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MOMENTS AND TAILS IN MONOTONE-SEPARABLE
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A network belongs to the monotone separable class if its state vari-
ables are homogeneous and monotone functions of the epochs of the arrival
process. This framework, which was first introduced to derive the stability
region for stochastic networks with stationary and ergodic driving sequences,
is revisited. It contains several classical queueing network models, including
generalized Jackson networks, max-plus networks, polling systems, multi-
server queues, and various classes of stochastic Petri nets. Our purpose is
the analysis of the tails of the stationary state variables in the particular case
of i.i.d. driving sequences. For this, we establish general comparison rela-
tionships between networks of this class and 8i¢Gl /1/cc queue. We
first use this to show that two classical results of the asymptotic theory for
Gl /Gl /1/00 queues can be directly extended to this framework. The first
one concerns the existence of moments for the stationary state variables. We
establish that for allt > 1, the (« + 1)-moment condition for service times
is necessary and sufficient for the existence ofathmoment for the station-
ary maximal dater (typically the time to empty the network when stopping
further arrivals) in any network of this class. The second one is a direct ex-
tension of Veraverbeke's tail asymptotic for the stationary waiting times in the
Gl /Gl /1/00 queue. We show that under subexponential assumptions for ser-
vice times, the stationary maximal dater in any such network has tail asymp-
totics which can be bounded from belowdsinrom above by a multiple of the
integrated tails of service times. In general, the upper and the lower bounds do
not coincide. Nevertheless, exact asymptotics can be obtained along the same
lines for various special cases of networks, providing direct extensions of Ver-
averbeke’s tail asymptotic for the stationary waiting times inGhgGl /1/ 00
queue. We exemplify this on tandem queues (maximal daters and delays in
stations) as well as on multiserver queues.

1. Introduction. We show in the present paper that properties which have
been known for a long time for the tail asymptotics of isolated single server
queues can be extended to the class of stochastic networks whictoaotone
and separable. This class, which was introduced in [6], contains several classical
queueing network models like generalized Jackson networks, max-plus networks,
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polling systems and multiserver queues. This is also related to the class of topical
(monotone and nonexpansive) maps of [18].

Section 2 summarizes the definition and main results that are known on this
class of networks, and in particular the ergodic theorems that allow one to
determine their stability region. The notion of maximal dater is recalled. In a
generalized Jackson network, the maximal dater is the time to empty the network
when stopping further arrivals. In@/ G /1 queue, this is just workload. In a FIFO
tandem queue, this is end-to-end delay.

Section 3 focuses on the proof of the moment theorem. The assumptions that are
needed here are limited to independence. We establish the following generalization
of the classicaGl /Gl /1 queue moment theorem, which seems to be new within
this setting: for alle > 1, the (o« + 1)-moment condition for service times in any
monotone and separable network is hecessary and sufficient for the existence of
thea-moment for the stationary maximal dater.

The subexponential tail asymptotic theorems are given in Sections 4 and 5. For
surveys on the state of the art for this kind of asymptotics, see [20].

Section 4 gives generic upper and lower bounds which hold for all subexpo-
nential monotone separable networks and which only differ in the multiplicative
constants.

Section 5 elaborates on the bounds established in Section 4. A corollary of
Veraverbeke’s theorem already proved in, for example, [1] and [2] states that, in
the Gl /Gl /1 queue, large workloads occur on a typical event where a single large
service time has taken place in the distant past, and all other service time are close
to their mean. The main new result within our setting is Theorem 8 which extends
the notion of typical event to subexponential monotone separable networks; large
maximal daters occur when a single large service time has taken place in one of
the stations and all other service time are close to their mean.

To the best of our knowledge, among the various classes of networks listed
above, exact asymptotics are only known for irreducible max-plus networks [10].
The aim of Section 6 is to illustrate how the typical event theorem can be exploited
to solve open questions on the exact asymptotics of other monotone separable
networks. This is done for tandem queues in Section 6.1.1 and for multiserver
gueues in Section 6.2.

A first natural question is whether such asymptotics can be obtained for the
maximal daters of all subexponential monotone separable networks. We have no
general answer to this question yet. However, the choice of the tandem queue
example to illustrate the potential use of the method was made on purpose;
a tandem queue is both a generalized Jackson network and a reducible max-plus
network. Exact asymptotics can be obtained along the same lines for the maximal
daters of generalized Jackson networks and of reducible max-plus networks. These
exact asymptotics require a lot of extra technical work, which go beyond the scope
of the present paper and will be the object of two companion papers [7] and [8].
The exact asymptotics in polling systems is under investigation, too.
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A second interesting question is whether such asymptotics can be extended to
other characteristics than maximal daters. As it was shown in, for example, [21]
maximal daters and individual waiting times may have fundamentally different
asymptotics. This question is addressed in Section 6.1.2 where we show how to
use the typical event theorem for monotone separable networks in order to derive
the exact asymptotics for the stationary waiting or response times in individual
gqueues of the tandem queue example.

2. Basicresults on the monotone-separ able networks.
2.1. Framework. Consider a stochastic network described by the following

framework.

1. The network has a single input point procegs with points {7,}; for all
m <n €N, let N, , be the[m, n] restriction of N, namely the point process
with points{7;},,<i<n-

2. The network has a.s. finite activity for all finite restrictions ®f for all
m <n €N, let X, ,j(N) be the time of the last activity in the network, when
this one starts empty and is fed by, ,;. We assume that for all finite andn
as aboveX|, » is finite.

We assume that there exists a set of functipfis f;: R/ x K/ — R, such that
(1) X[m,n](N):fn—m+1{(n’§l)v m<I[l<n},

for all n, m and N, where the sequende,} is that describing service times and
routing decisions.

We say that a network described as above is monotone separable if the functions
f are such that the following properties hold for All

1 (Causality). Forallm <n,
Ximn)(N) = T,.
2 (External monotonicity). For allm <n,
Ximni(N) = Xpmn(N),
wheneverN’ d:‘sf{Tn’} is such thatr, > T, for all n, a property which we will

write N’ > N for short.
3 (Homogeneity). For allc € R and for allm < n,

Ximn(c+ N) =X n(N)+c.
4 (Separability). Forallm <[ <n, if Xpn j(N) < Ti4+1, then
Xim.n)(N) = X410 (N).



MOMENTS AND TAILS 615

REMARK 1. Single-server queues, tandem queues, and generalized Jackson
networks satisfy properties 1-4 above (see [5] and [6] for details).

REMARK 2. Using the terminology of the literature on idempotency (see,
e.g., [18]), the monotone-separable framework can be rephrased in terms of so-
called topical forms. Indeed, for at <n, X}, , can be seen as function of the
bi-infinite vector(..., T_2, T_1, To, T1, T2, ...) of RZ. Since X, .1 :R% — R is
monotone and homogeneous, according to this terminology, the faxgjly,,

—00 <m <n < oo, is a family of topical forms oRZ. The link between these
forms is established via the separability assumption, which allows one to study the
asymptotic formsX _ ,;, Which are the main objects of interest. Of particular
interest to us are the statistical properties (moments, tail behavior, etc.) or the
projective properties of the sequen@g, X (—oo, 1) € R2.

2.2. Maximal daters. By definition, the[m, n] maximal dater is

def
Z[m,n](N) :e X[m,n](N) - Tn = X[m,n](N - Tn)-

Note thatZy,, ,(N) is a function of{¢;},, <1<, and{z;}n<i<n—1 ONly, Wherer, =
T,+1 — T,. In particular,Z, (N) d:efZ[n,n] (N) is not a function off 77} _ oo </ <o0-
LEMMA 1 (Internal monotonicity ofX andZ). Under the above conditions,

the variables X|, ,; and Z, ) satisfy the internal monotonicity property; for
al N,

X[m—l,n](N) = X[m,n](N)7
Z[m—l,n](N) = Z[m,n](N)7 m=<n.

In particular, the sequend&|_, o)(N)} is nondecreasing in. Put

Z = Z(—OO,O] = nll_)moo Z[—n,O](N) < oQ.

LEMMA 2 (Subadditive property af). Under the above conditions, {Z,, 1}
satisfies the following subadditive property: for all m <1 < n, for all N,

Zimn)(N) < Zim,n(N) + Zjj41,0(N).

2.3. Sochastic assumptions and main stability results. Assume the variables
{,, ¢, } are random variables defined on a common probability s(acé , P, 6),
wheref is an ergodic, measure-preserving shift transformation, suckighd,) o
0 = (1,41, &121). The following integrability assumptions are also assumed to
hold:

£r, 1%,

We summarize the main results of [6].

< 00, EZ, < oco.
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LEMMA 3 (0-1 law). Under theforegoing ergodic assumptions, either Z = oo
as.or Z<ooas.

The network is stable i¥ < oo a.s. and unstable otherwise.
Denote byQ = {T,,} the degenerate input process with= 0 a.s. for alln.

LEMMA 4. Under the foregoing ergodic assumptions, there exists a nonnega-
tive constant y (0) such that

jim Zzn=t(@ s BZmn-0(Q) —y©0) as
n

n—oo n n—oo

The main result on the stability region is the following theorem.
THEOREM1. IfAy(0)<l,thenZ <o as. If Z <ooas,theniy(0) <1.

2.4. Further assumptions. Most of the new results of the present paper will be
obtained under the following independence assumption.

(IA). The sequence§;,} and{r,} are mutually independent and each of them
consists of i.i.d. random variables.

For certain results, we shall make the following additional assumption.
(AA). Foralli,

1
2 Zi=Ziin= Yi( ST Yl-(r),

where the r.v.’é/i(j) are nonnegative, independent of interarrival times, and
such that the sequence of random vec'(d@@), e, Yl.(’)) is i.i.d; general

dependences between the components of the veffé)r, YD) are
allowed. In addition,

0

()
3 Z > max Y. a.s.
(3) (n,01(Q) z max E ;

" i=n

2.5. Upper and lower bound G/G/1/00 queues. The results of this section
are new. We assume stability, nameiy0) < «. We pick an integef. > 1 such
that

4) EZ_r,-11(Q) < La,

which is possible in view of Lemma 4. Without loss of generality, one can assume
To=0.

To the input proces®V, we associate the following lower and upper bound
processesV~ = {7, }, where, for alk andn in Z suchthat: = (k —1)L+1, ...,
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kL, T, = Ty-1L, and similarly, N* = {T,"}, whereT," = Ty, if n = (k—1)L +
1,...,kL. Then for alln,

5) X(—n.0f(N7) < X[—n.0/(N) < X[—n.of(NT) = Z[_p.0)(N ).

In other words, both upper and lower bound processes have batch arrivals (of
sizel).

Note that if (IA) holds, the rv.’sZ;_, o(N7) = X[—,.0(N~) — T_p and
Z[—n.0/(NT) have the same distribution and that the r.Zjs, o;(N~) and7_,
are independent.

2.5.1. Upper bound queue. The next lemma, which establishes a first connec-
tion between monotone-separable networks andGli& /1/oco queue, directly
follows from the monotonicity and the separability assumptions.

LEMMA 5. AssumeTp=0.Foranym <n <0,

Z[m,O] (N) = Z[n,O] (N) + maX(O, Z[m,n—l] (N) - Tn—l)-

PutZ, = Z},.»,(N). Then the sequende,,} does not depend oN and forms
a stationary and ergodic sequence.

COROLLARY 1. Assume Ty =0.For anym < 0,
0 0
Zim01 = Zim0)(N) < max. (gk Zi - l_:kZHr,-)
with the convention -9 = 0.
The main weakness of this upper bound comes from the fact that the

corresponding queue may be unstable whereas the initial network is stable. This is
taken care of by the upper bound described below.

COROLLARY 2. The stationary maximal dater Z = Z_«,0;(N) is bounded
from above by the stationary responsetime R inthe G/ G /1/c0 queuewith service
times

(6) Sn = ZiL(n-1)+1.L21(Q)

and interarrival times 7, = Ty, — Tr(»—1), Where L is the integer defined in (4).
Snceb =E5, < ET, = La, thisqueueis stable.
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PRoOF We have

Z=lm 7 10 =, I|m Z{—kL+1,0) = SUPZ[—kL+1,0)
k>0

-1
< supZi_rz+1,0/(N*) <sup max So+Z(s] —Tjy1)
k> >O —k<l O ] —i

0+ sup Z (5 —Tip1) =
k=0 ——k
In these relations, (5) was used to derive the first inequality, Corollary 1 was used
in the last inequality; we also used the fact that

Zin-1+1.L10 (N ) = Zi2 (=141, 01 (Q)

and the conventiof ;' =0. O

The queue of Corollary 2 will be referred to as theupper-bounds/G/1/c0
gqueue associated with the network.

Note that when (IA) holds, this queue |sCﬁ/GI/1/oo gueue. In this case,
R = W +750, whereW is a stationary waiting time and& andsy are independent.

Notice that under (AA),

Ln r Ln
(7) max >y vV <3, < ooy v as.
]:1""”i=L(n—1)+1 j=li=L(n—1)+1

where the second inequality follows from the subadditive proper®.of

The following result does not require (AA) and holds for all monotone separable
networks such that the sequeri@g} is i.i.d.

We say that a nonnegative rX.is light tailed if there exists a positive number
such thaE exp(cX) is finite.

COROLLARY 3. If Zp is light tailed and Ay (0) < 1, then Z(_ o is light
tailed too.

PROOF  From Corollary 2, it is enough to prove that the response frirethe
L-upper-bound queue is light tailed. From well-known results onGiél /1/c0
queue, in the stable case, the stationary response finags light tailed when the
service times are light tailed. But from the subadditive inequality, we have

L
(8) S1=Zp(Q) <) Zi,

i=1
which proves thaf; is light tailed if Zg is. [
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2.5.2. Lower bound fork-join queue. The following result is immediate.

LEMMA 6. Under Condition (AA),

()
9) Z ooo]>R_‘ max sup(ZY Z”)

"n<0

The queue with service timqsfl.(j )} and interarrival time$z;} will be referred
to as thej-lower-boundG/G/1/00 queue associated with the network. LRt
denote the stationary response time in this queue:

R —sup(ZYU) Zr,)

n<0

Then the lower boundR defined in (9) is the stationary response time in

the r-dimensionalfork-join queue with service times{Yi(")}, j=1...,r and
interarrival times{z;}.

2.6. Examples.

2.6.1. Tandem queues. Consider a stabl&/G/1/00 — -/G/1/oc0 tandem
gueue. Denote byc,g’)} the sequence of service times in statioa: 1,2 and
{z,} the sequence of interarrival times at the first station.#Ut= Ec ), ¢ = Et
andp® =b" /q < 1. We havey (0) = max(p®, b?).

Tandem gqueues fall in the class of open Jackson networks, and in the class
of open max-plus systems which both belong to the class of monotone separable
networks (see below). We have the following representation for the maximal dater
(see, e.qg., [10])

q 0
(10) Z{_n0 = Sup sup ( YoP+ 3 02— (To— T,,)),

—n=<p=<0p=<q=<0 \ m=p m=q

(11) Z = Z(_00,0) = SUP SUP ( > oD+ Z 0@ —(Tp— T,,)).

p<0p=<gq=0

Assumption (IA) is satisfied if the sequencés,} and {¢, = (0(1) ,52))}
are ii.d. and mutually independent (we may allow a dependence between

oP ando,\?). Assumption (AA) is also satisfied here with= 2 andy,\”’ = ¢,\",
i=12.

The maximal dater with index is the sojourn time of customer in the
network, namely the time which elapses between its arrival in station 1 and its

departure from station 2.
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As for the L-upper-bound queue associated with this network, the expression
for s, is here

J L
S W @
(12) Sn = max (Za(n—l)L—l-i + Za(n—l)Lﬂ')'
/=t \i=1 i=j

2.6.2. Multiserver queues. Let
w,=(wd, . .. wm)

be the Kiefer—-Wolfowitz workload vector in th&l/Gl/m/co queue with

interarrival times{z,} and service timego, }. Heren is the customer index and
,E’), i =1,...,m, are the workloads of the servers at thth arrival time,

arranged in nondecreasing order. More precisely, we as$me (0, ..., 0) and

(13) Wyir1=RW, +e0, — iTn)+

fori > 0,wheree; = (1,0,...,0)andi = (1, 1,...,1) arem-dimensional vectors
and the operatoR permutes the components of a vector in nondecreasing order.
For a multiserver queue,(0) = Eog/m.

Assumption (lA) is satisfied under the assumption that the service times are
i.i.d. Assumption (AA) is not satisfied here.

The maximal dater associated with customeis the time which elapses
between its arrival and the time when all customers still present at its arrival time
have left the system (including customgy

Zio.n = max(WV 4 o, Wim).

2.6.3. Generalized Jackson networks. Consider a generalized Jackson net-
work with r stations. We denote by:

1. {a,ﬁk)} the i.i.d. sequence of service times in statton

2. {M,(,i)} the i.i.d. sequence of routing decisions from statipwith values in the
set{l,...,r}.

3. {u,} the i.i.d. sequence of routing decisions for the input process; also with
values in the setl, ..., r,r + 1}, whereu,(/) =r + 1 means that a customer
takingnth service at stationleaves then the network.

4. {r,} the i.i.d. sequence of interarrival time.
Under these assumptions, both (IA) and (AA) are satisfied. We have
v
(14) v =36
1

with v(j) the total number of visits of customer 1 (the customer arriving at fighe
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to station; in the[1, 1] restriction of the network, namely when this customer is
the only one to enter the network. The random variablgs, j =1,...,r, are
obtained from the sequences of routing decisions (see [5]).

In this caseZ|_, ) is the time which elapses between the arrival of customer 0
and the time when all customers have left the system, given that arrivals are stopped
after Tp.

2.6.4. Max-plus networks. The class of open max-plus networks also falls in
this framework (see, e.g., [6]). A typical example of this class is that of tandem
gueues. Tandem queues form a reducible open max-plus network. For examples of
irreducible networks of this class, see [10].

3. Integrability of stationary maximal daters. We assume (IA) and stabil-
ity, namelyiy (0) < 1.

Let W denote the stationary waiting time in tdeupper-bound3l /Gl /1/00
gueue of the network. The following result is well known.

LEMMA 7. For anya > 1, EW® Lisfiniteif and only if Esg isfinite.
Therefore R = W + 5 is such thaER* 1 is finite if and only ifESY is finite.

COROLLARY 4. IfEZ§ < oo, then EZ{" = o] < 0.

PROOE We have
0

~ < 2: 7

—L+1

Therefore ifEZ§ < oo, thenEF is finite. Thus EW®~! andER*~? are finite,
too. We conclude the proof by using the bouAgd . o < R (see the proof of
Corollary 2). O

Under condition (AA) EZ3 is finite if and only if for all j, E[(Zo(j))*] is finite.
The following theorem is then an immediate consequence of Lemmas 6 and 7.

THEOREM 2. Under assumptions (IA) and (AA), if E[Z( OOO]] is finite, so
ISEZG.

ExamMpPLES. All results are given under the assumption that the system under
consideration is stable.

1. Tandem queues. The system response time has a moment ok erdeiff the
service times in both stations admit a moment of order
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2. Multiserver queues. In steady state, the time to empty the system has a moment
of ordera — 1 if the service times admit a moment of order

3. Generalized Jackson networks. The stationary maximal dater has a moment of
ordera — 1 iff all service times have moments of orderSince the stationary
maximal dater is not less than the residual workload at any station, we get if all
service times have moments of orderthen the stationary residual workloads
and the stationary queue lengths at all stations have moments ofcordér
Since the number of customer services has a geometrical tail, one also deduces
from this that stationary sojourn times also have moments of erdetf.

4. Boundsfor subexponential tail asymptotics.

4.1. Assumptions and notation. Here and later in the paper, for strictly
positive functionsf and g, the equivalencef (x) ~ dg(x) with d > 0 means
f(x)/g(x) — d asx — oo. This equivalence may also be rewritten A&) =
dg(x)(L+0(1)) =dg(x) + o(g(x)) =dg(x) + o(f(x)), whereo(1) is a function
which tends to 0 ast tends tooo, and o(g(x)) is a function such that
o(g(x))/g(x) — 0 asx — oco. By convention, the equivaleng&x) ~ dg(x) with
d =0 meansf (x) = o(g(x)). We will also use the following notation:

1. f(x)=0O(g(x)) to mean limsup(x)/g(x) < oo and liminff(x)/g(x) > 0,
2. f(x)=0(g(x)) tomean limsug (x)/g(x) < 0.

4.1.1. Tails. Let& be a nonnegative r.v. with distribution functiéghsuch that
PE>x)=1—F(x)=F(x)>0forallx. Let&, & be independent copies &f

DEFINITION 1. £ has aheavy-tailed distribution (HT), if, for anyc > 0,
o0
E exp(c§) E/O explcx) dF(x) = oo.
DEFINITION 2. £ has dong-tailed distribution (LT), if, for anyy > 0,
F(x+y)~F(x) asx — oo.

Any LT distribution is HT.

DEFINITION 3. £ has asubexponential distribution (SE), if

P(1+&>x)~2F(x)  asx — oo.

Any SE distribution is LT. For basic properties of subexponential distributions,
see, for example, [13].
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4.1.2. Network assumptions. Consider a distribution functiof on R™ such
that the following hold:

_ (&) F is subexponential, with finite first momeM = Jo° F (u)du, where
F(u) =1— F(u) denotes the tail of'.
(b) The integrated tail distributioR™®,

FS(x)=1— min{l, /Oof(u)du} =1-F (x),

is subexponential.

Here are a few properties satisfied Bythat will be needed later on and that
follow from the fact thatF'* is long tailed.
Whenx — oo,

(15) Fx)=0o(F (x)).

As a corollary, there exists a nondecreasing integer-valued funstier oo and
such that, for all finite real numbebs

Nx

(16) Y F(x +nb)=0(F (x)), x — 0.
n=0

In particular,

(17) N, F(x) =0(F’ (x)).

Such a c.d.f.F being given, consider a monotone separable network satisfying
(IA) and (AA) and such that the following equivalence holds wheands toco:
(c) Forallj=1,...,r,
P > x) ~dVF(x)

with 3°;d) =d > 0.
For a monotone separable network, the three assumptions (a)—(c) will be
referred to as (SE). Under (SE), the following holds:

o0 . o
(18) / P(Yl(’) > y)dy ~dDF" (x) asx — 0o.
X
AssuMPTION(H). We also introduce the following assumption (H):

P(ZYl(j) >x> ~P< max Yl(j) >x>
1

1<j<r

(19) r r
~ SR > x) ~ Y dDF ).
1 1
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Note that the very last equivalence follows from (SE). Assumption (H) is,

for instance, satisfied in the particular case when the random variﬁ{)ﬂbare
mutually independent; in Section A.2, we give sufficient conditions for (H) to hold
that go beyond this particular case.

Take any 1< ij, i» <r, i1 # i2. Since

P(maXYl(j) > x) < ZP(Yl(j) >x) — P(Yl(il) > X, Yl(iZ) > x),
J ,
J

we deduce from (19) that
(20) P(Yl(il) > X, Yl(iZ) > x) =o(F(x)).

REMARK 3. In what follows, we will not need i.i.d. assumptions on the
interarrival times{z,}. As it follows from Theorem 14, the results we prove will
hold also in the more general situation when these variables satisfy the following
three conditions:

1. {z,} forms a stationary ergodic sequence with a finite positive nigan= a.

2. {r,} is independent o{Y,S"),j =1,...,r}.
3. Forallg < a,

1
P(Sup(na— > rl-) > x) =o(F' (x)).
n=0 i=—n

(See [4] for the proof in the single-server queue case.)

4.2. Tail asymptotics for the supremum of a random walk with subexponential
increments.  We now remind the well-known result from [14] and [22]. We use
negative indices in order to link the result with queueing applications.

THEOREM 3. Let {§,} be an i.i.d. sequence with negative mean E&; = —«,
So=0,5_,=Y"1&_; and S = sup,- S_,. Assumethat there exists a distribution
function F on [0, oco) suchthat F* is subexponential and P(&1 > x) ~ d F (x) with
d >0asx — oo. Then, asx — oo,

P(S > x) = (1+0(1)) gfs (x).

In particular, consider a Gl /Gl /1/oc0 queue with i.i.d. service times {o,,} (with
mean b) and i.i.d. interarrival times {t,,} (with meana > b) and put &, = o, — 1,,.
Assume that P(o1 > x) ~ dF(x), with F as above. Then the stationary waiting
time W and the stationary responsetime R of customer O are such that

P(R > x) ~ P(W > x) = (1 + o(1)) a%fs (x).

In particular, iE[he distribution function of ¢ is F, then P(R > x) ~P(W > x) =
(1+0(1) A F (x).
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The following lower bound is also known (see, e.g., [4]) and was obtained by
the use of the strong law of large numbers (SLLN):

THEOREM4. ConsideraG/G/1/oco queuewithi.i.d. servicetimes{o,} (with
mean b) and independent stationary ergodic interarrival times {t,} (with mean
a > b). Assume that P(o1 > x) ~ d F(x), where d > 0 and where the integrated
distribution F* islong tailed. Then

P(R > x) > P(W > x) > Lbfs(x) +o(F ().
-

4.3. Bounds.

4.3.1. Upper bound. Let Z = Z_,0; and let L be the integer defined
in Section 2.5 and lef be the service time in the associatéeupper-bound
Gl /Gl /1/00 queue. R

Putb = ES and note thaE# = La. Thenp = 2 = Ay (0)(1+ 8) < 1 where
8 may be chosen as small as possible. We deduce from (7) and (H) that

P(51> x) ~dLF(x).

Thus, from Theorem 3,

1
La—b
1
NLa—E

~ 0
P(R > x) ~ / P(s > y)dy
X

00 . d —
/ dLF(y)dy = mF (x).

HereB/L — y(0) asL — oo. We have proved the following.

THEOREMS5. Under the (IA), (AA), (SE) and (H) assumptions,

(21) Iimsup@g lim lim P(_Ii”): d .
xoo F(x) T Loooxme Fri(x)  a—y(0)

REMARK 4. The assumptions of Theorem 5 bear on the random vari-
abIesYl(’). These can be weakened by considering conditions on the random
variablesz, = Z;, »; as follows: If the random variables, are i.i.d. with distrib-
ution G such that bothG andG* are subexponential, and if the random variables
7, are i.i.d. and independent of th&,,} sequence, then

P(Z > x) - 1

22 l = .
22) gy G'(x) ~a—y()

The proof of this is based on Corollary 2 and on coupling arguments.




626 F. BACCELLI AND S. FOSS

4.3.2. Lower bound. From (9),

0 1
Z=7(000>R= maxsup(Z v\ — > rl-) = maxR"/).
J n<0 J

i=n i=n
Then from Theorem 3,
av

=)
0l &

P(RV) > x) ~
with b) = EY;”. Note that

> P(RY) > x) = P(maxR(j) > x)
- J

23 . . .

@3) >Y PRV >x)— Y P(R™ >x, R > x).
J i1#i2

Since, for anyi1 +# io,

(24) PR > x, R% > x) = o(F’ (x))

(see Section A.1 for the proof), we get

P(R>x)=)Y PRV >x)+0o(F’ ().
J
Thus, the following theorem holds.

THEOREM6. Under Assumptions (1A), (AA), (SE) and (H),

.. Pz . P(R "o4W
(25) Immf% > lim %: ~.
x>0 Fi(x) x>0 Fi(x) j:la_b(])

REMARK 5. The asymptotics for the lower and upper bounds are the same up
to multiplicative constants. So Theorems 5 and 6 inRlg > x) = O(F ' (x)).

In the single-server isolated queue cagé)) =b = M, b = Lb andd = 1.
Therefore, in this case the upper and lower bounds coincide.

4.4. Examples.

4.4.1. Tandemqueues. The definitions and notation are those of Section 2.6.1.
We assume that
(26) Fi(x)= P(a(i) > x) ~ dDF (x),
thatd = d + d@ > 0 and that bothF and F* are subexponential. Assump-
tion (H) is valid if we assume in addition thaﬁl) anda,ﬁz) are independent.
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Denote byZ the stationary sojourn time in the network. We look for the
asymptotic behavior of the functidd(Z > x) asx — oo.
The lower bound (25) is
P(Z > x) d@d d®

liminf a) —a—bd Ta—p@

Sincey (0) = b = max»®, b@), the upper bound (21) reads

. P(Z > x) d
limsup—; < .
X—00 F (x) a—>b

This upper bound was proved in [10].

4.4.2. Generalized Jackson networks. The definitions are notation and those
of Section 2.6.3 and of Section A.2 in the Appendix. We assumeRtat) >
x) ~ 1Y F(x), that }";1¢) > 0 and that both and F* are subexponential.
Putz) = Ev) andb) = EYW) = n(WEs), Without loss of generality we
may assumé‘/) to be positive for allj. The network is stable if (0) < a, where
y(0) = b =maxpb?, ..., b") (see, e.g., [5]). Assumption (H) is valid (see the
example at the end of Section A.2).
Denote byZ the stationary maximal dater. Then, from (25), the lower bound for
P(Z>x)is
P(Z > x) A [)PRE))
_— >

liminf —; > _
X=>00  F7(x) 1 a— b

and the upper bound (21) reads
P(Z > x) - S 1Dg)

limsup—
x—)oop Fs(x) -~ a-b>b

4.4.3. Max-plusnetworks.  Similar bounds were studied within the framework
of open, irreducible max-plus networks in [10]. As in the single-server isolated
qgueue case (which is an instance of such networks), the upper and lower bounds
coincide, which yields the exact asymptotics. However, the exact asymptotics are
not known for reducible max-plus networks, even for the particular case of tandem
queues.

5. Typical event of a subexponential monotone-separ able network.

5.1. Typical event of a subexponential GI /Gl /1 queue. This section contains
gualitative indications on how rare events occur in subexponéitigl /1 queues
in terms of asymptotic equivalences involving the so-called typical event.

Results of the same nature were first stated by Anantharamin [1] in the regularly
varying case (see Theorem 3.1 therein) and by Asmussen and Klippelberg in [2].
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However, we could not find the equivalences (Corollary 5) precisely needed for

the extension to monotone separable networks (Theorem 8) in any earlier paper.

Some notation and ideas of the proof of Corollary 5 will be used in Theorem 8.
Consider &l /Gl /1/00 queue with mean interarrival times= Et,, and mean

service times = Eo,, wherea > b. Denote byF the distribution function ob

and assume thdft satisfies (b) of (SE) (i.e £* is subexponential), and |&f, be

the associated function defined in Section 4.1.2. Let

n n n
§n =0y — Ty, S:,-:Zf—i, SZ=ZO'—1'7 Sn=Z$—iESZ_S;-
1 1 1

COROLLARY 5. Let W (resp. R) denote the stationary waiting (resp.
response) time of customer 0 inthe FIFO GI /Gl /1/00 queue. For any x, let {K), .}
be a sequence of events such that:

(i) For anyn, theevent K,, , and the random variable o_, are independent;
(i) P(Kn x)— luniformyinn > N, asx — oo.

For any sequencen, — O, let
(7) Apx=KnxN{o_p>x+n@—-b+n,)} and A= ] Aux

n>Ny
Then, asx — oo,
P(W>x)~P(W=>x,A;)~P(Ay)

(28) ~ Z P(WW>x, A, )~ Z P(An.»)
n=Ny n=~Nx

and

(29) P(R > x) ~ P(W > x).

ProoOF Simple calculations using the fact th&t is long tailed show that, as
X — 00,

Z P(An,x) = Z P(Kn,x)P(o'—n >x+n(a—-b+ nn))

n>Ny n>Ny
_ 1
~ Z F(x+na—b+mn,))~——F (x).
) a—>b
Thus, if the sequencéX, .} and{n,} are such that, for all sufficiently large

(a) the events,, . are disjoint for alln > N,;
(b) A,x S {W > x}foralln> Ny;
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then
P(W>x)>P(W=>x,A,) =P(A))

=) PW>x,A,0= ) P(Anx>~iF (x).
n>Ny n>Ny
Combining this with Theorem 3, we get the equivalences (28).
We now construct two specific sequen¢&s .} and{n,} satisfying (a), (b) and
the assumptions of the corollary. Due to the SLLN, there exists a nonincreasing
sequence, — 0 such thake, — oo and, ast — oo,

Sk S¢
P(T—a < &, T—b‘fﬁ‘k.’_leZ}’Z)—)l.
Putn, = 3¢, and
Sy Sy
(30) K,x= X <& VNy<k=<npNn T_b <er+1VNy<k<n

Clearly, the conditions of the corollary are satisfied. Simeg > b for all
sufficiently largen, on the evens,, ,,

W=>S8,>x+nn,—2n—Lse, —b>x.

In addition, the eventa, ., n > N,, are disjointifey, < (a —b)/2. Indeed, on the
eventA, ., we then haves, > x andS;_; = maX<j<,—15; <MaX<j<,—1/j(b—
a+ 2¢y,) < 0; and the event§S: 1= <0}N{S, > x} are obwously disjoint.

Take now any other sequenng,x} and{7n, } satisfying the conditions of the
corollary and denote the corresponding eventsAy,} andA,. Then

IP(Ay) — P(A4,)|

Sp( U {g_n>x+n(a—b+min(nn,ﬁn))})

n>Ny

- P( U Knx D Ign,x N {U—n > X +”l(a — b+ max(n,, ﬁn))})

n>Ny

< Y Plo—p>x+n(a—b+min(,, i)

n>Ny
— Z P(Ky . N I%,,’x N{o_p >x +n(a —b+maxn,, 7,))})
n>N,
<Ay Y. F(x+n(a—b+maxu, i)))
n>Ny
+ 2 (Flx +n(a —b+minm,, 7))
n>Ny

- f(x + n(a — b+ maxny, ﬁn))))’
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where A, = sup,. y, (P(Ky ) + P(Ec’x)) — 0 asx — oo. Thus, both terms in

the last expression aF’ (x)), and the equivalences (28) hold for sequences
{Ky.x} and{i,}.
Finally, the equivalence (29) follows from the relatidh = W + oy, the
independence and the fact that the tailWdfis heavier than that of [see (15)].
O

The eventd, (which will be referred to as thigpical event of the subexponen-
tial GI /Gl /1 queue in what follows) occurs if there is only one big service time
and all other service times or interarrival times follow the SLLN.

5.2. Key equivalences for the maximal dater of a subexponential monotone-
separable network. In this section, we consider a monotone-separable network
satisfying (1A), (AA), (H) and (SE). The functiow, is that associated with the
reference distribution functiof’ of the (SE) assumptions.

THEOREM 7. Let Z be the stationary maximal dater of some monotone
separable network. Denoting A, the typical event of the L-upper-bound queue
(more generally we will add a hat to indicate that a variable pertains to the upper
bound queue), we have

oo
(31) P(Z>x)~P(Z>x,A)~ Y P(Z>x,Auy)
n=Ny
and
(32) P(Z >x,A,) =0(F' (x)).
Also, for any randomvariable Z suchthat Z < Z ass.,
(33) P(Z>x)= Z P(Z > X, Knx) + o(fs(x)).
n>Ny

PROOF SinceZ < R a.s.,
P(Z >x)=P(Z > x, A\x) +P(Z > x; R > x, (Ex)c)
=P(Z > x, Zx) +0o(F’(x)) = Z P(Z > x, an) +o(F' (x))

n>Ny

from Corollary 5. -
From Theorems 5 and €(Z > x) = ©(F ' (x)). Thus,

P(Z>x,A)=P(Z>x)—0o(F'(x)) =0(F (x)) —o(F' (x)) = O(F"(x))
and both (31) and (32) follow.
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The main result of the paper concerning subexponential monotone separable
networks is the following theorem, which can be seen as a network extension of
Corollary 5 and which gives the shape of the typical event creating a large maximal
dater in such a network.

THEOREM 8. The assumptions are the same asin Theorem 7. Put b = y (0).
Forany x andfor j=1,...,r,let {K,EQ} be a sequence of events such that:

() For any n and j, the event K,EQ and the random variable Yﬁ’; are

independent; .
(i) Forany j, P(K\'}) — 1uniformlyinn > N, asx — oo.

For all sequencesn,(i’), j=1,...,r, tending to O, put

A= KDY > tnfa = b)),

(34) Lo reo
AV = AY) and A,=[]AY.
n=~Ny j=1

Then, asx — oo,

,
P(Z>x)~P(Z>x,A,)~ > P(Z>x,AY)
(35) F oo o
~2 > P(Z>x A7)
j=1n=N;

Smilarly, for any randomvariable s.t. 7 <7,

P(Z>x)=P(Z>x,A)+0(F’(x))

(36) =Y "P(Z>x,AY) +0(F’(x))
1

=" Y P(Z>x,AY)) +o(F'(x)).

j:l n:Nx

If P(Z > x) = ©(F " (x)), one can replace the last equalities by equivalences and
deletethe o( F* (x)) termsin the last relation.

The equivalences (31) and (35) will be the key relationships for the exact
asymptotics of the examples of Section 6. They show that for the monotone
separable network also, whenever the maximal dater is large, at most one of the
service times is large whereas all other ones are moderate.
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ProOOFE We will only prove the equivalence

r o0
@37) PZ>x)~Y > P(Z>x, AY).
j:lVl:Nx
The other equivalences in (35) may be obtained similarly.
We start the proof with the following three reductions.
First, it is sufficient to prove the equivalence (37) when replacing each of

the eventsK,(,{?c by the whole probability spacg. Indeed, putfi,(,{l = Yﬁ’; >

x+n(a—>b+ nfi/))}. We know from Theorem 7 tha®(Z > x) = O(F "’ (x)).
Suppose that

PZ>x)~Y > P(Z>x AY)).

j=1n=Ny
Then
.
Y Y Pz >x,A,(l{))C)
j=1n=Ny
r r
=Y Y P(Z>x,A9)=>" 3 P(z>x, AY)\ AY)).
J=1n>Ny J=1n=N,

The result then follows from the fact that the last subtracted sum is nonnegative
and is not bigger than

> PADIP((K)) < AWO(F’ (1) = o(F (v)

sinceA(x) = maxXi<j<, SUR,> v, P((K,E‘,";

Second, it is sufficient to consider the ca;é@ =0 fo_r alln and;. This follows
from the following bound wheré, = max; sup,. . (75) "

)y — 0 asx — oo.

r .
Z Z P(Z>x,Y£/n) > x +n(a — b))
j=1n>N, s :
—P(Z>x, YD > x4n(a—b+ 0

<3 Y P e(x+nl@a—b),x+na—b+35y)))
Jj=1n>Ny

= (140(D)dF’ ! !
=(1+o®) @%a—b_a—b+%

and a symmetrical bound for the negative part;,i:-ff. Thus it is enough to prove
the equivalence

) =o(F'(x))

(38) PZ>x)~Y Y P(Z>xYY) >x+n@-b).
j=1ln>N,
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Third, if there exists a sequeneg < (0,a — b), e — 0 such that, for any.,
the following equivalence takes place (whégfe=b + ¢r):

(39) P(Z>x)~ZZPZ>x Y(])>x+n(a—bL))
j=1ln>N,
then (38) holds. Indeed, takg < (a — b)/2. Then
r .
Y3 P(Z>x, YU > x +n(a—byp))

—P(Z>x.YY) > x +n(a—Db))

<> 3 P(rY) elx +n@—br),x +n@— b))

j=1n>N,
s 1 1
=(1+0(1)dF (x)( . —a_b)
<(1+o0)—=F (x).

(b)

Letting L — oo, we derive (38) from (39).
Before proving (39), we recall that, from conditions (SE) and (H),

r L
P(§1>x)~P(UU (v > ) ZZP v >
j j=1i1=1

SinceF is long tailed, we can replace the latter equivalences by

r L .
P(51>x) ~ P( UUrY > x+1i@- bg})
(40) '

More precisely, when denoting the event in the left-hand sid€ bgnd the event
in the center byD,, we getC, < D, and

sup P(Dy\ Cy)
y=x F(y)
whenx — oo, while P(C,) = ©(F (x)).

We now prove (39). For ang, put N, = N,/L (more precisely the integer part
of this ratio) and note thad, also satisfies condition (16). Take sufficiently

(41) =o0(1),
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large and seb; = Esg/L = b + ;. For the L-upper queue, one can take the
typical event of the form

A, = U {(s_,>x+nLa—bp)}= U A\n,x.
n>Ny n>Ny
From Theorem 7,
P(Z > x) ~ Z P(Z > x,5_y >x+mL(a—byp)).
m> Ny
From (40) and (41),
Z P(Z>x,5_n >x+mL(a —byr))

m>Ny

=(1+0(1))

r L
x 3 S S PZ>x,YY), > x4mLa—by)+1a—bp)),
m>N, J=11=1

where the uniformity inm required to obtain the term(1) follows from the
uniformity in y in (41). So

\
PZ>x)~Y Y P(Z>x,YY  >x+n—bp)
j=1ln>N,

-
~Z Z P(Z > x, Y(’)>x+n(a—bL))
j=1n>N, U

6. Two examples of exact tail asymptotics. This section gives two illustra-
tions of the use of Theorem 8 in order to derive exact asymptotics. Without loss
of generality we can assume interarrival times to be constants and equédde
Section A.3).

6.1. Tandem queues. For tandem queue, the assumptions on the tails of the

service times are those of Section 4.4.1. Hlé,fé? = 0,5]) so that (H) trivially

holds, since the service times are independent. The results are stated for the two-
station case, but the extension to tandems (or treelike networks) of any dimension
is immediate. )

Choose a sequengé, satisfying (16). LelW,E” be the stationary waiting time

of customenm in queuej =1, 2, andr,Ez) be the interarrival time between th¢h

and (n + 1)st customers to the second queue. A;,}elf = 0,51) T, = 0,51) a,
,ﬁz) = 0,52) (2) andgn 0,52) ,f_lgl We will also use the following notation:

SYEL sy, seh=yol. =12
i=1 i=0

i=1
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The following relations hold:

(42) w2 =max(0, W +£D),  j=1.2
and

. 1 1
(43) @ =—min(0, W +£®) + 0 > o)
SO0 thatr,ﬁz) = orf_lgl if W,ﬁl) + EVED > 0. In addition,
(44) Z=W + ol + W2 +of?.
Also, from (11),

q
(45) Z= sup ( Z 0,,(11) + S(g"’z) + pa).
—00<p=q=<0 \ m=p

Similarly, for anyn, the stationary response tini&_..,_, of customer(—n)
satisfies the relations

Zeoom=WY 4oV w24 5@

(46) q —n
= sup ( Z oD 4 Z @ +(p +n)a>.
m=p

—oco<p=<qg=<-n m=q

6.1.1. End-to-end delay. In this section, we prove the following exact asymp-
totic, which refines the bounds of Section 4.4.1 (these bounds do not coincide in
general).

THEOREM9. Under the assumptions of Section 4.4,

dd® d®

47 P(Z > x) ~
@7) (Z > x) (a_b+a_b(2)

)fs(X),
where b = max(®V, @) =y (0).

REMARK 6. As a corollary of Theorem 9 and of results from [3] and [16], one
can easily derive sharp asymptotics for the stationary queue lghgthQ1 + Q2
in the tandem queue. Also, the result may be easily extended to queues in tandem
of any finite length.

PROOF OFTHEOREM9. From Theorem 8, we get

2 oo 2
P(Z>x)~ Y PZ>x AD)~ 3 Y P(Z>x AY)).
j=1 n=Ny j=1

We have to find appropriate sequen¢&s’)} and{n’’’}.
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(1)
X

Start withj = 1. For any{K ' b

}andn,” — 0,
1 @ b, dP
Y PZ>x,A8)< > Pl >x+na—b)+n’)~—F ().
n>Ny n>Ny a—b
For the lower bound, consider the events
1
K,gl))c — {S,ia_l) > n(b(l) _ nzl))’ S,S”’z) > n(b(Z) _ nzl))}

and choose a sequen@,@) — 0 such thalP(K,S,l,)c) — 1 uniformly inn > N, as

x — o0. Then, from (45),

P(Z > x, Afllgc) > P(ailn) + maX(S(o,l) S©D) g > x, A)(c121>

n—1°%n
> P(0) +n(max(p®,5@) — 9V —a) > x)P(K 1)
= 1+ 0P Y > x +n(a—b+nY)),

and the lower bound foP(Z > x, A®M) is asymptotically equivalent to the upper
one.
Considerj = 2. The lower bound

2
2 2) 2 -
P(Z>x,A?)>P(W? > x,49) = (L+oM)— 5 F @)
follows from Theorem 4.
For the upper bound, put
q
U,= sup sup ( Y o\ + 802 pa)
—oco<p=<0max(p,—n)<q<0 \m=p

and note that, from (45) and (46),

Z <max(Z(_oo.—n_1] + 82 — na, Uy,)

n

= max(Z(—oco,—n—1] + SIEU_’? +0? —na, Uy),

where the random vectoZ oo, 1], Un, S,(l‘ﬁ)) is independent Ozfrfzn).

Since U, < Z as.,P(U, < x) — 1 uniformly in n as x — oo. Since
the distribution ofZ_, —,—1) does not depend on, Z_s,—4—1;/n — 0 in
probability. Due to the SLLN,Sé”_’f)/n — b@ a.s. Therefore, there exists a

sequence,, | 0, ne, — oo such that

P(Un =x, Z(—oo,—n—l] = néy, S,(l(ii) = ”l(b(z) + Sn)) -1
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uniformly inn > N, asx — oo. Denote the latter event b?,ﬁzi

is independent oa‘rﬁz,,). Putn,(f) = —2¢,. Then

and recall that it

P(Z > x, AR) < P(0@ +n(b@ — a) + 21, > x, AZ)
= P(O'Ezn) > X 4+ n(a — b(z) + 77512))7 Krg?))c)
=1+ 0D))P(c? > x +n(a—b? +3?)),

and the desired asymptotics follow]

6.1.2. Delay at the second queue. In this section, we focus on the asymptotics
for the stationary waiting timav @ = Wéz) of customer 0 at the second queue.
The assumptions are the same as in Section 6.1.

Results on the matter were obtained by Huang and Sigman in [19] in the case
where the tail ot @ is heavier than that af (V. The results of the present section
are more general in that such an assumption is not required.

First, let us see how the results of [19] follow from what we have here. Under the
assumptions of Section 4.4.1, we get from (36) of Theorem 84ferw @ < 7)
that

48) PWP >x)=P(W®@ > x, AD) + PW®@ > x, A®) 4 o(F' (x)).
Then

d® s
(49) P(W@® > x, AP) = WF‘(x) +o(F* (x)).
a [e—

The lower bound follows from Theorem 4 and the upper one from the inequality
PW® > x,A?) < P(Z > x, A?) and from the partj = 2 of the proof of
Theorem 9. For the first term in the right-hand side of (48), we have

d® _ _
0<PW®@ > x, AD)<P(Z>x,AD) = —bFS(x) +0o(F’(x))
a —_—

from the proof of Theorem 9. Thus,df® =0 < d@, then

@ d® _;

which is the result of [19].
We now successively consider the three casés> »@, »D = p@ and
bD < p@.

Case bV > p@ . For the following theorem, we do not need any assumption
on the tail ofo V. In fact, we do not even need to assume g subexponential,
the only required assumption being ttrétis subexponential.
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THEOREM 10. Assume a > b > »@ and P(c@ > x) ~ dPF (x) where
d® > 0, and the integrated tail distribution F* is subexponential. Then, as
X — 00,

5 d® _;
(51) P(W®@ > x) ~ o F ().

a—>b

PrROOF We already established the right lower bound in (49). Thus, it is
enough to derive an upper bound which is asymptotically equivalent to the lower
one.

For this, we use the notation from the beginning of Section 6.1. Since
Gi(2) andri(z) are independent ankl® is long tailed, as — oo,

[e.e] o0 o
(52) / PE® > 1)di ~ / P(o? > 1)di ~d®F" (x).
X

X

Puts@ = sup,.o S\ andS = sup,.o 3. Sincer? > o), W? = 5@ < T ass.
Sinceb® > b?@, § < o a.s. So, we have
P(S? >x)=P(s@ > x, §> x)

53 ~
(3) SZP(S(Z)>x,"§_n>x+n5)+0(FS(x)),

where (53) follows from Corollary 5 which implies that
{(§>x)=JlE_n > x +nC)UB,  whereP(B,) = o(F’ (x)).
n
Setc =a — b@ andc=bD — p@ Foralle € (0,7), R > 0 andn, define the
event
Dper={S? <R—i(c—¢),85<R—iG—¢),i=12....n—1
Sutj—Spi<R—j@—e), j=12,...}.

By the SLLN, for anys > 0, there existsR > 0 such that, forangp =1,2, ...,
P(D, ¢« r) > 1—¢. From (53), we have

P(S(Z) > X) =< ZP(S(Z) > x’g_n > X +ng) _j’_O(FS(x))
<Y P((Dnep), E_p>x+nc)
54 "
Y + Y P(Dye.r, $P > x) +0(F*(x))

=X1+ X2+ o(F ' (x)).
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Also,
~ B gd(Z)_s
L1<(1+0()e)Y PE_, >x+nl)= (1+o(1))TF ().
n
On the intersection of the events, . g and{g,gz) <x—2R+(n—1(c—¢)},we
haveS,(lz) <x—R.In addition,Si(Z) <Rfori=1,...,n—1and, forallj >1,

2 _ «@
Sn+j - Sn+j

+85?2 8§D <5, —85,+8SP<R—j@@—¢) +x—R<x.
Thus, on this intersectiorS,(,f) < x forall m if x > R. Therefore,
P(Dyer.S? >x)=P(Dper. S? >x,6? >x —2R+ (n —1)(c —¢))
<PEP >x—2R+ (n—1)(c—¢)).
Hence,

<Y PEP >x—2R+ (n—1)(c —e))

d® _ d® _
=(1401)—F x—2R)=(1+0o(1))—F (x),
c—¢ c—e¢

asx — oo, because of (52). Sinee> 0 is arbitrary, the result follows.

Case b = b@. We assuma? = Var(o ") to be finite fori = 1,2 and we
use the notation = ,/v2 + v3.

THEOREM 11. Assumea > b =p@ =p and P(c® > x) ~ dDF(x) as
x — oo with dP 4 d@ > 0, where both F and F* are subexponential. Then, as
X — 00,

@ ) —og® [T F e~
P(W'9 >x)=2d /o F(x+y(a b))q><vﬁ) dy
(55) g
——F ' (x) +o(F’(x))
+ a _ b b

where ® isthetail of the standard normal distribution. In particular, if either:

(i) d?>00r
(i) d?®=0,d¥ > 0and

(56) lim| ig\offs(xz)/fs(x) >0,

then one can replace the equality in (55) by an equivalence and delete the term
o(F’ (x)) inthis equation.
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REMARK 7. Under condition (56), the integral in the right-hand side of (55)
is of order®(F ' (x2)) = ©(F ' (x)). Condition (56) is satisfied if the taff * (x)
is “extremely heavy,” for exampleF " (x) ~ (logx)~X, K > 0. However, if
limsup, .., F (x?/F’(x) = 0 (the latter holds for Pareto, log-normal and
Weibull distributions), then the integral is of orde(F * (x)).

PROOF OFTHEOREM 11. We use again (48) and (49), and we are left with
the problem of finding the asymptotics for

PW® > x, AD) = 3 P(W® > x, AD) 4+ o(F’ (x))

n>N,

for an appropriate evenA§1) satisfying the assumptions of Theorem 8. Let
Smon =2 itq(b— ailn)_H-). Due to the LLN, max<,, <, Sm.»/n — 0 in probability
asn — oo. Therefore, there exists a nonincreasing sequai;\]&e» 0 such that

P(Mmaxi<m<n Sm,n/n > n(l)) < ;7 D for all n. Take

Kr(ll))fz{ maXSmn/n<77(1)}m{W(2) +a(2) <x+n(a—b+77(1))}

l<m<

— 1,1 1,2
=k"Pnkt2.

Easy calculations based on the fact tﬁa(t%rm > 0(1) + Sm.n — (m + L)a show
that on the evert s = K\ N{o™ > x +n@—b + nnl))} onehasv®. >0,

forallm=1,2,...,n. Using the fact tha’rrfzn)_1 (1) , one gets immediately
that on this event® = 0. Therefore, on this event(z) /(21 for all j =
-n+1,...,0and

w®=wP? = max §;=V,.

0<j<n
From the central limit theorem for the reflected random walk,
\
—
va/n

weakly, wherey has the following tail distribution:

Py > x) =2®(x) = exp{—y2/2} dy.

\/_

Take anyc > 0. If N, <n < cx2, then

P(% > UXW) < P(% > v—j/E) =1+ 0(1))26<v—\1/5>
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asx — oo. For anyA > 0, choose < 1 such thaﬁ(v—bz) <A.Then

x2

ZP WP = x, 4D) < ZP(V > 0P > x+n(a—b+nP))

d®
5(1+o(1))a_bAF (x).

If n > cx2, then

() = n( )

asx — oo, since

Vi, B __
P(vﬁ > y) = (1+0(1))2®(y)

uniformly in y on a compact set.
Therefore,

Y PW® > 1, AD)

I’ZCX

o8}
=> P(criln)_l >x +n(a—b+n,))PKEP)P(V, > x, KLY)

sz

= (14 o0(D)) d@d i F(x+n(a _b+nn))<P<v‘:;r_z > vxﬁ) —0(1))

x2

=21+ o)AV S Fx +nla - b))@(v%) +o(F* ()

CXZ

—Zd(l)/ F(x+ya—0b)® (vf/y>dy+0(fs(x))

— 24D /OOO Fx+ya— b))@(%) dy

dd® .
O(F (x)).

+ o(fs(x)) —

Letting A to 0, we get the result.(]
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Case bV < p?,

THEOREM12. Assumeb® < b@ Then

(57) P(W® > x)= %22) F ) + f:@)?@%) +o(F ().
In particular, if either:

() d?®>00r

(i) d?=0,d® > 0and
(58) I&rgiyoffs(&)/fs(x) >0,

then one can replace in (57) the equality by an equivalence and delete the term
o(F’ (x)) in the right-hand side.

PrRoOOF Take the notation from the beginning of Section 6.1 and from the
proof of Theorem 11. Recall that we consider the deée= b. Putn, =
and, for afixeck € (0,1),ny1=nx(1—¢),ny2=n,(1+¢).

Recall that, from (48) and (49), we have to find the asymptotics for

_Xx
b—b®

nx1 ny2—1

N PWP >xaB) =Y + > + Z = P1(x) + Pa(x) + Ps(x).

n>Ny n=Ny n=ny1+1 N=Nx2

For Ny <n <ngq, put K\ = (W@ _, +6@ | <x}. Then, forp{? =, >
—(a—1b),onthe evenB = K% N (o™ > x +n(a— b+ )},

w2 =0 and W<V,

sincer; > 0(1)1 Therefore,

nx1
Pi(x) < ) PeD) > x+n(a—b+m,), Vo> x)
n=Ny

Ny,1
— Z P(o (l)>x+n(a—b+77n))P(V">x)
n=Ny
Q)
EERTENT
- a—>b

sinceV,/n — (b —b®)~Lasn — oo and

P(an,l > x)fs(x) = o(fs(x)),

Vnea _ Vs et —-1l-e<1 a.s
x Nyl X

asx — oQ.



MOMENTS AND TAILS 643

ConsiderP(x). For any sequencg, — 0 and forx sufficiently large,

ny2—1
Pxx)< Y. P >x+n@—b+n)
n=ny1+1
1 1 d(l) xX+nyo(a—b) __
— %/ F(x)dx
a—>b x4 1(a—b)
14+ 0(1)dD ny p — 2dVe__
_( +o0(1) Ny,2 nxlF()_(1+0(1)) SFS(X),
a—>b Nx.2 —-b

sinceF (x) is nonincreasing.
Finally, considerP3(x). We will show that, for the appropriate sequences
1 1

(K.} and{ni”},

dVY 7 ra—bD  ga—b)
(59) P3(x) ~ p —bF <x<b—b(1) +—m ))

Obviously,
P3x)< > P > x+n(a—b+nl)),

nzny 2

where the right-hand side of the latter inequality is asymptotically equivalent to
the right-hand side of (59). Now we establish the lower bound.
From (10), (42), (44) and (45),

WP =2 - WP _ oV o
SO _wh _o® _ 5@

>7Z - max
[—n,0] 0<j<n j 1)
® S D 2
a,
o_n—na+_rl’lrl<’;l)<(o( Z op’ Sy )
m=—n+1
(@) @ (@) (@) (@) (2
—max(0, 5,7, +0.,)) — OsTsé}zX—lS' - W, —oy —oy”.
Due to the SLLN, ag — oo,
1 a 1 1 1 1 2
=5, > b0 —a, —<o<r}1<<'a}lx_15§)+Wi,3+Gé)+Gé ))Ern—>0

and

1 q
=~ max ( > 0,511)+S;"*2)>Eu,,—>b a.s.

n —n=q<0 m=—n+1
Choose a sequendg | 0, né,, — oo such that, for alk,

P(”n >b— 3y, rn < dn, S,(ll_)lfn(b(l) —a+8n)) >1-6,
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and denote the latter event lﬁsél) (it does not depend oan(l)) On this event,
Wéz) > O’Eln) —n(a — b+ 25,) —max(0, oﬁln) + n(b(l) —a+é))

>min(c —n(a —b+28,),n(b— b —35,)).

(A+e)x
b—bpD?

Sincen > we get

b—b®
n(b—bD) —3n8, > x + %n —3nd, > x
&

D

for all sufficiently largex. Putn,,” = 26,,. Then, on the event

Aflll ={o’ (1) >x+n(a—b+7P))N K(l)

we getWéz) > x, and (59) follows.
Letting ¢ to O completes the proof.(d

6.2. Multiserver queues. The aim of this section is to derive upper and lower
bounds and sharp asymptotics for the tail of the stationary maximal dater of
multiserver queues. However, we do not obtain here asymptotics for the tail
distribution of the stationary waiting time. It is known (see, e.g., [17] and [21])
that these asymptotics may, in general, differ significantly.

Since (AA) does not hold, we cannot use the approach of Section 4. We show
how the ideas of Section 5.2 can be used to derive upper and lower bounds which
are specific to this queue.

Recall that we can consider B/Gl/m /oo queue with constant interarrival
timesa. LetEo = b andp = -2 € (0, 1). Assume further tha(o1 > x) = F(x),
where both distributiong” and F* are subexponential.

THEOREM 13. Under the foregoing assumptions, when x tendsto oo,

P(Z > x)

(1+0(1))( F o) + (mal_ - 2)+Fs(b_(:17x_m)).

Note that the second term in the right-hand side of (60) disappears when
b<(m—1a.
The proof consists of three steps:

(60)

First, we get a lower bound by using the SLLN.
Then we get an upper bound by using results from Section 4.3.1.
Finally, Theorem 7 gives us the tool to derive the exact asymptotics.
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LOWER BOUND. Clearly,

P(Z > x) > (1+0(1))P< U {o_,>x +na}>

n=0

1
~ ZP(O'_n >x+na)~=F’(x).
- a

UPPER BOUND Take a sufficiently largé. and consider thé.-upper-bound
D/Gl/1/c0 queue with interarrival timeda and service time$s,} with mean
b =E75:. Since

L

maxo; <s1< Y oj,
1<i<L = 1_21: !

we getP(5y > x) ~ LP(01 > x) = LF(x) asx — oo. Note that, for the multi-
server queuey (0) = b/m. Therefore, we get a natural analogue of Theorem 5,
P(Z > x) PR>x) 1

61 im sup ——= < lim lim sup — = F .
( ) x—>cE)o Fs(x) = ISoo x—>£o Fs(x) Cl—b/m (x)

Thus, we are in a position to make use of Theorem 7. The rest of the proof is quite
technical and in the same spirit as that of Theorem 9. Because of that, it is omitted.

APPENDIX
A.1. Proof of (24). Putb =min(b, (), From Corollary 5, we know that,
forr=1,2,
[RU) > x} U (A% u B,

my>1
where
A =00 > x4 m (6" ~a)) and P(B) =o(F' ).
Therefore,

P(RW > x, R/ > x)

o8} o8}
< > P > x +my (0" —a), YYD > x + mp(b"? - a))

my s ¥y
m1=1mo=1
+ o(fs(x))
(62) < > P(Yl(il) > x +my (b — a))P(Yl(iZ) > x +ma(b — a))

mi7#my
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o . . _
+ 3 P(min(¥yY, ¥{?) > x + mb — ) + o( F* (x))
m=1
<3 PV > x +mi (6™ —a)) > PP > x + ma(b? — a))
mi m2

+ Z (F(x +mb)) +o(F"(x))
m=1

=O(F' 1)) +0o(F’ () =o( F’ (v)).

A.2. Relaxing the independence assumptions. The aim of this section is to
give conditions under which assumption (H) of Section 4.1 is satisfied, although
the r.v.’sY ) are not independent.

We assume that there exists a random variabigking values in an arbitrary
measurable spacé&., By) and such that:

e Givenv, the random variabIeEl(j), j=1,...,r,are conditionally independent.
e Foranyj=1,...,r,
(63) P(ry” > x|v) ~ Y F(x),
P,-a.s., wherei(’) is a nonnegative random variable with a finite meén.
Then
oy P(Yl(j)>x|v)
x F(x)

is an a.s. finite random variable, too.
Assume in addition that, for any4 j1 < j» <r,

J2
(65) E ] dY <o.
J=i1
LEMMA 8. Under the foregoing assumptions, for any 1 < ji < j» <r,

J2 )
P( Z Yl(]) >x> ~P< max Y(]) >x)

— J1=j<j2
Jj=j
(66) J2 i J2 o
~ Y P > x) ~ 3 dDF ).
J=j1 J=i

PrOOF Without loss of generality, we prove the result far=1, jo =r.
Note that

() ()
P(Zizl’ > x|v) . Xr:dﬁj) - P(max,jlf > x|v)
F(x) F(x)

’
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P,-a.s. and, for alk,
() ()
- P(max]flf >xp) _ P Y > x(v) nd(/) sup
- F(x) B F(x) B

where the latter supremum is finite. Then the domlnated convergence theorem
implies that

POiYY >x) (P Y > x|v) G .
— = E 7 = ()
o ( o —>d=) Ed{’=)d

—*i’

(X)
F(x)

J J
and 0
P . J
(maxLY1 > X) o d
F(x) O

Consider the following example, which covers the generalized Jackson network
case. Assume that there are given:

e Some random vector = (v, ..., v™)) with nonnegative integer-valued
components, such thd exp(cv/)) < oo for somec > 0 and for all j =
1,....r; .

o sequence$an(”} of i.i.d. subexponential random variables that are mutually
independent and independentigfand such thaP(ol(” > x) ~IWDF(x). We
do not make the assumption that the rv®®, ..., v are independent.

PutYl(’) Z”(’) (]).The above conditions imply that

C . . R
Eexpl = )] () )]
p(r Zv ) < Eexp<c maxv' ) < ZEexp(cv ) < o0
J J
andthatforallj =1,...,r,
)
L) = SupP(o > t)
! F(1t)

Due to subexponentiality, for=1, ..., r,

P > xv) ~ vDIDF (x).

It is known (see, e.g., [13], page 41) that, for any 0, one can choosg ) =
K ) (¢g) such that

P(Yl(’)>x|v)<l((f)(l+ )”m P(o 1(‘i)>x).

The right-hand side of the latter inequality is not bigger th&f’ u) (1 +
&)’ Fx).

Take e > 0 such that lodgl + ¢) < ¢’. Then the conditions of Lemma 8 are
satisfied withd\”) = v 1) @D = 1DEVD) andd = K DuD (1 + &),
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A.3. Deterministicinterarrival times. We extend to the monotone separable
framework the approach used in [4] for single server queues to show that there may
be no loss of generality in assuming that a network has deterministic interarrival
times when one wants to evaluate the tail asymptotics of its stationary maximal
dater.

The framework is that of Section 2. Fi,}, {f;} and consider a family of
networks with different “input sequence$T;,} such thatEr; > y(0). Without
loss of generality assunig = 0.

In particular, a network with constant interarrival times (gyelongs to this
family. For such a network, we use the notatisff’ andz®, ;.

For any{7,,} and for anyi < Ez1, set ’

-1
Yv({t,},d) =supnd + T_,) = sup( Z (a— r,-)).

n>0 n>0

l=—n

THEOREM 14. Assume that there exist a continuous and strictly positive
function % : (¥ (0), o0) — (0, co) and a subexponential distribution G such that,
for any a > y (0),

(67) P(Z“ > x) ~h(@)G(x)  asx— oo.

Then, for any network with random interarrival times {t,}, such that Er; =
a > y(0), the following is valid: If {r,,} and {¢,} are independent and if, for any
a<a,

(68) Py ({ta}, @) > x) = 0o( G(x)) asx — 0o,
then
(69) P(Z > x) ~ h(a)G(x) asx — oo.

REMARK 8. In particular, condition (68) is satisfied if thg’s are i.i.d.
Indeed, then) ({z,}, @) has either a bounded [RP(d > 1) = 0] or exponential
tail, which is lighter than any long tail.

PROOF OFTHEOREM 14. Take any € (0, a — v (0)). Due to the monotonic-
ity,

1 n
2w = 20,5 + max (i_z,-(“ . m) |
Therefore,

Z<Z94y(rta—e) =2 1y,
whereZ©@= andy are independent. Therefore,

P(Z>x)<P(Z“® +¢ >x)~P(Z29™® > x) ~ h(a — &)G (x).
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Thus

. P(Z > x)

lim sup ————= < h(a —¢)

xX—>00 X)
for anye € (0, a — y(0)). Lettinge go to 0, we get the upper bounhda).
For the lower bound, we use the monotonicity, the SLLN for#lsethe LT and

the independence assumptions. For any0, one can choose a sufficiently large
C = C(¢) such that

P(T_, > —n(a+¢e)—CVn>0)>1—c¢.
Denote the latter event bp.. Then
P(Z > x) > P(Z > x, D) > P(2“"® — C > x, D)
> P29t —C>x)(1—¢)~h(a+e)(L—e)Gx +C)
~h(a+¢e)(1—e)G(x).
Thus, for any € (0, 1),

im inf T2 el
G(x) '

X—>00

Letting e go to 0, we get the lower bound with coincides with the upper oné.
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