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A Bayesian Image Analysis of Radiation Induced
Changes in Tumor Vascular Permeability

Xiaoxi Zhang∗, Timothy D. Johnson†, Roderick J. A. Little‡ and Yue Cao§

Abstract. This work is motivated by a quantitative Magnetic Resonance Imaging
study of the relative change in tumor vascular permeability during the course of
radiation therapy. The differences in tumor and healthy brain tissue physiology
and pathology constitute a notable feature of the image data—spatial heterogene-
ity with respect to its contrast uptake profile (a surrogate for permeability) and
radiation induced changes in this profile. To account for these spatial aspects of
the data, we employ a Gaussian hidden Markov random field (MRF) model. The
model incorporates a latent set of discrete labels from the MRF governed by a
spatial regularization parameter. We estimate the MRF regularization parameter
and treat the number of MRF states as a random variable and estimate it via
a reversible jump Markov chain Monte Carlo algorithm. We conduct simulation
studies to examine the performance of the model and compare it with a recently
proposed method using the Expectation-Maximization (EM) algorithm. Simula-
tion results show that the Bayesian algorithm performs as well, if not slightly
better than the EM based algorithm. Results on real data suggest that the tumor
“core” vascular permeability increases relative to healthy tissue three weeks after
starting radiotherapy, which may be an opportune time to initiate chemotherapy
and warrants further investigation.

Keywords: hidden Markov random fields, Mann Whitney U statistic, Quantitative
Magnetic Resonance Imaging, reversible jump MCMC, Swendsen-Wang algorithm,
Image Analysis, quantitative MRI

1 Introduction

As a non-invasive visualization tool, quantitative Magnetic Resonance Imaging (qMRI)
enables researchers to assess pathological and physiological changes of in vivo tissue that
cannot be evaluated with conventional anatomic MRI. Recent applications of qMRI
include Cao et al. (2005), Moffat et al. (2005), and Hamstra et al. (2005). These
applications share a common goal: to use qMRI to predict (local) therapeutic efficacy
early during treatment with the aim of individualizing treatment regimens.

Despite recent advances in cancer treatments, the median survival time of patients
with high-grade gliomas (a type of brain cancer) has not substantially increased from
approximately one year after diagnosis. This is largely attributable to the tight en-
dothelial junctions in the tumor vascular structure (also known as the blood-tumor
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barrier, BTB) that blocks large molecules, such as traditional chemotherapeutic agents,
from entering these tumors. This mechanism also protects healthy tissue in the brain
from the cytotoxicity of chemotherapeutic agents (also known as the blood-brain bar-
rier, BBB). Although it is known that radiation can increase vascular permeability via
damage to the vascular structure, standard of care sequential radiotherapy followed
by chemotherapy has had limited success in treating brain cancer (Medical Research
Council, 2001).

Researchers at the University of Michigan, School of Medicine recently conducted a
study aimed at determining if the increase in tumor vascular permeability induced by ra-
diation is transient and whether there is a time at which this increase is maximum (Cao
et al. 2005). If this hypothesis holds, it would suggest that chemotherapy should begin
during the course of radiation therapy instead of after its completion. This was the first
study to use quantitative, high-resolution MRI to assess radiation induced increases in
tumor vascular permeability among glioma patients (Cao et al. 2005). Eleven subjects
with primary, high-grade gliomas participated in the study. T1-weighted MRI1 was per-
formed on each patient, with and without contrast enhancement, prior to the beginning
of radiotherapy. The same imaging protocol was subsequently performed after the first
and third week of radiotherapy, and at one, three and six months after the completion of
radiotherapy. The contrast agent used, Gadolinium diethylenetriaminepentaacetic acid
(Gd-DTPA), has approximately the same molecule weight as many chemotherapeutic
agents used to treat gliomas. Hence, the contrast uptake (quantified as the difference,
on the log scale, of the contrast enhanced and pre-enhancement MRI images) was used
as a surrogate of vascular permeability to these drugs (Cao et al. 2005). In this paper,
we focus on the change in contrast uptake from baseline to week three (the difference
between contrast uptake at week 3 and baseline, e.g. Figures 1a and 2a), which is of
special interest to the researchers. For simplicity, we hereafter refer to the change in
contrast uptake image as the observed image.

It is known that solid tumors are physiologically different from surrounding healthy
tissue, and that the contrast uptake, as well as its change, is heterogeneous. Many qMRI
analyses ignore the inherent spatial correlation (at the pixel level) in the data, and treat
the observed change in contrast uptake at each pixel as independent observations (e.g.
Cao et al. 2005; Moffat et al. 2005; Hamstra et al. 2005), which results in biased variance
estimates. To model the change in tumor/brain contrast uptake induced by radiation at
the pixel-level, we use a model that accounts for the spatial correlation in the data and
respects the distinct boundaries between tumor and healthy tissue. We introduce a layer
of discrete hidden labels from a Markov random field (MRF, Besag 1974) which accounts
for the spatial correlation in the data and avoids over-smoothing. A priori, the MRF
encourages spatial continuity but allows for spatial heterogeneity. Like many similar
models, we assume the observed data conditional on the hidden labels are independent
and normally distributed (e.g. Lei and Udupa, 2002; Liang and Lauterbur, 1999, Ch.

1A T1-weighted MRI uses short repetition time and echo time in which paramagnetic agents (e.g.
Gadolinium) appear brighter in the image. Note that the qMRI images derived from T1-weighted MRI
reflect the change in the intensities of the MRI images, and therefore reflect the change in the density
of the paramagnetic agents, e.g. contrast uptake of Gd-DTPA.
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Figure 1: Subject 1 results: (a) observed change in contrast uptake (lighter shaded pixels
indicate greater increase in contrast uptake); (b) marginal posterior mean of change in
contrast uptake η̂i and (c) standard deviation ψ̂i; thresholded image assuming (d) spatial
independence (i.e. based on Panel (a)) (e) spatial dependence (based on Panel (b)); (f)
tumor “core/annulus” based on pre-treatment structural CT images.

8).

The hidden MRF model we employ, known as the Potts model in statistical physics
(Potts, 1952), has been applied in diverse areas such as disease mapping (Green and
Richardson, 2002), agriculture (Dryden, Scarr, and Taylor, 2003), and landscape genet-
ics (Francois, Ancelet, and Guillot, 2006; Guillot, Estoup, Mortier, and Cosson, 2005).
All the above applications share the same feature as ours—spatial heterogeneity. How-
ever, our work builds on previous methods by integrating many of the individual ideas
that have been previously published.

Firstly, we estimate the spatial regularization parameter, which is often fixed in the
MRF models (e.g. Green and Richardson, 2002). Francois, Ancelet, and Guillot (2006)
show that results can be sensitive to the choice of this parameter. However, estimation
of the spatial regularization parameter requires a corresponding normalizing constant,
which is computationally intractable. Some authors use pseudo-likelihood (Besag, 1974),
which avoids the need to estimate the normalizing constant. However, this approach
tends to overestimate the regularization parameter and over-smooth the data (Melas and
Wilson, 2002). Instead, we use thermodynamic integration proposed by Ogata (1989)
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Figure 2: Subject 2 results: (a) observed change in contrast uptake (lighter shaded pixels
indicate greater increase in contrast uptake); (b) marginal posterior mean of change in
contrast uptake η̂i and (c) standard deviation ψ̂i; thresholded image assuming (d) spatial
independence (i.e. based on Panel (a)) and (e) spatial dependence (i.e. based on Panel
(b)); (f) tumor “core/annulus” based on pre-treatment structural CT image.

to estimate the ratio of these constants. This method was subsequently generalized by
Gelman and Meng (1998). In 1997, Potamianos and Goutsias conducted a simulation
study comparing several methods that approximate the normalizing constant in the
Ising model (a two state Potts model) and recommend that Ogata’s thermodynamic
integration method be used.

Secondly, we treat the number of states of the MRF as a model parameter and employ
reversible jump Markov chain Monte Carlo (RJMCMC, Green, 1995; Richardson and
Green, 1997) on a large scale dataset. The number of states in the MRF is traditionally
assumed known (Khalighi, Soltanian-Zadeh, and Lucas, 2002; Marroquin, Arce, and
Botello, 2003). This is reasonable when there is substantial scientific justification, e.g.
segmenting the brain into white matter, gray matter and cerebrospinal fluid. However,
the segmentation labels lack a biologically meaningful interpretation in our application
other than some segments having higher changes in contrast uptake, on average, than
others. Therefore, it is more appropriate to treat the number of labels as a model
parameter. In this manuscript, we implement a complete Bayesian approach using
RJMCMC and we propose a novel implementation of the reversible jump proposal
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inspired by the Swendsen-Wang algorithm (Swendsen and Wang, 1987). We focus on
the marginal posterior distribution of change in contrast uptake, rather than prediction
of the hidden labels. The labels are used to model spatial correlation and have no
intrinsic scientific interpretation of interest.

The rest of this manuscript is organized as follows. In the next section we introduce
notation and specify the model. We then discuss its implementation in Section 3. In
Section 4, we present results from simulation studies and compare the results with
the EM algorithm of Zhang et al. (2008). We also investigate the performance under
violations to model assumptions and present results from the motivating example. We
conclude by summarizing the strengths and weaknesses of our algorithm, and discuss
future work.

2 Model Specification

Following convention, we use i = 1, 2, · · · , N to index pixels (short for picture element).
If pixel i and i′ share a common edge, we call them neighbors, denoted by i ∼ i′. The
set of neighbors of pixel i is denoted by ∂i = {i′ : i′ ∼ i}. Let y = (y1, y2 · · · , yN )T

denote the observed image (Figures 1a and 2a). In the proposed hidden MRF model,
we introduce a latent discrete label Zi from a discrete state space S = {1, 2, · · · ,M}
for each pixel i. The collection of latent labels, z = (Z1 = z1, Z2 = z2, · · · , ZN = zN )T,
is called a configuration. The set of pixels that share a common label is referred to as
a component. We define a contiguous set of pixels as all pixels in a component that
are directly or indirectly (path) connected through neighbors. Thus a component is a
union of disjoint, contiguous sets of pixels. This definition will be used later to describe
our trans-dimensional proposal in Section 3.3.

2.1 Distribution of the Data

We assume the observed data are conditionally independent given the hidden labels,

[yi | zi = k, µk, σ2
k] ∼ N(µk, σ2

k), where 1 ≤ k ≤ M.

The hidden labels follow a Gibbs distribution with joint probability mass function

Pr(Z = z | β, M) = g−1(β, M) exp

{
β

∑

i∼i′
I[zi = zi′ ]

}
, (1)

where I[·] is the indicator function (I[zi = zj ] = 1 if zi = zj and 0 otherwise).
The regularization parameter, β, controls the spatial smoothness of the MRF. When
β = 0 the pixels are independent. When β is large, the correlation between pix-
els is strong (neighboring pixels have high tendency to assume the same label) and
the configuration tends to be smooth. In principle, the MRF encourages neighbor-
ing pixels to share the same label. We note that the spatial correlation decreases
as the distance between pixels increases. The normalizing constant in Equation (1),
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g(β, M) =
∑

z∈SN exp
{

β
∑

i∼i′ I[zi = zi′ ]
}

, has MN outer summands, and therefore is
not computationally tractable. Some authors (e.g., Chalmond, 1989; Won and Derin,
1992) avoid computing the normalizing constant by using the pseudo-likelihood,

P̃r(Z = z | β, M) =
N∏

i=1

exp
{
β

∑
i′∈∂i

I[zi′ = zi]
}

∑M
k=1 exp

{
β

∑
i′∈∂i I[zi′ = k]

} ,

as an approximation to Pr(Z = z | β, M). However, Barker, Kokaram, and Rayner
(1997) show that, under certain circumstances, this pseudo-likelihood may lead to an
improper posterior distribution. Others completely avoid estimating it by assuming
fixed values for both β and M , the results of which may depend on the choice of
β (Francois, Ancelet, and Guillot, 2006). We use thermodynamic integration2 (see
Appendix 1 for details) as proposed by Ogata (1989), brought to the attention of the
statistical community by Gelman and Meng (1998), and subsequently used by Green
and Richardson (2002) and Higdon (1998), among others.

It follows that the joint distribution of the data and hidden labels is

f(y,Z = z | µ, σ2, β, M) = Pr(Z = z | β, M)
N∏

i=1

(2πσ2
zi

)
−1/2

exp[−0.5(yi − µzi)
2/σ2

zi
].

Although we assume conditional independence of the observed data given the hidden
labels, one can show that the observed data are marginally correlated because of the
correlation introduced by the MRF labels. In the following sections, we first specify the
prior distributions and derive the posterior distributions. Later in the section, we will
marginalize over the hidden labels and derive the marginal posterior distribution.

2.2 Prior Distributions

In principle, we choose non-informative prior distributions for the model parameters
when possible. The regularization parameter, β, follows a uniform distribution on
the interval [βmin, βmax], a priori. We choose the lower bound, βmin = 0, to repre-
sent independent pixels, and the upper bound, βmax = 3, to represent highly depen-
dent neighboring pixels, i.e. a rather smooth configuration of the hidden labels. The
number of components, M , is assigned a uniform distribution on the set of integers
{Mmin, . . . ,Mmax}. A natural choice of the lower bound is Mmin = 1, which represents
homogeneous pixels. We note that the choice of Mmax is problem specific. We set
Mmax = 20 to allow for considerable heterogeneity of the pixels. This will be further
examined in the results section. We specify the component means, µk, as independently
and identically distributed (i.i.d.) uniform variates. It follows that a natural choice of
the range of the µk is the range of the observed data, i.e. Unif[ymin, ymax], where ymin

and ymax are the minimum and maximum of the observed change in contrast uptake,
2Technically, we only need and compute the ratio of normalizing constants in this manuscript, as

detailed in Appendix 1 However, the normalizing constant itself can be readily approximated from the
ratios (Gelmen and Meng, 1998).
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Figure 3: Directed Acyclic Graph (DAG) of the proposed model.

respectively. The inverse of the component variances are, a priori, i.i.d. gamma random
variates: [σ−2

k | βσ] ∼ Gamma(ασ, βσ) with ασ = 2.1 and βσ ∼ Gamma(2.5, 5). The
prior mode of βσ is 0.3, which favors smaller variances. We place a hyperprior distri-
bution on βσ to reduce the dependence of the posterior of σ−2

k on its prior. In Section
4.1, we investigate the above prior choices as well as other values of ασ in a sensitivity
analysis.

We illustrate the model structure in a Directed Acyclic Graph (DAG) in Figure 3 and
write in vector form µ = (µ1, · · · , µM ), σ2 = (σ2

1 , · · · , σ2
M ), and θ = (µ, σ2, βσ, β, M).

Assuming (conditionally) independent prior distributions, the joint prior distribution is
π(θ) = π(β)π(M)π(µ)π(σ2 | βσ)π(βσ).

2.3 Joint Distribution and Conditional Posterior Distributions

By Bayes’ Theorem, the joint posterior distribution is proportional to

M∏

k=1

{
β2.1

σ (σ−2
k )2.1−1exp(−βσσ−2

k )
}×

N∏

i=1

(σ2
zi

)−1/2exp
[−0.5(yi − µzi)

2/σ2
zi

]
(2)

× g−1(β, M)exp
{

β
∑

i∼i′
I[zi = zi′ ]

}
× β2.5−1

σ exp(−5βσ)×M !.

Note that the above joint distribution is invariant to permutations of the component
labels conditional on M , and therefore the component means and variances are not
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identifiable. In many fixed-dimension problems with segmentation as the main goal, a
constraint such as µ1 < µ2 < · · · < µk is imposed to resolve the identifiability issue.
However, when M is treated as a parameter, the components may still be unidentifiable
even with the ordering constraint. We discuss this further in Section 3.3.2.

The conditional posterior distributions of the model parameters are

[µk | ·] ∼ N

(
N−1

k

∑

i∈Dk

yi, σ
2
k/Nk

)
(3)

[σ2
k | ·] ∼ Inv-Gamma

(
0.5Nk + ασ, 0.5

∑

i∈Dk

(yi − µk)2 + βσ

)
(4)

[βσ | ·] ∼ Gamma
(
a + Mασ, b +

M∑

k=1

σ−2
k

)
(5)

π(β | ·) ∝ g−1(β,M)exp
{

β
∑

i∼i′
I[zi = zi′ ]

}
(6)

Pr(Z = z | ·) ∝ exp
{

β
∑

i∼i′
I[zi = zi′ ]

} N∏

i=1

σ−1
zi

exp
{−0.5(yi − µzi)

2/σ2
zi

}
(7)

for k = 1, 2, ..., M , where Dk = {i : zi = k} denotes the set of pixel indices in component
k, Nk is the number of pixels in component k, and ‘·’ denotes all other parameters and
data.

2.4 Marginal Posterior Distribution of Change in Contrast Uptake

Our goal is to establish the underlying change in contrast uptake, µzi , and characterize
it with its posterior mean, ηi =

∑M
k=1 µk Pr(Zi = k | y), and variance, ψ2

i =
∑M

k=1(µk−
ηi)2 Pr(Zi = k | y). Both of these quantities are estimated via Markov chain Monte
Carlo (MCMC). Let t denote the tth draw (1 ≤ t ≤ T ). Then η̂i = T−1

∑T
t=1 µ

(t)

z
(t)
i

and ψ̂i
2

= T−1
∑T

t=1

(
µ

(t)

z
(t)
i

)2 − η̂2
i , where µ

(t)

z
(t)
i

= µ
(t)
k when z

(t)
i = k. Zhang et al.

(2008) propose a similar measure: the “expected change in contrast uptake” defined
by

∑M
k=1 µk Pr(Zi = k | y, θ). However, this estimate depends only on the maximum

likelihood estimate (MLE) of θ, and neglects the uncertainty in its estimation.

3 Algorithm Details

We initialize the Monte Carlo chain with a relatively large number of components,
M = 15. The initial values of µ are evenly spaced on the range of observed data
([ymin, ymax]), while the components of σ are set to the interval width. The hidden
labels are drawn independently from neighboring pixels, i.e. β = 0.

The parameters µ, σ2, and βσ can be updated via standard Gibbs sampling steps
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due to conjugacy. The spatial regularization parameter β requires a Metropolis-Hastings
step. We update the hidden labels via the Swendsen-Wang algorithm (Swendsen and
Wang, 1987), an efficient sampler for the Potts model. The most difficult part of the
sampler is updating the number of components. Since the dimension of the parameter
space is determined by the number of components, we employ RJMCMC to update M .
Pseudo code is provided in Appendix 2

3.1 Updating the Spatial Regularization Parameter

When updating the spatial regularization parameter at the tth iteration, β(t), we use
a Gaussian proposal distribution centered at β(t−1), β∗ ∼ N(β(t−1), σ2

pro), where the
variance of the proposal, σ2

pro, is adaptively tuned during burn-in to give an acceptance
rate of approximately 35%. Since we use a symmetric proposal distribution, the accep-
tance probability only depends on the ratio of the conditional posterior distributions in
Equation (6). The ratios of normalizing constants are estimated before-hand on a grid
of values for β and M (β = 0, 0.05, · · · , 3.00 and M = 1, 2, · · · , 20, see Appendix 1 for
details), interpolating between values when necessary.

3.2 Updating the Hidden Labels via the Swendsen-Wang Algorithm

The kernel of the conditional posterior distribution of Z, Equation (7), consists of two
parts—an interaction term (between neighboring pixels) and a likelihood term (some-
times referred to as the external field, Higdon, 1998). A pixel-wise updating scheme
may not mix well in the presence of the interaction term (Higdon, 1998). Hence, we use
the Swendsen-Wang algorithm, an efficient sampling scheme designed to speed up the
mixing of the Potts model (see Appendix 3 for details).

3.3 Trans-dimensional moves

Applications of RJMCMC in Potts models include Green and Richardson (2002), who
analyze disease mapping data using a trans-dimensional proposal that emulates the
spatial dependence structure of the Potts model; and Dryden, Scarr, and Taylor (2003),
who apply a similar scheme to analyze weed and crop images. However, we found that
these proposals do not work well for our application: with tens of thousands of pixels
per image, the acceptance rate using these proposals is practically zero.

Therefore, we propose a novel implementation of the trans-dimensional move inspired
by the Swendsen-Wang algorithm. We first randomly choose between a split and a merge
proposal with

Psplit(M) =





0 if M = Mmax

1 if M = Mmin

0.5 otherwise
and Pmerge(M) =





0 if M = Mmin

1 if M = Mmax

0.5 otherwise
.
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Split Proposal

If a split proposal is chosen, we randomly pick a component k (1 ≤ k ≤ M) to split,
i.e. Psplit

select(k) = 1/M . The dimension of the parameter space increases by two accord-
ingly. To match the increase in dimension, we introduce two independent random vari-
ables, u1, u2 ∼ Beta(2, 2), and define a bijective transformation (µ∗k1

, µ∗k2
, σ∗k1

2, σ∗k2

2) =
Ψ(µk, σ2

k, u1, u2) that matches the first two moments,

µ∗k1
= µk − u1σk, µ∗k2

= µk + u1σk,

σ∗k1

2 = 2u2(1− u2
1)σ

2
k, σ∗k2

2 = 2(1− u2)(1− u2
1)σ

2
k. (8)

We denote the proposed set of parameters with a superscript ∗: µ∗ = (µ∗1, µ
∗
2, · · · , µ∗M+1)

T

and σ∗2 = (σ∗21 , σ∗22 , · · · , σ∗2M+1)
T. When there exists a component h (1 ≤ h ≤ M + 1)

satisfying µ∗k1 < µ∗h < µ∗k2, the proposal is not likely to be accepted. We therefore reject
such proposals.

Contiguous sets of pixels within a component form an equivalence class. It follows
that a component consists of one or more such equivalence classes. In the Swendsen-
Wang update, each equivalence class is subdivided into smaller sets with stochastic
“bonds”. All bonded pixels in the same set are assigned the same proposed label in the
update (Appendix 3). In contrast, we assign all pixels in an equivalence class the same
proposed label. Of note, this is equivalent to a Swendsen-Wang update with an infinite
regularization parameter (β = ∞). At an iteration, suppose there are L such equivalence
classes ξ1, ξ2, · · · , ξL with current labels E1, E2, · · · , EL (when i ∈ ξl, zi = El). We
randomly draw a label for each equivalence class with probability proportional to the
likelihood. Specifically, the probability that class ξl assumes a new label k is

pl
k ∝

∏

i∈ξl

σ∗−1
k exp

{−0.5σ∗−2
k (yi − µ∗k)2

}
, for k = 1, 2, · · · ,M + 1, (9)

where the pl
k are normalized so that

∑M+1
k=1 pl

k = 1 for all l. Let E∗
l denote the proposed

label for class ξl from Equation (9), i.e. pl
E∗l

= Pr(z∗i = E∗
l , ∀i ∈ ξl). The allocation

probability in the current state conditional on the equivalence classes is Palloc(z) =∏L
l=1 pl

E∗l
. Compared to the original proposal by Green and Richardson (2002), which

updates the hidden labels pixel by pixel, the current proposal updates the labels for
equivalence classes of pixels (contiguous sets of pixels) and results in substantially larger
acceptance rates. Johnson and Piert (2009) implement a similar proposal scheme and
give a detailed account of their implementation.

We also compute the allocation probability for the proposed configuration given the
same equivalence classes, Palloc(z∗) =

∏L
l=1 pl∗

El
, where pl∗

k ∝ ∏
i∈ξl

σ−1
k exp

{−0.5σ−2
k

×(yi − µk)2
}
, for k = 1, 2, · · · ,M .

It follows that the acceptance probability for the proposed split move is min(1, A)
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with

A =
Pr(z∗, µ∗, σ2∗, βσ, β,M + 1 | y)

Pr(z, µ, σ2, βσ, β, M | y)
× Pmerge(M + 1)Pmerge

select (k1, k2)Palloc(z∗)

Psplit(M)Psplit
select(k)Palloc(z)b(u1)b(u2)

×
∣∣∣∣∣
∂(µ∗k1

, µ∗k2
, σ∗k1

2, σ∗k2

2)
∂(µk, σ2

k, u1, u2)

∣∣∣∣∣ . (10)

Here b(·) is the density function of the Beta(2, 2) distribution. The first line is the prod-
uct of the posterior ratio and the proposal ratio, while the second line is the Jacobian
of the bijective transformation.

Merge Proposal

We first randomly pick a pair of components k1 and k2 with means that are in rank
order next to each other, Pmerge

select (k1, k2) = 1/(M − 1). The parameters for the new
component are determined as the inverse of the split proposal, i.e.

µ∗k = 0.5 (µk1 + µk2) and µ∗k
2 + σ∗k

2 = 0.5(µ2
k1

+ σ2
k1

+ µ2
k2

+ σ2
k2

).

We denote the proposed set of parameters by µ∗ = (µ∗1, µ
∗
2, · · · , µ∗M−1)

T and σ∗2 =
(σ∗21 , σ∗22 , · · · , σ∗2M−1)

T.

We propose a new configuration z∗ with M−1 components based on the same-labeled
contiguous equivalence classes. The new label E∗

l of class ξl is drawn from

pl
k ∝

∏

i∈ξl

σ∗k
−1 × exp

{−0.5σ∗−2
k (yi − µ∗k)2

}
, (11)

for k = 1, 2, · · · ,M − 1. The associated allocation probability is Palloc(z) =
∏L

l=1 pl
E∗l

.

Similarly, the allocation probability for the new configuration is Palloc(z∗) =
∏L

l=1 pl∗
El

,
where pl∗

k ∝ ∏
i∈ξl

σ−1
k exp

{−0.5σ−2
k (yi − µk)2

}
, for k = 1, 2, · · · ,M .

Hence, the acceptance probability of the merge proposal is min(1, B), where

B =
Pr(z∗, µ∗, σ2∗, βσ, β, M − 1 | y)

Pr(z, µ, σ2, βσ, β, M | y)
× Psplit(M − 1)Psplit

select(k)Palloc(z∗)b(u1)b(u2)
Pmerge(M)Pmerge

select (k1, k2)Palloc(z)

×
∣∣∣∣∣

∂(µ∗k, σ∗k
2, u1, u2)

∂(µk1 , µk2 , σ
2
k1

, σ2
k2

)

∣∣∣∣∣ . (12)

We note that identifiability issues may still arise under the constraints µ1 < µ2 <
· · · < µM , when M is not fixed. For example, suppose there are three components
labeled 1, 2, and 3, after the merge of components 1 and 2. The component with
original label 3 is automatically relabeled as 2 under the constraints. It is clear that the
component with new label 2 (originally labeled 3) is not the component with original
label 2. Nevertheless, we are mainly interested in the “true” change in contrast uptake
and are not interested in the labels. Thus, we marginalize over M and the labels (Section
2.4), and thus avoid the issue of non-identifiability.
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4 Results

To evaluate the performance of the proposed method, we start with simulation studies
under the model assumption of conditionally independent noise, and then investigate
model performance under violations of this assumption. We define the image Mean
Squared Error (MSE) of pixel intensities by MSE(µz) = N−1

∑N
i=1(η̂i − µtrue

zi
)2, where

µtrue
zi

is the simulated true value. We generate multiple datasets and compute the
average MSE across the datasets, i.e. MSE(µz) = S−1

∑S
s=1 MSE(µs

z), where MSE(µs
z)

is the image MSE of the sth simulated dataset (1 ≤ s ≤ S). The results are compared
with an EM algorithm (Zhang et al. 2008) as well as a fixed dimension MCMC. We also
present results from the motivating example.

4.1 Simulation Study with Conditionally Independent Noise

We divide a 128×128 lattice into 16 regions of various shapes (Figure 4). We assume the
observed pixel values within the same region follow the same distribution, drawn ran-
domly from eight candidate Gaussian distributions with means µ = (−3.5,−2.5,−1.5,
−0.5, 0.5, 1.5, 2.5, 3.5)T and standard deviation 0.625. We generate 1000 sets of true and
observed images to compute the MSEs (S = 1000, see Figure 4 for one example).

Zhang et al. (2008) report biased parameter estimates when the pixels are treated
as independent observations, which is equivalent to a Gaussian mixture model (GMM)
with equal component weights. We find similar results with M = 8 and β = 0: the
average MSEs are MSE

M=8

GMM(µz) = 0.333± 0.012 (mean ± standard deviation).

The EM algorithm (Zhang et al. 2008) yields smaller MSEs than the GMM by
modeling the spatial correlation, i.e. MSE

M=8

EM (µz) = 0.030± 0.024 (Table 1). However,
our results also show that the number of components has a sizable impact on the average
MSE. When the number of components is under-specified, e.g. M = 6, the performance
of the EM algorithm is not satisfactory with MSE

M=6

EM (µz) = 0.108 ± 0.011. On the
other hand, when M is over-specified, e.g. M = 12, the model fit improves with extra
degrees of freedom, i.e. MSE

M=12

EM (µz) = 0.014±0.002. These results present a potential
problem with the EM algorithm—if both small MSE and correct estimation of M are
important, the EM algorithm does not yield a “best” model under both criteria.

As an alternative, parallel to the EM algorithm, we also implement a fixed dimension
MCMC algorithm (see results in Table 1). As with the EM algorithm, the choice of
M impacts the average MSE. When M = 8, the average MSE is smaller than that
of the EM algorithm, i.e. MSE

M=8

MCMC(µz) = 0.019 ± 0.015. The same holds true when
M = 6 with MSE

M=6

MCMC(µz) = 0.103 ± 0.005. When the data are over-fitted with
M = 12, the average MSE decreases to MSE

M=12

MCMC(µz) = 0.013 ± 0.002. In summary,
the MCMC algorithm has smaller average MSE than the EM under all three choices for
M . Furthermore, the MCMC algorithm appears to be less variable as evidenced by the
smaller standard deviations of the MSE.
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Figure 4: One set of simulations: the skeleton (top left) the “true”scene (µtrue
z , top

middle), the observed images (y, left), the posterior mean (η̂i, middle) and standard
deviation (ψ̂i, right) of pixel mean intensity when σ = 0, 0.85, and 3.40 from the second
to fourth row.
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We then run our proposed RJMCMC algorithm with 10000 iterations of burn-in
and 200000 iterations afterwards. It takes approximately 53 minutes to complete all
210000 iterations on a Sun X2200 machine with CPU speed of 2.6G Hz and 16GB RAM
(approximately twice the time it takes to complete the same number of iterations of
the fixed dimension MCMC). The acceptance rate ranges from 3% to 19%. Figure 4
displays the posterior mean (η̂i) and standard deviation (ψ̂i) for one simulated dataset.
The posterior mode is M = 8 for all S datasets and the posterior probability that M = 8
ranges from 50% to 88%. The average MSE, MSERJ(µz) = 0.012 ± 0.003 (Table 1), is
much smaller than both EM and the fixed dimension MCMC under the true M = 8
with less variability. Although the decrease in average MSE compared to the other two
algorithms when M = 12 is marginal, a detailed examination of all 1000 simulations
reveals that the image MSE of our RJMCMC algorithm is smaller than the other two
algorithms in over 98% of simulated datasets. The median of the decrease in image
MSE is 0.002 (inter-quartile range [0.002,0.003]) compared to EM with M = 12 and
0.002 (inter-quartile range [0.001,0.002]) compared to the fixed dimension MCMC with
M = 12.

We reason that the Bayesian algorithms explore the posterior distribution more
efficiently and are less prone to getting stuck in local modes, whereas the EM algorithm
only guarantees convergence to a local mode. Furthermore, we reason that the additional
flexibility of changing between models (M) afforded by the RJMCMC algorithm, can
further aid in exploring the posterior. We argue that one significant benefit of the
proposed algorithm is that it produces satisfactory results (and in many cases better
results) without the risk of over- or under-specifying the number of components.

Choices of Prior and Sensitivity Analysis

In Section 2.2, we specified diffuse prior distributions that cover reasonable ranges for
most parameters. To reassure the prior choice is appropriate, we investigate the poste-
rior distributions. The 95% posterior credible interval of β, [1.49, 1.69], is well within the
uniform prior distribution, Unif[0, 3]. As we noted earlier, the choice ofMmax is problem
specific and can be adjusted if a substantial percentage of posterior samples are near
the chosen Mmax. In our application Mmax = 20 seems to be sufficiently large, the
posterior probability of Pr(M ≤ 15) > 99% and the posterior draw of M reaches Mmax

in 3 simulated datasets. The posterior mode of M is 8. Similarly, the 95% posterior
credible interval of βσ is [0.44, 1.08], which is well contained in the 95% prior credible
interval, [0.08, 1.28]. We also check the convergence of the Monte Carlo chains. The
Heidelberger and Welch test (Heidelberger and Welch, 1981) shows convergence of the
chain. The traceplots in Figure 5 also indicate convergence of the Monte Carlo chain.
After thinning every 20th iteration, the autocorrelation in the posterior draws of β and
M are moderate (Figure 5). The 10000 posterior samples results in effective sample
sizes of 1388 and 1486, respectively. We run multiple chains with different starting
configurations. The potential scale reduction factors of β, M , and βσ are in the range
of [1.00, 1.01], again, indicating good convergence of the chains.

We further investigate alternative values for ασ: ασ = 0.5 and ασ = 5.0. The impact
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Figure 5: Traceplots (left) and autocorrelation plots (right) of posterior draws of β, M ,
and βσ (top to bottom) after 10000 iterations of burn-in. We run 200000 iterations
with thinning every 20th iteration and achieve effective sample sizes of 1388, 1486, and
10000, respectively.

on the MSEs is negligible, i.e. the average MSE is 0.012 ± 0.002 when ασ = 0.5 and
0.012± 0.003 when ασ = 5.0 (compared to 0.012± 0.003 when ασ = 2.1).

We also examine our proposed algorithm under various signal to noise ratios (SNR).
The simulation set in the above section has signal level ∆µ = µk+1 − µk = 1 and
noise level σ = 0.625. We increase the noise level to σ = 0.65, 0.7, 0.75, and 0.8, while
maintaining the same signal level. As the SNR decreases, the average MSE increases
from 0.014± 0.005, 0.023± 0.014, 0.059± 0.024 to 0.083± 0.027.

4.2 Simulation Studies with Correlated Noise

We evaluate the robustness of the method to violations of the conditional independence
assumption by applying Gaussian smoothing kernels on the simulated datasets. We fol-
low the same Gaussian kernel parameters as Zhang et al. (2008), i.e. σ = 0.42, 0.85, 1.70,
and 3.40. Larger values of σ indicate smoother images.

The “edge preservation” of the proposed algorithm is more evident with lighter
smoothing (the bottom two rows of Figure 4). The average MSEs for all degrees of
smoothing investigated are displayed in Table 1. Within each algorithm, the average
MSE increases as smoothing gets stronger. When smoothing is light (σ = 0.42), the
fixed dimension MCMC achieves smaller MSEs compared to the EM algorithm using
the same value for M . Our algorithm results in the smallest average MSE regardless of
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the choice of M in the other two algorithms. However, when the smoothing is strong,
e.g. σ ≥ 0.85, none of the algorithms has satisfactory performance. Thus we suggest
that no smoothing of the data be performed prior to running any of these algorithms.

Table 1: MSE(µz) of the proposed method vs. fixed dimension MCMC and the EM
algorithm.

M 0 0.42 0.85 1.70 3.40
RJ∗ 0.012±0.003 0.065±0.015 0.195±0.049 0.355±0.084 0.680±0.149

6 0.103±0.005 0.153±0.017 0.271±0.058 0.447±0.102 0.736±0.159
MCMC 8 0.019±0.015 0.066±0.017 0.169±0.036 0.352±0.073 0.687±0.148

12 0.013±0.002 0.066±0.015 0.187±0.055 0.376±0.083 0.677±0.150
6 0.108±0.011 0.163±0.015 0.277±0.042 0.430±0.091 0.733±0.151

EM 8 0.030±0.024 0.065±0.014 0.169±0.035 0.352±0.073 0.687±0.148
12 0.014±0.002 0.066±0.015 0.205±0.060 0.381±0.089 0.678±0.149

∗: The true M is 8. The posterior mode of M from the RJMCMC algorithm is 8 for all 1000

simulated datasets. RJMCMC produces smaller MSEs than both EM and the fixed dimension

MCMC over 98% of the time. The median of the decrease in image MSE is 0.002 (inter-

quartile range [0.002,0.003]) compared to EM with M = 12 and 0.002 (inter-quartile range

[0.001,0.002]) compared to the fixed dimension MCMC with M = 12.

4.3 Application

In the motivating study, eleven subjects received standard of care radiotherapy and MRI
images were obtained before, during, and after treatment. All images were registered
to anatomical Computed Tomography (CT) images obtained for treatment planning
purposes. The delineation of tumor and healthy pixels is also based on the pre-treatment
structural CT image. Due to space limitations, we only display the images on the same
two subjects as Zhang et al. (2008).

In the original analysis, Cao et al. (2005) divided the tumor into two regions, one
with relatively high and the other with relatively low pre-treatment contrast uptake.
This more-or-less divides the tumor into a “core” (low initial contrast uptake) sur-
rounded by an “annulus” (with high initial contrast uptake). Tumor cores are typically
hypoxic (with low oxygen content) due to a lack of blood supply, which is known to
have a protective effect against damage due to both radiation and chemotherapy and
may be a source of tumor re-growth. Hence, our focus was on demonstrating that ra-
diation therapy has a transient effect on the tumor “core” with respect to increasing
the contrast uptake. The time when this increase is greatest may suggest an optimal
time for initiating chemotherapy, allowing for more effective delivery of chemotherapeu-
tic agents. Following Zhang et al. (2008), we use the 95th percentile of healthy tissue
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contrast uptake at baseline as the threshold to divide the tumor into core and annulus.

We then run the proposed algorithm for 200000 iterations after 10000 burn-in it-
erations. The posterior mean of change in contrast uptake and associated standard
deviation (Figures 1b and 1c) delineates the heterogeneous response of the tumor. The
results from another subject are shown in Figures 2b and 2c. Again, the maximum
of the posterior draws of M across all patients is 18, which suggests Mmax = 20 is
adequate. The acceptance rate of the trans-dimensional proposals for the majority of
the patients (7 out of 11) ranges from 1% to 29%. The trans-dimensional proposals are
hardly accepted among the rest of the patients, which we argue is due to the strong
information on the number of components in the data. Regardless, our proposal results
in uniformly larger acceptance rates than the other methods mentioned in Section 3.3.

Interpretation of the Results

As discussed in the introduction, large increases in contrast uptake may suggest more
effective delivery of chemotherapy drugs. Hence, an optimal time to deliver chemother-
apy may exist when the contrast uptake increase in the tumor is large relative to healthy
tissue. One way to quantify this is to define a threshold and compare the proportions
of healthy and diseased tissue that exceed this threshold. Although, there is no estab-
lished threshold, we apply an illustrative threshold, 0.06, used by Zhang et al. (2008).
For subject 1, 8.2% of the normal tissue exceeds the threshold, while 59.5% of the tumor
“core” has an increase in contrast uptake above the threshold, compared to 15.6% in the
tumor “annulus” (Figure 1e). Similarly, for subject 2, 4.0% of healthy tissue exceeds the
threshold. While 54.3% of the tumor “core” has a change in contrast uptake that ex-
ceeds the threshold, compared to 12.7% in the “annulus” (Figure 2e). The percentages
are similar to those reported by Zhang et al. (2008).

Since the choice of the above threshold is arbitrary and not justified by biological
considerations, we propose to use the Mann Whitney U statistic to summarize the differ-
ential change in contrast uptake of the tumor and healthy tissue. It can be interpreted
as the probability that a randomly selected pixel in the tumor has a larger mean change
in contrast uptake than a randomly selected pixel in healthy tissue. A larger U statistic
indicates a larger increase in contrast uptake of the tumor relative to healthy tissue
which is desirable (i.e. more contrast is entering the tumor). There is a connection
between thresholds and the U statistic. The U statistic is equivalent to the empirical
area under the receiver operating characteristics curve, or AUC (Section 4.3.4 of Pepe,
2003).

We compute the U statistic at each iteration for the tumor “core” versus healthy
tissue and the tumor “annulus” versus healthy tissue. The 95% posterior credible in-
terval of the U statistic between the tumor “core” and healthy tissue is (0.74, 0.76) for
subject 1, which suggests the “core” region has a substantial increase, on average, in
contrast uptake compared to healthy tissue. The tumor “core” of subject 2 is also well
separated from healthy tissue with 95% posterior credible interval (0.81, 0.82). The U
statistic between the tumor “annulus” and healthy tissue is under 0.5 for both subjects:



206 A Bayesian Image Analysis of Changes in Tumor Vascular Permeability

(0.23, 0.25) for subject 1 and (0.25, 0.26) for subject 2, suggesting the “annulus” on
average has decreased contrast uptake compared to healthy tissue. The U statistic for
all eleven subjects are listed in Table 2. Most subjects demonstrate significant increase
in contrast uptake in the tumor “core”. We also investigate the sensitivity of the results
to alternative cutoff of tumor core vs. annulus, i.e. using 90% and 97.5% percentile of
the baseline healthy tissue contrast uptake instead of 95% percentile. The results are
listed in Table 2.

Table 2: Posterior 95% credible interval of Mann Whitney U statistic between the tumor
“core/annulus” and healthy tissue for all subjects.

Subj. “Core” “Annulus”
ID 90th 95th 97.5th 90th 95th 97.5th

1 (0.75, 0.77) (0.74, 0.76) (0.71, 0.73) (0.26, 0.28) (0.23, 0.25) (0.20, 0.22)
2 (0.83, 0.84) (0.81, 0.82) (0.81, 0.82) (0.28, 0.29) (0.25, 0.26) (0.23, 0.24)
3 (0.42, 0.44) (0.40, 0.42) (0.36, 0.38) (0.08, 0.09) (0.05, 0.07) (0.04, 0.05)
4 (0.55, 0.57) (0.53, 0.55) (0.52, 0.53) (0.18, 0.20) (0.15, 0.16) (0.13, 0.15)
5 (0.49, 0.54) (0.46, 0.52) (0.42, 0.49) (0.25, 0.31) (0.24, 0.30) (0.24, 0.29)
6 (0.91, 0.92) (0.91, 0.91) (0.89, 0.90) (0.57, 0.68) (0.55, 0.56) (0.53, 0.54)
7 (0.92, 0.96) (0.90, 0.94) (0.89, 0.93) (0.31, 0.33) (0.29, 0.31) (0.29, 0.31)
8 (0.23, 0.25) (0.30, 0.31) (0.35, 0.36) (0.92, 0.94) (0.95, 0.97) (0.96, 0.97)
9 (0.62, 0.65) (0.59, 0.62) (0.58, 0.60) (0.21, 0.35) (0.21, 0.39) (0.21, 0.42)
10 (0.87, 0.89) (0.86, 0.88) (0.85, 0.87) (0.59, 0.60) (0.59, 0.60) (0.59, 0.60)
11 (0.69, 0.72) (0.68, 0.71) (0.66, 0.68) (0.25, 0.27) (0.23, 0.25) (0.20, 0.23)

5 Conclusion

In this article, we implement a statistical imaging model that respects the key feature
of spatial heterogeneity in the qMRI data. Compared with previous work, we integrate
many ideas that have been previously discussed individually. First, we estimate the
normalizing constant via thermal integration, instead of using the pseudo-likelihood.
Second, we estimate the spatial regularization parameter from the data, rather than
holding it fixed. Third, we acknowledge that there is no clear substantive knowledge
regarding the number of components, given the lack of biological interpretation of the
hidden labels. We therefore marginalize over both M and the labels, and focus on
the marginal posterior distribution of the pixel change in contrast uptake, which is of
primary scientific interest. Furthermore, the split scheme proposed by Richardson and
Green (1997) is inadequate for the scale of data, we therefore propose a non-trivial
implementation inspired by the Swendsen-Wang algorithm. Finally, we propose using
the U statistic to summarize the differential change in contrast uptake of the tumor
“core/annulus” versus healthy tissue.

The proposed image model is fitted for each subject separately. We argue that
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the number of subjects in the motivating study is rather limited compared to the het-
erogeneity of tumors. Hence, a pixel-level population model is not necessarily more
beneficial than the current one by adding one additional level to the model hierarchy,
and is computationally more difficult.

We find the performance of our RJMCMC algorithm improves on the EM algorithm
and the fixed dimension MCMC algorithm regardless of the number of components
specified in the latter two algorithms. Furthermore, our algorithm is preferable when
there is no clear basis for the choice of M , since the loss associated with a miss-specified
M can be severe with both the EM and the fixed dimension MCMC algorithms.

There are alternatives to the proposed algorithm. For example, birth-and-death
MCMC (BDMCMC, Stephens 2000) is an alternative trans-dimensional MCMC algo-
rithm. Another alternative could be a spatial infinite mixture model (Guillot, Estoup,
Mortier, and Cosson, 2005, Francois, Ancelet, and Taylor, 2006), which extends infi-
nite mixture models using the Dirichlet process prior to the spatial setting. However,
implementation of these alternatives may be challenging giving the large volume of data.

Finally, we would like to address that it is a complicated issue to determine the
optimal timing of administering chemotherapy with respect to radiation. The image
model discussed in this manuscript provides crucial information, but its role is not
to be over-stated. It is more appropriately considered as a piece of a large puzzle.
Future research in the image model itself as well as the underlying biological science are
much needed. One future direction of our research is in extending the image model by
incorporating the repeated images that captures the longitudinal profile of tumor/brain
contrast uptake.
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Appendix

1. Estimating the Ratio of Normalizing Constant

The outline of the estimating procedure follows the general method found in Ogata
(1989) and Gelman and Meng (1998) with appropriate notational changes. For a given
M (number of components), we wish to estimate the log ratio of normalizing constants
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λM (a, b) ≡ ln[g(b,M)/g(a,M)] for b > a ≥ 0. Now

d ln[g(β, M)]
dβ

=
d ln

(∑
z∈ZM

exp
{

β
∑

i∼j I(zi = zj)
})

dβ

=
∑

z∈ZM

d
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∑
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Therefore,

λM (a, b) =
∫ b

a

d ln[g(β,M)]
dβ

dβ =
∫ b

a

EZ





∑

i∼j

I(zi = zj)



 dβ. (13)

In order to estimate λM (a, b), we have two integrals to evaluate. The inner integral, or
expectation, is estimated via MCMC. We use the Swendsen-Wang algorithm under the
assumption that there is no likelihood term. The use of the Swendsen-Wang algorithm
is key to accurately estimate this ratio as the Swendsen-Wang algorithm moves quickly
through the state space in a way that cannot be done with single site updates. The
outer integral in Equation (13) is evaluated numerically using the trapezoidal rule. The
ratio is calculated for M = 2, . . . , 20 and β = 0, 0.01, . . . , 3. For values of a and b not
on the grid on which the (inner) expectation is evaluated, we linearly interpolate.

For the RJMCMC proposal, the ratio ln[g(β,M)/g(β, M + 1)] is required. This can
be estimated using the fact that ln[g(0,M)] = ln

∑
z∈ZM

1 = N ln(M), where N is the
number of pixels, and the following identity:

ln[g(β, M)/g(β,M + 1)] = λM (0, β)− λM+1(0, β) + ln[g(0, M)] + ln[g(0,M + 1)].

2. Pseudo Code

1. Initialize all variables;

2. Update β following Equation (6) using Matropolis-Hastings step;

3. Update µ = (µ1, · · · , µM ) and σ2 = (σ2
1 , · · · , σ2

M ) following Equations (3) and (4)
via Gibbs sampling, respectively;

4. Update the hidden configuration Z using Swendsen-Wang algorithm following
Equation (7) or see Appendix 3 for more details;
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5. Draw u ∼ Unif(0, 1), if u < 0.5 and M > Mmin, then proceed with a split proposal:

(a) Randomly pick a component 1 ≤ k ≤ M ;

(b) Draw u1 and u2 from Beta(2, 2) and set values of µ∗k1
, µ∗k2

, σ∗k1

2, and σ∗k2

2

following Equation (8);

(c) For each contiguous equivalence class 1 ≤ l ≤ L (i.e. pixels with the same
hidden label that are directly or indirectly connected through neighbors),
randomly propose a new hidden label k with probability pl

k in Equation (9);

(d) Draw a random variable v1 ∼ Unif(0, 1), if v1 < min(1, A) as in Equation
(10), then accept the split proposal and update the hidden label and param-
eters;

else if u ≥ 0.5 and M < Mmax, then proceed with a merge proposal:

(a) Randomly pick two components k1 and k2 with means that are in rank order
next to each other;

(b) Calculate µ∗k, σ∗k
2, u1, and u2 following Equation (8);

(c) For each contiguous equivalence class 1 ≤ l ≤ L, randomly propose a new
hidden label k with probability pl

k in Equation (11);

(d) Draw a random variable v2 ∼ Unif(0, 1), if v2 < min(1, B) as in Equation
(12), then accept the merge proposal and update the hidden label and pa-
rameters;

6. adjust the proposal distributions if necessary and return to step (2) for the next
iteration.

3. Details of the Swendsen-Wang Algorithm

The Swendsen-Wang algorithm stochastically partitions the configuration into same-
labeled contiguous regions such that the label for these regions can be updated inde-
pendently. This clever idea is implemented in the following three steps.

1. We first generate independently random variables, uii′ ∼ Uniform(0, exp{βI[zi =
zi′ ]}), for each pair of neighbors i ∼ i′. Clearly, the joint distribution of all
auxiliary variables u = {uii′}i∼i′ is f(u) =

∏
i∼i′ exp {−βI[zi = zi′ ]} I[0 ≤ uii′ ≤

exp{βI[zi = zi′ ]}].
2. By Bayes theorem, the posterior distribution of the labels conditional on the

auxiliary variables is

Pr(Z=z |u, θ)∝
N∏

i=1

σ−1
zi

exp
{−0.5σ−2

zi
(yi−µzi)

2
}∏

i∼i′
I[0≤uii′≤exp{βI[zi = zi′ ]}]. (14)

The second term in Equation (14) defines the range over which the posterior
distribution is non-zero. More concretely, when 1 ≤ uii′ ≤ exp{βI[zi = zi′ ]}
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holds, it builds a virtual stochastic “bond” between i and i′ that requires both
pixels to assume the same label. That is if pixel i and i′ assume the same label
in the current configuration, they are “bonded” to assume a common label (could
be different from the current one) with probability 1 − e−β . The bonds define
an equivalence relation, and partition a configuration into contiguous regions of
bonded pixels. We denote these equivalence classes by C1, C2, ..., CJ . According
to the definition, a component consists of one or more such equivalence classes.

3. According to Equation (14), the labels of the equivalence classes can be updated
independently. The new label C

(t+1)
j of class j satisfies

Pr(C(t+1)
j = k | u(t), θ(t)) ∝

∏

i∈C
(t)
j

σ−1
k

(t)
exp

{
−.5σ−2

k

(t)
(
yi − µ

(t)
k

)2
}

.
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