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Rejoinder: The Future of Indirect Evidence
Bradley Efron

Our three discussants fit an “ideal statistican” profile,
combining deep theoretical understanding with serious
scientific interests. The three essays—which are more
than commentaries on my article—reflect in a telling
way their different applied interests: Andrew Gelman
in social sciences, Sander Greenland in epidemiology,
and Robert Kass in neuroscience. Readers who share
my bad habit of turning to the discussions first will be
well rewarded here, but of course I hope you will even-
tually return to the article itself. There the emphasis
is less on specific applications (though they serve as
examples) and more on the development of statistical
inference.

Figure 1 concerns the physicist’s twins example of
Section 3. From the doctor’s prior distribution and the
fact that sexes differ randomly for fraternal twins but
not for identical ones, we can calculate probabilities in
the four cells of the table. The sonogram tells the physi-
cist that she is in the left-hand column, where there are
equal odds on identical or fraternal, just as Bayes rule
says. In my terminology, the doctor’s indirect evidence
is filtered by Bayes rule to reveal that portion applying
directly to the case at hand.

There is a leap of faith here, easy enough to make
in this case: that the doctor’s information is both rel-
evant and accurate. We would feel differently if the
doctor’s evidence turned out to be just three previous

FIG. 1. Probabilities relating to the physicist’s twins example of
Section 3.
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sets of twins, two of which were fraternal. A standard
Bayesian analysis might then start from a beta(2,3) hy-
perprior distribution on the prior probability of identi-
cal. The calculation of posterior odds would now be
more entertaining than the actual one in Figure 1, but
the results less satisfying.

How much respect is due to conclusions that be-
gin with priors, or hyperpriors, of mathematical con-
venience? The discussants are divided here: Gelman,
judging from the examples in Chapter 5 of his excellent
book with Carlin, Stern and Rubin, is fully committed;
Kass, as a follower of Jeffries, is mildly agreeable but
with strong reservations; while Greenland seems dis-
missive (calling objective Bayes “please don’t bother
me with the science’ Bayes”).

Section 4’s empirical Bayes motivation for the
James–Stein rule implicitly endorses Gelman’s posi-
tion, except that maximum likelihood estimation of M

and A in (1) finesses the use of a vague hyperprior for
them. The same remark applies to the discussion of
false discovery rates in Section 6. By Section 9, how-
ever, my qualms, along Greenland’s lines, become ev-
ident: do the estimates μ̂i in Table 2 fully account for
selection bias, as they would in a genuine Bayesian
analysis? Kass and I part company here. I believe we
need, and might get, a more complete theory of em-
pirical Bayes inference while he is satisfied with the
present situation, at least as far as applications go. Gel-
man is happy with both theory and applications.

The ground is steadier under our feet for both James–
Stein and Benjamini–Hochberg thanks to their fre-
quentist justifications, Theorems 1 and 2. We do not re-
ally need those prior distributions (1) and (7). The pro-
cedures have good consequences guaranteed for any
possible prior, which is another way of stating the fre-
quentist ideal. My “good work rules” comment in Sec-
tion 10 had in mind the emergence of key ideas such as
JS and BH from the frequentist literature.

Gelman is certainly right: Bayesian statistics has
transformed itself over the past 30 years, riding a hi-
erarchical modeling/MCMC wave toward a stronger
connection with scientific data analysis. This does not
make it an infallible recipe. MCMC methodology has
encouraged the use of mathematically convenient dis-
tributions at the hyperprior level, perhaps a dangerous

170

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/10-STS308REJ
http://dx.doi.org/10.1214/09-STS308
http://www.imstat.org


REJOINDER 171

trend. We could certainly use some new theory either
justifying the recipe or improving upon it.

Maximum likelihood, the crown jewel of classical
statistics, is a theory of direct evidence: the MLE is
nearly optimal among nearly unbiased estimates, while
the Fisher information bound tells us how accurate a di-
rect estimate can be. The most striking lesson of post-
war statistical theory, exemplified by the James–Stein
estimator, is the failure of maximum likelihood estima-
tion in high dimensions. That failure was the original
motivation for this talk and article, and my (hopefully
not futile) call for a more principled theory of indirect
evidence.

“Second-level maximum likelihood” (using I. J.
Good’s terminology), as in the empirical Bayes esti-
mation of M and A for the baseball data, is a tactic for
breaking through the MLE dimensional barrier. So are
hierarchical Bayes, random effects models, and regres-
sion techniques. There is no want of methodology here,
all of which can be useful in bringing indirect informa-
tion to bear, but I find it difficult to know which meth-
ods are appropriate, let alone optimal, in the analysis
of large-scale problems.

The baseball data has outlived several of the players.
It has the sterling virtue of including the “Truth” so
we can honestly compare prediction methods. On the
downside, nobody cares much about 40-year-old bat-
ting averages. We can imagine the same table except
where the proportions refer to cure rates for some hor-
rible disease, obtained from 18 different experimental
drugs. In such a case, pulling the Clemente of drugs
down from 0.400 to 0.294 might seem less desirable.
Relying entirely on direct evidence is an unaffordable
luxury in large-scale data analyses, but indirect evi-
dence can be a dangerous sword to wield. Some the-
oretical guidance would be welcome here, perhaps a
theory quantifying the relevance of group data to indi-
vidual estimates.

Kass and Gelman rather casually “dis” false discov-
ery rates, not on very good grounds as far as I can see.
Fdr methods have done what I would have thought im-
possible 15 years ago: displaced Type 1 error control as
the lead technology for large-scale hypothesis testing.
Fdr control is not classical significance testing. I con-
sider it a premonitory example of just the kind of new
statistics this article (and Greenland’s essay) hopes for,
an amalgam of frequentist and Bayesian thinking that

nicely combines direct and indirect multiple testing ev-
idence.

I don’t mind humility, especially in others, but Kass
goes too far in minimizing his own considerable ac-
complishments as a scientific collaborator, and the gen-
eral role of statistical scientists. Fdr does not “bless the
procedure psychologists were already using.” The real
trick in choosing from a long ordered list of p-values
is to know when they stop being interesting. Psycholo-
gists (or anyone else) did not know how to do this trick
in 1995 and now they do, thanks to progress in statisti-
cal inference.

Fdr methods can free Kathryn Roeder (as quoted by
Kass) from Type 1 error violators’ prison. She, and the
rest of us, can continue up the ordered list of p-values
as far as desired, at each step letting the local false dis-
covery rate tell her the ever-increasing risk of mislead-
ing her collaborators.

I like Hal Stern’s distinction between modelers and
nonmodelers, invoked by Gelman. These days there are
three groups to consider,

data miners � frequentists � Bayesians,

the inequality signs � referring to the amount of prob-
abilistic modeling. Bayesian modeling is almost al-
ways in addition to, rather than instead of, any fre-
quentist modeling of sampling densities. Data min-
ers are the atheists of the statistical world, not de-
voted to either major philosophy. In fact they often
work directly with algorithms, skipping probabilistic
modeling entirely. Good data-analytic ideas such as
boosting and neural networks have come out of the
data-mining/machine learning world (which Rob Kass
has at least one foot in), along with a welcome dose
of raw energy. Magical properties are sometimes at-
tributed to new algorithms—“boosting methods can
never overfit”—before they are digested and under-
stood in frequentist/Bayesian terms.

Methodology by itself is an ultimately frustrating ex-
ercise. A little statistical philosophy goes a long way
but we have had very little in the public forum these
days, and I am genuinely grateful to our editor, David
Madigan, for organizing this discussion.
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