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In this work we consider a problem related to the equilibrium statistical
mechanics of spin glasses, namely the study of the Gibbs measure of the
random energy model. For solving this problem, new results of independent
interest on sums of spacings for i.i.d. Gaussian random variables are
presented. Then we give a precise description of the support of the Gibbs
measure below the critical temperature.

1. Introduction. The problem of spin glasses is considered a challenge for
the 21st century from both the theoretical physics point of view [47] and the
mathematical point of view [46]. Spin glasses are alloys like Au—Fe that have
a very small density of Fe. At very low temperature they present remarkable
magnetic properties. On the experimental level, measurements of the magnetic
susceptibility of such alloys at very low temperature were done by Cannela and
Mydosh [8].

As mentioned in [8], the first model used to describe such an alloy was
the Rudderman, Kittel, Kasuya and Yosida (RKKY) model, a long-range model
with alternating sign in the interaction between the Fe atoms. Keeping just the
alternating sign of the interaction, Edwards and Anderson introduced a model
with short-range random coupling [21]. Despite a lack of rigorous results for the
Edwards—Anderson model, a lot of theoretical progress has been made (see [36,
37, 48] and references therein). As a caricature of models with a spatial structure
like the Ising model, mean field models such as the Curie-Weiss model have been
introduced to give a simple partial description of physical phenomena, namely the
existence of spontaneous magnetization at low temperature. The mean field model
associated to the Edwards—Anderson model is called the Sherrington—Kirkpatrick
(S—K) model [45]. From the theoretical physics point of view, much work had
been completed on the S—K model before Parisi [39, 40] introduced his famous
replica symmetry breaking argument. A very important work by Mezard, Parisi
and Virasoro [34] followed (see also [35]). Rigorous results on the S—K model can
be found in [1, 2, 10-12, 25, 28, 31, 46]; however, we are still far from having
complete results and this subject remains a very active field of research.
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Due to the difficulty of studying the S—K model, even from a nonrigorous
point of view, various mean field models have been introduced. Among them
is the random energy model (REM) [16, 17], which is considered to be the
simplest model of spin glasses (see [27]), and a whole class of models called
generalized random energy models (GREM) that present a tree structure [18-20].
Basic rigorous results on the existence of the free energy for the REM and its
fluctuations are given in [7, 22, 26, 38], whereas for the GREM, see [9, 26] and,
more recently, [5, 6]. A very important fact is that the free energy of the GREM
can also be found by using the replica symmetry breaking argument of Parisi (see
[20]), since we know rigorously the explicit expression of the free energy (see [9]);
this is an important test for the validity of the Parisi theory. Various pedagogical
expositions on the REM and the GREM are available (e.qg., [3, 4, 42, 44]).

The Hamiltonian or energy function of the REM can be written as

N1/2
(1.1) Hrem(0) = ——573 > JuOua,
ac{l,...,N}

where the sum is over all theV2subsetsy of {1,..., N}, (Jy,a C {1,...,N})
is a family of i.i.d. standard Gaussians defined on a common probability space
(2,%,P) and oy = [];cq0i With o5 = 1. The above way of writing the
Hamiltonian of the REM emphasizes the mean field aspect of the model, since
all spins interact with a strength that does not depend on their distances.

It is easy to see that the Hamiltoniar8ggm (o), o € {—1, +1}V) of the REM
form a family of 2V i.i.d. Gaussian random variables with mean 0 and variahce
defined on(2, X, P); see [24]. In particular, we can also writélrem(o), 0 €
(=1, +1}V) = (—v/NX,,0 € {1, +1}V), where (X,,0 € {—1,+1}") is a
family of i.i.d. Gaussian random variables with mean 0 and variance 1, or even
(=+v/NX;,1<i<2V)when the relationship with the spiwasis irrelevant. Here
VN ensures that the energy in a volumeis P-almost surely of ordew, as
required by statistical mechanics theory.

Giveng > 0, the inverse temperature, let us denote by

(1.2) INn=ZnB)= Y, e PR
oe{—1,+1N

the finite volume partition function and by

1
(1.3) Fn(B) = BN logZn (B)

the finite volume free energy.

It was proved in [38] that for alp > O, limy_, oo Fy(B) = F(B) existsP-almost
surely and inL? (2, P) for 1 < p < oo (note that what is called free energy in [38]
we denote-8 Fy (8)). The nonrandom functiof' (8) is twice differentiable irng,
whose second derivative has a jumpgat= ./2log2. In fact, F(8) is equal to
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—-B/2— 53/(25) for B < B. and—p. for B > B., as expected from the results
of [16]. In the physics literature this is called a third order phase transition, as
mentioned explicitly in the title of the first rigorous paper on the REM (see [22]).
More results on the asymptotics Bf(8) can be found in [7, 26, 38].

What is important to note is that whef > B., the main contribution
to Fy(B) comes from the terms iy (8) that have the lowest possible energies,
which are theo that have Hrgm(o) of order —N./2log2= —Ng,, that is,
the (P-almost sure) asymptotic value of the minimum df Zaussian random
variables with mean 0 and varian@g; this fact is explicitly mentioned in all
pedagogical expositions (e.g., [3, 4, 42]). In the physics literature, such a system is
said to be frozen in the sense that, in the whole range>f,., the lowest possible
energies give the main contribution to the free energy, while in a “nonfrozen”
system, this contribution occurs only at zero temperature. This can be seen on
F(B) since wherg > ., the free energy does not dependan

To study the fluctuations of the free energy (8), we consider the number
of random variables of the sample that are below some well chosen nonrandom
energy, and then use classical convergence to a Poisson point process [30] to
describe some fluctuations of the model. This was done in [26] for the Boltzmann
factor exgf—pB Hrem (o)) (see also [3]) and in [7] for the partition function.

The aim of this article is to study the finite volume Gibbs meaguges of
the REM wheng > B. andN is large enough. Hergy g is defined for eaclv as
the random probability measure a1, +1}" which gives the configuration the
weight

e~ PHREM(0)

(1.4) un,g(o) = Zn

’

whereZy is defined as in (2).

For a given samplg Hrem(o), o € {—1,+1}), when 8 > B., the main
qguestion is: What are the sample: dependent configurationghere the Gibbs
measure is concentrated, whins very large?

Note first that the sample-dependent configuratiéh which corresponds to

the minimal value of the samplErem(o) is clearly among these configurations.
So instead of considering the variables that are below a nonrandom energy as was
done to get the Poisson point process mentioned above, it is better to consider the
variables that are above the minimal one that is a sample-dependent energy. It is
clear that the order statistics of the random varialblggm (o), namely

N N—1
(1.5) Hrem(c®”) = Hrem(o® ") = -~ = Hrem(0®) = Hrem(o V).

come into play. To obtain information on the support of the Gibbs measure, we
can subtract the minimal energy from all the Hamiltonians; therefore, the spacings
Hrem(o D) — Hrem(o®) and the sums of spacindgtkem(c ©) — Hrem(o D)

are the basic objects we need to study.
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Since our main objective is more the study of the Gibbs measure of the REM
than the sum of spacings per se, we first present a list of questions that we asked
ourselves when we started this work. Then the strategy we used and the results
stated in the next section about the sums of spacings will be clearer.

First, how many successive terths= k in the sum of spacings do we need to
take to have a “good” approximation of the Gibbs measure when considering the
probability measure of—1, +1}" that havs only theske terms?

There are two points to be answered precisely: What does “good approxima-
tion” mean and in whaP-probability sense can we expect that such approximation
holds? For the first point we choose the total variation distance for probability mea-
sures on{—1, +1}V. Concerning théP-probabilistic sense, some care is needed.
We first note that there is a scaling factglV in the definition of the Hamiltonian,
as mentioned previously. Recalling that we have a samplé'o6aussian ran-
dom variables, this factor can be written, up to a constant/ 2g2"¥. So the
first question is related to the behaviorv® log 2 [ Hrem(c ®) — Hrem(o )]
as a function ofk for k = ky that diverges withV. Since we have chosen the
total variation distance, it will be sufficient to neglect all the terms in the Gibbs
measures that are larger thag. An easy way to do this is to require that
2 exp—{(B/B) (V2109 2" [Hrem(o®) — Hrem(oc @)D} goes to zero. The
strongesP-probability sense we can expect to gebialmost surely. At this point,
it is important to note that we do not expect that the Gibbs measure itself, or its
approximation converges almost surely since they merely converge in law. How-
ever, their total variation distance, being a difference, could perfectly converge
almost surely to 0. A similar fact was proved not for the Gibbs measure as a mea-
sure on{—1, +1}", but for an induced measure in the random field Curie-Weiss
model [33]. The worst that could happen by taking such a strong convergence
would be that we get &y that is rather large.

The main result we need for the sum pBsings is given in Pposition 2.2. It
is stated for a sample af Gaussian random variables, instead 8f 2ince these
results have independent interest.

The second question is: Is the approximated Gibbs measure, that is, the one
with only k terms obtained previously, the uniform measuré grpoints chosen
without replacement within %2 points, a point mass at the minimum or some
other value? To be able to answer such questions, the relative weights of the
approximated Gibbs measure and, therefore, the fiyssum of spacings come
into play. We use a classical representation of the Gaussian random variables in
term of uniform random variables, mainly because a lot of explicit distributions
for the spacings of uniform random variables are available. The results needed
for the sum of spacings are stated in Proposition 2.3, where th& firsums of
spacings can be represented as successive partial weighted sums of exponential
random variables.
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Note also that since thiey was found to be able to neglect some tails of the
Gibbs measureP-almost surely, it could be that the Gibbs measure has most of its
mass concentrated on thespin configuration witlkg that does not depend aw.

We will show that this is not the case in general. Results for the approximated
Gibbs measure and the Gibbs measure are given in Section 3.

Another question is related to thg&-dependence of the Gibbs measure. As
mentioned above, the system is frozen at the level of the free energy. Does a similar
fact hold for the Gibbs measure? When the ligitt oo is taken after the limit
N 1 oo, the Gibbs measure converges to a point mass at the spin configuration
that realizes the absolute minimum as is proved in Section 3. So to exclude the
possibility that the system is frozen at the level of the Gibbs measure, we estimate
from below the total variation distance between the Gibbs measure atfinitg.
and its limit wheng 4 co.

Assuming that some or all of the foregoing questions have been resolved—in
particular, that the numbérN) has been determined to obtairalmost surely
a good approximation of the Gibbs measure—then is there an “easy” way to
construct this approximated Gibbs measure? This is the subject of the last section.

2. Someresultsinvolving order statistics and sums of spacings.

2.1. Notation and recollections.In this section, (X;,i € {1,...,n}) are
i.i.d. standard Gaussian random variables with distribution functionil;,i €
{1,...,n}) are i.i.d.U(0, 1), random variables antW;,i € {1, ...,n}) are i.i.d.
exponentially distributed r.vé(1). We defineSp := 0 and S, := Y} 1 Wi,

m € N*. In general we denote by, , <--- <Y, , the order statistics associated
to some random variablé$;, i € {1, ...,n}). We setUp , := 0 andU,, 41, := 1.

Let G be defined by + ®(G(u)) =u, 0< u < 1. ThenG satisfies (see [14],

page 818), as | 0O,

1\ loglog(1/u) + log(4r) ((Iog |Og(1/u))2)
2.1) G(u)=,/2log| - ) — o —5 ).
@1) Gu=y 0g<u) 220007 T O\ og(/u))?2
As it is standard, we can construct the Gaussian random variables by using

X; = G(U;), and sinceG is decreasing, we havk; , = G(U,—;i+1,,). Then, by
symmetry, we have the identity in distribution (denoge)j

d
(22) Xi,n - Xl,n = G(Ul,n) - G(Ui,n)-
Recall the results

(2.3) Ui, 0<i <n+1}2£1{5/8,11,0<i <n+1)
and

Uin \' . .
(2.4) {51.(”) = <U—"> 1<i< n} are i.i.d.U(0, 1) random variables,
i+1n

which can be found in [15], Lemmas 1 and 2, or in [43] and [32], respectively.
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2.2. New results. Before stating and proving the main result of this section,
Proposition 22, we present some preliminary results:

LEMMA 2.1. Forall § > 0, there existsig = ng(8) such that for alln > ng,
we have

(2.5) H Iog( 1n) logn

PrROOF Equation (23) implies that

) v

(2.6) > ]P[|Iog S1| < log(logn)**]
— ]P’HIOQ( "+11> + Iog<1+ %)’ > Iog(logn)1+5].

SinceS1 is exponentially distributed, we obtain

4

<2 Iog(logn)“‘s} >

<2 Iog(logn)1+3]

1

(2.7) P[llog$y| <logllogm ™) = 1~ exp{~(logn)™**} — s

By using the exponential Markamequality and the fact thatl — x)~1 < X
for |x| <1/2,wegettha¥O<e <1,Vn>1,

(2.8) IP’[

which implies after a short computation thatp < ¢ < 1, V§ > 0, In, 5 =
exp2/(1— &)Y +% such thav' n > n, s,

(2.9) Hlog( *11) + Iog(1+ 3)’ > |og<|ogn)1+5] < 2e7¢/4,
n

Then combining (&), (27) and (29) and takinge = 1/2 entails the existence of
ng = no(d) such that (&) holds. O

& — 1‘ > e] < Ze_"82/4,
n

ProPOSITION2.1. We have

Iog(Ul’”) 4_ Z ual
Wi E[W;]

——Z+Z<——w> Z —,

whereZ is a random variable such thatx > 0,

(2.10)

(2.11) P[Z > x] <e CVI/DHI54 gnd  p[Z < —x] < e~ (V3/2+15/4
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Moreoverfor all j > ¢, we have

7 N
(2.12) ]P’[Iog(Ul’") < _z4 [3l09) _ ,og]} S1- eXp(S((I-ng) /)
Ujn J j3/

More generallyVe > 0,V0 < e < 1,3 jo= jo(c, &) andV¥ j > jo,

[clogj 1
<-Z+ —logj —_—.
J n) ] :| J(l—s)c/4

The proof of this proposition necessitates the following result:

(2.13) [Iog(

LEMMA 2.2. For all positivex, for all positive integersjp, j1 (with j1 > jo)
and for all positiver such thattz/jg < 3/4,we have

J1
W, — E[W]

IP) _ Z X

[12, ! }
(2.14) , ; 1
= eXp{—tx + ._<1+ 2.—2) (1+ —)}

Jo Jo Jo
In particular, for 2 < 3/4,
J
(2.15) P Z w >x| < e—tx+2t2(1+2t2)'
=1 [

PrROOE The proof is a consequence of exponential Markov inequality and
Jensen inequality. Indeed, we can write

J1 _
of 3o e ]

I=jo

J1 _ /
<e ™ H E(exp{th

I=jo
W —Ww
<ev [T e(eafs ™)
I=jo
J1
1
_ —ix
—¢ 11__[ 1—12/2
=jo

2t2 ) J1 1
sexp{—tx+(1+'—2)t ZZ—Z}

I=jo
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with (W)) i.i.d. standard exponentials, that are independerilo§ and by using
the inequality(1 — x)~1 < 52 for 0 < x < 3/4 at the last step. Now (24)

follows since
i1<i+/hd—x 1(1+1)
=Jjo 27 g o X% 7 Jo Jo
PROOF OFPROPOSITION2.1. We have, by using (2.4),
U U U;_
Iog( ln)_I g( l,n.“ j l,n)
Ujv” Uzn U/'n
i J-1q
= Z lo < ) Z Iogs(”)

l+l n i= 1
from which we deduce the first equality of {®). Now we can write

(2.16)

Wi W, —E[W] W — E[W] iz E[W
—y Vi )

i=1 i=1 i=j

where the two series converge not only in quadratic mean, but also almost surely
by the Lévy theorem.

Calling Z = Y>_72,(W; — E[W;])/1i, the tail of the distribution oZ decreases
exponentially, as mentioned in (2.11). Indeed, it suffices, on one hand, to
apply (2.15) forr = /3/2 to get the first property o& and, on the other hand,
to note that since

— Wi — E[W]] < =W+ E[W]
B | A

by making exactly the same computation as in Lemma 2.2, we get the same
estimate and therefore the second propertZon

By applying (214) withx = /(clogj)/j andt = \/cjlog j/2, we can say that,
forall ¢ > 0, forall j > 1 such that 3/logj > c,

X W, — E[W] clogj 1+clogj
]P’[Z l > | ; }gexp{——log (1—f)}

I=j

Therefore, for allc > 0, for all 0< ¢ < 1 and3 jo = jo(c, &) such thatj > jo,
we have(l1+ clogj)/j < e, which entails (2L3), whereas fol > e, takingc = 3
gives (2.12). O

Now we can state the main result of this section.
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ProPOsSITION2.2. Forall 0 < é§, forall 0 < ¢ < 1and for allk, satisfying

ky, logk
and 9%

2.17 n ,
( ) katoo logn toeo logn

40 asn — oo,

by definingfor0 <A <land0<w <1,

logn

n(l

(2.18) Ap =X

and

- 2(1— 1)

there existsig = ng(e, 8, A, @) such thatv n > ng, there exist2,, C 2, with

o—Fn/16 )

(220) P[Qn] >1- 4<(Iogn)1+5 + 1— e—1/16

such that ore2,,, for all j such that, < j < ni,, We have

2.21)  VZlogn(X;, — X1.,) > 2logn (1— 1109/ )(1— £),

logn
while for all j such thati,, < j <n,
(2.22)  V2logn(X;, — X1.,) > 2lognv/1— & — G(x,)+/2logn.
In particular, on ,,, for log j/logn 1 1,

(2.23) v2logn(X;, — X1,,) > 2logny/1—¢e — G(A,)v/2logn.

REMARKS.

1. If A, is chosen as a constaitindependent ofi, 0 < A < 1, (2.22) gives

thatVj > ni, /2logn(X;, — X1,) > 2lognv/1—¢ — G(A)(y/2logn) >
2logn(1—c¢) if n > no(r, &) for someng(x, ). When entering various regimes
asniY < j <ni? with A% | 0 for i = 1,2, a cancellation could occur
between the two terms in the right-hand side of (2.22). The choicg, o
(2.18) then allows us to see such cancellation, sincexfer1/4 it provides

that,V j > ni,, onQ,,
(2.24) V2logn(Xj,— X1.) >2(1— o )(1—e)logn > (1—¢)logn.

2. Note that the lower bounds in (2.21) and (2.22), even when obtained by two
completely different methods, are of the same orddr-2 Ja)logn when
Jj =nky.
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3. Note that fom = 2V, under (217), we haver’Vozl]P’[Q‘z‘N] < 00. In the next
section, this allows us to get some results that arelfraémost surely for all
but a finite number of indiced by the first Borel-Cantelli lemma.

4. For completeness, even though it will not be used in the next section, we show
that for 0< 5 < 1, there exist§2; with P(Q} ) > 1— 2exp—+/3/2(logk,)"},
such that ort2; , for all j such thak, < j < ni, and logj/logn | 0, (2.21)
can be refined as

) 1
(2.25) v2logn(X;, — X1,) > log (1 - W)

PROOF OF PROPOSITION2.2. Let us separately consider the two cases as
in (2.21) and (2.22).

Caske (i). jissuchthaui, < j <n. Letus denote by

(2.26) L=L®, Ap,e):= ] {V2logn(Xun — Xn—js10) < f(n, 1)}

J :nin

with f(n, L) :=2logn/1— ¢ — /2lognG(r,).

Note that in this case we are working wherés large with(X,, , — X, j11.,)
instead of(X; , — X1,,) since these spacings are equal in distribution. We claim
that

(2.27) P[L] < 2¢~417loan L ply, < /2(1—¢)logn],

which entails tha¥ 0 < A < 1,3ng andVan > no,
2

(2.28) PlL] <=+ P[Xn.n <~v2(1—¢)logn],
n

after having noticed thatx, 0 <A <1, Vo, O <« < 1, Ing = no(r, ), S.t.
VYn>ng, 41—A,) > 2.
Now, (2.27) is an immediate consequence of

(2.29) P[£N{X,,>~2(1—¢)logn}] < 2p—A(1—2n)logn_
To prove (2.29), note that, on one hand,

n

c L= |J {V2logn(v(L—e)2logn — Xy—ji1a) < f(n, 1)}

J=nhy

(2.30)

and, on the other hand,

(2.31) P[£ N (X0 = V21— e)logn)] < P[A] 4 P[L N A]
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with

n
> (Lxi<60m) — E[ﬂ{xisG(xn)}])’
(2.32) i=t

> (1 — xn>n<1+°‘>/22¢2/x},

whereE[1x,<cx,)}] = 1 — A, by definition of G.
To estimatdP[4], we use Bernstein’s inequality [41], namely:

LEmMmA 2.3. Let (¥;); be independent random variablemean O, s.t.
E[Y?] < oo and|Y;| < 1,Vi.If

n
D, =Y E[Y}]
i=1
and if0 <t < /D, then

]ID[
By using this inequality forY;, := ﬂ{X[EG()\n)} — E[]l{XigG()\n)}] with

t = 2n%2 /3, (L—1)2/x, since D, = ni,(1 — A,), Ino(r,a), Yn > no,
t < «/D,, therefore we get thatn > no,

(2.33) P[A] < 2 4(1—?n)logn
On the other hand,

n

DY

i=1

> t\/Dn:| <2012,

(2.34) A°C [n(l — M) = A (L= )T O223/2/0 <3 1y, <Gy }

i=1
which implies that onA¢ the number of random variablé§ less thanG(4,) is
greater than % n(1— 1,); hence A¢ C {X1+n(1_i,,),n < G(Ap)}andso

n—nip+1
(2.35) IP|:( U Xin> G(,\n)) N (X i = G(/\n))} =0.
k=1

Combining (2.31), (2.33) and (2.35) entails (2.27).
Now (2.28) and the fact that for all@ e < 1,

(2.36) P[X,, <+v2(1—¢)logn]=d"(v2(1—¢)logn) < ¢"/v21-e)logn
give

(2.37) P[L] < 32 1 e~ /VZT=e)logn.
n
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which leads to (2.22), since, for all©e < 1, forall§ > 0, forall 0< A < 1, for
all 0 <« <1, for all k,, satisfying (2.17)3ng = no(e, 8, A, o) such thavn > no,

| n? (logn)+é = 1—e~1/16)"

CaAse(ii). k,<j< n;\n. Note that, because of (2.1), we have,i#qf 0,v | 0O,

ow=ow=2 () - ()

0<IOQIOM) 0(%)

Vlog(1/u) Vlog(1/v)
Fory >0, let
1<j<nk,
Since
P[Qs 1< IP’-QQ N ( Sutl _ 1‘ < e)} +IP’[ Snil _ 1’ > e]
VN n+1 n+1 o
[ Sii. - Sni1
<P —nZ(1+V))\n,Sn+lZ(n+1)(1_8)i|+]P|: _1‘2‘9]
_Sn+1 n+1
rS s 1 Sy
<P nhn > (1+y)(1—8)n+ } +IP>[ L 1‘ 28],
L ni, n n+1

by using (2.3) in the second inequality, it follows from (2.8) witk= y /(2 + y),
that P[Q¢ ] < 4exp—ni,(y?)/(42+7)?).
On QA we have

G(ULn) —G(Ujn)

_ 1 _ Iog(Ul,n/Uj,n)
(2.39) -y 2 '°g< Ul,n) (1 /1 " log(1/Us,n) )

0<Ioglog(1/in))
Viog(1/%,) /-

Let 2, s C 2 be defined by

log(1/Urn) _ 1’ _ 5logdogm*? }

Q5=
0 H logn logn
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Then Lemma 2.1 gives
4
(Iogn)1+8 ’

Let Q, 5 := Q.5 N Q; . Then by combining (2.2), (2.5) and (2.39), & 5 we
obtain that

v2logn(X;, — X1,,)

(2.40) Pl2,5]1>1

(2.41) .
:2|Ogn(1—\/1+ W)(l+o(logé(;gnn))'

Again using (23), we can write

log(U1,n/Uj,n) _ l0g(S1) log(S;/j) log,

2.42 = .
( ) logn logn logn logn

Let

(2.43) Q= {

S 1 nhn

- 1’ < —} and €, = ( N Qj) N Q5.
Jj 2 ik,

Then by using (2.40) and (2.8) with=1/2, we get

1 o—kn/16

(2.44) Pl ] < 4(
On €y, , we have

1091,/ Ujn) _ _l0gj (Iog(logn)1+5>
logn ~ logn logn
which combined with (211) gives

(2.45)

2logn(X;, — X1.n)

_ log j log(logn)i+s
(2.46) —2logn<1—\/1— o0 +O<T)

X <1+ 0('%)).

Note that by Taylor’s expansion, the right-hand side o462 is of the form

o0s (10 (i) (+ o (i)

Hence, if we define, ; by

o |, logj
ap, jlogj =1 —¢,)2logn (1— 1-— logn ),
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with ¢, well chosen, then we get
]P’[( U v2logn(Xj,— X14) <o, Iogj) N an} =P(@)=0
knfjf";'n
and

P[( U +2logn(X;, — X1,) <an,j Iogj) N Qki|
(2.47)

kn S/Snin

. 1 e—kn/16
<P[,]< 4<(Iogn)1+5 Tz e—1/16)’

and therefore (2.21).

To prove (2.25), that is, whenj € Ji, = {j € [ky,nA,], such that
log j/logn | 0}, by Taylor's expansion in (2.41), we have o) s,

v2logn(Xj, — X1,,)

(2.48) _ (_ IOg(ﬁj:Z) +0(|og(gj::))>(1+ 0('%)).

Therefore, to evaluate

P[( U v2logn(X;, — X1.,) <ef, Iogj) N Qn,s}

JE€Jky

wherea;f,n :=1—1/(log j)¥~", itis enough to estimate

U1 X .
Py, ::]P’[( U —Iog(U.’") saj,nlog]) N Qn’5i|.
Jj€Jky, J.n

By using (2.13) withc such that1 — ¢)c/4 > 1 andjp = k,,, and by defining

Uiy c |Og] .
QF = Iog( ’)§—Z+ =~ —logjt,
- ]Q{ Ujn J
we get thal[P[Q;;n] >1-— 1/(k,(,1_8)c/4_1). Now it is easy to check that

Py, < IP’|: U {Z < ( g7 * (@, — 1)) IOQJ’H +P[(2,)°]

JE€Jky

<P[Z < —|xi,|logk,] + P[(2} )]
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with [x;] := 1/(log j)1=" — /c/jTogj, where we have used at the last step that
(Ix;1log j) j>k, is an increasing function of. Hence via (2.11), we get

V3 V3 [clogk, 15 1
_ n — _
(2.49) Py, = expt——-(logk,)" + = o T4t (Aot

which implies (2.25). [

PropoOsITION2.3. Forall § > 0, for all , satisfying(2.17)and for 2} C Q
givenby* 1= Q, x N2, sN an definedrespectivelyin (2.52), (2.40pnd(2.43),
we have

6

(2.50) P[2,]>1- (logm)LH’

and onQ, we haveVv j, 1 < j <k,

I W log(k,) loglo
(251)  V2logn(X;,—X1.) = 5 T 0(%)'
i=1

PROOF Fory > 0 let us define

k
(2.52) Qi = { sup Uj,=Un <1+ V);"}-

1<j<ky

It follows from (2.3) and (29) thatP[ ] < 4 exp(—k, (¥?/(4(2+ ¥)?))).
From now on, our work space will i, ;. By using (2.1), we can write

v2logn(X;, — X1,,)

1
=+/2logn /2Iog<U )
1,n

X 1—\/1+M
log(1/U1.,)

_ loglog(1/Uy,») loglog(1/Uj,n)
41091/ Un) 4 /log(1/U; ,)\/109(1/ U1,

_ log(4n) ( 1 B 1 )
4 |09(1/ Ul,n) \/|09(1/ Uj,n)\/log(l/ Ul,n)

<Iog log(1/ Ul,,,))z (loglog(1/ U ))?
0 - b
log(1/ Uyn) log¥2(1/ U1,,) log®?(1/ U} )
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but by using the same type of arguments as in the proof of Proposition 2.2,
Case (ii), we have, of®, s N 2, [defined in (2.40) and (2.43), resp.],

1 1
1<Sju<8<n<|09(1/ Urn) Jlog(1/ Uj,,,)\/log(l/Ul,,,)>

~ iy (- 1 )
~ log(1/U1n) J10g(1/ Uy, »))/109(1/ U1 1))

logk;,
= o).
log*n

U ('09|09(1/U1,n) 3 loglog(1/Ux1,,) )
1=jzk, \ 109(L/ULn)  Viog(1/U;,)y/109(1/U1,)
__loglog(1/ U ») <1_ 1 )
~ log(1/Us,) J(10g(1/Ux, 1))/ (09(1/Ux,,))
_ 0<Iog(k,,) Igg Iogn)
logn
and also
loglog(1/Uy)\? (loglog(1/U; »))?
Sup ( ) 2 32 )
1<j<k, \\ 109(1/U1,,) log™“(1/Uy,,) 10g*“(1/ U, »)
(Iog(k,,) log Iogn)
= 0o\—mm—"—"" .
log?n

Therefore, we obtain that, ai, s N fzkn, Vj,1<j<ky,,

2logn(X;, — X1.n)

/ 1 log(U1,,/Uj.n) (Iog(kn) log Iogn)
=2 /lognlo 1- 1+ ———————"—+ 0| ——————
gniog Uin { \/ log(1/U1,») log?n
1 log(U1,,/Ujn) (Iog(k,,) log Iogn)
= IO IO — i S 0 = - -
Vo9, ( 001/ UL logZn

I w.
_ m . O(Iog(kn) log Iogn)
_1 l

logn

i=

by using Taylor's expansion in the second equality, and (2.10) and (2.40) in the
last equality. O
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3. Applicationsto REM. We are now able to answer the questions raised in
the Introduction by using the tools developed in the previous section. We choose
n :=2N and useV instead ofi(N), sinceN is related to the volume of our system.
Otherwise, we keep the same notation used up to now, in partiéutar,/2log 2,
with /. > 1.

The Gibbs measure, defined in4}, can also be expressed as

3 _ Z?gl‘P((a)i)e—ﬁ«/NX,«

B.1)  unp(P) :;W((G)i)uzv,ﬁ((f’)i) RSN

where(X;,i € {1,...,2V}) are i.i.d. standard Gaussian random variables [associ-
ated too = {(0);,i € {1,...,2"}}, an enumeration df—1, +1}¥] and ¥ is a real
function defined of—1, +1}", such thaf| ¥ || o := SURygq—1, 41V W (o) < 00.

We denote byc); the (o); to whichX; = X ; ,v is associated, so we can write

2 W(3)0) exp—(B/BeV 2109 2V X, n)
327 exp(—(B/B)V210g 2V X; o)

(3.2) un,p(¥) =

3.1. Approximation of the Gibbs measurelThe first result of this section is
related to how many terms of the order statistics we need to ensure a good
approximation of the Gibbs measure.

THEOREM3.1. Letky satisfy

k logk

(3.3) kn 1 o0, N 200 and Og&N 10 asN — oo.
N N

There exist2y C © and Ng such that for allN > N,

(3.4) P[Qy] > 1 4

' N = (N log 2)1+4
and onQ2y we have
un,g(¥)
(B5) XM W((E)) exp(—(B/BIV210g 2V (X; v — Xy v) + B (W)

S exp(—(B/Be)V 21092 (X; v — X1 o)) + By (1)
with

2||W oo 1
(3.6) |Bn (V)| < B/Be— 1 (kny — )BIF—D/2"
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PrROOF From (3.2), we deduce (3.5) witBy (V) := Z kN+1lI/((a) ) X

exp(—(B8/B.)v2log 2N(Xl ov — X3 ov)). We have to prove only thaBy satis-
fies (3.6), which is a consequence of Proposition 2.2.

Let oy (i) == exp(—(B/Bc)V210g2Y (X; v — Xqov)) and let Ay := Aon
satisfy (2.19). Then

2NN 2N
BN<\IJ)§||\IJ||OO(Z¢N@>+ > qum).

i=ky i=2Niy+1
On one hand, by using (2.24), we have@g,

2N . i ﬁ ) ) -
(3.7) iZZ%NH(pN(l)Sexp{ <ﬂc(1 €) 1) |OgZN} o—N

Withr::ﬁﬁ(l—s)—1>0.

On the other hand, by using (2.21) wih= (1 — 8./8)/2, we have, orR2,,,

> enG)

kNEisziN

- Z exp{——(l— 2logi }

1++v1—logi/log2¥

3.8) frsi=2tie
< Z - -
- _ i@+ Dd-e)
ky<i<2Niy
2 1

= B/Bc — 1y — ]_)(,3/,30—1)/2
Hence (3.7) and (3.8) imply (3.6).0

REMARK. An example ofky that satisfies (3.3) iy = N Iogp(N), where
log, =loglog,_;.

Now we can define the random probability measurg-eh, +1}" by
Sy W((E)k) exp(—(B/B)V 2109 2V (X, ov — X1 o))
it eXp(—(B/BeIV210g 2V (X, pv — X1 o))

and thus show that this measure is a good approximation of the Gibbs measure.
Indeed, by using the total variation distance between two measures given by

(3.10) drv(p,v)=  sup  [u(¥) —v(¥)],
(W1 | W]leo=1}

’

(3.9) mfy 5(¥):=
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the first Borel-Cantelli lemma and the fact that the denominator in (3.5) can be
bounded from below by 1, it is immediate to check the following corollary:

CoROLLARY 3.1. Forallg such thatg/8. > 1, for all ky that satisfy (3.3),
we have with probability 1, for all but a finite number of indic¥s
4 1

(€]
(311) dTV(//LN,ﬁ7 I’LkN,ﬁ) = B/Be — 1(ky — ]_)(,3/,30_1)/2

With this last result and Proposition 2.3 in hand, we can define a second
approximation of the Gibbs measure by the random measufe bn+1}7,

ky N .
(3.12) Ml(jv) 5(W) = 2 k=1 ‘II:((G)k) exp(—ﬁ/ic YL We/0) |
7 Zkllexq_ﬁ/ﬁc D=1 We/b)

where (Wy, 1 < £ < ky) is a family of i.i.d. exponential random variables with
mean 1.

ProPOSITION3.1. There exists an absolute constanisuch thatfor all g
satisfyingg/B. > 1, for all ky satisfying

(3.13) ky 1 oo, %wm mdﬁgﬁ%$gﬁ¢o asN — oo,

we have with probability, for all but a finite number of indiced’:

2
drv (iky B Ml(w),g)

(3.14) scﬁ(ﬂﬁﬁﬂﬁﬁﬁ)a cﬁ@ﬂ@%@%ﬁ}
Be N Be N
4 1
" B/Be — 1 (ky — 1)(B/Be=1D)/2"

PROOE We have

1 2
dTv(M/((N),,g, M;EN);;)
.y ((logkmaogN)) exp{ o B (logky)(log N) }
ﬂc N ﬂc N
as a consequence of Proposition 2.3, the fact¥hate* — 1| < |x|eX! and the
first Borel-Cantelli lemma. Applying the triangle inequality, (3.11) and (3.15)
gives (3.14). O

(3.15)

REMARK. Note that (3.13) is satisfied if we chookg = N log,(N), where
log, (x) =loglog,_;(x) and log (x) = logx.
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3.2. Some properties of the Gibbs measur&he previous results help us to get
more information on the support of the Gibbs measure. Indeed:

PROPERTY 1. As an immediate consequence of Coroll&§ and Proposi-
tion 3.1,we havefor ky satisfying(3.13),

(3.16) |i|’1;I/1TSUp/,LN,l3({(O')1, e @iy )) =0 as.

PROPERTY2. Wheng,. < B < oo, the Gibbs measure cannot be concentrated
on the minimunthat is, wiy. g # 6, -

ProoF.  Considering (3L2) with the trial function¥ ((¢);) = 1=y Vi > 1,
we can write

2
drv (1) 4. 8),)

Sl exp(—B/Be Ty We/O)

T 1+ exp(—B/Be by We/0)

__eXp(—pB/Be(W1+ W2/2))

T 1+ exp—B/Be(W1+ W2/2))
which in combination with Proposition. B, provides that

. eXp(—f/Be (W1 + W2/2)
Tl o) 2 1 e ppa v w2y 0

To go on with the properties, we need the following lemma.

LEmMmMA 3.1. Forall 8 > 0,

k J
(3.17) k“_>moo > exp(—ﬂ/ﬂc > Wz/ﬁ) =¢(B)  as
j=2

(=1

If B> Bc, thenE[¢(B)] < oo. In particular, P[0 < ¢(B) < oo] = 1. Moreovey for
any given sequencg, such thatlim ;. 8, = oo, there exists a subs&r C Q

such thatP[©2] = 1 and, on &,
(3.18) lim ¢(8,) = 0.
proo

PROOF Let X be theo-algebra generated iyvy, ..., W) and let

k I w
aBy=y. exp(—g > 7‘)

j=2 =1
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The positive random variablg (8) is a supermartingale, since we have

1
3.19 E il = .
(3.19) [Sk+1(B) | %k] 1+ 8/ Bk + 1)){k(ﬂ) =& (B)

Therefore, the increasing sequege&3) converges almost surely to some random
variable (). On the other hand, using thetr > 0, log(1 + x) > x — (x2)/2,
Y)_, (01 >logj andy)_,(£)"2 <2 —1/j <2 provides

El¢(B)] = 21‘[ 1+ﬂ/(ﬂck)

j=2¢=1

k
(3.20) < PIB 1

j=2/

1

2 2OO
B2/
<P

=2/

9’

where at the last step we have use(B. > 1. Hence, by the Fatou-Lebesgue
lemma, we geE[¢(B)] < oo and saP[0 < ¢(B) < oo] =

Proving (3.18) requires a little more care, since the probability subset where
¢k (B) converges, denoted k§y(8), depends a priori of.

We can writegi (B) = exp(— (ﬂ/ﬂc)Wl){k(ﬂ) with

Ly
IBC =2 z .
By the same kind of computatlons we did previously, we can show that, for any
sequences, < B, 1 oo, there exist some positive integrable random variables
Z(Bp) such that on the subspa€e:= Nz 2(B,) of P probability 1, we have
liMeros Sk (Bp) =5 (Bp). o

Since for allk, ¢ (B,) < ¢ (Bp) Wwhenp, < B,, we have, also 0’2, ¢(8,) <

¢ (Bp). Therefore, denoting* = inf{8, > 1+ B}, sinceP[¢ (B*) < oo] = 1 and
P[limg 100 €Xp(—(B/B:) W1) = 0] = 1, with probability 1 we get that

& (B) = Z ex

0 < limsup¢(B,) < limsupe ~P/PIWiz (g*) = 0. O

Bptoo Bptoo

PROPERTY 3. At zero temperatutghe Gibbs measure issthe point mass
at the minimum

PrROOF We have
SN exp(—B/Be Xk_ We/0)
1+ exp(—B/Be Xk _  West)

2
drv (i o 3) <2
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which gives with probability 1, via Lemma3,

2t(B)

lim su d B 06 ST
Then Proposition 3.1 prowdes with probability 1 that
2¢(B)

lim supd B,08G),) < .

Now by using (3.18), we get with probability 1,

lim suplim supdtv (i g, 8),) = 0. =
Bptoo  Ntoo

REMARK. Note that there is a result in [29], in the case of “REM for size
dependence,” that deals with the quality of the concentration of the Gibbs measure
on the minimizer of the energy when the temperature goes to zero with the system
size.

PROPERTY 4. With probability 1, the Gibbs measure is not the uniform
measure on they first minima{(c)1, ..., (6)iy}-

PROOF Let v, be the uniform measure adry points. Considering (3.12)
with W((6);) =1=1) Vi > 1, we can write

1 1
14+, exp—B/Be Xh_ Wese) k'

which, combined with Lemma 3.1 and Proposition 3.1, gives that with probabil-
ity 1,

dTv(M;(w) g Vky) =

1

I|m|nf drv (N, gs Viy) = 1+§(ﬁ) > 0. O

PROPERTYS5. With probabilityl, the Gibbs measure is not the measuyg s
for a finite kg.

PROOF Because of Proposition B it is enough to prove that for a finitg,
liminf y400 dTV(MkO PE M,fv) ) is bounded from below by a quantity that does not
go to zero. Considering (3.12) witlr defined byW (o € {(6)1,...,(0)k}) =0
and¥ (o = (6);) =1forallkg <i < ky, we get

drv (2 5o i) 5) = 12 ({61, ()i}
exp(—B/Be S Wi/ 0)

T LN exp(—B/Be Sk We/)

(3.21)
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and so, via Lemma 3.1, with probability 1,

ko
N _ 2 We/b)
iminf doo (0@ . 1@ > SPEB/Bed 2y 0. .
|1r\}1T|org v (/f‘ko,ﬁ’ /’LkN»ﬁ) = 1+¢(B) g

PROPERTY 6. With probabilityl, for 8. < 8 < oo, the Gibbs measure does
not have all its mass concentrated @)1, . .., (6 )k} for a finite ko.

PROOF.  This result comes fromy, g[{(6)1, ..., (6)i}] =1 and
un.gl{@)1, ..., (6)ko}]
=ung[{E)1, -\ @)io}] — tkn.g[{(E)1, - -+, (6)ko}]

+ 1ky p[1 @)1, oo @io}] — ko 8[{(G)1s .-, (B)ip}] + 1

if one notes that
Wiy, g{(E)1, -+ o, (ko }] — o, 8[{(E)1, -, (6o} ]

=tk pl{(G) 1, s @io} ] — ien.p[{ (010 -+, (G)io} ]

= — iy g1 @)1, oy (G)ko )]
By using (3.21) and @position 3.1, we get

limsupuy g[{(G)1 -+, (6)io)]
Ntoo

exp(—B/Be L4 Wi/ 0)

<1
B 1+¢(B)

<1 OJ

3.3. Representation of the Gibbs measur&hanks to the two approximations
of the Gibbs measure given in (3.9) and (3.12), we are now able to propose a
representation of the Gibbs measure and a way to simulate it. First we consider
the measure/x,(jv)’ﬂ defined in (3.9), that we can simulate in the following
way. [Note that we have to pay attention to the relationship betweersthe
and the(o;), since the(s;) are needed for the simulation.] Lét/, ..., Uyw)
denote a 2 sample of uniformly distributed ralom variables of wler statitistics
(Upov <--- < Uy ov). We want to construct exp-(8/8.)v2log 2N(Xk’2N —
X1.v)}, because of (2.2). We consider and simulate only &Relast terms
Ugn ons oo, Ugn gy 11.2v, With ky satisfying (3.3). (Note that this can be done
without having first to order uniform variates by using some faster algorithm (cf.,
e.g., [23], Section 3.26).) Theimdependentlywe choose, one after the other,
ky spin configurations ifi—1, +1}" without replacement. This defines an ordered
sequence of configurations that we d@tt)1, ..., (o)k,). We make the following
claim.
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CLAIM 1. The random measure defined by

e 5(w)
= {III((G)l)
(3.22) ky
+ Y W((on) eXp(—(ﬂ/ﬂc)v 210g2¥ (G(Uy ov) — G(Uk,ZN))>}
k=2

kN -1
X [1+ > eXp(—(ﬂ/ﬁc)v 2log2¥ (G (Uy on) — G(Uk,ZN))>}
k=2

has the same distribution a@ﬂi’)ﬁ

Indeed, the claim is an immediate consequence of the following technical
lemma on spacings of-independent uniform random variables. Foxl} < n,
let £; be the index of the (almost surely uniqué)such that/y, = U; .

LEMMA 3.2. Forall (x;)1<i<x and for all integerk, we have
PUiy <xi, Ui =U;, 1 <i <k]
=P[Uip <xi,1<i <k|xP[U;i,=U;,1<i <k].
Moreover

—k)!
]P’[Ui’n:U,l.,lsisk]:(n ' ) )
n!

PrROOF We have (cf., e.g., [13])
PlUi, <xi,1<i <k]

n!

/Xl /Xk " ﬁ
= e (L= y)" " Loy <yp<-<y<d) dyi.
n—K!'Jo 0 i=1

Moreover, we can show by induction that
PUin <xi,Uin =Up;,, 1 <i <k]

X1 Xk i k
= /(; te A (1 - yk)n ]]-(Ofyl<y2<---<)’k§1) 1_[ dyh
i=1

which completes the proof.[

Thus we have the first representation of the Gibbs measure that can be
simulated. An alternative and easy way to proceed is to con&iﬁN@;yg defined
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in (3.12) instead ofu,(jv)’ﬁ. To simulateu,gv),ﬁ, we just have to consider a

ky sample of independent uniformly distributed random varialbles .., Uy, ,
with %, satisfying (3.13), then choose as before the spin configurations,
(0)1, ..., (0)ky to construct the resulting measure

W((0)1) + 0, W((0)r) exp(+B/Be Xk, (logUp) /£)
14+ 2, exp+8/Be k1 (logUp) /€)

Then we have, in the same way as for the above cIaim,:Zt}fN?;g3 = '“l(ci)ﬁ

Thus this second procedure needs only two independent samplesiansmh
configurations chosen without replacement withih@nhd one ofky independent
uniform random variables of®, 1), so we do not have to work with thg largest
order statistics.

Note that, as mentioned previousky must satisfy (3.13) and so could be
chosen a®V logloglogN, for instance.

(3.23) i) 4(¥):=
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