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Shrinkage Confidence Procedures
George Casella and J. T. Gene Hwang

Abstract. The possibility of improving on the usual multivariate normal
confidence was first discussed in Stein (1962). Using the ideas of shrink-
age, through Bayesian and empirical Bayesian arguments, domination re-
sults, both analytic and numerical, have been obtained. Here we trace some
of the developments in confidence set estimation.
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1. INTRODUCTION

In estimating a multivariate normal mean, the usual
p-dimensional 1 − α confidence set is

C0
x,σ = {θ : |θ − x| ≤ cσ },(1)

where we observe X = x, where X is a random vari-
able with a p-variate normal distribution with mean θ

and covariance matrix σ 2I , X ∼ N(θ,σ 2I ), I is the
p × p identity matrix, and c2 is the upper α cutoff
of a chi-squared distribution, satisfying P(χ2

p ≤ c2) =
1 − α.

Although the above formulation looks somewhat
naive, it is very relevant in applications of the lin-
ear model, still one of the most widely-used statisti-
cal models. For such models, typical assumptions lead
to β̂ ∼ N(β,σ 2�), where β̂ is the least squares esti-
mator (and MLE under normality), β is the vector of
regression slopes and � is a known covariance matrix
(typically depending on the design matrix). The usual
confidence set for β is

{β : (β̂ − β)′�−1(β̂ − β) ≤ c2σ 2}.(2)

Letting x = �−1/2β̂ and θ = �−1/2β reduces (2)
to (1).

In theoretical investigations of confidence sets and
procedures, we often first take σ 2 known. When σ 2 is
unknown, the usual strategy is to replace it by some
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usual estimator, such as the sample variance s2. Un-
der normality, if s2 has ν degrees of freedom, then
s2 ∼ σ 2χ2

ν , independent of β̂ . For example, the usual F

confidence set for the regression parameters based on a
linear model can be reduced to C0

x,σ with the usual un-
biased estimator s2 substituted for σ 2. This is the usual
Scheffé confidence set. Unfortunately, contrary to the
point estimation case, there are few theoretical results
for unknown σ 2. However, there is continued numeri-
cal evidence that the usual confidence set can be dom-
inated in the unknown variance case (see, e.g., Casella
and Hwang, 1987). Moreover, Hwang and Ullah (1994)
argue that the domination of the alternative fixed ra-
dius confidence spheres for the unknown σ 2 case, over
Scheffé’s set, holds with a larger shrinkage factor.

Since we are assuming that σ 2 is known, we take it
equal to 1 and (1) becomes

C0
x = {θ : |θ − x| ≤ c}.(3)

We now ask the question of whether it is possible to
improve on C0

x in the sense of finding a confidence set
C′ such that, for all θ and x:

(i) Pθ(θ ∈ C′) ≥ Pθ(θ ∈ C0
x);

(ii) volume of C′ ≤ volume of C0
x ;

with strict inequality holding in either (i) or (ii) for a set
θ or x with positive Lebesgue measure. The answer to
this question may be yes for higher dimensional cases,
as suggested by the work of Stein.

The celebrated work of James and Stein (1961)
shows that the estimator

δJS(x) =
(

1 − a

|x|2
)
x(4)
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dominates X with respect to squared error loss if 0 <

a < 2(p − 2), that is,

Eθ |δJS(X) − θ |2
{

≤ Eθ |X − θ |2 for all θ,

< Eθ |X − θ |2 for some θ.
(5)

In practice, this estimator has the deficiency of a sin-
gularity at 0 in that lim|x|→0 δJS(x) = −∞. This defi-
ciency can be corrected with the positive part estimator
(appearing in Baranchik, 1964, and mentioned as Ex-
ample 1 in Baranchik, 1970)

δ+(x) =
(

1 − a

|x|2
)+

x,(6)

where (b)+ = max{0, b}. This estimator actually im-
proves on δJS(x) and is so good that, even though it
was known to be inadmissible, it took 30 years to find
a dominating estimator (Shao and Strawderman, 1994).
The removal of the singularity makes δ+(x) a more at-
tractive candidate for centering a confidence set.

A simple proof of (5) can be found in Stein (1981);
see also Lehmann and Casella (1998), Chapter 5.
Therefore, it seems reasonable to conjecture that we
can use a Stein estimator to dominate the confidence
set C0

x . Although this turns out to be the case, it is a
very difficult problem.

2. RECENTERING

Stein (1962) gave heuristic arguments1 that showed
why recentered sets of the form

C+
δ = {θ : |θ − δ+(x)| ≤ c}(7)

would dominate the usual confidence set (3) in the
sense that Pθ(θ ∈ C+

δ (X)) > Pθ(θ ∈ C0
x(X)) for all θ ,

where X ∼ N(θ, I ),p ≥ 3. (Note that this set has the
same volume as C0

x , but is recentered δ+. Dominance
would thus be established if we can show that C+

δ

has higher coverage probability than C0
x .) Stein’s argu-

ment was heuristic, but Brown (1966) and Joshi (1967)
proved the inadmissibility of C0

x if p ≥ 3 (without giv-
ing an explicit dominating procedure). Joshi (1969)
also showed that C0

x was admissible if p ≤ 2.
The existence results of Brown and Joshi are based

on spheres centered at(
1 − a

b + |x|2
)
x(8)

1Stein’s paper must be read carefully to appreciate these argu-
ments. He uses a large p argument and the fact that X and X − θ

are orthogonal as p → ∞.

[compare to (6)] where a is made arbitrarily small and
b is made arbitrarily large. But these existence results
fall short of actually exhibiting a confidence set that
dominates C0

x .
The first analytical and constructive results were es-

tablished by (surprise!) Hwang and Casella (1982),
who studied the coverage probability of C+

δ in (7).
Since C+

δ and C0
x have the same volume, domination

will be established if it can be shown that C+
δ has

higher coverage probability for every value of θ . It is
easy to establish that:

◦ Pθ(θ ∈ C+
δ (X)) is only a function of |θ |, the Euclid-

ean norm of θ , and
◦ lim|θ |→∞ Pθ(θ ∈ C+

δ (X)) = 1 − α, the coverage
probability of C0

x .

Therefore, to prove the dominance of C+
δ , it is suffi-

cient to show that the coverage probability is a non-
increasing function of |θ |. Hwang and Casella (1982)
derived a formula for (d/d|θ |)Pθ (θ ∈ C+

δ (X)) and
found a constant a0 (independent of θ ) such that if
0 < a < a0, C+

δ dominates C0
x in coverage probability

for p ≥ 4. Using a slightly different method of proof,
Hwang and Casella (1984) extended the dominance to
cover the case p = 3. This proof is outlined in Appen-
dix A. The analytic proof was generalized to spherical
symmetric distributions by Hwang and Chen (1986).

There is an interesting geometrical oddity associated
with the Stein recentered confidence set. To see this,
we first formalize our definitions of confidence sets.
Note that for any confidence set we can speak of the
x-section and the θ -section. That is, if we define a con-
fidence procedure to be a set C(θ, x) in the product
space 
 × X , then:

(1) The x-section, Cx = {θ : θ ∈ C(θ, x)}, is the confi-
dence set.

(2) The θ -section, Cθ = {x :x ∈ C(θ, x)}, the accep-
tance region for the test H0 : {θ}.

We then have the tautology that θ ∈ Cx if and only if
x ∈ Cθ and, thus, we can evaluate the coverage proba-
bility Pθ(θ ∈ CX) by computing Pθ(X ∈ Cθ), which is
often a more straightforward calculation.

For the usual confidence set, both C0
x and C0

θ are
spheres, one centered at x and one centered at θ . Al-
though the confidence set C+

x is a sphere, the associ-
ated θ -section C+

θ is not, and has the shape portrayed
in Figure 1. Notice the flattening of the set in the side
closer to 0 in the direction perpendicular to θ , and
the slight expansion away from 0. Stein (1962) knew
of this flattening phenomenon, which he noted can be
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FIG. 1. Two-dimensional representation for C+
θ and C0

θ for

|θ | > c, where C0
θ is the sphere of radius c centered at θ (shaded).

The set C+
θ intersects C0

θ at point A and B (details on the points of
intersection are in Hwang and Casella, 1982). Note the flattening
of C+

θ on the side toward the origin and the decrease in volume

over C0
θ .

achieved in any fixed direction. What is interesting is
that this reshaping of the θ -section of the recentered set
leads to a set with higher coverage probability than C0

x

when p ≥ 3.

3. RECENTERING AND SHRINKING THE VOLUME

The improved confidence sets that we have discussed
thus far have the property that their coverage probabil-
ity is uniformly greater than that of C0

x , but the infi-
mum of the coverage probability (the confidence coef-
ficient) is equal to that of C0

x . For example, recentered
sets such as C+

δ will present the same volume and con-
fidence coefficient to an experimenter so, in practice,
the experimenter has not gained anything. (This is, of
course, a fallacy and a shortcoming of the frequentist
inference, which requires the reporting of the infimum
of the coverage probability.)

However, since the coverage probability of C+
δ is

uniformly higher than the infimum infθ Pθ (θ ∈ C0
X) =

1 − α, it should be possible to reduce the radius of
the recentered set and maintain dominance in coverage
probability.

In this section we describe some approaches to con-
structing improved confidence sets, approaches that not
only result in a recentering of the usual set, but also try
to reduce the radius (or, more generally, the volume).
Some of these constructions are based on variations of
Bayesian highest posterior density regions, and thus
share the problem of trying to describe exactly what

the x-section, the confidence set, looks like. Others are
more of an empirical Bayes approach, and tend to have
more transparent geometry.

3.1 Reducing the Volume–Bayesian Approaches

The first attempt at constructing confidence sets with
reduced volume considered sets with the same cover-
age probability as C0

X , but with uniformly smaller vol-
ume. One of the first attempts was that of Faith (1976),
who considered a Bayesian construction based on a
two-stage prior where

θ ∼ N(0, t2I ), t2 ∼ Inverted Gamma(a, b),

which is similar (but not equal) to the prior used by
Strawderman (1971) in the point estimation problem
(Appendix B). The two-stage prior amounts to a proper
prior with density

π(θ) ∝ (2b + |θ |2)−(a+p/2),

the multivariate t-distribution with 2a degrees of free-
dom. Faith then derived the Bayes decision against a
linear loss, but modified it to the more explicitly de-
fined region

CF =
{
θ :

(
exp(c2)

exp(|x − θ |2)
)1/(p+2a)

≥ 2b + θ2

2b + |x|2
}
,

where c is the radius of C0
x . It may happen that CF

is not convex. However, if a > −p/2 and b > (a +
p/2)/8, the convexity of CF was established. Unfortu-
nately, little else was established except when p = 3 or
p = 5, where for some ranges of a and b it was shown
that CF has smaller volume and higher coverage prob-
ability than C0

x .
Berger (1980) took a different approach. Using a

generalization of Strawderman’s prior, he calculated
the posterior mean δB(x) and posterior covariance ma-
trix �B(x) and recommended

CB = {
θ :

(
θ − δB(x)

)′
�B(x)−1(

θ − δB(x)
) ≤ χ2

p,α

}
,

where χ2
p,α is the upper α cutoff point from a chi-

square distribution with p degrees of freedom. The
posterior coverage probability would be exactly 1 − α

if the posterior distribution were normal, but this is
not the case (and the posterior coverage is not the fre-
quentist coverage). However, Berger was able to show
that his set has very attractive coverage probability and
small expected volume based on partly analytical and
partly numerical evidence.
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3.2 Reducing the Volume–Empirical Bayes
Approaches

A popular construction procedure for finding good
point estimators is the empirical Bayes approach (see
Lehmann and Casella, 1998, Section 4.6, for an in-
troduction), and proves to also be a useful tool in
confidence set construction. However, unlike the point
estimation problem, where a direct application of em-
pirical Bayes arguments led to improved Stein-type es-
timators (see, e.g., Efron and Morris, 1973), in the con-
fidence set problem we find that a straightforward im-
plementation of an empirical Bayes argument would
not result in a 1 − α confidence set. Modifications are
necessary to achieve dominance of the usual confi-
dence set.

Suppose that we begin with a traditional normal prior
at the first stage, and have the model

X ∼ N(θ, I ), θ ∼ N(0, τ 2I ),

which results in the Bayesian Highest Posterior Den-
sity (HPD) region

Cπ = {θ : |θ − δπ(x)|2 ≤ c2M},(9)

where M = τ 2/(τ 2 + 1) and δπ(x) = Mx is the Bayes
point estimator of θ . This follows from the classical
Bayesian result that θ |x ∼ N(Mx,MI).

However, for a fixed value of τ , the set Cπ cannot
have frequentist coverage probability above 1 − α for
all values of θ . This is easily seen, as the posterior cov-
erage is identically 1−α for all x, and, hence, the dou-
ble integral over x and θ is equal to 1 − α. This means
that the frequentist coverage is either equal to 1 − α

for all θ , or goes above and below 1 − α. Since the
former case does not hold (check θ = 0 and a nonzero
value), the coverage probability of Cπ is not always
above 1 − α.

Consequently, if we take a naive approach and re-
place τ 2 by a reasonable estimate, an empirical Bayes
approach, we cannot expect that such a set would main-
tain frequentist coverage above 1 − α. This is because
such a set would have coverage probabilities converg-
ing to those of Cπ (as the sample size increases) and,
hence, such an empirical Bayes set would inherit the
poor coverage probability of Cπ . This phenomenon
has been documented in Casella and Hwang (1983).

As an alternative to the naive empirical Bayes ap-
proach, consider a decision-theoretic approach with a
loss function to measure the loss of estimating the pa-
rameter θ with the set C:

L(θ,C) = k vol(C) − I (θ ∈ C),(10)

where k is a constant, vol(C) is the volume of the set C,
and I (·) is the indicator function. Starting with a prior
distribution π(θ), the Bayes rule against L(θ,C) is the
set

{θ :π(θ |x) > k},(11)

where π(θ |x) is the posterior distribution. This is a
highest posterior density (HPD) region.

The choice of k is somewhat critical, and we chose
it to coincide with properties of C0. Specifically, if
we chose k = exp(−c2/2)/(2π)p/2, then C0 is mini-
max for the loss (10). An alternative explanation of this
choice of k is based on the reasoning that as τ → ∞,
(11) would converge to C0, which insures that the al-
ternative intervals would not become inferior to C0 for
large τ 2. (See He, 1992; Qiu and Hwang, 2007; and
Hwang, Qiu and Zhao, 2009.) Applying this choice of
k with the normal prior θ ∼ N(0, τ 2I ) yields the Bayes
set

Cπ
x,k = {θ : |θ − δπ(x)| ≤ M[c2 − p logM]},

where δπ(x) and M are as in (9). By estimating the
hyperparameters, this is then converted to an empirical
Bayes set

CE
x = {θ : |θ − δ+(x)| ≤ vE(x)},

where δ+(x) is the positive part estimator of (6), and
vE(x) is given by

vE(x) =
(

1 − p − 2

max(|x|2, c2)

)
(12)

·
[
c2 − p log

(
1 − p − 2

max(|x|2, c2)

)]
.

When c2 > p, a minor condition requiring 1 − α >

0.55, M[c2 −p logM] ↑ c2 as M → ∞. It also follows
that vE(x) is bounded away from zero. This is impor-
tant in maintaining coverage probability. Extensive nu-
merical evidence was given (Casella and Hwang, 1983)
to support the claim that CE

x is a uniform improvement
over C0

x .
Confidence sets with exact 1 − α coverage proba-

bility, with uniformly smaller volume, have also been
constructed by Tseng and Brown (1997), adapting re-
sults from Brown et al. (1995). These confidence sets
are shown, numerically, to typically have smaller vol-
ume that those of Berger (1980).

Brown et al. (1995), working on the problem of bioe-
quivalence, start with the inversion of an α-level test
and derive a 1 − α confidence interval that minimizes
a Bayes expected volume, that is, the volume averaged
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with respect to both x and θ . Tseng and Brown (1997),
using a normal prior θ ∼ N(0, τ 2I ), show that the cor-
responding set of Brown et al. (1995) becomes

CB =
{
θ :

∣∣∣∣x − θ

(
1 + τ 2

τ 2

)∣∣∣∣
2

≤ k(|θ |2/τ 4)

}
,

where k(·) is chosen so that CB has exactly 1 − α

coverage probability for every θ . A simple calculation
shows that the squared term in CB has a noncentral chi
squared distribution, so k(·) is the appropriate α cut-
off point. In doing this, Tseng and Brown avoided the
problem of Casella and Hwang (1983), and the radius
does not need to be truncated.

Of course, to be usable, we must estimate τ 2. The
typical empirical Bayes approach would be to replace
τ 2 with an estimate, a function of x. However, Tseng
and Brown take a different approach and replace τ 2

with a function of θ , thereby maintaining the 1 − α

coverage probability. They argue that θ is more directly
related to τ than is x, and should provide a better “es-
timator.” Examples of this approach are discussed in
Hwang (1995) and Huwang (1996).

The set proposed by Tseng and Brown is

CTB =
{
θ :

∣∣∣∣x − θ

(
1 + 1

A + B|θ |2
)∣∣∣∣

2

≤ k

(( |θ |
A + B|θ |2

)2)}
for constants A ≥ 0 and B > 0, and has coverage ex-
actly equal to 1 − α for every θ . Combining analytical
results and numerical calculations, these sets are shown
to have uniformly smaller volume that C0

x . Moreover,
Tseng and Brown also demonstrate volume reductions
over the sets of Berger (1980) and Casella and Hwang
(1983). The only quibble with their approach is that
the exact form of the set is not explicit, and can only be
solved numerically.

3.3 Reducing Volume and Increasing Coverage

The first confidence set analytically proven to have
smaller volume and higher coverage than C0

x is that of
Shinozaki (1989). Shinozaki worked with the x-section
of the confidence set, starting with the set C0

x . Consider
Figure 1, but drawn as the x-section centered at x. By
shrinking Co

x toward the origin, he was able to con-
struct a new set with the same coverage probability as
C0

x but smaller volume. These sets can have a substan-
tial improvement over C0

x , but smaller improvements
compared to Berger (1980) and Casella and Hwang
(1983) (especially when p is large and |θ | is small).
Moreover, there is no point estimator that is explicitly
associated with this set.

3.4 Other Constructions

Samworth (2005) looked at confidence sets of the
form

{θ : |θ − δ+|2 ≤ wα(θ)},
where δ+ is the positive part estimator (6), wα(θ) is
the appropriate α-level cutoff to give the confidence set
coverage probability 1−α for all θ , and X has a spher-
ically symmetric distribution. He then replaced wα(θ)

by its Taylor expansion

wα(θ) ≈ wα(0) + 1
2w′′

α(0)|θ |2,
and, replacing θ with x, arrived at the confidence set{

θ : |θ − δ+|2 ≤ min
(
wα(0) + 1

2w′′
α(0)|x|2, c2)}

.

Samworth noted the importance of the quantity f ′(c2)/

f (c2), where f is the density of x (the relative in-
creasing rate of f at c2). The radius of the analytic
confidence set only depends on the density through
c2 and f ′(c2)/f (c2). This point was previously noted
by Hwang and Chen (1986) and Robert and Casella
(1990).

This confidence set compares favorably with that
of Casella and Hwang (1983), having smaller volume
especially when |x| is small. Numerical results were
given not only for the normal distribution, but also
for other spherically symmetric distributions such as
the multivariate t and the double exponential. Further-
more, a parametric bootstrap confidence set is also pro-
posed, which also performs well.

Efron (2006) studies the problem of confidence set
construction with the goal of minimizing volume. He
ultimately shows that seeking to minimize volume may
not be the best way to improve inferences, and that re-
locating the set is more important than shrinking it. Us-
ing a unique construction based on a polar decomposi-
tion of the normal density, Efron derived a “confidence
density” which he used to construct sets with 1 − α

coverage probability, and ultimately a minimum vol-
ume confidence set with 1 − α posterior probability.

The confidence density, which plays a large part in
Efron’s paper, is used to show the importance of locat-
ing the confidence set properly. The sets of Tseng and
Brown (1997) and Casella and Hwang (1983) perform
well on this evaluation. A minimum volume construc-
tion is also derived, and it is shown that the resulting
set is not optimal in any inferential sense. Inferential
properties, similar to type I and type II errors, are ex-
plored. It is also seen that as the relocated sets decrease
volume of the confidence set, they increase the accep-
tance regions.
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4. SHRINKING THE VARIANCE

Thus far, we have only addressed the problem of
improving confidence regions for the mean. However,
there is also a Stein effect for the estimation of the vari-
ance, and this can be exploited to produce improved
confidence intervals for the variance.

Stein (1964) was the first to notice this (of course!).
Specifically, let X1, . . . ,Xn be i.i.d. N(μ,σ 2), uni-
variate, where both μ and σ are unknown, and calcu-
late X̄ = (1/n)

∑
i Xi and S2 = ∑

i(Xi − X̄)2. Against
squared error loss, the best estimator of σ 2, of the form
cS2, has c = (n + 1)−1. This is also the best equivari-
ant estimator [with the location-scale group and the
equivariant loss (δ − σ 2)2/σ 4], and is minimax. Stein
showed that the estimator

δS(X̄, S2) = h(X̄2/S2)S2,

h(X̄2/S2) = min
{

1

n + 1
,

1 + nX̄2/S2

n + 2

}
,

uniformly dominates S2/(n+1). Notice that δS(X̄, S2)

converges to S2/(n+1) if X̄2/S2 is big, but shrinks the
estimator toward zero if it is small. Stein’s proof was
quite innovative (and is reproduced in the review pa-
per by Maatta and Casella, 1990). The proof is based
on looking at the conditional expectation of the risk
function, conditioning on X̄/S, and showing that mov-
ing the usual estimator toward zero moves to a lower
point on the quadratic risk surface. This approach was
extended by Brown (1968) to establish inadmissibility
results, and by Brewster and Zidek (1974), who found
the best scale equivariant estimator. Minimax estima-
tors were also found by Strawderman (1974), using a
different technique.

Turning to intervals, building on the techniques de-
veloped by Stein and Brown, Cohen (1972) exhibited a
confidence interval for the variance that improved on
the usual confidence interval. If (S2/b,S2/a) is the
shortest 1 − α confidence interval based on S2 (Tate
and Klett, 1959), Cohen (1972) considered the confi-
dence interval

(S2/b,S2/a)I (X̄2/S2 > k)

+ (S2/b′, S2/a′)I (X̄2/S2 ≤ k),

where I (·) is the indicator function, 1/a − 1/b =
1/a′ − 1/b′, so each piece has the same length, but
1/a′ < 1/a and 1/b′ < 1/b. So if X̄2/S2 is small, the
interval is pulled toward zero, analogous to the behav-
ior of the Stein point estimator. Shorrack (1990) built
on this argument, and those of Brewster and Zidek

(1974), to construct a generalized Bayes confidence
interval that smoothly shifts toward zero, keeping the
same length as the usual interval but uniformly increas-
ing coverage probability. Building further on these ar-
guments, Goutis and Casella (1992) constructed gener-
alized Bayes intervals that smoothly shifted the usual
interval toward zero, reducing its length but maintain-
ing the same coverage probability. For more recent
developments on variance estimation see Kubokawa
and Srivastava (2003) and Maruyama and Strawder-
man (2006).

5. CONFIDENCE INTERVALS

In some applications there may be interest in mak-
ing inference individually for each θi . One example is
the analysis of microarray data in which the interest is
to determine which genes are differentially expressed
(i.e., having θi , the difference of the true expression
between the treatment group and the control group, dif-
ferent from zero). Although the confidence sets of the
previous section can be projected to obtain confidence
intervals, that will typically lead to wider intervals than
a direct construction.

If Xi are i.i.d. N(θi, σ
2
i ), i = 1, . . . , p, the usual one-

dimensional interval is

I 0
Xi

= Xi ± cσi,

where c is chosen so that the coverage probability is
1 − α. Hence, c is the α/2 upper quantile of a standard
normal.

5.1 Empirical Bayes Intervals

If a frequentist criterion is used, it is not possible
to simultaneously improve on the length and coverage
probability of I 0

Xi
in one dimension. However, it is pos-

sible to do so if an empirical Bayes criterion is used.
Morris (1983) defined an empirical Bayes confidence
region with respect to a class of priors 
, having con-
fidence coefficient 1 − α to be a set C(X) satisfying

Pπ

(
θ ∈ C(X)

) =
∫

Pθ

(
θ ∈ C(X)

)
π(θ) dθ

≥ 1 − α for all π(θ) ∈ 
.

Note that Pπ(θ ∈ C(X)) is the Bayes coverage prob-
ability in that both X and θ are integrated out. Using
normal priors with both equal and unequal variance,
Morris went on to construct 1−α empirical Bayes con-
fidence intervals that have average (across i) squared
lengths smaller than I 0

X . Bootstrap intervals based on
Morris’ construction are also proposed in Laird and
Louis (1987).
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In the canonical model

Xi ∼ i.i.d. N(θi,1) and
(13)

θi ∼ i.i.d. N(0, τ 2),

He (1992) proved that there exists an interval that dom-
inates I 0

X . Precisely, for δ+(X) of (6), it was shown that
there exists a > 0 such that the interval δ+

i (X) ± c has
higher Bayes coverage probability for any τ 2 > 0.

The approach He took is similar to the approach of
Casella and Hwang (1983), using a one-dimensional
loss function similar to the linear loss (10) except that
θ is replaced by only the component θi of interest. As
in the discussion following (10), k and c need to be
properly linked. With such a choice of k, the decision
Bayes interval is then approximated by its empirical
Bayes counterpart:

CHe
X = {θi : |θi − δ+

i (X)|2 ≤ ν(|X|)}.
Here δ+

i (X) is the ith component of the James–Stein
positive part estimator (6) with a = p − 2,

ν(|X|) = M̂(c2 − log M̂),
(14)

M̂ = max
{(

1 − p − 2

|X|2
)+

,
1

p − 1

}
.

Note the resemblance to (12). There is also a trunca-
tion carried out in the definition of M̂ so that ν(|X|) is
bounded away from zero.

It can be shown that the length of CHe
X is always

smaller than that of I 0
X for each individual coordinate,

i as long as c > 1, or, equivalently, 1 − α > 68%.
In contrast, in Morris (1983) only the average length
across i was made smaller.

Numerical studies in He (1992) demonstrated that
his interval is an empirical Bayes confidence interval
with 1 − α confidence coefficient. Also, on average, it
has shorter length than the intervals of Morris (1983)
or Laird and Louis (1987) when α = 0.05 or 0.1. He
concluded that his interval is recommended only if
α ≤ 0.1. Interestingly, in modern application with the
concerns of multiple testings, a small value of α is
more important.

5.2 Intervals for the Selected Mean

An important problem in statistics is to address the
confidence estimation problem after selecting a subset
of populations from a larger set. This is especially so if
the number p of populations is huge and the number of
selected populations, k, is relatively small, a scenario
typical in microarray experiments. For example, ignor-
ing the selection and just estimating the parameters of

the selected populations by the sample means would
have serious bias, especially if the populations selected
are the ones with largest corresponding sample means.
In such a situation, intuition would suggest that some
kind of shrinkage approach is very much needed.

Specifically, we consider the canonical model

Xi ∼ i.i.d. N(θi, σ
2
i ) and

(15)
θi ∼ i.i.d. N(μ, τ 2).

Let θ(i) be the parameter of the selected population,
that is, it is the θj such that Xj = X(i) where

X(1) ≤ X(2) ≤ · · · ≤ X(p)(16)

are the order statistics of (X1, . . . ,Xp). In particular,
θ(p) is the θ that corresponds to the largest obser-
vation X(p) = maxj Xj . Note that it is not true that
θ(1) ≤ θ(2) ≤ · · · ≤ θ(p). In particular, θ(p) is not nec-
essarily the largest of the θj ’s. It is just that θj happens
to have produced the largest observations among the
Xi ’s.

In the point estimation problem, the naive estimator
of θ(p) is X(p), which can be intuitively seen to be an
overestimate, especially if all θi are equal. A shrinkage
estimator adapted to this situation would seem more
reasonable. Hwang (1993) was able to show that for
estimating θ(p), a variation of the positive-part estima-
tor (6), with Xi replaced by X(i), has, for every μ and
τ 2, smaller Bayes risk than X(i) with respect to one-
dimensional squared error loss.

For the construction of confidence intervals, Qiu and
Hwang (2007) adapted the approach of Casella and
Hwang (1983) and He (1992) to this problem. For any
selection, they constructed 1 − α empirical Bayes con-
fidence intervals for θ(i) which are shown numerically
to have confidence coefficient 1 − α when σi = σ is
either known or estimable. Moreover, the interval is
everywhere shorter than even the traditional interval,
X(i) ± cσ , which does not maintain 1 − α coverage in
this case.

Interestingly, in one microarray data set, Qiu and
Hwang (2007) found that the normal prior did not fit
the data as well as a mixture of a normal prior and a
point mass at zero. For the mixture prior, an empirical
Bayes confidence interval for θ(i) was constructed and
shown (numerically and asymptotically as p → ∞)

to have empirical Bayes confidence coefficient at least
1 − α.

Further, combining k empirical Bayes 1 − α/k con-
fidence intervals for θ(i), i ∈ S, where S consists of k

indices of the selected θ(i)’s, yields a simultaneous con-
fidence set (rectangle) that has empirical Bayes cov-
erage probability above the nominal 1 − α level. Fur-
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thermore, their sizes could be much smaller than even
the naive rectangles (which ignore selection and hence
have poor coverage). This can also lead to a more pow-
erful test.

5.3 Shrinking Means and Variances

Thus far, we have only discussed procedures that
shrink the sample means, however, confidence sets can
also be improved by shrinking variances. In Section 4
we saw how to construct improved intervals for the
variance. In Berry (1994) it was shown that using an
improved variance estimator can slightly improve the
risk of the Stein point estimator (but not the positive-
part). Now we will see that we can substantially im-
prove intervals for the mean by using improved vari-
ance estimates, when there are a large number of vari-
ances involved.

Hwang, Qiu and Zhao (2009) constructed empiri-
cal Bayes confidence intervals for θi where the cen-
ter and the length of the interval are found by shrink-
ing both the sample means and sample variances. They
took an approach similar to He (1992), except that the
task is complicated by putting yet another prior on σ 2

i .
The prior assumption is that logσ 2

i is distributed ac-
cording to a normal distribution (or σ 2

i has an inverted
gamma distribution). In both cases, their proposed dou-
ble shrinkage confidence interval maintains empirical
Bayes coverage probabilities above the nominal level,
while the expected length are always smaller than the t-
interval or the interval that only shrinks means. Simula-
tions show that the improvements could be up to 50%.

The confidence intervals constructed are shown to
have empirical Bayes confidence coefficient close to
1 − α. In all the numerical studies, including extensive
simulation and the application to the data sets, the dou-
ble shrinkage procedure performed better than the sin-
gle shrinkage intervals (intervals that shrink only one
of the sample means or sample variances but not both)
and the standard t interval (where there is no shrink-
age).

6. DISCUSSION

The confidence sets that we have discussed broadly
fall into two categories: those that are explicitly de-
fined by a center and a radius (such as Berger, 1980,
or Casella and Hwang, 1983), and those that are im-
plicit (such as Tseng and Brown, 1997). For experi-
menters, the explicitly defined intervals may be slightly
preferred.

The improved confidence sets typically work be-
cause they are able to reduce the volume of the x-
section (the confidence set) without reducing the vol-

ume of the θ -section (the acceptance region). As the
coverage probability results from the θ -section, the re-
sult is an improved set in terms of volume and cover-
age.

Another point to note is that most of the sets pre-
sented are based on shrinking toward zero. Moreover,
the improved sets will typically have greatest coverage
improvement near zero, that is, near the point to which
they are shrinking. The point zero is, of course, only
a convenience, as we can shrink toward any point μ0
by translating the problem to x − μ0 and θ − μ0, and
then obtain the greatest confidence improvement when
x − μ0 is small. Moreover, we can shrink toward any
linear subset of the parameter space, for example, the
space where the coordinates are all equal, by translat-
ing to x − x̄1 and θ − θ̄1, where 1 is a vector of 1s.
This is developed in Casella and Hwang (1987).

The Stein effect, which was discovered in point es-
timation, has had far-reaching influence in confidence
set estimation. It has shown us that by taking into ac-
count the structure of a problem, possibly through an
empirical Bayes model, improved point and set esti-
mators can be constructed.

APPENDIX A: PROOF OF DOMINANCE OF C+

Hwang and Casella (1982) show that Pθ(θ ∈ C+) is
decreasing in |θ |, and hence has minimum 1 − α at
|θ | = ∞. The proof is somewhat complex, and only
holds for p ≥ 4. Hwang and Casella (1984) found a
simpler approach, which extended the result to p = 3.
We outline that approach here.

For the set C+ = {θ : |θ − δ+(x)| ≤ c}, the following
lemma shows that we do not have to worry about |θ | <
c.

LEMMA A.1. For X ∼ N(θ, I ) and every a > 0
and |θ | < c,

Pθ

(
θ : |θ − δ+(X)| ≤ c

) ≥ Pθ(θ : |θ − X| ≤ c).

PROOF. The assumption |θ | < c implies that 0 ∈
C0

θ , the θ -section (acceptance region). Therefore, by
the convexity of C0

θ ,

x ∈ C0
θ 
⇒ δ+(x) ∈ C0

θ

since δ+(x) is a convex combination of 0 and x. Fi-
nally, since δ+(x) ∈ C0

θ , we then have |δ+(x) − θ | ≤ c

so C0
θ ⊂ C+

θ and the theorem is proved. �
It is interesting that, even though the confidence sets

(the x-sections) have exactly the same volume; for
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small θ the θ -section of the δ+ procedure contains the
θ -section of the usual procedure.

In addition to not needing to worry about |θ | < c,
there is a further simplification if |θ | ≥ c. If |θ | ≥ c,
the inequality |θ − δ+(x)| ≤ c is equivalent to

|θ − δ+(x)| ≤ c and |x|2 ≥ a,

which allows us to drop the “+.” Note that if |θ | > c

and |x|2 < a, then |θ − δ+(x)| > c.
Last, we note that if a = 0, then the two procedures

are exactly the same and, thus, a sufficient condition
for domination of C0

x by C0
δ is to show that

d

da
Pθ(θ ∈ C+

δ ) > 0(A.1)

for every |θ | > c and a in an interval including 0. The
inequality (A.1) was established in Hwang and Casella
(1984) through the use of the polar transformation
(x, θ) → (r, β), where r = |x| and x′θ = |x||θ | cos(β),
so β is the angle between x and θ . The polar represen-
tation of the coverage probability is differentiable in a,
and the following theorem was established.

THEOREM A.2. For p ≥ 3, the coverage probabil-
ity of C+

δ is higher than that of C0
x for every θ provided

0 < a ≤ a∗, where a∗ is the unique solution to(
c2 + (c2 + a∗)1/2

a∗
)p−2

e−c
√

a∗ = 1.

Solutions to this equation are easily computed, and
it turns out that a∗ ≈ 0.8(p − 2), which does not quite
get to the value p − 2, the optimal value for δJS and the
popular choice for δ+. However, the coverage proba-
bilities are very close. Moreover, the theorem provides
a sufficient condition, and it is no doubt the case that
a = p − 2 achieves dominance.

APPENDIX B: THE STRAWDERMAN PRIOR

The first proper Bayes minimax point estimators
were found by Strawderman (1971) using a hierarchi-
cal prior of the form

X|θ ∼ Np(θ, I ),

θ |λ ∼ Np

(
0,

1 − λ

λ
I

)
,

λ ∼ (1 − a)λ−a, 0 < λ ≤ 1, 0 ≤ a < 1.

The Bayes estimator for this model is E(θ |x) =
[1 − E(λ|x)]x. The function E(λ|x) is a bounded in-
creasing function of |x|, and Strawderman was able to
show, using an extension of Baranchik’s (1970) result,

that for p ≥ 5 the Bayes estimator is minimax. An in-
teresting point about this hierarchy is that the uncondi-
tional prior on θ is approximately 1/|θ |p+2−2a , giving
it t-like tails. These are the types of priors that lead
to Bayesian posterior credible sets with good coverage
probabilities.

Faith (1978) used a similar hierarchical model with
θ ∼ N(0, t2I ) and t2 ∼ Inverted Gamma(a, b), lead-
ing to an unconditional prior on θ of the form π(θ) ≈
(2b + |θ |2)−(p/2+a), the multivariate t distribution. In
his unpublished Ph.D. thesis, Faith gave strong ev-
idence that the Bayesian posterior credible sets had
good coverage properties.

Berger (1980) used a generalization of Strawder-
man’s prior, which is more tractable than the t prior
of Faith, to allow for input on the covariance structure.
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