Stochastic Systems
2011, Vol. 1, No. 2, 274-305
DOI: 10.1214/10-85Y018

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE
PROGRAMMING

By ALEXANDRE D’ASPREMONT
CMAP, Ecole Polytechnique, UMR CNRS 7641

We derive a stochastic gradient algorithm for semidefinite opti-
mization using randomization techniques. The algorithm uses sub-
sampling to reduce the computational cost of each iteration and the
subsampling ratio explicitly controls granularity, i.e. the tradeoff be-
tween cost per iteration and total number of iterations. Furthermore,
the total computational cost is directly proportional to the complex-
ity (i.e. rank) of the solution. We study numerical performance on
some large-scale problems arising in statistical learning.

1. Introduction. Beyond classic combinatorial relaxations Goemans
and Williamson (1995), semidefinite programming has recently found a new
stream of applications in machine learning Lanckriet et al. (2002), geometry
Weinberger and Saul (2006), statistics d’Aspremont, Banerjee and El Ghaoui
(2006) or graph theory Sun et al. (2006). All these problems have a com-
mon characteristic: they have relatively low precision targets but form very
large semidefinite programs for which obtaining second order models is nu-
merically hopeless which means that Newton based interior point solvers
typically fail before completing even a single iteration. Early efforts focused
on exploiting structural properties of the problem (sparsity, block patterns,
etc), but this has proven particularly hard for semidefinite programs. For
very large problem instances, first-order methods remain at this point the
only credible alternative. This follows a more general trend in optimization
which seeks to significantly reduce the granularity of solvers, i.e. reduce the
per iteration complexity of optimization algorithms rather than their total
computational cost, thus allowing at least some progress to be made on
problems that are beyond the reach of current algorithms.

In this work, we focus on the following spectral norm minimization prob-
lem

1) minimize Hzﬁ';l yiA; + C’H2 —bly

subject to y € Q,

Received November 2010.
AMS 2000 subject classifications: Primary 90C22, 90C15.
Keywords and phrases: Semidefinite programming, stochastic optimization, subsam-
pling.
274

http://www.i-journals.org/ssy/
http://dx.doi.org/10.1214/10-SSY018

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 275

in the variable y € R?, with parameters A; € S,,, for j =1,...,p, b € R?
and C € S,,, where () is a compact convex set. Throughout the paper, we
also implicitly assume that the set Q C RP is simple enough so that the
complexity of projecting y on @ is relatively low compared to the other
steps in the algorithm.

The idea behind this paper stems from a recent result by Juditsky et al.
(2009), who used a mirror descent stochastic approximation algorithm for
solving bilinear matrix games (see Nesterov (2009), Polyak and Juditsky
(1992) or Nemirovsky and Yudin (1983) for more background), where
subsampling is used to perform matrix vector products and produce an
approximate gradient. Strikingly, the algorithm has a total complexity of
O(nlogn/e?), when the problem matrix is n x n, hence only requires ac-
cess to a negligible proportion of the matrix coefficients as the dimension n
tends to infinity. A similar subsampling argument was used in Juditsky, Ne-
mirovskii and Tauvel (2008) to solve a variational inequality representation
of maximum eigenvalue minimization problems.

In parallel, recent advances in large deviations and random matrix theory
have produced a stream of new randomization results for high dimensional
linear algebra (see Achlioptas and McSherry (2007); Drineas, Kannan and
Mahoney (2006); Frieze, Kannan and Vempala (2004); Kannan and Vem-
pala (2009) among many others), motivated by the need to perform these
operations on very large scale, sometimes streaming, data sets in applica-
tions such as machine learning, signal processing, etc. Similar subsampling
techniques have been successfully applied to support vector machine classi-
fication Kumar, Bhattacharya and Hariharan (2008) or Fourier decomposi-
tion. Randomization results were used in Arora and Kale (2007) to produce
complexity bounds for certain semidefinite programs arising in combinatorial
relaxations of graph problems. Randomization was also used in Burke, Lewis
and Overton (2002) and Burke, Lewis and Overton (2005) to approximate
subdifferentials of functions that are only differentiable almost everywhere.
A randomized algorithm for semidefinite programming based on random
walk techniques was also developed in Polyak and Shcherbakov (2007). Fi-
nally, a recent stochastic version by Lan (2009) of the algorithm in Nesterov
(2007) has the potential to improve the complexity bounds provided by the
method in Juditsky et al. (2009).

Our contribution here is to further reduce the granularity of first-order
semidefinite programming solvers by combining subsampling procedures with
stochastic approximation algorithms to derive stochastic gradient methods
for spectral norm minimization with very low complexity per iteration. In
practice, significantly larger per iteration complexity and memory require-

276 A. D’ASPREMONT

ments mean that interior point techniques often fail to complete a single
iteration on very large problem instances. CPU clock also runs much faster
than RAM, so operations small enough to be performed entirely in cache
(which runs at full speed) are much faster than those requiring larger data
sets. Solver performance on very large problem instances is then often more
constrained by memory bandwidth than clock speed, hence everything else
being equal, algorithms running many cheap iterations will be much faster
than those requiring fewer, more complex ones. Here, subsampling tech-
niques allow us to produce semidefinite optimization algorithms with very
low cost per iteration, where all remaining O(n?) operations have a small
constant and can be performed in a single pass over the data.

We also observe that the relative approximation error in computing the
spectral norm (or trace norm) of a matrix using subsampling is directly pro-
portional to the numerical rank of that matrix, hence another important
consequence of using subsampling techniques to solve large-scale semidefi-
nite programs is that the total complexity of running the algorithm becomes
explicitly dependent on the complexity (i.e. rank) of its solution. Most al-
gorithms exploiting the fact that the solution has low rank are not convex
(e.g. alternating minimization).

The paper is organized as follows. Section 2 surveys some key results on
randomized linear algebra and spectral norm approximations. In Section 3
we then derive a stochastic approximation algorithm for spectral norm mini-
mization with very low cost per iteration and discuss some extensions to sta-
tistical learning problems. Finally, we present some numerical experiments
in Section 4.

Notation. We write S,, the set of symmetric matrices of dimension n. For
a matrix X € R™" we write | X||p its Frobenius norm, || X ||, its trace
norm, || X||2 its spectral norm, o;(X) its i-th largest singular value and let
| X |00 = max;; | X;;], while X@ is the i-th column of the matrix X and X
its i-th row. We write vec(X) the vector of R™" obtained by stacking up
the columns of the matrix X and NumRank(X) the numerical rank of the
matrix X, where NumRank(X) = || X[|%2/]|X||3. Finally, when z € R" is
a vector, we write ||z||2 its Euclidean norm, while || - || is a general norm on
R™ and | - ||+ its dual norm.

2. Randomized linear algebra. In this section, we survey several
results by Drineas, Kannan and Mahoney (2006) which, after a single pass
on the data, sample columns to approximate matrix products and produce
low rank matrix approximations with a complexity of O(sn) where s is the
sampling rate.

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 277

Algorithm 1 Matrix multiplication

Input: A € R™*", B € R"*? and s such that 1 < s < n.
1: Define a probability vector ¢ € R™ such that

A B
po A
21 1AG 2 By 2

: Define subsampled matrices C' € R™*® and R € R**? as follows.
: for i =1 to s do
Pick j € [1,n] with P(j =1) = qi.
Set) = A(j)/\/sTj and R(i) = B(j)/\/sTj.
end for
Output: Matrix product CR approximating AB.

ST

2.1. Randomized matriz multiplication. By construction, E[CR] = AB,
and the following randomization result from Drineas, Kannan and Mahoney
(2007) controls the precision of the approximations in algorithm 1.

LEMMA 1. Let A € R™", B € R"P, given a subsampling rate s such
that 1 < s < n, suppose that C € R"™*® and R € R**P are computed
according to algorithm 1 above, then

1
E[|AB - CR|[3] < EHAII%HBII%
and if B € [0,1] with n =1+ /8log(1/8) then
2 n? 2 2
IAB = CR[r < [Allzl1Bll7
with probability at least 1 — (.

PROOF. See Theorem 1 in Drineas, Kannan and Mahoney (2007). O

Note that using the adaptive probabilities ¢; is crucial here. The error
bounds increase by a factor n when ¢; = 1/n for example.

2.2. Randomized low-rank approximation. Algorithm 2 below computes
the leading singular vectors of a smaller matrix S, which is a subsampled and
rescaled version of X. Here, the computational savings come from the fact
that we only need to compute singular values of a matrix of dimension m x s
with s < n. Recall that computing k leading eigenvectors of a symmetric
matrix of dimension s only requires matrix vector products, hence can be
performed in O(ks?log s) operations using iterative algorithms such as the

278 A. D’ASPREMONT

Algorithm 2 Low-rank approximation

Input: X € R™*" and k,s such that 1 <k < s < n.
1: Define a probability vector ¢ € R"™ such that ¢; = | XV |3/||X||%, for i =1,...,n.
Define a subsampled matrix S € R™** as follows.
for i =1to s do
Pick an index j € [1,n] with P(j =1) = ¢.
Set S = X/ /5.
end for
Form the eigenvalue decomposition STS = Y diag(o)Y” where Y € R**® and ¢ €
RS
8: Form a matrix H € R™** with H® = SY(’)/UI/2
Output: Approximate singular vectors HY i=1,... k.

power method or Lanczos method. The complexity is in fact O(kmslogm)
in our case because an explicit factorization of the matrix is known, (see the
appendix for details, as usual we omit the precision target in linear algebra
operations, implicitly assuming that it is much finer than ¢), so that the
cost of computing k leading singular vectors of a matrix of size m X s is
O(ksmlogm).

This means that, given the probabilities ¢;, the total cost of obtaining k
approximate singular vectors using algorithm 2 is O(ksmlogm) instead of
O(knmlogm) for exact singular vectors. Of course, computing ¢; requires
mmn operations, but can be done very efficiently in a single pass over the
data. We now recall the following result from Drineas, Kannan and Mahoney
(2006) which controls the precision of the approximations in algorithm 2.

LEMMA 2. Let X € R™" and 1 < k < s < n. Given a precision target
€>0,ifs>4/¢® and H € R™* is computed as in algorithm 2, we have

E[|X — HyHp X 3] < [|X — X3 + el X[
and if in addition s > 4n*/e®> where n = 1+ /8log(1/B) for B € [0,1], then
IX — HyHi X3 < | X — X3 + €| X[IF

with probability at least 1 — B, where X}, is the best rank k approximation
of X.

PROOF. See Theorem 4 in Drineas, Kannan and Mahoney (2006). O

An identical precision bound holds in the Frobenius norm when s > 4k/ €2,
We now adapt these results to our setting in the following lemma, which
shows how to approximate the spectral radius of a symmetric matrix X
using algorithm 2

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 279

LEMMA 3. Let X € R™*" and B € [0,1]. Given a precision target e >
0, construct a matriz S € R™** by subsampling the columns of X as in

algorithm 2. Let n =1+ /8log(1/8) and

(2) s = 172—”XH% NumRank(X)?
2
we have
E[|[|S]l2 = IX]2l] < e
and

IS]l2 = I X1l2] <€
with probability at least 1 — (3.

PRrROOF. Using the Hoffman-Wielandt inequality (see (Stewart and Sun,
1990, Th. 3.1) or the proof of (Drineas, Kannan and Mahoney, 2006, Th.2)
for example) we get

IS15 — X131 < 188" — XX

hence
1SNz = 1Xl2] < 158" = XXT||p/|1X]l2

and Jensen’s inequality together with the matrix multiplication result in
Lemma 1 yields

Bl|S5T — XX7|] < X117
SN
and 1 X3
SST — xxT||» < N21E
| lr < 7

with probability at least 1 — 5. Combining these two inequalities with the
sampling rate in (2)

X
€| X |13
yields the desired result. O

The subsampling rate required to achieve a precision target € has a natural
interpretation. Indeed

=n"" Num ank(X)

280 A. D’ASPREMONT

is simply the squared ratio of the numerical rank of the matrix X over
the relative precision target e/[| X[z, times a factor 7> controlling the
confidence level. The numerical rank NumRank(X) always satisfies 1 <
NumRank(X) = || X||%/][X]|3 < Rank(X) and can be seen as a stable
relaxation of the rank of the matrix X (see Rudelson and Vershynin (2007)
for a discussion). Note also that, by construction, the subsampled matrix
always has lower rank than the matrix X. The expectation bound is still
valid if we drop the factor n in (2).

3. Stochastic approximation algorithm. Below, we will use a stochas-
tic approximation algorithm to solve problem (1) when the gradient is ap-
proximated using the subsampling algorithms detailed above. We focus on
a stochastic approximation of problem (1) written

p
i =E (s) A — "
(3) i f(y) m jE_l yjA;+C y
- 2

in the variable y € R” and parameters A; € S, for j = 1,...,p, b € R?
and C € S, with 1 < s < n controlling the sampling rate, where the
function ||z(%)(?:1 yjA; + C)||2 and a subgradient with respect to y are
computed using algorithms 1 and 2. For X € S,,, we have written 7(¥)(X)
the subsampling/scaling operation used in algorithms 1 and 2 with

(4) (X)) = 8,

where 0 < s < n controls the sampling rate and S € R"*® is the random
matrix defined in algorithm 2 whose columns are a scaled sample of the
columns of X. We will write S = 7(,)(X) the matrix obtained by subsampling

rows as in algorithm 1. We also define A € R *P as the matrix whose
columns are given by AU) = vec(Aj), j=1,...,p.

3.1. Stochastic approximation algorithm. We show the following lemma
approximating the gradient of the function ||7T(S)(Z§:1 yjA; + C)||2 with
respect to y and bounding its quadratic variation.

LEMMA 4. Given Aj; € S, with A € R %P defined as above, for j =
1,...,p, b € RP, C € S,, and sampling rates s1 and sz, a (stochastic)
subgradient of the function H7T(51)(Z§:1 y; Aj+ O)|l2 — bLy with respect to y
is given by the vector w € RP with

w = A" vec(vv")u — b

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 281

where v € R™ is a leading singular vector of the subsampled matriz S =
77(51)(2;’:1 yjA; + C) formed in algorithm 2 and u € {—1,1} is the sign
)

of the associated eigenvalue. Furthermore, the product AT vec(vv™) can be

approzimated using algorithm 1 to form an approrimate gradient
9= 7(82)(AT) 7'['(82)(Vec(rUUT))u - b,

which satisfies
(5)

Elg] = A” vec(vo Ju—be df(y) and E|g|3]<M2_2”A”F

+2]b]l3-

PROOF. Iterated expectations give Elg] = E[w] € df(y). The sampling
probabilities ¢; used in approximating the matrix vector product A” vec(vv™)
following algorithm 1 are defined as

A ll2| vee(vo™);| : 2

= P 1=1,...,n".
> i—1 A ll2] vee(vo) |

As in (Drineas, Kannan and Mahoney, 2007, Lemma 3), the quadratic vari-
ation of the approximate product 7(32)(AT) ﬂ(sz)(vec(va)) is then given
by

ry:

Z I Aq H% vec(vv

E[[|72) (AT) sy (vee(vo")) 7] = —

i=1
With ¢; defined as above, we get

n2 n2 2
3 A 15 vee(vv™)? - (i 1A ll2] vee(vo™)i))

524; o 52
A% oo™ |13

52

i=1

IN

by the Cauchy-Schwarz inequality, because || vec(vvT)||3 = [[vvT||% = ||Jv]|3 =
1, hence the desired result. O

Note that this procedure is not advantageous when [AT||r > [|AT|
and so is small. We now use this result to produce an explicit bound on the
complexity of solving problems (3) and (1) by subsampling using a stochastic
approximation algorithm. In this section, we let ||| be a general norm on R,
we write |||« its dual norm and define 0. (p) as the smallest number such that

282 A. D’ASPREMONT

llylle < dx(p)||y|l« for all y € RP. Following the notation in (Juditsky et al.,
2009, §2.3), we let w(x) be a distance generating function, i.e. a function
such that

Q° = {x €Q: JyeRP, zcargmin[y’u+ w(u)]}
ueq@

is a convex set. We assume that w(x) is strongly convex on)¢ with modulus
a with respect to the norm || - ||, which means

(y—)" (Vw(y) — Vw(@) > ally — 2|, =,y € Q.
We then define a prox-function V(z,y) on Q° x @ as follows:
V(z,y) = w(y) - [w(z) + V()" (y - 2)],

which is nonnegative and strongly convex with modulus « with respect to

the norm || - ||. The prox-mapping associated to V is then defined as
(6) PP (y) = argmin{y” (z — z) + V(z, 2)}.
z€Q
Finally, we define the w diameter of the set () as:
7 D,o= — mi 1/2
g @ = (maxe(2) - minw()

and we let v, for [=0,..., N be a step size strategy.

The following results control the convergence of the robust stochastic ap-
proximation algorithm 3 (see Juditsky et al. (2009), Nesterov (2009), Polyak
and Juditsky (1992) or Nemirovsky and Yudin (1983) for further details).
We call 7 the optimal solution of problem (3), the lemma below characterizes
convergence speed in expectation.

Algorithm 3 Spectral norm minimization using subsampling
Input: Matrices A; € Sy, for j=1,...,p, b€ RP and C € S,,, sampling rates s; and s2.

1: Pick initial yo € Q
2: for I =1to N do
3: Compute v € R", the leading singular vector of the matrix W(Sl)(2§:1 ;A +C),
subsampled according to algorithm 2 with £ =1 and s = s;.
4: Compute the approximate subgradient g; = W(SQ)(AT) W(Sz)(vec(va)) — b, by sub-
sampling the matrix product using algorithm 1 and s = s».
5. Set yi41 = Py?’“’(fylgl).
6: Update the running average gn = Zilj:o Y/ Zilj:o .
7: end for
Output: An approximate solution yn € R? of problem (3) with high probability.

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 283
LEMMA 5. Given N > 0, let M, be defined as in (5) by

IIAII2

using a fixed step size strategy with

D, 2
=@ J 2 y=1,.. N
" (5*(p)M* CYN7))

we have, after N iterations of algorithm 3

BIf () ~ f()] < Dus@delp)May|

and
fN) = f(y) > €

. a7 Dw7 (5*(p)M* 2
with probability less than Qf N
PROOF. By construction E[||g||?] < 62(p)M2, the rest follows from (Ju-

ditsky et al., 2009, §2.3) for example. O

Lemma 5 means that we need at most
2D2, 5%(p) M?

232

iterations to get an e solution to problem (3) with confidence at least 1 — 3.
Typically, the prox function w and the norm are chosen according to the
geometry of @, to minimize N. The choice of norm also affects d,(p) and
obtaining better bounds on M, in (5) for generic norms would further tighten
this complexity estimate.

We now call y* the solution to the original (deterministic) spectral norm
minimization problem (1) and bound the suboptimality of ¢y in the (true)
problem (1) with high probability.

THEOREM 1. If the sampling rate s1 is set to

2

A+ C
5 - H2 NumRank Zy;A +C
7=1

_ 2HZJ 1Yj
(8) s1=1) ;

284 A. D’ASPREMONT

then after

2D2 02 (p)M?
ae? 32

iterations of algorithm 3, we have

p p
ZQNJAJ' + C — bT?jN — Zy;Aj + C + bTy* S 2¢

J=1 9 J=1 9

with probability at least 1 — (.

PROOF. Recall that we have written y* the solution to the original (deter-
ministic) problem (1), § the solution to the approximate (stochastic) prob-
lem (3) and gy the N-th iterate of algorithm 3 above. Lemma 5 on the
convergence of gy to the solution of the stochastic problem in (3) means

fn) = f(@m) <e

with probability at least 1 — 5. By definition, ¥ minimizes the stochastic
problem, so in particular f(g) < f(y*), with f the objective value of the
stochastic problem, so we have in fact

(10) fFn) = fly") <e

with probability at least 1 — 5. Now, with s; defined as above, Lemma 3
on the quality of the subsampling approximation to ||.||2 shows that if the
sampling rate is set as in (8) then

P P
E Z y; A+ Ol — 7 Z y;A;+C <e
and Jensen’s inequality yields
P
Sy +C || =0Ty - fy)| <e

which bounds the difference between the minimum of the (true) problem in
(1) and the value f(y*) of its stochastic approximation in (3), combining
this with inequality (10) we finally get that

p
Fan) = |[[D wd+C ||| +bTy" < 2e

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 285

with probability at least 1 — 3. Applying Jensen’s inequality to || - ||2, using
the fact that the subsampling procedure is unbiased, i.e. E[z(*)(X)] = X for
any X € S,,, shows that

p p
dingAi+C| —vTin = B |7 gnA+C — b N,
p
< E (s ZQN’jAj +C — ngN,j
j=1 5
= f(Un)

where the expectation is taken w.r.t. the sampling probability. Hence

p
Fan) = |[[D v+ C ||| +b"y" < 2e
j=1

2
implies
P P
Z QNJAJ' +C|| - bT?jN — Zy;Aj +C| + bTy* < 2e
=1) j=1)
which is the desired result. O

This result allows us to bound the oracle complexity of solving (1) by sub-
sampling. In practice of course, both the spectral norm and the numerical
rank of the solution matrix Z§:1 y;Aj + C are unknown and guarantees of
successful termination (with high probability) depend on the type of stop-
ping criterion available. Given an exact stopping criterion certifying that
y € RP is optimal (e.g. a target objective value), we can search for the min-
imum sampling rate in (8) by e.g. starting from a low target and doubling
the sampling rate until we obtain an optimal solution. On the other hand, if
an exact stopping criterion is not available and a more conservative stopping
condition is used (e.g. the surrogate duality gap detailed in §3.3) it is possi-
ble for the algorithm to become more expensive than standard subgradient
techniques. These two scenarios are detailed below.

e Exact stopping criterion. We assume here that we have a reason-
ably efficient test for the optimality of the current iterate gy, e.g. a
specific target for the objective value below which the optimization
procedure can be stopped. In this case, even if we have no a priori

286

A. D’ASPREMONT

knowledge of the rank of the solution matrix, we can search for it,
starting with a low guess. The simple lemma below explicitly summa-
rizes the complexity of this procedure.

LEMMA 6. Suppose we start from a sampling rate s = 1 and rTun
algorithm 3 repeatedly, doubling the sampling rate until the stopping
criterion certifies the solution is optimal. Then, with probability at least
1 — [logy(s1)]8, algorithm 3 needs to be run at most

[log(s1)]

times, where s1 is given in (8), before finding an optimal solution

to (1).

PrROOF. Starting from s = 1, we simply need to double the sampling
rate at most [log,(s1)| before it becomes larger than s;. At the sam-
pling rate s = s1, algorithm 3 will produce an optimal solution with
prob. 1 — j. O

In this scenario, Lemma 5 shows that the number of iterations re-
quired to reach a target precision € with confidence greater than 1 —

Bllogy(s1)] grows as

(11) NPl — 0 (ﬂOg2(81)WDEJ,Q&;ZZZ;HAH%/@ + HbH%))

where s is given in (8), and the cost of each iteration is detailed in
§3.2 below and the overall complexity of the method is summarized
in Table 1. In fact, we will see in §3.2 that the complexity of each
iteration is dominated by a term O(snlogn), where s is the sampling
rate, and because

[logy(s1)]
Z 2 < 9logy(s1)]+1 < 4s;
i=1

we then observe that searching for the minimal sampling rate by re-
peatedly solving (3) for increasing sampling rates will be less than four
times as expensive as solving the problem in the oracle case.

Conservative stopping criterion. Typically, producing a conserva-
tive stopping oracle means computing a surrogate duality gap and we
will show in §3.3 how this can be done efficiently in some examples. In

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 287

this case however, it is possible for a conservative stopping criterion to
repeatedly fail to detect optimality when searching for the sampling
rate s1. The complexity of the subsampling algorithm can then become
larger than that of the basic subgradient method.

To summarize, when an exact stopping criterion is available, the com-
plexity of finding an optimal solution is equivalent to that of the oracle
complexity described in Theorem 1 and the total number of iterations is
bounded by (11). However, when only a conservative stopping condition
is available, the algorithm can become more expensive than the classical
subgradient method. Note that this early stopping issue is shared by many
first-order algorithms, as the theoretical upper bounds available for most
first-order methods are usually overly conservative, often by one or two or-
ders of magnitude (Nesterov, 2007, §6). In these cases too, a conservative
stopping criterion is often used to stop the algorithm early. The next section
provides a detailed analysis of the complexity of an iteration of algorithm 3
as a function of ¢, s1 and s9 and the problem data.

3.2. Complexity. We now study in detail the complexity of algorithm 3.
Suppose we are given a precision target € and fix the sampling rate so ar-
bitrarily between 1 and n?, with the sampling rate s; set as in Theorem 1.
The cost of each iteration in algorithm 3 breaks down as follows.

e On line 3: Computing the leading singular vector v, using algorithm 2
with & = 1. This means first forming the matrix (Z§:1 y,;Aj+C) and
computing the probabilities ¢; at a cost of O(n?) operations. Forming
the matrix S = 7'('(81)(2?:1 y1,;A; + C) costs O(nsy) operations. It re-
mains to compute the leading singular vector of S using the Lanczos
method at a cost of O(sinlogn) (cf. §5.1 for details). The total numer-
ical cost of this step is then bounded by ¢1n? + cans; where ¢; and ¢
are absolute constants. Here, ¢ is always less than ten while ¢, is the
number of iterations required by the Lanczos method to reach a fixed
precision target (typically le-8 or better here) hence we have ¢; < cs.

e On line 4: Computing the approximate subgradient

g1 = 7 (AT) 7, (vee(vvT)) — b,

by subsampling the matrix product using algorithm 1. This means
again forming the vector q at a cost of O(n?) (the row norms of A can
be precomputed). Computing the subsampled matrix vector product
then costs O(ps2). Both of these complexity bounds have low con-
stants.

288 A. D’ASPREMONT

TABLE 1
Complezity of solving problem (1) using subsampled stochastic approxzimation method
versus original algorithm. Here c1,...,ca are absolute constants with c1,c3 < c2,cCa
Complexity Stoch. Approx. Stoch. Approx. with Subsampling
* 12
Per Iter. can®p + ¢(p) canlogn n? Hyé% NumRank(Y*)?
+c1n” + capsa + ¢(p)
2D2 55" ()2 AT I3 +113) 2D2 8" ()2 (IAl%/s2+1b113
Num. Iter. L w252 2 2 = a(szng = 2)

e On line 5: Computing the projection y;+1 = quf “(v191), whose numer-
ical cost will be denoted by ¢(p).

Let us remark in particular that all O(n?) operations above only require
one pass over the data, which means that the entire data set does not need
to fit in memory. Using the bound on the quadratic variation of the gra-
dient computed in Lemma 4, we can then bound the number of iterations
required by algorithm 3 to produce a e-solution to problem (1) with prob-
ability at least 1 — 3. Let us call Y* = 1;-’:1 y;fAj + C, and recall that

n = 1+ y/8log(1/5), Table 1 summarizes these complexity bounds and
compares them with complexity bounds for a stochastic approximation al-
gorithm without subsampling.

We observe that subsampling affects the complexity of solving problem (1)
in two ways. Decreasing the (matrix product) subsampling rate sy € [1,7?]
decreases the cost of each iterations but increases the number of iterations
in the same proportion, hence has no explicit effect on the total complexity
bound. In practice of course, because of higher cache memory speed and
better bandwidth on smaller problems, cheaper iterations tend to run more
efficiently than more complex ones. Note that the second subsampling step
detailed in Lemma 4 is not advantageous when || AT ||z > [|.A”]||o. When this
second subsampling step is skipped the term (||.A[|%/s2 + [|b]|3) is replaced
by (l.A713 + [|b]|3) in the bound on the number of iterations, and the term
c3psy becomes cspn? (or less if the matrices are structured).

The impact of the (singular vector) subsampling rate s; € [1,n] is much
more important however, since computing the leading eigenvector of the cur-
rent iterate is the most complex step in the algorithm when solving problem
(1) using stochastic approximation. Because c¢1, c3 < cg, the complexity per
iteration of solving large-scale problems essentially follows

Y3

nlognn? — NumRank(Y*)?
€

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 289

hence explicitly depends on both the numerical rank of the solution matrix
V* = 3" 1 y;A;j + C and on the relative precision target ¢/|[Y™*||2. This
means that problems with simpler solutions will be solved more efficiently
than problems whose solutions has a high rank.

The choice of norm || - || and distance generating function also has a di-
rect impact on complexity through ¢(p) and 0, (p)M,. Unfortunately here,
subsampling error bounds are only available in the Frobenius and spectral
norms hence part of the benefit of choosing optimal norm/distance generat-
ing function combinations is sometimes lost in the norm ratio bound 6§, (p).
However, choosing a norm/prox function combination according to the ge-
ometry of) can still improve the complexity bound compared to a purely
Fuclidean setting.

Finally, subsampling could have a more subtle effect on complexity. By
construction, solutions to problem (1) tend to have multiple leading singular
values which coalesce near the optimum. Introducing noise by subsampling
can potentially break this degeneracy and increase the gap between leading
eigenvalues. Since the complexity of the algorithm depends in great part on
the complexity of computing a leading singular vector using iterative meth-
ods such as the power method or the Lanczos method (cf. Appendix), and
the complexity of these methods decreases as the gap between the two lead-
ing singular values increases, subsampling can also improve the efficiency
of iterative singular value computations. However, outside of simple pertur-
bative regimes, not much is understood at this point about the effect of
subsampling on the spectral gap.

3.3. Surrogate duality gap. In practice, we often have no a priori knowl-
edge of NumRank(Y*)? and if the sampling rate s is set too low, it’s
possible for the algorithm to terminate at a suboptimal point Y where the
subsampling error is less than € (if the error at the true optimal point Y* is
much larger than €). In order to search for the optimal sampling rate s as
in Lemma 6, we first need to check for optimality in (1) and we now show
how to track convergence in algorithm 3 by computing a surrogate duality
gap, at a cost roughly equivalent to that of computing a subgradient. The
dual of problem (1) is written

maximize Tr(CX)— Sg(w

)
(12) subject to w; =b; — Tr(4;X), j=1,...,p
[Xl <1,

290 A. D’ASPREMONT

in the variables X € S,, and w € RP, where Sg(v) is the support function
of the set @), defined as

So(w) = maxwly.
Q(w) max Wy

For instance, when @ is an Euclidean ball of radius B, problem (12) becomes

maximize Tr(CX) — Bllw|2
(13) subject to w; =b; — Tr(4;X), j=1,...,p
[X[lee <1,
in the variables X € S,, and w € RP. The leading singular vector v in

algorithm 3 always satisfies [[vvT ||¢, < 1, hence we can track convergence in
solving (1) by computing the following surrogate duality gap

p
(14) > yidi+C|| =Ty — v Cu+ So(w)
j=1 9
where w; = b; — UTAjU forj=1,...,p.

3.4. Minimizing the sum of the k largest singular values. Motivated by
applications in statistical learning, we now discuss direct extensions of the
results above to the problem of minimizing the sum of the k largest singular
values of an affine combination of matrices, written

k

p
15 min o A +C | ="
(15) o ZZ:; ;?JJ J Yy

in the variable y € R?, with parameters A; € S,,, forj =1,...,p,b € R” and
C € S,,. Asin the previous section, we also form its stochastic approximation

k p
16 i =E |> o | 7[> g4+ C — o7
(16) gggf(y) HU T jilyg j y

in the variable y € R?, with 1 < s < n controlling the sampling rate. We
now prove an analog of Lemma 3 for this new objective function.

LEMMA 7. Let X € R™*" and B € [0,1]. Given a precision target € > 0,
k > 1 and a matriz S € R"™° constructed by subsampling the columns of

X as in algorithm 2, let n =1+ /8log(1/5) and

(17) s = n> (Zf:l 0:(X))? NumRank(X)?

5 2 #(X)* Rank(X)
€

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 291

where kK(X) = 01(X) /0, (X) with r = min {k, Rank(X)}, we have

E

k
> loi(X) - Uz'(S)\] <e
=1

and
k

D oi(X) —0i(S)| < e

i=1

with probability at least 1 — (3.

PROOF. Because Rank(SS?) < Rank(XX7) by construction, we al-
ways have

k K
YooiX) =7 ()] = D lo(X) = ail(S)] (04(X) + 0i(5))
i=1 i=1

K
0r(X)) |oi(X) — ai(S)]

i=1

v

where r = min {k, Rank(X)}. Because the sum of the k largest singular
values is a unitarily invariant norm on S,, (see (Horn and Johnson, 1991,
§3.4)), Mirsky’s theorem (see (Stewart and Sun, 1990, Th. 4.11) for example)
shows that

k

Y lotX) —oi(s)| =

1=1

|0i(XXT) - ai(SST)‘

oi(XXT — 55T

M- i

i=1

and because, by construction, the range of SS7 is included in the range of
XX we must have Rank(X X7 — §57) < Rank(X X7) and

k

D oi(XXT - 55T) < /Rank(X) || XX — ST

i=1
Jensen’s inequality together with the matrix multiplication result in Lemma 1
yield

B[|ss” — xx7||] < X]E
=7

292 A. D’ASPREMONT

and)
nll X 1|7
NG
with probability at least 1 — 3. Combining these inequalities with the sam-
pling rate in (17)

58T — XXT||p <

L, |X[[4 Rank(X)

e20,.(X)?
and using
4 2
(>imy 0i(X))?0,(X)? k
yields the desired result. O

Once again, the subsampling rate in the above lemma has a clear inter-
pretation,

2 (1 0i(X))? NumRank(X)?
S1=1 2 2

x(X)* Rank(X)

is the product of a term representing relative precision, a term reflecting the
rank of X and a term in x(X) representing its (pseudo) condition number.
Note that the bound can be further refined when o, < e¢. Lemma 7 allows
us to compute the gradient by subsampling when using algorithm 3 to solve
problem (15). The remaining steps in the algorithm are identical, except
that the matrix vo” is replaced by a combination of matrices formed using
the k leading singular vectors, with Frobenius norm k. The cost of each
iteration is dominated by the term

coksymlogn + cynm + c3pse + ¢(p)

with s; defined above, and the total number of iterations growing as
2D?, 0% (p)? (K All% /52 + [1b]3)
232 :
When [|AT||r > || AT |2 and sy is small, the second subsampling step de-
tailed in Lemma 4 is skipped and the cost per iteration becomes

coksymlogn + cynm + espmn + ¢(p)
and the total number of iterations grows as
2D? 50" (p)* (k[lAT 13 + [[b]3)
232

because M2 < 2 (k|| AT(|3 + [|b]|3) in this case.

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 293

4. Applications & numerical results. In this section, we first de-
tail a few instances of problem (1) arising in statistical learning. We then
study the numerical performance of the methods detailed here on large scale
problems.

4.1. Spectral norm minimization. For a given matrix A € S,,, we begin
by studying a simple instance of problem (1) written

minimize [|[A 4 Ull2

1 . ..
(18) subject to |U;j| <p, i,j=1,...,n

in the matrix U € S,,. This problem is closely related to a relaxation for
sparse PCA (see d’Aspremont et al. (2007)) and we use it in the next section
to test the numerical performance of algorithm 3. The complexity of the
main step in the algorithm (i.e. computing the gradient) is controlled by the
sampling rate in Lemma 3, which is written
* |2

s1 = 772HA4;72UH2 NumRank(A + U*)?
where U* € S,, is the optimal solution to problem (18). The prox function
used here is the square FKuclidean norm, and the prox-mapping is then a
simple Euclidean projection on the box [—p, p]”2. The cost of each iteration
is then dominated by the term

casinlogn + (c; 4 g+ 1)n’.
with s; defined above, and the total number of iterations grows as

4[log,(51)]n’p?
€232 ’

because the gradient always has norm one in this problem and the second
subsampling step in Lemma 4 is not beneficial.

4.2. Matriz factorization and collaborative filtering. Matrix factorization
methods have been heavily used to solve collaborative filtering problems (e.g.
the Netfliz problem) and we refer the reader to Srebro (2004), Bach (2007),
Recht, Fazel and Parrilo (2007) or Candes and Recht (2008) for details.
Srebro (2004) focuses on the following problem instance

(19) minimize [X[l +c Y max(0,1 - X;;M;;)
(4,7)€S

294 A. D’ASPREMONT

in the variable X € R™*", where M is a sparse matrix of ratings, S is the
set of known ratings (typically small), and ¢ > 0 is a parameter controlling
the rank versus accuracy tradeoff. Here, the trace norm can be understood
as a convex lower bound on the rank function (as in Fazel, Hindi and Boyd
(2001)) but sometimes also has a direct interpretation in terms of learning
(see Srebro (2004)). The dual of this problem is written

maximize ;.Y
subject to [|[Y o M|z <1
0<Y;;<c

in the variable Y € R™ ™, where Y o M is the Schur (componentwise)
product of Y and M. Because M is usually sparse, this problem is typically
sparse too (i.e. most of the coefficients of Y can be set to ¢). This last
problem is equivalent to

minimize [|Y o M||2
subject to 3, Vi =1
0<Y;; <d

for some d > 0, which is a particular instance of (1). In the numerical
experiments that follow, we focus on a simpler formulation of (15) written

minimize Zle oi(X)
(20) subject to X;; = M;;, (i,j) €S
| X3l < B

in the variable X € R"™*" for some k € [1,n] and B > 0, which is also
a particular instance of problem (15). We assume n > m. This replaces
the hinge-loss penalty in problem (19) with equality constraints. The classic
trace heuristic uses || X i, instead of >-¥ | ¢;(X) but we will see in what fol-
lows that minimizing the later term also tends to produce low rank solutions.

In this particular case, the complexity of the main step in the algorithm
(i.e. computing the gradient) is controlled by the sampling rate in Lemma 7,
which can be simplified here to

2 Y7 2
51 =1"—52K(Y")° Rank(Y™)
€
where Y* = 30 y#A;+C and w(Y*) = 01(Y") /o (Y*) with r = Rank(Y™).

The prox function used here is the square Euclidean norm, and the prox-
mapping is then a simple Euclidean projection on the box [—B, B]"*™ for

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 295

the coefficients whose rating is not given. As in (3.4), the cost of each iter-
ation is dominated by the term

casymlogn + (¢ + ¢ + 1)nm.
with s; defined above, and the total number of iterations growing as

4[log,(s1)]nmB%k
232 ’

because the gradient has Frobenius norm vk in this case. This bound can
be further refined when o, < €. In practice, the complexity of solving prob-
lem (20) can often be further reduced using the simple observation that an
optimal solution of (15) will also be optimal in (20) whenever Rank(Y;*) <
k, where Y;* is the optimal solution to (15) here. Once again, the sampling
rate s has a natural interpretation as the product of a relative precision term,
a term reflecting the condition number of the solution and the rank of the
optimal solution. It means in particular that problems whose solutions have
a lower rank are explicitly easier to solve than problems with more complex
(higher rank) solutions. Of course, much faster specialized algorithms are
available for this problem, but those methods that exploit the fact that the
solution is low-rank (like alternating minimization) are non-convex.

4.3. Numerical experiments. In this section, we test the quality of the
subsampling approximations detailed in Section 2 on various matrices. We
also evaluate the performance of the algorithms detailed above on large
scale problem instances. Numerical code reproducing these experiments is
available from the author’s webpage.

Randomized low-rank approximations. Here, we first measure the quality of
the randomized low-rank matrix approximation on both randomly generated
matrices and on covariance matrices formed using gene expression data. Be-
cause the spectrum of naive large scale random matrices is very structured,
these examples are too simple to appropriately benchmark numerical er-
ror in algorithm 2. Fortunately, as we will see below, generating random
symmetric matrices with a given spectral measure is straightforward.
Suppose X € S,, is a matrix with normally distributed coefficients, X;; ~
N(0,1), i,5 = 1,...,n. If we write its QR decomposition, X = QR with
Q, R € R™", then the orthogonal matrix () is Haar distributed on the
orthogonal group O, (see Diaconis (2003) for example). This means that to
generate a random matrix with given spectrum p € R", we generate a nor-
mally distributed matrix X, compute its QR decomposition and the matrix

296 A. D’ASPREMONT

/1 X112
5
occurences

10° 10" 107 107 107 10"

NumRank(X) Error / Theoretical error

Fia 1. Left: Loglog plot of relative error €/||X||2 versus numerical rank NumRank(X)
with 20% subsampling and n = 500 on random matrices (blue dots) and gene expression
covariance (red square). The dashed line has slope one in loglog scale. Right: Histogram
plot in semilog scale of relative error €/||X||2 over theoretical bound n NumRank(X)/./s
for random matrices with n = 500.

Q diag(;)QT will be uniformly distributed on the set of symmetric matri-
ces with spectrum u. Because the spectral measure of “natural” covariance
matrices often follows a power law (Tracy-Widom in the Gaussian case, see
Johnstone (2001) and El Karoui (2007) for a discussion), we sample the
spectrum g from a beta distribution with various exponents to get realistic
random matrices with a broad range of numerical ranks. We also use a covari-
ance matrix formed using the gene expression data set in Alon et al. (1999).

In Figure 1, we plot relative error €/|| X |2 against the numerical rank
NumRank(X) in loglog scale with 20% subsampling and n = 500 on ran-
dom matrices generated as above and on the gene expression covariance from
Alon et al. (1999). We notice that, on these experiments, the relative error
grows at most linearly with the numerical rank of the matrix, as predicted
by Lemma 3. We then plot the histogram in semilog scale of relative error
€/||X||l2 over theoretical bound n NumRank(X)/\/s for random matrices
with n = 500. In Figure 2, we plot relative error €/|| X ||2 versus sampling rate
s, in loglog scale, for a gene expression covariance with n = 500. Once gain,
the error decreases as 1/4/s as predicted by Lemma 3. We also plot the me-
dian speedup factor (over ten runs) in computing largest magnitude eigenval-
ues using ARPACK with and without subsampling on a gene expression co-
variance matrix with n = 2000, for various values of the sampling ratio s/n.
Note that both exact and subsampled eigenvalues are computed using di-
rect MEX calls to ARPACK by Lehoucq, Sorensen and Yang (1998), as eigs
(MATLAB'’s interface to ARPACK) carries a massive overhead. In all the
experiments above, the confidence level used in computing 7 was set to 99%.

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 297

107"

107°Fs ¢

/1 X]l2
Speedup factor

10°

N 2 [¢] 0.05 0.1 0.15 0.2 0.25

Sampling rate s Sampling ratio s/n

Fia 2. Left: Loglog plot of relative error €/||X||2 versus sampling rate s for a gene ex-
pression covariance with n = 500. The dashed line has slope -1/2 in loglog scale. Right:
Plot of median speedup factor in computing largest magnitude eigenvalue, using ARPACK
with and without subsampling on a gene expression covariance matriz with n = 2000, for
various values of the sampling ratio s/n.

Objective value
Surrogate gap

50 100 150 200 250 0 50 100 150 200 250
CPU time (secs.) CPU time (secs.)

Fi1c 3. Left: Objective value versus CPU for a sample matriz factorization problem in

dimension 100, using a deterministic gradient (squares) or a subsampled gradient with

subsampling rate set at 20% (circles). Right: Surrogate duality gap versus CPU time on
the same example.

Stochastic approximation with subsampling. In Figure 3, we generate a
sample ratings matrix X = VV7 for the collaborative filtering problem (20)
in §4.2, where V is a discrete feature matrix V € [0,4]"*3, with n = 100.
We “observe” only 30% of the coefficients in V' and solve problem (20) with
k = 4 and B = 10 to approximately reconstruct the full ratings matrix.
We plot objective value versus CPU time in seconds for this sample ma-
trix factorization problem, using a stochastic approximation algorithm with
deterministic gradient or the subsampled gradient algorithm 3 with subsam-
pling ratio s1/n set at 20%. We also plot surrogate duality gap versus CPU

298 A. D’ASPREMONT

TABLE 2
CPU time (in seconds) versus problem dimension n for deterministic and subsampled
stochastic approximation algorithms on spectral norm minimization problems

n | Deterministic | Subsampling | Speedup factor
500 5 5 0.92
750 19 13 1.40
1000 32 24 1.31
1500 107 58 1.84
2000 281 120 2.34
TABLE 3

Median CPU time (in seconds) versus problem dimension n for deterministic and
subsampled stochastic approximation algorithms on collaborative filtering problems

n | Deterministic | Subsampling | Speedup factor
100 154 23 6.67
200 766 63 12.2
500 4290 338 12.7

time on the same example. We notice that while the subsampled algorithm
converges much faster than the deterministic one, the quality of the surro-
gate dual points and duality gap produced using subsampled gradients as
in §3.3 is worst than in the deterministic case.

In Table 2, using the same 20% sampling rate we compare CPU time
versus problem dimension n for subsampled and deterministic algorithms
when solving the following instance of problem (1)

1C+ X2
[Xoo < p

minimize
subject to

in the variable X € S,, where C is a covariance matrix constructed using
the n variables in the gene expression data set of Alon et al. (1999) with
maximum variance, for various values of n, and p = 1/2. We run 200 itera-
tions of the deterministic algorithm and run the stochastic algorithm until
it reaches the best value found by the deterministic method. Finally, using
random ratings data generated as above, we solve sample collaborative fil-
tering solve problems (20) with k¥ = 4 and B = 10 for ratings matrix of
various dimensions n. We run 5000 iterations of the deterministic algorithm
and run the stochastic algorithm until it reaches the best value found by the
deterministic method.

Of course, specialized software packages solve much larger problems and
this example is only here to illustrate the potential speedup. We report
median CPU time over ten sample problems in Table 3. Here, subsampling
speeds up the algorithm by an order of magnitude, however the stochastic

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 299

approximation algorithm is still not competitive with (non convex) local
minimization techniques over low rank matrices.

5. Appendix. The complexity results detailed above heavily rely on
the fact that extracting one leading eigenvector of a symmetric matrix X €
S, can be done by computing a few matrix vector products. While this
simple fact is easy to prove using the power method when the eigenvalues of
X are well separated, the problem becomes significantly more delicate when
the spectrum of X is clustered. The section that follows briefly summarizes
how modern numerical methods solve this problem in practice.

5.1. Computing one leading eigenvector of a symmetric matriz. We start
by recalling how packages such as LAPACK Anderson et al. (1999) form a
full eigenvalue (or Schur) decomposition of a symmetric matrix X € S,,.
The algorithm is strikingly stable and, despite its O(n?®) complexity, often
competitive with more advanced techniques when the matrix X is small. We
then discuss the problem of approximating one leading eigenpair of X using
Krylov subspace methods with complexity growing as O(n?logn) with the
dimension (or less when the matrix is structured).

Full eigenvalue decomposition. Full eigenvalue decompositions are com-
puted by first reducing the matrix X to symmetric tridiagonal form using
Householder transformations, then diagonalizing the tridiagonal factor us-
ing iterative techniques such as the QR or divide and conquer methods for
example (see (Stewart, 2001, Chap. 3) for an overview). The classical QR
algorithm (see (Golub and Van Loan, 1990, §8.3)) implicitly relied on power
iterations to compute the eigenvalues and eigenvectors of a symmetric tridi-
agonal matrix with complexity O(n?), however more recent methods such as
the MRRR algorithm by Dhillon and Parlett (2003) solve this problem with
complexity O(n?). Starting with the third version of LAPACK, the MRRR
method is part of the default routine for diagonalizing a symmetric matrix
and is implemented in the STEGR driver (see Dhillon, Parlett and Vémel
(2006)).

Overall, the complexity of forming a full Schur decomposition of a sym-
metric matrix X € S,, is then 4n3/3 flops for the Householder tridiagonaliza-
tion, followed by O(n?) flops for the Schur decomposition of the tridiagonal
matrix using the MRRR algorithm.

Computing one leading eigenpair. We now give a brief overview of the
complexity of computing leading eigenpairs using Krylov subspace methods
and we refer the reader to (Stewart, 2001, §4.3), (Golub and Van Loan, 1990,
§8.3, §9.1.1) or Saad (1992) for a more complete discussion. Let u € R" be

300 A. D’PASPREMONT
a given vector, we form the following Krylov sequence
{u,Xu,qu, . ,Xku}

by computing k matrix vector products. If we call K (X, u) the subspace
generated by these vectors and write X = Y 1",)\Zw,wf a spectral decom-
position of X, assuming, for now, that

AL > A > 2>\,

one can show using Chebyshev polynomials (see e.g. (Stewart, 2001, §4.3.2)
for details) that

tan Z(x1,u) A1 — A2
=7 Wheren=_——=
(14 2v/n+n?)

Ao — A’
in other words, after a few iterations, Krylov subspaces contain excellent
approximations of leading eigenpairs of X.

This result is exploited by the Lanczos procedure to extract approximate
eigenpairs of X called Ritz pairs (see (Golub and Van Loan, 1990, Chap.
9) or (Stewart, 2001, §5.1.2) for a complete discussion). In practice, the
matrix formed by the Krylov sequence is very ill-conditioned (as X*u gets
increasingly close to the leading eigenvector) so the Lanczos algorithm si-
multaneously updates an orthogonormal basis for ICx(X,u) and a partial
tridiagonalization of X. The Lanczos procedure is described in Algorithm 4
and requires k matrix vector products and an additional 4nk flops. Note
that the only way in which the data in X is accessed is through the matrix
vector products Xu,;.

tan £ (1, Kp(X,u)) <

Algorithm 4 Lanczos decomposition

Input: Matrices X € S,, and initial vector u; € R".
1: Set up = 0 and So = 0.

2: for j =1to k do

3: Compute v = Xu;.

T
Set a; = uj v.

4

5: Update v=v — aju; — Bj-1uj—1.
6: Set 85 = ||v]|2.

7 Set ujt1 = v/6;.

8: end for

Output: A Lanczos decomposition

XUy, = Up Ty + Bruriier

where Uy € R™F is orthogonal and T} € Sy is symmetric tridiagonal.

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 301

In theory, one could then diagonalize the matrix T (which costs O(k?)
using the MRRR algorithm as we have seen above) to produce Ritz vectors.
In practice, key numerical difficulties often arise. First, finite precision arith-
metics cause a significant loss of orthogonality in Uy. This is remedied by
various reorthogonalization strategies (cf. (Stewart, 2001, §5.3.1)). A more
serious problem is clustered or multiple eigenvalues in the spectrum periph-
ery. In fact, it is easy to see that Krylov subspace methods cannot isolate
multiple eigenvalues. Assume that the leading eigenvalue has multiplicity
two for example, we then have

Abu = (2T u)ar + (@§u)eo) M+ (@ uw)ashh + - + @lu)a X

and everything happens as if the eigenvalue A\ was simple and the matrix X
had a larger nullspace. This is not a problem in the optimization problems
discussed in this paper, since we need only one eigenvector in the leading
invariant subspace, not the entire eigenspace.

Clustered eigenvalues (i.e. a small gap between the leading eigenvalue and
the next one, not counting multiplicities) are much more problematic. The
convergence of Ritz vectors cannot be established by the classical Cheby-
shev bounds described above, and various references provide a more refined
analysis of this scenario (see Parlett, Simon and Stringer (1982), Van der
Sluis and Van der Vorst (1987), Kuczynski and Wozniakowski (1992) among
others). Successful termination of a deterministic Lanczos method can never
be guaranteed anyway, since in the extreme case where the starting vector
is orthogonal to the leading eigenspace, the Krylov subspace contains no in-
formation about leading eigenpairs. In practice, Lanczos solvers use random
initial points. In particular, (Kuczynski and Wozniakowski, 1992, Th.4.2)
show that, for any matrix X € S,, (including matrices with clustered spec-
trum), starting the algorithm at a random wuy picked uniformly over the
sphere means the Lanczos decomposition will produce a leading Ritz pair
with relative precision € in

kLan < log(n/(52)

iterations, with probability at least 1 — d. This is of course a highly conser-
vative bound and in particular, the worst case matrices used to prove it vary
with kban,

This means that computing one leading eigenpair of the matrix X requires
computing at most k*** matrix vector products (we can always restart the
code in case of failure) plus 4nk™® flops. When the matrix is dense, each

302 A. D’ASPREMONT

matrix vector product costs n? flops, hence the total cost of computing one

leading eigenpair of X is
0 n?log(n/6?)
1e

flops. When the matrix is sparse, the cost of each matrix vector product is
O(s) instead of O(n?), where s is the number of nonzero coefficients in X.
Idem when the matrix X has rank r < n and an explicit factorization is
known (which is the case in the algorithms detailed in the previous section),
in which case each matrix vector product costs O(nr) which is the cost of two
n by 7 matrix vector products, and the complexity of the Lanczos procedure
decreases accordingly.

The numerical package ARPACK by Lehoucq, Sorensen and Yang (1998)
implements the Lanczos procedure with a reverse communication interface
allowing the user to efficiently compute the matrix vector product Xu;. How-
ever, it uses the implicitly shifted QR method instead of the more efficient
MRRR algorithm to compute the Ritz pairs of the matrix T} € Sg.

5.2. Other sampling techniques. For completeness, we recall below an-
other subsampling procedure in Achlioptas and McSherry (2007). More re-
cent “volume sampling” techniques produce improved error bounds (some
with multiplicative error bounds) but the corresponding optimal sampling
probabilities are much harder to compute, we refer the reader to Kannan
and Vempala (2009) for more details. The key idea behind this result is that,
as the matrix dimension n grows and given a fixed, scale invariant precision
target || X | /e, the norm || X||o of individual coefficients in X typically be-
comes negligible and we can randomly discard the majority of them while
keeping important spectral features of X mostly intact.

LEMMA 8. Given X € S,, and € > 0, we define a subsampled matrixz S
whose coefficients are independently distributed as:

Xii/p with probability p,
(21) i = { 4

0 otherwise.

when i > j, and S;j = Sj; otherwise. Assume that 1 > p > (8log n)*/n, then
1X = Slls < 4 X||ooy/n/p.

with probability at least 1 — exp(—19(log n)*).

PROOF. See (Achlioptas and McSherry, 2007, Th. 1.4). O

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 303

At first sight here, bounding the approximation error means letting the
probability p grow relatively fast as n tends to infinity. However, because
| X || /€ is typically much smaller than || X||r/e, this subsampling ratio p
can often be controlled. Adaptive subsampling, i.e. letting p vary with the
magnitude of the coefficients in X, can further improve these results (see
(Achlioptas and McSherry, 2007, §4) for details). The average number of
nonzero coefficients in the subsampled matrix can be bounded using the
structure of X. Note that the constants in this result are all very large
(in particular, 1 > p > (8logn)*/n implies n > 10%) so despite its good
empirical performance in low dimensions, the result presented above has to
be understood in an asymptotic sense.

Acknowledgements. The author is grateful to two anonymous referees
for their numerous comments, and would like to acknowledge partial support
from NSF grants SES-0835550 (CDI), CMMI-0844795 (CAREER), CMMI-
0968842, a starting grant from the European Research Council (ERC project
SIPA), a Peek junior faculty fellowship, a Howard B. Wentz Jr. award and
a gift from Google.

REFERENCES

AcHLIOPTAS, D. and MCSHERRY, F. (2007). Fast computation of low-rank matrix ap-
proximations. Journal of the ACM 54. MR2295993

ALoN, A., BArkal, N., NoTTERMAN, D. A., GisH, K., YBARRA, S., MACK, D. and
LEVINE, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis
of tumor and normal colon tissues probed by oligonucleotide arrays. Cell Biology 96
6745-6750.

ANDERSON, E., Bar, Z., BiscHoF, C., BLACKFORD, S., DEMMEL, J., DONGARRA, J.,
Du Croz, J., GREENBAUM, A., HAMMARLING, S., MCKENNEY, A. et al. (1999). LA-
PACK Users’ guide. Society for Industrial Mathematics.

ARORA, S. and KALE, S. (2007). A combinatorial, primal-dual approach to semidefinite
programs In Proceedings of the thirty-ninth annual ACM symposium on Theory of com-
puting 227-236. MR2402446

Bach, F. (2007). Consistency of trace norm minimization. To appear in Journal of Ma-
chine Learning Research. Arxiv preprint arXiv:0710.2848. MR2417263

BURKE, J., LEwis, A. and OVERTON, M. (2002). Approximating Subdifferentials by
Random Sampling of Gradients. Mathematics of Operations Research 27 567-584.
MR1926659

BURKE, J. V., LEwis, A. S. and OVERTON, M. L. (2005). A Robust Gradient Sampling
Algorithm for Nonsmooth, Nonconvex Optimization. SIAM Journal on Optimization
15 751-779. MR2142859

CaNDEs, E. J. and RECHT, B. (2008). Exact matrix completion via convex optimization.
preprint. MR2565240

D’ASPREMONT, A., BANERJEE, O. and EL GHAoul, L. (2006). First-order methods for
sparse covariance selection. SIAM Journal on Matriz Analysis and Applications 30
56-66. MR2399568

http://www.ams.org/mathscinet-getitem?mr=2295993
http://www.ams.org/mathscinet-getitem?mr=2402446
http://arxiv.org/abs/0710.2848
http://www.ams.org/mathscinet-getitem?mr=2417263
http://www.ams.org/mathscinet-getitem?mr=1926659
http://www.ams.org/mathscinet-getitem?mr=2142859
http://www.ams.org/mathscinet-getitem?mr=2565240
http://www.ams.org/mathscinet-getitem?mr=2399568

304 A. D’ASPREMONT

D’ASPREMONT, A., EL GHAouI, L., JORDAN, M. I. and LANCKRIET, G. R. G. (2007).
A Direct Formulation for Sparse PCA Using Semidefinite Programming. SIAM Review
49 434-448. MR2353806

DHILLON, I. S. and PARLETT, B. N. (2003). Orthogonal Eigenvectors and Relative Gaps.
SIAM Journal on Matriz Analysis and Applications 25 858-899. MR2081239

DHILLON, I. S., PARLETT, B. N. and VOMEL, C. (2006). The design and implementation
of the MRRR algorithm. ACM Transactions on Mathematical Software (TOMS) 32
560. MR2290445

Diaconis, P. (2003). Patterns in Eigenvalues: The 70th Josiah Willard Gibbs Lecture.
Bulletin of the American Mathematical Society 40 155-178. MR1962294

DRINEAS, P., KANNAN, R. and MAHONEY, M. W. (2006). Fast Monte Carlo Algorithms
for Matrices II: Computing a Low-Rank Approximation to a Matrix. STAM Journal on
Computing 36 158. MR2231644

DRrINEAS, P., KANNAN, R. and MAHONEY, M. W. (2007). Fast Monte Carlo algorithms
for matrices I: Approximating matrix multiplication. SIAM Journal on Computing 36
132-157. MR2231643

EL KAroul, N. (2007). Tracy-Widom limit for the largest eigenvalue of a large class of
complex sample covariance matrices. Annals of Probability 35 663—-714. MR2308592

FazgeL, M., Hinpi, H. and BoyD, S. (2001). A rank minimization heuristic with applica-
tion to minimum order system approximation. Proceedings American Control Confer-
ence 6 4734-4739.

FRrIEZE, A., KANNAN, R. and VEMPALA, S. (2004). Fast monte-carlo algorithms for finding
low-rank approximations. Journal of the ACM (JACM) 51 1025-1041. MR2145262
GoEMANS, M. X. and WILLIAMSON, D. P. (1995). Improved Approximation Algorithms
for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J.

ACM 42 1115-1145. MR1412228

GoLuB, G. H. and VAN LoaNn, C. F. (1990). Matrix Computation. North Ozford Aca-
demic.

HORN, R. A. and JOHNSON, C. R. (1991). Topics in matriz analysis. Cambridge university
press. MR1091716

JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal com-
ponents analysis. Annals of Statistics 295-327. MR1863961

JupITSKY, A., NEMIROVSKII, A. S. and TAUVEL, C. (2008). Solving variational inequali-
ties with Stochastic Mirror-Prox algorithm. Arxiv preprint arXiv:0809.0815.

JupITsKy, A., LAN, G., NEMIROVSKI, A. and SHAPIRO, A. (2009). Stochastic Approxi-
mation Approach to Stochastic Programming. SIAM Journal on Optimization 19 1574~
1609. MR2486041

KANNAN, R. and VEMPALA, S. (2009). Spectral algorithms. MR2558901

Kuczynski, J. and WozNIAKOWSKI, H. (1992). Estimating the largest eigenvalue by the
power and Lanczos algorithms with a random start. STAM J. Matriz Anal. Appl 13
1094-1122. MR1182715

KuMAR, K., BHATTACHARYA, C. and HARIHARAN, R. (2008). A Randomized Algorithm
for Large Scale Support Vector Learning. In Advances in Neural Information Processing
Systems 20 (J. C. Platt, D. Koller, Y. Singer and S. Roweis, eds.) MIT Press, Cambridge,
MA.

LaN, G. (2009). An optimal method for stochastic composite optimization. Technical
report, School of Industrial and Systems Engineering, Georgia Institute of Technology,
20009.

http://www.ams.org/mathscinet-getitem?mr=2353806
http://www.ams.org/mathscinet-getitem?mr=2081239
http://www.ams.org/mathscinet-getitem?mr=2290445
http://www.ams.org/mathscinet-getitem?mr=1962294
http://www.ams.org/mathscinet-getitem?mr=2231644
http://www.ams.org/mathscinet-getitem?mr=2231643
http://www.ams.org/mathscinet-getitem?mr=2308592
http://www.ams.org/mathscinet-getitem?mr=2145262
http://www.ams.org/mathscinet-getitem?mr=1412228
http://www.ams.org/mathscinet-getitem?mr=1091716
http://www.ams.org/mathscinet-getitem?mr=1863961
http://arxiv.org/abs/0809.0815
http://www.ams.org/mathscinet-getitem?mr=2486041
http://www.ams.org/mathscinet-getitem?mr=2558901
http://www.ams.org/mathscinet-getitem?mr=1182715

SUBSAMPLING ALGORITHMS FOR SEMIDEFINITE PROGRAMMING 305

LANCKRIET, G. R. G., CrisTiaANINI, N., BArRTLETT, P., EL GHAOUI, L. and JOR-
DAN, M. I. (2002). Learning the Kernel Matrix with Semi-Definite Programming. 19th
International Conference on Machine Learning.

LeHoucq, R. B., SORENSEN, D. C. and YANG, C. (1998). ARPACK: Solution of Large-
scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society for In-
dustrial & Applied Mathematics. MR1621681

NEMIROVSKY, A. and YUDIN, D. (1983). Problem complexity and method efficiency in
optimization. MRO0T02836

NESTEROV, Y. (2007). Gradient methods for minimizing composite objective function.
CORE DP2007/96.

NESTEROV, Y. (2009). Primal-dual subgradient methods for convex problems. Mathemat-
ical programming Series B 120 221-259. MR2496434

PARLETT, B., SIMON, H. and STRINGER, L. (1982). On estimating the largest eigenvalue
with the Lanczos algorithm. Mathematics of Computation 38 153-165. MR0637293

PoLyak, B. and JUDITSKY, A. (1992). Acceleration of stochastic approximation by aver-
aging. STAM Journal on Control and Optimization 30 838. MR1167814

PoLyak, B. T. and SHCHERBAKOV, P. S. (2007). A RANDOMIZED METHOD FOR
SOLVING SEMIDEFINITE PROGRAMS. 9th IFAC Workshop on Adaptation and
Learning in Control and Signal Processing.

RECHT, B., FAzZEL, M. and PARRILO, P. A. (2007). Guaranteed Minimum-Rank So-
lutions of Linear Matrix Equations via Nuclear Norm Minimization. Arxiv preprint
arXiv:0706.4138. MR2680543

RUDELSON, M. and VERSHYNIN, R. (2007). Sampling from large matrices: An approach
through geometric functional analysis. J. ACM 54 21. MR2351844

SAAD, Y. (1992). Numerical methods for large eigenvalue problems. Manchester Univ
Press. MR1177405

SREBRO, N. (2004). Learning with Matrix Factorization PhD thesis, Massachusetts Insti-
tute of Technology. MR2717223

STEWART, G. W. (2001). Matriz Algorithms Vol. II: Eigensystems. Society for Industrial
Mathematics. MR1853468

STEWART, G. W. and SuN, J. (1990). Matrix perturbation theory. MR1061154

SuN, J., BoyD, S., X1A0, L. and D1aconis, P. (2006). The fastest mixing Markov process
on a graph and a connection to a maximum variance unfolding problem. STAM Review
48 681. MR2278445

VAN DER Sruls, A. and VAN DER VORsT, H. (1987). The convergence behavior of Ritz
values in the presence of close eigenvalues. Linear Algebra and its Applications 88 651—
694. MR0882466

WEINBERGER, K. Q. and SAuL, L. K. (2006). Unsupervised Learning of Image Manifolds
by Semidefinite Programming. International Journal of Computer Vision 70 77-90.

CMAP, ECcOLE POLYTECHNIQUE

UMR CNRS 7641

91128 PALAISEAU, FRANCE

E-MAIL: alexandre.daspremont@m4x.org

http://www.ams.org/mathscinet-getitem?mr=1621681
http://www.ams.org/mathscinet-getitem?mr=0702836
http://www.ams.org/mathscinet-getitem?mr=2496434
http://www.ams.org/mathscinet-getitem?mr=0637293
http://www.ams.org/mathscinet-getitem?mr=1167814
http://arxiv.org/abs/0706.4138
http://www.ams.org/mathscinet-getitem?mr=2680543
http://www.ams.org/mathscinet-getitem?mr=2351844
http://www.ams.org/mathscinet-getitem?mr=1177405
http://www.ams.org/mathscinet-getitem?mr=2717223
http://www.ams.org/mathscinet-getitem?mr=1853468
http://www.ams.org/mathscinet-getitem?mr=1061154
http://www.ams.org/mathscinet-getitem?mr=2278445
http://www.ams.org/mathscinet-getitem?mr=0882466
mailto:alexandre.daspremont@m4x.org

	Introduction
	Randomized linear algebra
	Randomized matrix multiplication
	Randomized low-rank approximation

	Stochastic approximation algorithm
	Stochastic approximation algorithm
	Complexity
	Surrogate duality gap
	Minimizing the sum of the k largest singular values

	Applications & numerical results
	Spectral norm minimization
	Matrix factorization and collaborative filtering
	Numerical experiments

	Appendix
	Computing one leading eigenvector of a symmetric matrix
	Other sampling techniques

	Acknowledgements
	References
	Author's addresses

