Yy (x(L—9))(—x)ds

so that

y ot
ﬂylﬁ;(x)-i-pA(l—X)/o /01//)/,/(x+s(l—x))dsdt

y ot
+p3x/ / lﬁ}’,/(x—sx)dsdtz—l.
0 Jo

Combining a rewriting of this identity with an obvious inequality leads to

_w;(x)=%(1+/(;y‘/:<p14(1_x)1p}’;(x +S(1—X))

+ ppxy(x(1—5))) ds dt)

1 (1—x)+ ppx ¥?
> _— I PEEY. sup ylw)l.
Ty Ty 2 u>x(1-y)

Plugging inequalities (10) in the equality, = x /i + 2x, h/ + x,h" yields

21—x) 2|1— 2| 2 4
7 T 7+ = 2
TYyX TyX Tyx T wyx

W] <

and consequently,

PA —TTX 2y2

1
/
— > .
vy = Ty ry my(l—y)2x2

NOW v, () = ¥y (1) + [} (=¥}, () du = [ (=}, () du (1, (1) = 0), hence,

1—x 2p4 1
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Finally, one comes to

2pay (l )
P,(X-1D>x+1—x—————=--1
» (X5 )>x X 21— )2

3.3. But not always

PROPOSITIONS5. Assumé) < pp < pa < 1 and assumptioii4). Then for
everyx € (0, 1],

(12) Py (Xoo = 0) =0

REMARK. As soon agpp > 0, assumption (4) impliey_, -, ynz < 4o0: for
n>1,

n n
Y y2<CY (T — Tk e P8l
k=1 k=1

I +00
§C/ ue_pB”du§C/ ue P8 du < +o00,
0 0
sinceu — ue~P8" is nonincreasing for large enough.

LEMMA 1 (Caseps = pp=1). Assumepy = pp =1 and setAg:=1 and
A, = m, for n > 1. If the sequenceéA,), cy satisfies

(13) Ay =0(Ty),
then for everyx € (0,1], P, (Xoo =0) =0

PRELIMINARY REMARK. With the notation of the lemma, we have

A, . "

14 = with S, = Arg.
( ) Vn S, n 1;) k
The partial sums,, andT’,, satisfy, for every: > 1,

n 2
(15) logS, — > Ye <1, <logs,.
=1+ Vk

This follows from the easy comparisons (wifh= Ag = 1),

Sn du
l

" Ag Sk 1
r,=Yy =% o

n

Vk
>logsS, — E .
ol

kdu

1Sk1
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Hence,S, — oo asn — oo sincel’, — oo andy, < CI',/S, < CTe 1n.
Consequently, the former remark applies with = 1 and shows that

Zynz < 400.

n>1

Finally, assumption (13) implies
(16) I,~logs, and S,=<e'"™  asn— oco.

PROOF OFLEMMA 1. The algorithm can now be rewritten as follows (we
assumepys = pp =1):

Sn+an+l = Sn+an + An—|—l(]-{Un_,_1§Xn} - Xn)-
Hence,
Sn+an+l = San + An—|—l]-{Un_,_1§X,,}-

Let Y, := S,X,. We will first prove that lim} ¥,, = +00, a.s. Since the sequence
(An/Tp)p=>1 is bounded and(1y,,,<x,}| ) = X,, we have (see, e.g., Theo-
rem 2.7.33in [4])

1{Un+lfxn} == Z Xn =00 a.s.

But
n n+1
An1Xn = Apprx [[A =0 = Appax [JA = 1) = yuyax
k=1 k=1
so that
o0 A o0
I I
n=0 Pt n=0 Pt

sincel’, — oo andy, — 0 asn — co. Consequently, the nondecreasing sequence
(Yy)n>0 satisfies
n—1 Ania
. _ )
limsupY, =limsupy " Aci1liya<xg =11 Y =L, .1=x,) = +00.
" n k=0 n>0 n+1

Next, we prove that Iims% = 400 a.s. One may writeY, = x +
S 125 Akt1L(u;,1<vi/s.) SO that for any, > 0,

A n—1

n

whereZ) = > Asaliu,,1<i/si)-
k=0

Yy

log S,

limsu > limsu
n P I plogSn
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We have
n—1 A
EZ)=) A m|n< )
;} k41 5
and
N n—1 5 A A
Var(Z)) = A min(l, —) (1—min(1, —))
n kg;) k+1 Sk Sk
n—1
<ClogsS, Y Axt1 m|n<1 —)
k=0 Sk
= ClogS,EZ*.
Consequently,
log S,EZ} log S,

P(|Z* —EZ*| > pEZ}) < C <C _ .
S T PPEBZN T p2 Iy Arpamin(L, A/ Sk)

n—1 H
One checks that Iimzk:OA"ElgrgLn(l’“S") = A, since A, min(1,A/S,_1) ~
kly’; ~ AV
Let A* = {|Zz} — EZ}| < pEZ}}. For A large enoughlP(A*) > 1/2, so that

P(limsup, A}) > 1/2. Now, on the event lim syp?,

Z} > (1 - p)EZ) >1(1—-p)logs,  forinfinitely manyn.

Hence P(limsup, IogS > A(1—p)) = 1/2. Butthe random variable lim sypo—
lies in the asymptotie -field of the i.i.d. random variablgs,’s, hence,

A

limsup >A(1—p), P.-a.s.
n

n
logs, —

This holds for every > 0 andi > 0 so that limsup IogS = 400, P,-a.s.
On the other hand, for any positive integer

o0 0
2 . 2
< E(Z Vk+1Xk‘fp> =X, Z Yi+1-
k=p k=p

E((X _Xp) |J“p (Z Vk+1Xk(l X |F,
k=p
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Now observe that
EQixn=0X31%)) _E((Xoo = X,)? %))

2 - 2
XP XP

P(Xoo = 0|F,) =

2
Zl(zozp yk+1
YP

[y Sp [To°logu
sc2 Y gascE 2]
Y S?

- Sp 9 log S, :CIogSp.
Y, S, Y,

One concludes by noting that the bounded martingal& o, = 0|%)), P,-a.s.,
converges tdx, —o SO that

ZOO 2
< Zk=p Yir1 _

Sp

u
Y, Js, u

log s,

P(Xoo =0) = IiLn E(P(Xo =0|F,)) <C Iimpinf =0.

» g

LEMMA 2. Assumed < ps = pp < 1 and assumptiorid). Then for every
x €(0,1],
a7 Py(Xeo =0) =0.

PROOF OFLEMMA 2. In that case, the algorithm can be written as follows
[see the specification of the algorithm in (8)]:

Xnv1=Xn + ¥Yns118,.1 (L, 1<x,) — Xn) with B, 41 = {V,+1 < pB}.

By conditioning on ther -field generated by the everiRg, n > 1, we easily deduce
from Lemma 1 that if the sequencesf)neN, defined byA,’f = yulp,/[Tio1(1—
velp,) andy,? = y,1p, satisfy assumption (13) in Lemma 1, the announced result
is proved.

Now, forn > 1, define

M, =Y log(1— y1p,) — palog(l — y) = Y _log(1 — y)(1p, — pB)-
k=1 k=1

The sequenceM,,) is a martingale and syftM? < +oo becaus&”, y2 < oo (as
follows from the remark below Proposition 5). Therefore, the ratio
szl(l — vi)PE
1_1221(1 - )’lek)
Consequently, there existsdB,,, n > 1)-measurable random positive constant
such thatPP,-a.s.,

is a.s. bounded.

B
szl(l — Yk )PB

AB <k = £yl SPE <Ey,SPP.
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Inequality (15) and -1 ynz < 400 imply thatS,, < Ce". In turn, assumption (4)
yields

Af < Sl"ne_pBrn(an)l’B <&T,.

Now, a straightforward martingale argument shows that, a.s.,
n n
Z VkB ~ PB Z Yk
k=1 k=1
sothatA? = O(yf +--- 4+ y,8) and the proposition follows from Lemma 10

PROOF OF PROPOSITION 5. Using Proposition 3 (pathwise comparison
result), one may assume without loss of generality hat= pp > 0. Lemma 2
completes the proof.[]

4. The two-armed bandit algorithm as a generalized Pélya urn. In this
section we propose two proofs of Proposition 5—in some special cases—in which
the martingale case is based on methods directly inspired by the Pélya urn.

4.1. Short background on Polya urn Assume that an urn contains at time 0,
r red balls and black balls. At every time: one draws at random a ball from the
urn and then puts it back in the urn with another ball of the same color. Then, at
every timen, the urn contains (once the new ball has been put in the urn) exactly
r+b+n baIIs LetB, denote the number of black balls inside the urn at time
let X, := r+b+n denote the proportion of black balls at timeand Y, := ﬁ“b.
One models the drawings using a seque(i@g),>1 of i.i.d. random variables
uniformly distributed ovef0, 1] as follows: if U,,;.1 < X,,, the ball drawn at time
n + 1 is black, otherwise it is red. Then, these sequences satisfy, respectively,

Bo:=b and  Byi1=Bn+ Lu,1<x,)

b
Yo:= and Y, 1=Y,
0= ntl Ly r+b

b
XO.—r+b and Xn+l—Xn+m

Consequently, the regular Polya urn appears as a special case of the two-armed-
bandit algorithm (in the martingale settingy = pB = 1) corresponding to a
rational starting valu&o = +b and a step, := r+b —, thatis,A, = %

This suggests to try extending some classical methods of proof devised for the
Pdlya urn to solve the martingale case of the two-armed bandit algorithm, with
the hope, in some cases, to get more accurate results, for example, concerning the
distribution of the limitX

1{ Un+l§Xn} ’

(L, 1<) — Xn)-
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4.2. The moment approachFollowing a classical method devised to solve
the Pdlya urn (see, e.g., [1]), it is possible to obtain some moment estimates for
the limiting distribution of theX,,’s in the martingale casgps = pg = 1. When
A, = A > 0, this limiting distribution is even explicit.

PROPOSITIONG6. Assume thaps = pp = 1 and that the sequend@\,,),>1
is nonincreasingA1 may be greater tharhg = 1).

(a) For everyx € [0, 1] and for every integet > 1,

(18) E,(x2 <T] (1—1;—)‘) and E,((1—Xo)™) < ] (1—i>.
k

k=0 =0 Sk

In particular, for everyx € (0, 1),
Pi(Xoo =1) <iNfEx(X3) =0 and Px(Xoo=0) <infE.((1~ Xo0)") =0

Sincezkzl S_];c > Zkzl 1++A1 = —+00.
(b) If, moreoverA, = A > 0,7 > 1 (and Ag = 1), theny, = -2 and

£ x 1—x
Xoo~ B KT

REMARK. Item (b) is a classical result about Pélya urn.

PROOF (@) One uses the notatiadf) = S, X,, of Lemma 1 and sets

VYot Aur o Yot Augat ot Do

zm .=
n Sn Sn+l Sn—i—m

E(Z\0/ %)

= EX (Zr(ln—;l-)ll{un+l>xn}/}v”) + Ex (Zr(ln—;l-)ll{unﬁ»lfxn}/}v”)
Y, Yn+Aus2 . Yo+ Api2+ -+ Apimit

= (1-Xn)
Sn+1 Sn2 Sntm+1 "
+ Yo+ Api1 Yy +Apv1+ Apg2 "o
Sn+1 Sn+2

« Yn + An—i—l +- 4+ An—|—m—|—l
Sn+n1+l

X,.
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Recall thatX,, = g— and 1- X, = % Hence,

Ex(Z,01/%2)
_ Sn—Yau % ﬁyn‘i‘An—}—Z X x Yo+ Apypo+- -+ Dpjmyt
Sn+m+1 S, Sn+1 Sntm

<Z\" sinceA,i41<Anri

Yn +An+1+”’ +An+m+1

Sn+n1+l
Yn Yn+An+1 Yn+An+1+”’+An+m
X ———— X -+ X
Sn Sn+1 Sn—i—m

zm
<zm.

The sequenceZ(m))n>o is then a super-martingale. On the other hzziﬂ)

obviously converges towarKerl since, for evenk < m, ?"—:" < SAl — 0 as
n-+m n+m
n — 400 because the sequen((ze )n>1 IS nonincreasing ans, 1 +oo [see (15)]
in the preliminary remark following Lemma 1. Consequently, for instance, via

Fatou’s lemma, for every: € N,

ﬁx+A1+---+Ak

E (Xn1+l)§z(m):
A e S F N

“ox—1+S
P
=1 Sk
" 1—x
M(-=57)
k=0 Sk
One proceeds symmetrically wiffy, := 1 — X,, andY, = S, — Y, to establish the
moment inequalities concerning-1X .

Hence, the Lebesgue dominated convergence theorem implies that when
m — 00,

—0) — i _ m+1 R
Py(Xoo =0) = lIME, (1 - X,)" ™) < kE[O(l Sk) =0
sincey, -0 5 > Yu0 Trrag = +0°-
) (b) V}/henAn = Aon > 1, the same proof shows tr(aﬂ(’"))nzo is a martingale,
ence, for everyn >

" 1—x " x/A+k

m+1y _ _ - —
B (Xog )_,EO<1 1+kA)_,£[(J(1—x)/A+x/A+k‘
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Hence, X has the moments of &8(x/A; (1 — x)/A) distribution. Both
distributions have compact support, hence, they are equal.

The above result can be extended to the general martingale case.
COROLLARY 3. If ps = pp € (0, 1] and the sequend@\,,),>1 iS honincreas-

ing (A1 may be greater tham\o = 1). Then for everyx € (0,1) P, (Xoo =1) =
P:(Xoo = 0) =0 and for everym € N,

m k
(19) E.(x2Hh <] (1 -A-x»JJa- m)
k=0 =1
m k
(20) E.(1-Xx )" <T] (1 —xJJa- )/g)).
k=0 =1

PrOOF Dealing with the casg := ps = pp < 1 still needs conditioning with
respect to ther-algebra generated by the evems. However, we will proceed
slightly differently from in the proof of Proposition 5. We introduce the successive
stopping times

Voe, tFw:=0 P :=mink>t? /joeB), n>1
The 7,'s areP,-a.s. finite iff pz > 0. Then, set, := y,» and A, and S, :=
1+ A1+---+A,,n>1, asin Lemma 1 sotha, = A,/S,. One checks that

B
~ T =1
B n+1 A _B
Any1 _ T2 l—[ (1— ) < Tnt1
A Az - A
n n k:‘[n +1 n

so thatA, is nonincreasing as long as, is. It follows from Proposition 6 and
obvious equalities that, for eveny > 0,

E, (X7 s&(]‘[ (1— 1:x))
k=0 Sk

and
Ex((l - Xoo)m+1) = Ex (H <1 - é))
k=0 Sk

Now S, <1+ nA1, n > 1. Then, proceeding as in the proof of Proposition 6(a)
yields

. 1 X
Py (Xoo = 0) = im Ey (1 - Xoo)" ) < k]:{)(l— 1+kA1) —0.

One gets sNimiIarIy '[halPx(X~OQ = 1) = 0. The moment bounds follow from the
easy fact thahh, < A, sothatS, < S, = (Tf_,(1—»)~ L O
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REMARK. The above bounds (19) and (20) do not invopg. In fact, they
can be improved by replacing, by Vip in their right-hand side and taking the

expectation with respect @,. Then, one may use thaff — t2 | is i.i.d. with
Geometric distributiorG (pp).

4.3. The log-martingale approach. The log-martingale method is another
classical approach to Pdlya urn. It also yields a new proof of Lemma 1 when the
sequenceéA,),>1 is bounded. We use the same notations as in the original lemma.

PROPOSITION7. Assumeps = pp =1and(A,),>1 is bounded

(a) Thenthere exists a martingal@Vv, ), >1 with bounded increments such that
for everyx € (0, 1),

Xn
sudlog(l_ ¥ ) —

(b) Consequentlyfor everyx € (0,1), Py (Xoo =0) =Py (X0 =1)=0

n| < 400, P,-a.s.

PROOF (a) SetZ, := Iog(lf—;(n) = Iog(Sny_—"Yn) =logY, —log(S, — Yy).

logY, —(Iogx+Z )‘

k=1 k 1
( ) AYx 12":(AYk)2
Yici) Y1l ~ 2 o V-1

_ sup, Ay Z AY _ c?sup, A, 5 AYy
-2 Y2,- 2 Y2

< +0oQ,
k>1

wherec := 1+ sup, A, /x satisfiesVy/Yi—1 <1+ Ay/Yr—1 < c. Similarly,

" Ap— AY
log(S, — Y,) — [ log(1—x) + e
9( ) (g( ) ,;Sk—l—Yk—l>‘

(Ar — AYy)

sup, A,
=< < 400
2 ,; (Sk—1 — Yk—1)?

Combining these inequalities yields

" [ AY, Ay — AY]
sunz, — Z( [ k )
" iz Yt

< 400, P.-a.s.

Sk—1— Yr—1
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Ny (AY Ap=AYy ; ;
Now N, := Zk:l(m — m) is a martingale since

Ex (ANn/an—l)

= Ex(AYn/an—l)

1
- (An - Ex(AYn/an—l))m

Yn—l
_ Xn—1Ay . (1_Xn—1)An _ Ay . Ay .
B Y1 Sn—l —Y,1 B Sn—l Sn—l B
Furthermore, its increments are bounded. As a matter oN&gtandA, — AY;
are never simultaneously zero and are upper-boundetl;byn the other hand,
Yr—1 andS;_1 — Y1 are lower bounded hy and 1— x, respectively, hence, for
everyk > 1,

0.

A Al
|ANg| < < .

Yica A(Sg—1—Yi—1) ~ x A (1—x)

(b) Let ((N),)n>1 denote the conditional variance increment process of the
martingale (N,),>1 and let (N), denote its limit asn goes to infinity. The
law of iterated logarithm for martingales with bounded increments says that, on
the event{(N),, = +o0o}, the martingale(N,) satisfies liminf N,, = —oco and
limsup, N, = +00 a.s. MeanwhileZ,, converges toward Ic(gf;;ao) eR a.s. The
difference of these two quantities remaining bounded, it follows(iNat, < +o0,
P.-a.s. Hence, the martingalé, converges toward a finite limit and, consequently,
X €(0,1),P-a.s. [

REMARK. The above assumption in Proposition 7 does not embody the Power
step () setting of Corollary 2(b),f4 = pg =1 and)A,, ~ Clogn, that is, the
closest case to the critical case that we can get.

The extension to generaly andpg, 0 < pg < pa, in that framework consists
in proving that the sequenc¢a 2),,~; is a.s. bounded. One shows using martingale
methods of Lemma 2 that this leads to the conditige= O (e~78") which is, as
expected, more stringent than assumption (4).

5. Rate of convergence, stopping rules.

5.1. Rate of convergenceThe aim of this section is not to elucidate com-
pletely the rate of convergence of the two-armed bandit algorithm but to draw
some first conclusions from some by-products of the convergence proof. They
emphasize that the two-armed bandit algorithm does not behave like a standard
stochastic approximation algorithm in terms of rate of convergence. In particular,
in some natural situations it may converge infinitely faster than its associated de-
terministic algorithm in average. This enlightens that the usual CLT for stochastic
algorithms proposed in the literature (see, e.g., [5]) does not apply.
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First, let us have a look at the algorithmaverage
Xntl =X + TVnr1x, (L — xp), xo=x¢€(0,1) withw = ps — pp > 0.

One has by a straightforward induction that the sequénggso is increasing and
that

n
0<l-x,=1-x)[[QA-7yxi-1)

k=1

(21) 5(1——x)eXp(—Jr > }%xk—l)
1<k<n

(22) <A -—x)exp(—mxTy).

Plugging (22) into (21) yields

0<1l-x,<(1-x) exp(—nFn +7(1—x) Z yke—ﬂka_1>

1<k<n

I
0

<(1-x) exp((l - l)e”)e_”r"
X

(23) = 0(e ™).
On the other hand, for every> 1,
e ol [ [C.579)
k=1
In particular, if one assumes that, ynz < +00, then there are some positive real
constant<” (x) andC’(x) such that, for every > 1,
(24) Cx) <™ (1-x,) <C'(x).

Now, let us come back to the original procedure with the specification given
by (8). By an obvious symmetry argument, one shows, as in the proof of
Proposition 4, that the events

n—1
Ioox = {Un <1—-(1-x) ]_[(1— vkla,) for everyn > 1}
k=1

and

n
Xlox = {Xn =1—(1—x) [[(1— 14, foreveryn > 0}
k=1
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satisfy
Ioox C X1

Now, still following the proof of Proposition 4P,(I» ) > O as soon as
Yo [1ie1(Q — payr) < +o0. Moreover, ify", ynz < 400, the proof of Lemma 2
shows that
Hk 1(1 )/klAk) as
[Tici(X—yi)Pa

— ¢ € (0, +00) asn — oo.

Hence,
1—w»1
[liza@ — vilay) 23 ¢ € (0, +00) asn — oo
szl(l PAYk)
so that
n
(25) ePAln 1_[ (1 — VklAk) &5 {// € (0, +00) asn — oQ.

k=1
This leads to the following result concerning the rate of convergence of the

algorithm (stated here in the infallible case, but an analogous phenomenon occurs
in the fallible case for the equilibrium 0).

PrROPOSITION8. Assume thad < pp < pa < 1 and that

(26) Yo =0 ,e P8y and Z H(l— PAVE) < +00.

n>1k=1
Then the two-armed bandit algorithm is.a infallible and, for everyx € (0, 1),
there exists an event of positi¥g-probability 7/, , on whichX, is nondecreasing
and

(27) Pl - x) 2 €0 +00)  asn— +oo.

Assumptiorf26) s fulfilled, for examplewheny, = C+n , Wlth = <C<-= pB
REMARK. (i) Comparing the rates obtained in (24) and in (27), respectively,
shows that, for step sequences satisfying (26), the two-armed bandit algorithm
converges toward its “target” equilibrium 1 on an event with positive probability
infinitely faster than the corresponding algorithm “in average.” More generally, the

same phenomenon occurs at least at one of the equilibrium points as soon as

Zyn <+oo and Z]_[ (1—max(pa, pp)yk) < +oo.
n=1k=1

This unusual behavior in the field of stochastic approximation is confirmed by
the fact that the assumptions of the standard central limit theorem for recursive
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stochastic algorithms (at ratg’y,,, see [5] among others) are never fulfilled by
the two-armed bandit algorithm: when # pp the martingale incremem M,
involved in the canonical decomposition (6) of the algorithm satisfies

E ((AM, 1%/ F) < X,(1—X,) 230 asn— +oo,

whereas this term is supposed to converge toward some positive real number to
apply the CLT.

(i) Proposition 4 can be slightly improveding the same ingredients as above.
Namely, if Y, ¥2 < 400, then, for every € (0, 1),

P, ({X,, goes to 0 monotonously for large enough > 0

iff Z 1_[(1— PBVk) < +00

n>1k=1
and

P, ({X, goes to 1 monotonously for large enough > 0

ift > [T~ pawe) < +oo.

n>1k=1

By symmetry, it suffices to establish the equivalence, for example, for the equilib-
rium 0. By the Markov property this amounts to showing thatjf y,2 < +oo,

Py(Isox) >0 ifandonlyif > [](1— paye) <+oo.
n>1k=1

The equivalence follows from (25) and the Lebesgue dominated convergence
Theorem applied to the identity

Py (Ioo,x) =Ex(1"[ (1— ﬁ(l— yklAk)))-

n>1 k=1

5.2. Stopping rules. The proposition below derives an upper-bound for the
conditional error probability at time based on some inequality used in the proof
of Lemma 1.

PROPOSITION 9. Assume thatpa, pp € [0,1] and ps # pp. Let Xoo =
as.-lim, X,, and letxy, = 1;,,-,5) be the“target’ parameter of the algorithm
Then for everyn > 1,

Pr(Xoo # Xoo/ Fn)

. [(1-X 2 ] X 2
< max{ min . Lizn Vit _min n_ 2kzn Viy1 '
Xn Xn 1-X, 1-X,
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PROOF Assume for the sake of simplicity thats > pp SO thatx,, = 1.
Assume that the events,, and B, involved in the dynamics ofX,),>o are

specified by (8). Then, for every> 1, one considers}_(,(c”))kzn the (martingale)
algorithm defined for every > n by

)_(1(1") = Xn,
(28)

XM =X 4y, 115 (L, o) — X)),

It follows from Proposition 3 that, for every > 0 and for every > n, )_(,E”) < Xy,
so thatX &) :=a.s.-lim X\ < X,
Now, as in the proof of Lemma 1, one notices that
P (X, =0/F,) <Po(XY =0/F,)
_B(XE - X"/ 7))
A straightforward computation based on (28) then shows that the conditional
variance increment process ¥f") is given for everyk > n by

k-1
(X = pp 3o via X" (1= X7).

l=n

Consequently, still as in the proof of Lemma 1,

P8 Yion VB (X (L= X)) F)
X2

_ P8 Tien Ve B (X" F2)

(29) IP)x(Xoo :O/?n) =<

_ pB}_(r(ln) Zkzn yk2+1
= X2
2
- D k=n Vk+1.
=" x,
On the other hand, we know from (7) that

k
E (XM (1—X™M)/F) = X=X [] Q= psrd
l=n+1

so that

pE Y VEAE(XP (1= X)) F) = Xu(1— X,) (1 - I] @a- mﬁ)).
k>n k>n+1
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Plugging this identity in (29) yields

_Xn

1-X 1
Py(Xoo =0/F,) < X - (1_ 1_[ a- pBykz)) =< X
n

n k>n+1

The upper-bound foP, (X, = 1/F,) follows from a symmetry argument[]
6. Additional results.

Regularity of x — P,(Xe = 1) when ps > pp. One can obtain some
regularity results for the function — P, (X, = 1) as soon ap 4 # pp (keep
in mind that in that settingX », is {0, 1}-valued). Namely,

PROPOSITION10. If pa > pp, the functionx — P, (X = 1) is nondecreas-
ing and analytic on(0, 1].

PrOOF The only point to establish is analyticity. We sketch the proof in the
case of a constant step sequence. One starts from the second equality in (11) and
the tools developed in the proof of Theorem 2. We also adopt the same notations.
Indeed, functiony, is analytic on(0Q, 1] since it is an absolutely decreasing
function. Theny, is analytic as well and consequently soxis> P, (X, — 1).

The extension to nonconstant step sequences is straightforward.

About the distribution oK. When 0< p4 = pp <1 andy,-, 2 < +o0,
the conditional distribution oK o, given{X, # 0, 1} is continuous. This follows
from Theorem 3.1V.13 in [5].

Still open questions. The main open question is, of course, to find a
necessary and sufficient condition for the algorithm to be a.s. infallible. For
example, whem, = pg = 1, assumption (3) is easier to express using the partial
sumss,, of the A,,’s by

1
(30) Z — < 4o00.

n>1""

If A, =logn Ioggn, assumption (30) is equivalent > 1, whereasA,, =
O(T,) in Lemma 1 readg = 0. So we are facing a loglog problem.

Furthermore, it follows from the Borel-Cantelli lemma for independent events
that

. Y, .
limsup-= > limsupliy,>/s, 1} = 1, P.-a.s.
n An n -

when},.11/S, = +oo.
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It is to be noticed that, whem\,, = Iognloggn for someg € (0, 1), this
straightforwardly implies that limsyg, /log S, = +oo (which was the key step
of Lemma 1). Unfortunately, for such sequencgs Lemma 1 only implies that
P, (X, =0) =0iff imsup, X—'; > 1,P,-a.s.

The last remark. Leto,, := min{k > 0,,_1/ U < Xy_1} andog := 0 denote the
increasing break times. Assumption (30) is equivaler®{¢r; = +o0) > 0 for
everyx € (0,1).

Otherwise, all they,’s areP,-a.s. finite for every < (0, 1): this follows from
the expression dP, (o1 > k) and from the Markov property.

Acknowledgment. The authors are grateful to Jean-Claude Fort for stimulat-
ing discussions.
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