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Bayesian Density Regression with Logistic
Gaussian Process and Subspace Projection

Surya T. Tokdar∗, Yu M. Zhu† and Jayanta K. Ghosh‡

Abstract. We develop a novel Bayesian density regression model based on logistic
Gaussian processes and subspace projection. Logistic Gaussian processes provide
an attractive alternative to the popular stick-breaking processes for modeling a
family of conditional densities that vary smoothly in the conditioning variable.
Subspace projection offers dimension reduction of predictors through multiple lin-
ear combinations, offering an alternative to the zeroing out theme of variable selec-
tion. We illustrate that logistic Gaussian processes and subspace projection com-
bine well to produce a computationally tractable and theoretically sound density
regression procedure that offers good out of sample prediction, accurate estima-
tion of subspace projection and satisfactory estimation of subspace dimensionality.
We also demonstrate that subspace projection may lead to better prediction than
variable selection when predictors are well chosen and possibly dependent on each
other, each having a moderate influence on the response.

Keywords: Bayesian Inference, Semiparametric Model, Posterior Consistency, Gaus-
sian Process, Markov Chain Monte Carlo, Dimension Reduction

1 Introduction

Density regression offers flexible modeling of a response variable y given a collection
of covariates x = (x1, · · · , xp). Density regression views the entire conditional density
p(y | x) as a function valued parameter and allows its center, spread, skewness, modality
and other such features to vary with x. Such model flexibility necessitates entertaining
a huge parameter space. It is thus important to calibrate the parameter space with a
penalty or a prior distribution to facilitate meaningful inference from finite data. The
latter approach, leading to Bayesian density regression, is the focus of this paper.

Despite its recent introduction to the literature, Bayesian density regression has
seen a rapid development in the last few years. Existing methods are almost exclusively
based on a stick-breaking representation of the form p(y | x) =

∑∞
h=1 πh(x)g(y | θh(x)),

where {g(y | θ) : θ ∈ Θ} is a chosen family of parametric densities, πh(x)’s are weights
that add up to one at every x and θh’s map x to Θ. Constructing prior distributions on
{πh(x), θh(x)}∞h=1} that guarantee large supports for p(y | x) and retain computational
tractability is the subject of much ongoing research, see for example Griffin and Steel
(2006), Dunson, Pillai, and Park (2007), Dunson and Park (2008) and Chung and Dun-
son (2009). In addition, increasing attention is being devoted to incorporate dimension
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reduction within these models. Most commonly, this is done through variable selection
– where given an inclusion parameter γ ∈ {0, 1}p, the model on p(y | x) involves only
those coordinates xj for which γj equals 1 (Chung and Dunson 2009). A Bayesian
inference on p(y | x) is then carried out with a suitable prior distribution on γ.

In this paper we introduce and develop an entirely different framework for modeling
a family of conditional densities and incorporating dimension reduction. To model
conditional densities, we extend the logistic Gaussian process originally studied by Lenk
(1988, 1991, 2003) and Tokdar (2007) for modeling a single density. We work with a
Gaussian process on the product space of (x, y) and apply a logistic transformation
to each x-slice of the process to produce a density function in y. The smoothness of
the original process and that of the logistic transform ensure that the resulting family
of densities vary smoothly across x and this variation is entirely nonparametric. The
extent of this smoothness, or in other words, the dependence between p(· | x) across x,
is easily encoded in the covariance function of the Gaussian process.

Our extension of the logistic Gaussian process (LGP) is reminiscent of MacEachern’s
(see MacEachern 1999, 2000) extension of the Dirchlet process to the dependent Dirichlet
process. However, the LGP extension appears much simpler both conceptually and
technically – owing to the smoothness properties of Gaussian processes defined over the
product space of (x, y). As would be demonstrated later, the LGP process has a large
support – it accommodates all conditional densities p(y | x) with some tail conditions
for which the map (x, y) 7→ log p(y | x) is continuous (see also Tokdar and Ghosh 2007,
for a simpler treatment of the single density case). Apart from leading to posterior
consistency properties, this easily identified support of the LGP offers practitioners a
transparent characterization of the induced model. A finer calibration of this support
and derivation of posterior convergence rates seem quite plausible in view of recent
theoretical studies on Gaussian processes (van der Vaart and van Zanten 2008), although
this has not been pursued in this paper.

A second novelty of our approach is the use of subspace projection to reduce the
dimensionality of x. We assume that

p(y | x) = p(y | PSx) (1)

for some lower dimensional linear subspace S ⊂ Rp with associated projection operator
PS . Both S and the function encoding p(y | PSx) are seen as model parameters.
Subspace projection is based on the notion that the conditional distribution of y can
be linked to x through linear combinations of x. This approach refrains from complete
zeroing out of a coordinate of x, instead attaches different weights to the coordinates to
suitably calibrate their relative influence on y. Such a summary of x is quite appealing
in studies where tens of predictor variables are hand picked, most possessing a moderate
ability to predict y. In such cases, subspace projection is also likely to offer better out
of sample prediction than sparse variable selection which may zero out many of the
variables with mild effects. We demonstrate this phenomenon with the Boston house
price data (Harrison and Rubinfeld 1978) in Section 5.

The formulation (1) where p(y | PSx) is non-parametric, has been well researched
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in the non-Bayesian literature. However, the focus of this research has been estimation
of only the minimal S for which (1) holds. This minimal subspace, commonly referred
to as the central subspace, exists and is unique under mild conditions (see Section 3) .
Estimation of the central subspace is often referred to as sufficient dimension reduction
for which a number of non-Bayesian techniques now exist in the literature; see Li (1991);
Cook and Weisberg (1991) for early developments and Zhu and Zeng (2006); Xia (2007)
for recent accounts. In contrast, our Bayesian model provides a joint inference on S
and p(y | PSx), facilitating dimension reduction and prediction simultaneously. This
simultaneous approach correctly reflects the uncertainty about both these parameters
when producing a summary of either object or when predicting y at a new value of
x. Moreover, it leads to a consistent estimation of the central subspace (see Theorem
3.2) under far milder conditions than those needed by the non-Bayesian approaches
and offers better empirical performance as illustrated in Section 5. Our approach also
provides a model based choice of the dimension of S and we demonstrate in Section 5
that this choice relates well to out of sample prediction.

We demonstrate in the following sections that the LGP combines well with sub-
space projection (SP) to produce a theoretically sound and computationally tractable
statistical procedure for estimating conditional densities, prediction of response and in-
ference on predictor importance. Hereafter, we shall call this procedure spLGP. Section
2 gives details of the model and Section 3 establishes its theoretical properties in terms
of predictive accuracy and consistent estimation of S. In Section 4 we discuss in detail
model fitting via Markov chain Monte Carlo, prediction and estimation of S and its
dimensionality. Section 5 presents three simulation studies highlighting empirical per-
formance of spLGP in estimating S. These are followed by two real data examples. The
first (Tecator data) shows a superior out of sample prediction by spLGP than previously
recorded studies of this data set. In the second (Boston house price) we illustrate how
subspace projection may offer improved prediction over variable selection when dealing
with correlated predictor variables many of which have a mild effect on the response. In
this example we also discuss calibration of predictor importance that correctly reflects
posterior uncertainty.

2 Model

Below we describe the spLGP model specific to a given dimension d = dim(S). A value
of d can be fixed by considering the number of linear summaries of x one is willing
to entertain in prediction of y. A small value of d = 2 or 3 is often appealing as a
parsimonious, nonparametric extension of single summary models such as the linear or
generalized linear models. In latter sections we shall discuss how to select a dimension
from a range of candidate values by comparing the spLGP models corresponding to
these values. A more ambitious approach is to include d as a model parameter and fit
an overarching model that spans over a given range of its values. However, this is not
pursued in the current paper due to the additional computing challenges involved in
fitting such models.
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For dim(S) = d, we model S as a uniform random variate in Gp,d - the set of all
d-dimensional linear subspaces of Rp. Note that any S ∈ Gp,d can be expressed as the
linear span C(B) of the columns of some p × d matrix B ∈ Bd = {B = [b1 : · · · :
bd] : bj ∈ Rp, ‖bj‖ = 1, j ≥ 1,Ba = 0 =⇒ a = 0}. It turns out that if B is a
uniform random variate in Bd then S = C(B) defines a uniform random variate in the
Grassmannian Gp,d; see Lemma 6.1 in Appendix (see also Mattila 1995, Ch 3 for more
on Grassmannian manifolds). This allows us to work directly with the representation
B. However, since B does not define a unique basis of S = C(B), all inference about S
will be done with respect to C(B) or PB = B(B′B)−1B′ = PS – the unique orthogonal
projection matrix onto this space.

With B ∈ Bd representing a basis of S, the spLGP model can be written as

p(y | x) = f(B′x, y) (2)

for some f in Fd = {f : Rd×R→ (0,∞) :
∫

f(z, y)dy = 1 ∀z ∈ Rd}. We specify a prior
distribution Πd on (B, f) as Πd = ΠB

d ×Πf
d where ΠB

d is the uniform distribution over Bd

and Πf
d is a logistic Gaussian process prior over Fd defined below. The definition of Πf

d

closely follows the one in Tokdar (2007, Section 6) where a Gaussian process defined over
a compact subset of Rd is suitably transformed to produce a random density function
with support Rd.

Let W (s, t) be an almost surely continuous, zero-mean, Gaussian process indexed
by s = (s1, · · · , sd) ∈ [−1, 1]d, t ∈ [0, 1] with the square exponential covariance kernel

Cov(W (s1, t1),W (s2, t2)) = τ2 exp
(
−

d∑

j=1

β2
j (s1j − s2j)2 − β2

y(t1 − t2)2
)

parametrized by τ > 0, β = (β1, · · · , βd) ∈ (0,∞)d and βy > 0. Fix a density g0 on
R and let G0 denote its cumulative distribution function. Also fix continuous, mono-
tonically increasing functions Fj , 1 ≤ j ≤ d, from R onto (−1, 1) and let F(z) denote
(F1(z1), · · · , Fd(zd))′. We define Πf

d to be the distribution governing the stochastic
process

f(z, y) = g0(y)
eW (F(z),G0(y))

∫
eW (F(z),v)dv

(3)

with a suitable prior distribution H(τ, β, βy) on the hyper-parameters (τ, β, βy). Note
that p(y | z) = f is equivalent to saying p(G0(y) | F(z)) = fW where fW (s, t) =
eW (s,t)/

∫ 1

0
eW (s,u)du.

The compactification provided by F and G0 is useful in many ways. It allows us
to work with a Gaussian process W defined on a compact set. The known continu-
ity, maxima and support properties of these processes make it easy to investigate the
asymptotic properties of spLGP. It also ensures that the oscillations in the sample paths
of f tapers off to zero at infinity. The identity E log f(z, y) = log g0(y) represents g0

as a central sample path under Πf
d . As discussed in Tokdar (2007), it is possible to

extend g0 to incorporate a parametric model of dependence of y on z. For example, by
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defining g0(z, y) = Normal(y | µ0+µ′z, σ2) one can embed the multiple linear regression
at the center of Πf

d . The simpler choice of a fixed g0 avoids complication in posterior
computation.

We make data driven choices of g0 and F. Theorem 3.1 requires g0 to be heavy
tailed. We set it equal to t3(ȳ, sy/1.134) where ȳ and sy are the sample mean and
standard deviation of yi’s. Note that the third quartile of a standard t3 distribution
equals the third quartile of a Normal(0, 1.1342) distribution. To fix Fj ’s, we first assume
that each coordinate variable of x is scaled to have mean zero and variance 1. Each Fj

is then set to be Fj(zj) = zj/(A+ δ) for |zj | < A and is left unspecified outside [−A,A],
where A = max1≤i≤n ‖xi‖. Outside [−A,A], each Fj is hypothesized to be extended
properly to satisfy the constraints discussed before.

The linearity of each Fj in [−A,A] offers an important simplification in comput-
ing the data likelihood. It turns out that each column bj of B appears only in the
form of β2

j (x′ibj − a)2. This allows us to reparametrize the pair (βj ,bj) as a single
vector βx

j = βjbj . Note that the unit-norm constraint on bj ensures that the orig-
inal parametrization can be easily retrieved as βj = ‖βx

j ‖ and bj = βx
j /‖βx

j ‖. This
reparametrization gets rid of the unit-norm condition and allows us model βx

j ’s as in-
dependent multivariate normal variates with mean zero and covariance σ2 times the
identity matrix. Under this specification bj ’s are indeed independently distributed ac-
cording to the uniform distribution on the p-dimensional sphere. Moreover, β2

j ’s are
independently distributed according to the gamma density with shape p/2 and rate
σ2/2 and are independent of bj ’s.

It remains to specify prior distributions on τ2, σ2 and βy. We model these pa-
rameters independently with inverse chi-square prior distributions on τ2 and σ2, with
parameters (ντ , τ2

0 ) and (νσ, σ2
0) respectively; see Gelman et al. (2004) for notations.

An extreme gamma distribution is specified on βy under which exp(βy) − 1 follows
a gamma distribution with shape νβ and scale µβ . This ensures a thin tail on βy,
Pr(βy > b) = O(exp(− exp(b))), providing a safeguard against large values of βy which
can lead to undesirable overfitting. See also Remark 1 of Ghosal and Roy (2006) where
such thin tail distributions are recommended to meet certain technical requirements. For
our choice of covariance kernel these requirements are also met with a simple gamma
distribution, as has been specified on βj ’s.

3 Posterior Consistency

We investigate asymptotic frequentist properties of spLGP for a given dim(S) = d under
the assumption that p(y | x) = p(y | PS0x) for some S0 ∈ Gp,d. We first show that our
model on (S, p(y | PSx) assigns positive prior probabilities around (S0, p(y | PS0x),
and consequently the posterior on p(y | PSx) concentrates around small neighborhoods
of p(y | PS0x) as more data accumulate from (x, y) ∼ p(x)p(y | PS0x), where p(x)
is the density of x. We next explore consistency in estimating S. For this we need
to assume that the given dimension d is the minimum dimension for which (1) holds.
Such an assumption is necessary because for any higher dimension, S0 is not unique,
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and thus its estimation is not meaningful. When the density p(x) is positive on all of
Rp, a minimum d exists and the corresponding S0 is unique (Cook 1994). This S0 is
precisely the central subspace, i.e., S0 = ∩S where the intersection is taken over all linear
subspaces S ⊂ Rp for which (1) holds. Derivation of the asymptotic properties of the
posterior on S when the specified d does not match the minimum dimension remains
an open problem. We note that the existing theory for non-Bayesian approaches to
estimating the central subspace also require the knowledge of the dimension (Xia 2007).

Under our assumption, there exists (B0, f0) ∈ Bd×Fd satisfying the model assump-
tion in (2). We will show that the posterior distribution

Π(n)
d (dB, df) ∝

n∏

i=1

f(B′xi, yi)Πd(dB, df)

concentrates around small neighborhoods of (B0, f0) as n → ∞. The neighborhoods,
however, are to be carefully defined since (B, f) is not uniquely determined under (2).
We first consider neighborhoods derived from a topology on the space of joint densities
of (x, y):

Lε = {(B, f) ∈ Bd ×Fd :
∫
‖f(B′x, ·)− f0(B′

0x, ·)‖1p(x)dx < ε}

where ‖ · ‖1 denotes the L1 norm and ε > 0 is arbitrary. In the following KL(g, f)
denotes the Kullback-Leibler divergence

∫
g log(g/f) of a density f from another density

g defined with respect to the same dominating measure.

Theorem 3.1. Assume that

1. f0 is continuous in both arguments.

2. There exists a > 0 such that KL(f0(z1, ·), f0(z2, ·)) < a‖z1 − z2‖2.
3.

∫ ‖x‖2p(x)dx < ∞.

4. For all B ∈ Bd,
∫

p(x)
∫

f0(B′
0x, y)

∣∣∣log f0(B
′x,y)

g0(y)

∣∣∣ dydx < ∞.

5. For every z ∈ Rd,

lim
y→−∞

f0(z, y)
g0(y)

= 0, lim
y→∞

f0(z, y)
g0(y)

= 0

and these convergences are uniform over every compact subset of Rd.

Then Π(n)
d (Lε) → 1 almost surely as n →∞.

This result holds because the induced prior distribution on the joint density h(x, y) =
p(x)f(B′x, y) satisfies the Kullback-Leibler support condition and the L1 entropy con-
dition of Ghosal et al. (1999); a sketch of a proof is given in Appendix. The con-
tinuity assumption (a) and the heavy tail assumption (e) together ensure that the
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map (s, t) 7→ log f0(F−1(s), G−1
0 (t)) − log g0(F−1(s), G−1

0 (t)) is well approximated by
a continuous function on [−1, 1]d × [−1, 1]. This approximating function belongs to the
supremum-norm support of the Gaussian process W – a basic result required to verify
the Kullback-Leibler condition. The other assumptions make sure that the error in
approximation is negligible in the tails.

To measure accuracy in estimating S, we need to focus on neighborhoods derived
from a topology on the space of d dimensional linear subspaces of Rp. As any such
subspace is uniquely represented by the rank d (orthogonal) projection matrix associated
with it, we can simply work with a distance metric on the latter objects. Two distance
metrics would be considered here:

ρtrace(P1,P2) = [1− trace(P1P2)/d]1/2 (4)
ρop(P1,P2) = ‖P1 −P2‖2 (5)

where ‖ · ‖2 denotes the operator norm for linear transforms from Rp to Rp. The
first metric measures an average distance between the projections of x under the two
matrices. In particular when x has mean zero and covariance identity,

E‖P1x−P2x‖2 = 2dρtrace(P1,P2)2 (6)

The second metric measures the maximum possible distance between the projections
of a normalized x under the two matrices. Given a distance metric ρ on the rank d
projection matrices of Rp, a neighborhood of B0 is defined as follows

Rρ,δ = {B ∈ Bd : ρ(PB,P0) < δ}

where PB = B(B′B)−1B′ denotes the projection matrix onto the subspace spanned by
the columns of B and P0 = PB0 .

Theorem 3.2. If 0 < p(x) < p̄x for all x ∈ Rp for some p̄x < ∞, then under the as-
sumptions of Theorem 3.1, Π(n)(Rρ,δ) → 1 almost surely as n →∞ where ρ = ρtrace or
ρ = ρop. Moreover, if B̂n is a minimizer of width(B) =

∫
ρtrace(PB1 ,PB)2Π(n)

d (dB1),
then ρtrace(PB̂n

,P0) → 0 almost surely as n →∞.

This result follows from the fact that (B, f) cannot be close to (B0, f0) in the
L1 topology defined earlier, unless ρ(PB,P0) is small; see the appendix for a proof.
The positivity of p(x) and continuity of f0 together ensure that PB1 6= PB2 implies
‖f0(B′

1x, ·)− f0(B′
2x, ·)‖1 > 0 with a positive probability under p.

Remark Note that the first assertion of Theorem 3.2 stays valid if we take ρ to be
the metric induced by the Frobenius norm, which essentially is the Euclidean distance
between P1 and P2 seen as elements in Rp×p. Both ρtrace and ρop are dominated by
this metric. The second assertion is valid for both ρop and the Frobenius distance.
However, defining B̂n in terms of ρtrace has a certain computational advantage as would
be discussed later.
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4 Model Fitting and Estimation

4.1 Sampling from the Posterior

As indicated in Tokdar (2007), working directly with the Gaussian process W poses
serious problems to model fitting even for numerical methods like the Markov Chain
Monte Carlo; see, however Adams, Murray, and MacKay (2009) for some recent devel-
opments on this issue. Instead, by replacing W in (3) with the conditional expectation
process

ZN (s, t) = E[W (s, t) | W (s1, t1), · · · ,W (sk, tk)], (7)

one obtains a useful approximation to the prior distribution Πf
d that tracks randomness

of W only at the node set N = {(s1, t1), · · · , (sk, tk)} ⊂ [−1, 1]d× [0, 1]. In fact ZN can
be simply written as

ZN (s, t) =
k∑

m=1

λmK((s, t), (sm, tm) | β, βy)

where K((s1, t1), (s2, t2) | β, βy) = exp(−∑d
j=1 β2

j (s1j − s2j)2 − β2
y(t1 − t2)2) and λ =

(λ1, · · · , λk)′, given β, βy and τ , has a multivariate normal distribution with mean zero
and covariance τ2K(N | β, βy)−1 with the (m, l)-th element of K(N | β, βy) given by
K((sm, tm), (sl, tl) | β, βy), 1 ≤ m, l ≤ k. A similar approximation is used by Tokdar
(2007) for LGP models of a single density and by Banerjee, Gelfand, Finley, and Sang
(2008) for Gaussian process spatial models.

With the node set N fixed, model fitting with the approximate prior distribution is
done by running a Markov Chain to update the parameters (B, β, βy, λ, τ2, σ2). Note
that B enters the likelihood computation only through evaluation of ZN at (F(B′xi), t)
for 1 ≤ i ≤ n for various t ∈ [0, 1]. Since each |B′xi| ≤ A, linearity of each Fj in [−A,A]
ensures that these evaluations can be made by computing

∑d
j=1 β2

j (b′jxi − sm)2 for
1 ≤ m ≤ k. This simplification was used in Section 2 to collapse β and B into a single
block of parameters Bx = [βx

1 : · · · : βx
d ]. Note that in updating (Bx, βy,λ, τ2, σ2), one

achieves further simplification by integrating out τ2 and σ2 from the model. The prior
distribution on (Bx, βy,λ) can be written as

tνσ (Bx | 0, σ2
0Idp)ExGam(βy | νy, µy)tντ (λ | 0, τ2

0 K(N | (‖βx
1 ‖, · · · , ‖βx

d‖), βy)−1)

where Bx is seen as a vector in Rdp, Idp is the identity matrix of dimension dp, tν(· | µ, Σ)
denotes the multivariate t distribution with degrees of freedom ν, location µ and scale
Σ, and ExGam(· | ν, µ) denotes the extreme gamma distribution with shape ν and scale
µ.

In our implementation, we make a data driven choice of N , by augmenting the pa-
rameter set to (Nx,ny,Bx, βy, λ), where Nx = [s1 : · · · : sk] and ny = (t1, · · · , tk). The
columns of Nx are modeled as independent, uniform random variates in [−1, 1]d, ny is
modeled as a uniform random variate in [0, 1]k and these are taken to be independent of
each other and also of the remaining parameters. We run a block Metropolis-Hastings
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sampler where each of Nx, ny, Bx, βy and λ is updated as a block holding the rest
fixed. A current realization Bx,curr = ((bx,curr

ij )) is updated by proposing a new re-
alization Bx,prop = ((bx,prop

ij )) as bx,prop
ij = bx,curr

ij + σBεij where εij are independent
Normal(0, 1) variates. Here σB is a scalar that controls the magnitude of these pertur-
bations. Similar multivariate normal perturbations are used for λ, Nx and ny, with
σλ, σx and σy controlling the respective perturbation magnitude. For the latter two
blocks, however, perturbation is applied to the constraint-free arctan and logit trans-
forms of their elements. A univariate normal perturbation is used on the logarithm of
βy: log βprop

y = log βcurr
y +σβε where ε ∼ Normal(0, 1). Tuning of σB , σλ, σx, σy and σβ

to attain desired levels of acceptance of the corresponding updates is discussed in detail
in Example 1. The cardinality k of N is taken to be fixed, usually between 5 to 10.
Note that the computing cost of evaluating the likelihood function at a given parameter
configuration is roughly O(nk3g) where g is the number of grid points on [0, 1] used to
approximate the integral in (3).

4.2 Posterior Summaries

Once a sample (Bl, fl), 1 ≤ l ≤ L is obtained from the (approximate) posterior distri-
bution, it is easy to estimate the predictive conditional density of y at a given covariate
value x∗ by the Monte Carlo average

p̂(y | x = x∗) =
1
L

L∑

l=1

fl(B′
lx
∗, y).

In our implementation, this density is evaluated only on a finite number of grid points,
from which its quantiles can be easily approximated. For making a prediction at x∗,
we use the median of this predictive conditional density, and its 50% (and 95%) equal
tailed intervals are used to indicate possible spread.

Approximating B̂n – the Bayes estimate under the ρ2
trace loss – however, requires

more attention. Let zli denote the projection PBl
xi. For any B ∈ Bd, the identity

(6) implies that a Monte Carlo approximation to width(B) =
∫

ρ2
trace(B, B̃)Π(n)

d (dB̃) is
given by

ŵidth(B) =
1

2dnL

n∑

i=1

L∑

l=1

‖zli −PBxi‖2.

A simple bias-variance argument shows that minimizing ŵidth(B) is equivalent to min-
imizing

∑n
i=1 ‖z̄i − PBxi‖2 with z̄i = (1/L)

∑L
l=1 zli. We find B̂n by carrying out

this latter minimization restricted to the set of the sampled Bl values. Note that the
computing cost of this approach of estimating B̂n from the MCMC sample is linear in
the sample size L. This would not have been the case if ρtrace were to be replaced with
ρop in the definition of B̂n; that would have resulted in a computing cost quadratic in
L. Once B̂n is computed, a measure of standard error in estimating Sy|x is found in
ŵidth(B̂n). While presenting B̂n, we shall rearrange its columns in decreasing order
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of βj – stored from the same MCMC draw that produced B̂n. The idea here is to
bring forward the column which corresponds to most rapid changes in the conditional
densities f(z, ·), much in the spirit of automatic relevance detection (Neal 1996). This
idea is further explored in Example 5 of Section 5 in the context of assessing relative
importance of the predictor variables.

4.3 Selecting dim(S)

It is natural to ask what minimum dimension of S is needed to well approximate p(y | x)
by p(y | PSx). One can pose this question as a model selection problem and compare
the marginal data likelihood

m(d) =
∫ n∏

i=1

f(B′xi, yi)Πd(dB, df) (8)

of the spLGP models for a set of candidate values 1 ≤ d ≤ dmax for some pre-
specified dmax ≤ p, and then select the one with the maximum m(d) value. This
procedure amounts to modeling dim(S) with a discrete uniform prior distribution over
{1, · · · , dmax}; suitable adaptations can be used if other prior distributions are to be
considered. To tackle the difficult numerical problem of evaluating m(d), we follow
Chib and Jeliazkov (2001), who proposed a Monte Carlo approximation to marginal
likelihoods based on sequential reduced runs of a block Metropolis-Hastings sampler.

One disadvantage of using the above formal approach is the increased computing
cost. The Chib and Jeliazkov method requires five additional runs of the MCMC sam-
pler, one for each of Nx, ny, Bx, βy and λ. Moreover, likelihood evaluations are needed
for two perturbed versions of the saved samples from each of these runs. This motivates
us to develop a quicker alternative to judge plausibility of different candidate values
of dim(S). This works directly with the MCMC output from the model fitting stage,
no additional runs are required. On the flip side, it requires model fits across a set of
contiguous candidate values even while comparing between just two candidates. We
recommend this approach more as an ad-hoc, quick visualization tool to be used as a
first step toward estimating a minimum dim(S). Details of this procedure are given
below.

For a candidate value d,

rad(d, α) = inf{r : Π(n)
d (ρtrace(PB,PB̂n

) > r) ≤ α}

gives a measure of the concentration of Π(n)
d around the point estimate of S it produces.

Theorem 3.2 says that rad(d0, α) would be asymptotically quite small for any α ∈ (0, 1)
if there is a unique S0 of dimension d0 satisfying p(y | x) = p(y | PS0x), i.e., S0 is
the central subspace and d0 is the minimum dimension for which (1) holds. Let B̂∗

n

denote the Bayes estimate B̂n corresponding to d = d0. Now consider the case where
a d > d0 is specified. We will work under the assumption that this larger model will
put posterior mass around subspaces S which contain S0 as a further subspace. A
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basis B of such an S must be of the form B = [B̂∗
n : B†]M, where B† ∈ Bd−d0 is

linearly independent of B̂∗
n and M is a d × d non-singular matrix. The maximum

ρtrace separation attainable for two such B matrices is rad(d0, d) =
√

1− d+/d where
d+ = d0+max(0, 2d−p−d0). Since it is likely that rad(d, α), for small α, would be close
to this maximum ρtrace separation, rad(d0, d) provides a ballpark value for rad(d, α) for
d > d0. Note that rad(d0, d) monotonically increases in d ≥ d0 until d exceeds (p−d0)/2
and monotonically decreases to zero after that.

The above heuristic argument leads to the following procedure for estimating dim(S),
where for every candidate d, we compare rad(d̃, α), d̃ > d with the ballpark value
rad(d, d̃) and choose that d for which these two quantities are close to each other. For-
mally, fix a small α > 0 such as α = 0.05. For each candidate value d ∈ {1, · · · , dmax},
approximate rad(d, α) by the (1 − α)% quantile of ρtrace(Bl, B̂n) where Bl are the
saved MCMC draws of B. For each candidate d compute the average deviance between
{rad(d̃, α)}d≤d̃≤dmax

and {rad(d, d̃)}d≤d̃≤dmax
by

dev(d, α) =
dmax∑

d1=d

|rad(d1, α)− rad(d, d1)|/(dmax − d + 1) (9)

and select dim(S) = arg min1≤d≤dmax dev(d, α). In Section 5 we demonstrate satisfac-
tory empirical performance of this heuristic selection rule, although a rigorous theoret-
ical justification is yet to be established.

5 Numerical Illustration

Example 1. Figure 1 shows a snapshot of the output of spLGP applied to a simulated
dataset with n = 100 and p = 10 where

p(y | x) = Normal(sin(πb′0x/2), 0.12)

with b0 = (0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0, 0)′ and x ∼ Normal(0, I10). The top row cor-
responds to a spLGP model fit with d = 1. Each of the hyper parameter ντ , τ2

0 , νσ,
σ2

0 , νβ and µβ was fixed at 1. The cardinality of the node set N was fixed at k = 10.
The MCMC sampler discussed in Section 4 was run for 100,000 iterations of which first
60,000 were thrown out as burn-in. The sampler was tuned to attain approximately
45% acceptance rate for βy and 22% for the other blocks. The above values of the hyper
parameters were used for all other examples presented in this section.

The trace plots of each coordinate of B = b1 are shown in the top-left panel. Note
that B appears to fluctuate around a neighborhood of b0 in the sense of either ρtrace or
ρop, but not in the sense of the Euclidean distance on R10. The top-right plot shows the
contours (light grey) of ZN and the cumulative distribution functions of the resulting f
from one iteration of the sampler. The grey filled circles show the scatter plot of G0(yi)
versus F(B′xi) where B is taken from the same iteration. The checked circles show the
points in the corresponding node set N .
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Figure 1: Example 1: spLGP in action. Top row: (left) trace plots of each coordinate
of B from a model fit with d = 1 and (right) contours of ZN (light grey) and quantiles
of fZN overlaid on the transformed data (F(B′xi), G0(y)) (filled grey circles). Bottom
row: plots of (left) dev(d, 0.05) and (right) log m(d) against d. Both the heuristic and
the formal method correctly estimated d0 = 1.
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a n spLGP dMAVE SIR SAVE
2 100 0.40 (0.14) 0.46 (0.16) 0.96 (0.09) 0.90 (0.06)
2 200 0.23 (0.05) 0.28 (0.06) 0.95 (0.07) 0.87 (0.11)
2 400 0.15 (0.04) 0.19 (0.04) 0.95 (0.09) 0.85 (0.12)

Table 1: Example 2: Comparison of spLGP to other SDR methods for estimating S.

The bottom row of Figure 1 shows the diagnostics for estimating dim(S). The left
plot shows the deviance dev(d, 0.05) across candidate values 1 through 4. The right
plot shows the estimates of log m(d) obtained by the Chib-Jeliazkov method against the
same candidate values. Both the formal and our heuristic approach produced a correct
estimation of d0 = 1. The estimate B̂n equaled B̂′

n =(-0.50, -0.47, -0.51, -0.52, 0.01,
-0.01, 0.00, 0.00, -0.01, 0.01).
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Figure 2: Example 3: Estimation of d0 from data simulated with d0 = 2. Plots of
rad(d, 0.05) (top) and dev(d, 0.05) (bottom) are shown against d for 30 data sets sim-
ulated under low noise (left) and high noise (right) settings; see text. In the low noise
case, detection of d0 is sharp as dev(d, 0.05) shows a marked dip at d = 2 for most
data sets, except for two cases where d0 is overestimated to be 3. In the high noise
simulations, detection is less sharp with flatter dev(d, 0.05) curves, and in two cases d0

is underestimated at 1.

Example 2. To compare finite sample frequentist properties of spLGP with other
methods, we tested it on the simulation setting of Example 4.2 of Xia (2007). Here, the
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minimal dim(S) is assumed to be known and the focus is only on the error in estimating
S of the following regression problem:

p(y | x) = Normal(2(b′1x)a, (2 exp(b′2x))2)

with b1 = (1, 2, 0, 0, 0, 0, 0, 0, 0, 2)′/3, b2 = (0, 0, 3, 4, 0, 0, 0, 0, 0, 0)′/5, a = 1, 2 and
x ∼ Uniform([0, 1]10). The “spLGP” column in Table 1 shows mean (and standard
deviation) of ρop(Bn,B0), where B0 = (b1,b2), obtained from 200 data sets of size
n generated from this model. We only report the case of a = 2, as the other case
showed very similar numbers. The latter columns of Table 1 are taken from Table
2 of Xia (2007). In this simulation spLGP clearly outperformed the other methods,
in particular dMAVE, which is perhaps the best non-Bayesian procedure for central
subspace estimation (see the simulation studies presented in Xia 2007).

Example 3. In this example we investigated the behavior of our heuristic approach for
estimating d0. Following Zeng (2008), we generated 50 observations from the model

p(y | x) = Normal(x′b1 + (x′b2)2, σ2)

where x ∼ Normal(0, I5), b1 = (1, 1, 0, 0, 0)′, b2 = (0, 0, 0, 1, 1)′. The top left plot
of Figure 2 shows rad(d, 0.05) against d = 1, · · · , 5 and the bottom left plot shows
dev(d, 0.05) against d = 1, · · · , 4, for 30 data sets generated from this model with
σ = 0.2 (low noise). The right plots show the same for data sets generated with a larger
σ = 1.0 (noisy). In either set, for 28 out of the 30 cases, d0 was correctly estimated to
be 2. Among the incorrectly estimated cases, the low noise ones had the estimate equal
to 3 – more liberal than the true value of 2, while the high noise ones had it equal to 1 –
more conservative than the true value. Among the correctly estimated cases, rad(2, 0.05)
values are substantially larger for the examples with σ = 1, indicating a more imprecise
estimation of S compared to their low noise counterparts. Similarly, although the success
rate in estimating d0 remained the same across these two examples, the flatness of the
dev(d, α) curves in the second set indicates possibility of nearly inconclusive situations.

Example 4. The Tecator data, available at the StatLib1 website, were collected with
the aim of predicting the fat content in a meat sample from its near infrared absorbance
spectrum. Data were recorded on a Tecator Infratec Food and Feed Analyzer working in
the wavelength range 850 - 1050 nm by the Near Infrared Transmission (NIT) principle.
The spectra were represented via 22 principal components, of which the first 13 were
recommended for use in model fitting. The training dataset contained 172 meat samples,
and another 45 samples were reserved for testing prediction power.

On applying spLGP to the 172 observations in the training dataset we found log m(d)
to peak at d = 2 and dev(d, 0.05) to dip at d = 2 (see Figure 3, bottom left and middle
plots). Thus we concluded d0 = 2. The top row of Figure 3 shows the scatter plots of
y against each coordinate of z = B̂′

nx. The bottom right plot of this figure shows the
median and the 50% two-tail interval of the conditional predictive density for each of the

1http://lib.stat.cmu.edu/datasets/tecator

http://lib.stat.cmu.edu/datasets/tecator�
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45 test cases against the actual recorded y values. Note the elongation of this interval
for the two cases at the top-right corner – rightly indicating a less precise prediction
for the corresponding x∗ values. The root mean square prediction error turned out
to be 0.31, which marginally bettered the previously recorded best root mean square
performance (0.35) mentioned in the StatLib website.

The mean absolute deviation prediction error with the posterior medians of spLGP
with d = 1, · · · , 4 turned out to be 1.01, 0.25, 0.27, 0.28, thus lending external support
to the estimate d0 = 2.
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Figure 3: Tecator fat content data: Top: plots of the response versus z = B̂′
nx for

d = 2. Bottom: plots of (left) dev(d, 0.05) and (middle) log m(d) – both point to
d0 = 2. Bottom right : Predicted values (medians) and spreads (50% two-tail intervals)
versus the recorded values from the test set.

Example 5. The Boston house price data set (Harrison and Rubinfeld 1978) records
the median price (in $1000) of owner occupied homes in each of the 506 census tracts in
Boston Standard Metropolitan Statistical Areas. Thirteen other variables (see Table 2)
were measured for each tract capturing its socio-economic, geographic and demographic
features that may have influenced this price. Chen and Li (1998) give a detailed account
of analyzing this data with the classic central subspace estimation technique sliced in-
verse regression (SIR, Li 1991). Following their treatment, we removed a group of tracts
with exceptionally high crime rate (crim) and identical records for five other variables.
This left us with 374 observations which were then randomly divided into a training set
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Variable b1 b2 b3 Variable b1 b2 b3

crim 0.23 0.37 -0.05 dis 0.41 0.12 0.07
zn -0.07 0.09 -0.42 rad -0.11 0.00 -0.24

indus 0.04 0.07 -0.16 tax 0.14 -0.06 -0.28
chas -0.05 0.03 -0.14 ptratio 0.35 0.19 -0.31
nox 0.10 0.14 0.18 black -0.08 -0.06 -0.16
rm -0.59 0.85 -0.49 lstat 0.31 -0.20 0.45
age 0.39 -0.09 0.20

Table 2: Example 5: Boston house price, columns of B̂n for d = 3.

with 249 cases and a test set with the remaining 125 cases.

On applying spLGP on the training dataset, we found log m(d) to peak at d = 3.
The heuristic criterion was undecided between d0 = 2 and d0 = 3; see Figure 4 bottom
left and middle plots. A fair amount of non-linear confounding among the variables
(see Chen and Li 1998) makes it difficult to make a sharp estimation of a minimal S
for this data set. For example, all the spLGP models corresponding to d = 1, · · · , 5
made similar prediction on the test set; see Figure 5. A closer inspection of the mean
absolute predictive errors (1.85, 1.81, 1.75, 1.68 and 1.73), however, revealed a steady
improvement until d = 4, but the margin of improvement remained small. The choice
of d0 = 3 appeared to strike a reasonable balance between predictive ability and model
complexity.

The top row of Figure 4 shows the scatter plot of y versus each coordinate of z = B̂nx
corresponding to d = 3. Table 2 shows the columns of B̂n. The first column has
moderate contribution from a number of variables, e.g., the average number of rooms
per unit (rm), the weighted average distance to five Boston employment centers (dis)
and the proportion of units built prior to 1940 (age). The second column is mostly
made up of rm, with moderate contribution from crime rate (crim). The third column
is again an ensemble of many variables, prominent among them are rm, the percentage
of poor (lstat) and the proportion of residential land zoned for large lots (zn). From
this the average number of rooms appears as the most important factor in determining
median house price, a similar conclusion was drawn by Chen and Li (1998). Note that
all the variables were standardized before performing the spLGP analysis, and hence
the entries in the columns of B̂n are scale-corrected.

Judging relative importance of predictors from B̂n seems rather inappropriate when
there is substantial posterior uncertainty about B itself, as was the case with the Boston
house price data. It is also crucial to take into account that all columns of B do not
affect the conditional density equally. We address these two points as follows. For two
x-configurations x1 and x2 that differ only in the i-th coordinate by a unit amount, the
covariance between f(B′x1, ·) and f(B′x2, ·) is determined by impi = [

∑d
j=1 β2

j b2
ji]

1/2.
Since covariance encodes how rapidly the conditional density is changing between these
two points, impi serves as a measure of influence the i-th predictor variable exerts on the
conditional behavior of y; see also the literature on automatic relevance detection (in
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Figure 4: Boston house price: Top row: plots of the response versus z = B̂′
nx corre-

sponding to d = 3. Bottom row: plots of (left) dev(d, 0.05) and (middle) log m(d) –
both point to d0 = 3. Bottom right : Predicted values (medians) and spreads (50%
two-tail intervals) versus the recorded values from the test set.
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Figure 5: Boston house price: Fitted (top) and predicted (bottom) values for d =
1, · · · , 5, against observed median house price.
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particular Neal 1996) – a variable selection criterion based on a similar idea. Relative
importance of the variables then can be judged by comparing the posterior distribution
of impi, i = 1, · · · , p. Variables for which impi remains consistently high across the
MCMC sample can be thought of as the most important ones. Figure 6 shows boxplots
of the MCMC draws of impi across the thirteen predictor variables for Boston house
price data. Based on this plot the most influential variables appears to be rm and lstat,
with a number of other variables competing with each other at a moderate level. The
two most interesting linear projections noted by Chen and Li (1998) were rm and crim
+ 30 lstat – very close to our finding. It is, however, important to remember that in
presence of linear or non-linear dependence among predictors, any calibration of their
relative importance must be interpreted with caution.

crim zn indus chas nox rm age dis rad tax ptratio black lstat

0.
0

1.
0

2.
0

3.
0

Figure 6: Boston house price: Relative importance of predictors. The boxplots present
the posterior draw of impi for the thirteen predictors. The average room per unit (rm)
and the percentage of poor (lstat) appeared the most influential predictors, but a
number of others had a mild influence as well.

We conclude this example with a comparison of spLGP with the probit stick breaking
process (PSBP) based density regression approach of Chung and Dunson (2009). PSBP,
among a rapidly growing class of density regression models based on stick breaking
processes, explicitly encodes variable selection through a binary inclusion parameter γ
with γj = 1 indicating xj is included in the model, and it is excluded otherwise. We
applied PSBP to the training subset of our Boston house price data. The posterior
inclusion probabilities of the thirteen variables are listed in Table 3. It is striking that
these posterior inclusion probabilities took quite extreme values, most variables were
zeroed out while a few were almost certainly in the model. It is interesting that lstat
received a very low posterior probability of being in the model, although it was found
to be one of the influential predictors by spLGP. It is likely that this difference arose
because the variables in this example are highly dependent on each other, and in its
quest of selecting only a few variables PSBP ignored many that are related to one that
was already included. The PSBP out of sample prediction error turned out to be 2.35,



S.T. Tokdar, Y.M. Zhu and J.K. Ghosh 337

Inclusion Inclusion
Variable probability Variable probability
crim .03 dis .17
zn .04 rad .04

indus .04 tax .06
chas .03 ptratio 1
nox .04 black .33
rm 1 lstat .07
age 1

Table 3: Posterior inclusion probabilities of predictor variables with a PSBP density
regression of Boston house price data.

about 50% more than that of spLGP. This relatively poor performance can be linked to
PSBP’s exclusion of many variables from the model, each of which probably had some
influence on the response. In fact, when we ran spLGP (d = 3) with only those variables
that received more than 10% posterior inclusion probability from PSBP (namely, rm,
age, dis, ptratio and black), the out of sample prediction error jumped up to 1.90.

6 Discussion

The examples described in the previous section illustrate that spLGP offers good out
of sample prediction, accurate estimation of the central subspace and a reasonably
satisfactory estimation of dimensionality that relates well with predictive performance
of the competing models. In addition we have proposed a novel technique to judge
relative importance of variables within the subspace projection setting. We have also
demonstrated that subspace projection may offer better prediction than sparse variable
selection when many predictor variables have mild influence on the response and are
possibly dependent on each other.

We note that many aspects of our implementation of spLGP may prove to be too
simpleminded despite its good performance in the examples we reported above. Our
parametrization of S through a basis B, done in a quest to obtain an Euclidean pa-
rameter suitable for random walk type Metropolis exploration, introduces identifiability
issues that may lead to poor mixing of a MCMC sampler. In our examples, however,
samplers started from different parameter configurations generated from the prior dis-
tribution appeared to mix well in the S space. But in general, a direct parametrization
based on PS seems more desirable. In addition to removing identifiability issues, such
an approach may also make it feasible to explore the posterior over (d,S, p(y | PSx)
via reversible jump MCMC. However, further research is needed to identify efficient
proposals for PS , keeping in mind its non-Euclinear structure.

Estimation of dimensionality is another area that requires further research. The
formal approach of computing log m(d) is computationally prohibitive. The heuristic
selection based on dev(d, α) needs further theoretical backing. The basic intuition be-
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hind the heuristic approach is that in a nested model setting, a model that is larger
than ideal will lead to a more diffuse posterior than an ideal model. However, there
seems to be room to improve the formalization discussed in Section 4 toward a more
rigorous one with a stronger Bayesian interpretation.

Nonlinear confounding among the covariates can make the spLGP posterior spread
over distant subspaces, making it challenging to explore via Markov chain samplers.
However, we note that our naive block Metropolis-Hastings sampler did a reasonably
good job of exploring such a posterior distribution in the Boston house price example.
The MCMC samples of impi showed substantial negative correlation for many pairs
of variables, most notably the two influential predictors rm and lstat. This is an
indication that subspace projections that align well with either of these two predictors
received considerable posterior mass, and that our sampler was able to move between
such subspaces.

The Boston house price example highlights a possible advantage of subspace projec-
tion over variable selection when predictor variables are well chosen and are likely to
contribute toward predicting the response, even if individual influences are small. On
the other hand, this advantage is likely to be lost in studies where a huge number of pre-
dictor variables are assembled, only a few of which are likely to influence the response.
Moreover, in cases where variable selection is a primary objective, subspace projection
may appear inadequate. However, the importance calibration described in the earlier
section provides a partial answer. In summary, both these approaches to dimension
reduction have their respective merits in terms of performance as well as embedding
specific modeling objectives.
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Appendix: Technical Details

Lemma 6.1. Let B be a uniform random variate in Bd. Define a probability measure
µ on Gp,d (equipped with the Borel σ-field generated by a suitable metric ρ) as µ(A) =
Pr(C(B) ∈ A) for A ⊂ Gp,d. Then µ defines a uniform measure over Gp,d in the sense
that it is invariant under rotation: µ(RA) = µ(A) for any p× p unitary matrix R and
any A ⊂ Gp,d, where RA = {RS : S ∈ A} with RS = {Rx : x ∈ S}.

Proof. Let Scan denote the linear subspace {x = (x1, · · · , xp) ∈ Rp : xd+1 = · · · = xp =
0}. Let V be a p× p random matrix whose elements are independent standard normal
variates. Then µ can be expressed as µ(A) = Pr(VScan ∈ A), A ⊂ Gp,d. Now, for any
unitary R, the random matrix U = R′V has the same distribution as V, and hence for
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any A ⊂ Gp,d, µ(RA) = Pr(R′VScan ∈ A) = Pr(UScan ∈ A) = µ(A).

Proof of Theorem 3.1. Recall the representation f(z, y) = g0(y)fW (F(z), G0(y)) where
W is the underlying Gaussian process and for any continuous function (w(s, t) on
[−1, 1]d × [0, 1], fw(s, t) = ew(s,t)/

∫ 1

0
ew(s,u)du. Also recall that h(x, y) = p(x)f(B′x, y)

is the joint density on (x, y) induced by (B, f), and similarly h0(x, y) = p(x)f0(B′
0x, y)

denotes the true joint density. Here we discuss how to verify the Kullback-Leilber
condition

∀ε > 0,Pr(KL(h0, h) < ε) > 0. (10)

Verification of the entropy conditions of Ghosal et al. (1999) are easily derived by using
infinite differentiability of the square-exponential covariance kernel; see Section 5 of
Tokdar and Ghosh (2007) for an accessible construction.

Note that

KL(h0, h) =
∫

p(x)KL(f0(B′
0x, ·), f0(B′x, ·))dx

+
∫

p(x)
∫

f0(B′
0x) log

f0(B′x, y)
f(B′x, y)

dydx

≤ a‖B0 −B‖2
∫
‖x‖2p(x)dx

+
∫

p(x)
∫

f0(B′
0x, y) log

f0(B′x, y)
f(B′x, y)

dydx.

Fix an ε > 0. Let Bε be the set of B ∈ Bd for which the first term in the above expression
is smaller than ε/2. Since Pr(Bε) > 0, it suffices to show that for every B ∈ Bε

Pr
( ∫

p(x)
∫

f0(B′
0x, y) log

f0(B′x, y)
f(B′x, y)

dydx < ε/2 | B
)

> 0. (11)

Fix a B ∈ Bε. From Assumption (d), there exists an rx > 0 such that
∫

‖x‖>rx

p(x)
∫

f0(B′
0x, y)

∣∣∣∣ log
f0(B′x, y)

g0(y)

∣∣∣∣dydx <
ε

16
.

Define

f1(s, t) =
f0(F−1(s), G−1

0 (t))
g0(G−1

0 (t))

on s ∈ (−1, 1)d and t ∈ (0, 1). This function is well defined and satisfies

f0(z, y) = g0(y)f1(F(z), G0(y)), z ∈ Rd, y ∈ R.

Define rz = sup{‖B′x‖ : ‖x‖ ≤ rx} and let S ⊂ [−1, 1]d denote the compact set
{F(z) : ‖z‖ ≤ rz}. From assumption (e), f1(s, t) → 0 as t → 0 or t → 1, uniformly on
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S. Define f2 on [−1, 1]d × [0, 1] as

f2(s, t) =





f1(s, t) s ∈ S, t ∈ (0, 1)
0 s ∈ S, t = 0, 1
1 otherwise

(12)

Therefore for ‖z‖ ≤ rz, f0(z, y) = g0(y)f2(F(z), G0(y)) and for ‖z‖ > rz, f0(z, y) =
f0(z, y)f2(F(z), G0(y)). Thus, splitting B′x at norm rz we get

∫
p(x)

∫
f0(B′

0x, y) log
f0(B′x, y)
f(B′x, y)

dydx

≤
∫

p(x)
∫

f0(B′
0x, y) log

f2(F(B′x), G0(y))
fW (F(B′x), G0(y))

dydx

+
∫

‖x‖>rx

p(x)
∫

f0(B′
0x, y)

∣∣∣∣log
f0(B′x, y)

g0(y)

∣∣∣∣ dydx.

The second term in the last expression above is bounded by ε/16. Therefore it suffices
to show that the first term can be bounded by ε/16 with positive conditional probability
given B. Find a δ > 0 small enough such that log(1 + δ) < ε/16. Define

f3(s, t) =
{

f2(s,t)+δ
1+δ s ∈ S, t ∈ [0, 1]

1 otherwise
. (13)

Clearly,

∫
p(x)

∫
f0(B′

0x, y) log
f2(F(B′x), G0(y))
fW (F(B′x), G0(y))

dydx

≤ log(1 + δ) +
∫

p(x)
∫

f0(B′
0x, y) log

f3(F(B′x), G0(y))
fW (F(B′x), G0(y))

dydx

≤ ε

16
+

∫
pB(s) sup

t

∣∣∣∣log
f3(s, t)
fW (s, t)

∣∣∣∣ ds

where pB(s) is the density of F(B′x) under x ∼ p(x). Let A = sups,t | log f3(s, t)|.
Find an open set S ′ ⊂ [−1, 1]d containing S such that

∫
S′\S pB(s)ds < ε/(16A). Find a

continuous function λ : [−1, 1]d → [0, 1] with λ(s) = 1, s ∈ S and λ(v) = 0, s ∈ (S ′)c.
Extend f3 to the following continuous function:

f4(s, t) = λ(s)f3(Ps, t) + (1− λ(s))

where Ps is the projection of s onto S. Since f4 is everywhere positive on [−1, 1]d×[0, 1],
we can define

w4(s, t) = log f4(s, t), s ∈ [−1, 1]d, t ∈ [0, 1].
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As w4 is continuous, we have Pr(‖W − w4‖∞ < ε/16) > 0. Therefore,
∫

pB(s) sup
t

∣∣∣∣log
f3(s, t)
fW (s, t)

∣∣∣∣ ds ≤
∫

pB(s) sup
t

∣∣∣∣log
f3(s, t)
f4(s, t)

∣∣∣∣ ds

+
∫

pB(s) sup
t

∣∣∣∣log
f4(s, t)
fW (s, t)

∣∣∣∣ ds

≤ 2A

∫

S′\S
pB(s)ds + 2‖W − w4‖∞

From this the result follows.

Proof of Theorem 3.2. Let L(B, f) denote
∫ ‖f(B′x, ·) − f0(B′

0x, ·‖1p(x)dx. Theorem
3.1 leads to a direct proof of Π(n)(Rρ,δ) → 1 if we can show

∀δ > 0,∃ε > 0 such that ρ(PB,P0) > δ =⇒ inf
f∈Fd

L(B, f) > ε (14)

Suppose (14) is false. Then, there exists a δ > 0 and sequences Bk ∈ Bd and fk ∈ Fd

such that ρ(PBk
,P0) > δ but L(Bk, fk) → 0. Without loss of generality, assume Bk

to have orthogonal columns. Then Bk can be extended to a p× p orthonormal matrix
Mk = [Bk : Ck]. Lemma 6.2 asserts that there exist bounded open intervals J ⊂ Rd,
I1, I2 ⊂ Rp−d and constants ε > 0, a < b such that for infinitely many k

f0(B′
0Bku + B′

0Ckv1, y) > f0(B′
0Bku + B′

0Ckv2, y) + ε

for every u ∈ J , v1 ∈ I1, v2 ∈ I2 and y ∈ (a, b). For any such k, by applying the
change of variable (u,v) = (B′

kx,C′
kx), we get

L(Bk, fk) =
∫
|fk(u, y)− f0(B′

0Bku + B′
0Ckv, y)| p(Mk(u′,v′)′)dydvdu

≥ (b− a)ε
2

∫

u∈J

{
min
j=1,2

∫

v∈Ij

p(Mk(u′,v′)′)dv
}

du

which is bounded away from 0 by Lemma 6.2 – a contradiction to L(Bk, fk) → 0. So
(14) must be true. The second assertion is easy to prove once we note compactness of
Bd, continuity of the map B 7→ PB and boundedness of ρtrace; see also Proposition 4.2.1
of Ghosh and Ramamoorthi (2003).

Lemma 6.2. Let there be a unique d-dimensional S0 such that p(y | x) = p(y | PS0x)
and let B0 be a basis of S0. Fix an f0 ∈ Fd such that p(y | PS0x) = f0(B0x, y). Assume
f0 to be continuous. Let Mk = (Bk : Ck) be a sequence of p× p orthonormal matrices
where Bk ∈ Bd satisfies ρ(Bk,B0) > δ for all k ≥ 1. Then there exist bounded open
intervals J ⊂ Rd, I1, I2 ⊂ Rp−d and constants ε > 0, a < b such that,
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1. for infinitely many k

f0(B′
0Bku + B′

0Ckv1, y) > f0(B′
0Bku + B′

0Ckv2, y) + ε (15)

for every u ∈ J , v1 ∈ I1, v2 ∈ I2 and y ∈ (a, b)

2. and

lim inf
k

∫

u∈J

{
min
j=1,2

∫

v∈Ij

p(Mk(u′,v′)′)dv
}

du > 0. (16)

Proof. Since S0 is unique, it cannot have a lower dimensional subspace S satisfying
p(y | x) = p(y | PSx). Therefore, for every non-trivial subspace S of Rd there must
exist z∗1, z

∗
2 ∈ Rd with z∗1 − z∗2 ∈ S such that f0(z∗1, ·) 6= f0(z∗2, ·). Continuity of f0 then

implies existence of ε > 0, η > 0 and a < b such that

f0(z1, y) > f0(z2, y) for all ‖z1 − z∗1‖ < η, ‖z2 − z∗2‖ < η, a < y < b. (17)

By compactness, Mk = (Bk : Ck) converges to an orthonormal matrix M = (B : C)
along a subsequence, which we again index by k. Take Pk = PBk

and P = PB. Then
S = {z = B′

0(I − P)x : x ∈ Rp} is a subspace of Rd and S 6= {0}, because, otherwise
0 = ρ(P,P0) = limn ρ(Pn,P0) ≥ δ - a contradiction! Find z∗1, z

∗
2 ∈ S, ε > 0 and η > 0

satisfying (17). Then ∆z∗ = z∗1 − z∗2 = B′
0∆x∗ for some ∆x∗ satisfying B′∆x∗ = 0. Set

x∗2 = B0(B′
0B0)−1z∗2 and x∗1 = x∗2 + ∆x∗.

Define u∗ = B′x∗1(= B′x∗2) and v∗i = C′x∗i , i = 1, 2. Then B′
0(Bu∗ + Cv∗i ) = z∗i .

Therefore there exist open neighborhoods J ⊂ Rd of u∗, Ii ⊂ Rp−d of v∗i , i = 1, 2, such
that for u ∈ J and vi ∈ Ii, i = 1, 2, ‖B′

0(Bu∗ + Cv∗i ) − z∗i ‖ < η/2. This implies (15)
since

‖B′
0Bu + B′

0Cv −B0Bku−B′
0Ckv‖ ≤ (‖u‖+ ‖v‖)‖B0‖‖Mk −M‖

which can be made arbitrarily small for all large k uniformly over u ∈ J and v ∈ Ii,
i = 1, 2.

Since q is bounded, an application of the dominated convergence theorem implies,

lim inf
k

∫

u∈J

[
min
j=1,2

∫

v∈Ij

p(Mk(u′,v′)′)dv
]
du =

∫

u∈J

[
min
j=1,2

∫

v∈Ij

p(M(u′,v′)′)dv
]
du.

The last quantity is strictly positive since J , I1 and I2 are open intervals and p(M(u′,v′)′) >
0 for all (u,v) ∈ Rd × Rp−d. This proves (16).
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