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AN EFFICIENT ESTIMATOR FOR LOCALLY STATIONARY
GAUSSIAN LONG-MEMORY PROCESSES1

BY WILFREDO PALMA AND RICARDO OLEA

Pontificia Universidad Católica de Chile

This paper addresses the estimation of locally stationary long-range de-
pendent processes, a methodology that allows the statistical analysis of time
series data exhibiting both nonstationarity and strong dependency. A time-
varying parametric formulation of these models is introduced and a Whit-
tle likelihood technique is proposed for estimating the parameters involved.
Large sample properties of these Whittle estimates such as consistency, nor-
mality and efficiency are established in this work. Furthermore, the finite
sample behavior of the estimators is investigated through Monte Carlo ex-
periments. As a result from these simulations, we show that the estimates
behave well even for relatively small sample sizes.

1. Introduction. Even though stationarity is a very attractive theoretical as-
sumption, in practice most time series data fail to meet this condition. As a con-
sequence, several approaches to deal with nonstationarity have been proposed in
the literature. Among these methodologies, differentiation and trend removal are
popular choices. Other approaches include, for instance, the evolutionary spec-
tral techniques first discussed by Priestley (1965). In a similar spirit, during the
last decades a number of new time-varying dependence models have been pro-
posed. One of these methodologies, the so-called locally stationary processes de-
veloped by Dahlhaus (1996, 1997), has been widely discussed in the recent time
series literature, see, for example, Dahlhaus (2000), von Sachs and MacGibbon
(2000), Jensen and Whitcher (2000), Guo et al. (2003), Genton and Perrin (2004),
Orbe, Ferreira and Rodriguez-Poo (2005), Dahlhaus and Polonik (2006, 2009),
Chandler and Polonik (2006), Fryzlewicz, Sapatinas and Subba Rao (2006) and
Beran (2009), among others. This approach allows the stochastic process to be
nonstationary, but assuming that the time variation of the model is sufficiently
smooth so that it can be locally approximated by stationary processes.

On the other hand, during the last decades, long-range dependent data have
arisen in disciplines as diverse as meteorology, hydrology, economics, etc., see,
for example, the recent surveys by Doukhan, Oppenheim and Taqqu (2003) and
Palma (2007). As a consequence, statistical methods for modeling that type of
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data are of great interest to scientists and practitioners from many fields. At the
same time, many of these long-memory data also display nonstationary behav-
ior, see, for instance, Granger and Ding (1996), Jensen and Whitcher (2000) and
Beran (2009). Nevertheless, most of the currently available methods for dealing
with long-range dependence are incapable of modeling time series with these fea-
tures. In particular, much of the theory of locally stationary processes applies only
to time series with short memory, such as time-varying autoregressive moving av-
erage (ARMA) processes and not to time series exhibiting both nonstationarity and
strong dependence. In order to treat that type of data, this paper addresses a class
of strongly dependent locally stationary processes. In particular, these models in-
clude a Hurst parameter which evolves over time. Following Dahlhaus (1997), we
propose a Whittle maximum likelihood estimation technique for fitting Gaussian
long-memory locally stationary models. This is an extension of the spectrum-based
likelihood estimator introduced by Whittle (1953). A great advantage of this es-
timation procedure is its computational efficiency, since it only requires the cal-
culation of the periodogram by means of the fast Fourier transform. Additionally,
we prove in this article that the proposed Whittle estimator is asymptotically con-
sistent, normally distributed and efficient. Thus, this paper provides a framework
for modeling and making statistical inferences about several types of nonstation-
arities that may be difficult to handle with other techniques. For instance, changes
in the variance of a time series could be spotted by simple inspection of the data.
However, variations on the dependence structure of the data are far more difficult
to uncover and model.

The remainder of this paper is structured as follows. Section 2 discusses a
class of long-memory locally stationary processes and proposes a quasi maximum
likelihood estimator based on an extended version of the Whittle spectrum-based
methodology. The consistency, asymptotic normality and efficiency of these quasi
maximum likelihood estimators are established. Applications of the asymptotic re-
sults to some specific locally stationary processes are also presented in this section.
Proofs of the theorems are provided in Section 3. Note that the techniques em-
ployed by Dahlhaus (1997) to show the asymptotic properties of the Whittle esti-
mates are no longer valid for the class of long-memory locally stationary processes
discussed in this paper. This difficulty is due to the fact that these processes have
an unbounded time-varying spectral density at zero frequency. Consequently, sev-
eral technical results must be introduced and proved. Section 4 reports the results
from several Monte Carlo experiments which allow to gain some insight into the
finite sample behavior of the Whittle estimates. Conclusions are presented in Sec-
tion 5 while auxiliary lemmas are provided in a technical appendix. Additional
examples and simulations along with a comparison of the Whittle estimator with a
kernel maximum likelihood estimation approach and two real-life applications of
the proposed methodology can be found in Palma and Olea (2010). The bandwidth
selection problem for the locally stationary Whittle estimator is also discussed in
that paper, from an empirical perspective.
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2. Definitions and main results.

2.1. Long-memory locally stationary processes. A class of Gaussian locally
stationary process with transfer function A0 can be defined by the spectral repre-
sentation

Yt,T =
∫ π

−π
A0

t,T (λ)eiλt dB(λ),(1)

for t = 1, . . . , T , where B(λ) is a Brownian motion on [−π,π ] and there is a pos-
itive constant K and a 2π -periodic function A : (0,1] × R → C with A(u,−λ) =
A(u,λ) such that

sup
t,λ

∣∣∣∣A0
t,T (λ) − A

(
t

T
, λ

)∣∣∣∣ ≤ K

T
,(2)

for all T . The transfer function A0
t,T (λ) of this class of nontstationary processes

changes smoothly over time so that they can be locally approximated by stationary
processes. An example of this class of locally stationary processes is given by the
infinite moving average expansion

Yt,T = σ

(
t

T

) ∞∑
j=0

ψj

(
t

T

)
εt−j ,(3)

where {εt } is a zero-mean and unit variance Gaussian white noise and {ψj(u)} are
coefficients satisfying

∑∞
j=0 ψj(u)2 < ∞ for all u ∈ [0,1]. In this case, the transfer

function of process (3) is given by A0
t,T (λ) = σ( t

T
)
∑∞

j=0 ψj(
t
T
)e−iλj = A( t

T
, λ),

so that condition (2) is satisfied. The model defined by (3) generalizes the Wold
expansion for a linear stationary process allowing the coefficients of the infinite
moving average expansion vary smoothly over time. A particular case of (3) is the
generalized version of the fractional noise process described by the discrete-time
equation

Yt,T = σ

(
t

T

)
(1 − B)−d(t/T )εt = σ

(
t

T

) ∞∑
j=0

ηj

(
t

T

)
εt−j ,(4)

for t = 1, . . . , T , where {εt } is a Gaussian white noise sequence with zero mean
and unit variance and the infinite moving average coefficients {ηj (u)} are given by

ηj (u) = �[j + d(u)]
�(j + 1)�[d(u)] ,(5)

where �(·) is the Gamma function and d(·) is a smoothly time-varying long-
memory coefficient. For simplicity, the locally stationary fractional noise process
(4) will be denoted as LSFN.



LOCALLY STATIONARY LONG-MEMORY PROCESSES 2961

A natural extension of the LSFN model is the locally stationary autoregressive
fractionally integrated moving average (LSARFIMA) process defined by the equa-
tion

	(t/T ,B)Yt,T = σ(t/T )
(t/T ,B)(1 − B)−d(t/T )εt ,(6)

for t = 1, . . . , T , where for u ∈ [0,1], 	(u,B) = 1 + φ1(u)B + · · · + φP (u)BP

is an autoregressive polynomial, 
(u,B) = 1 + θ1(u)B + · · · + θQ(u)BQ is a
moving average polynomial, d(u) is a long-memory parameter, σ(u) is a noise
scale factor and {εt } is a Gaussian white noise sequence with zero mean and unit
variance. This class of models extends the well-known ARFIMA process, which
is obtained when the components 	(u,B), 
(u,B), d(u) and σ(u) appearing in
(6) do not depend on u. Note that by Theorem 4.3 of Dahlhaus (1996), under some
regularity conditions on the polynomial 	(u,B), the model defined by (6) satisfies
(1) and (2), see Jensen and Whitcher (2000) for details.

2.2. Estimation. Let θ ∈ 
 be a parameter vector specifying model (1) where
the parameter space 
 is a subset of a finite-dimensional Euclidean space. Given
a sample {Y1,T , . . . , YT ,T } of the process (1) we can estimate θ by minimizing the
Whittle log-likelihood function

LT (θ) = 1

4π

1

M

∫ π

−π

M∑
j=1

{
logfθ (uj , λ) + IN(uj , λ)

fθ (uj , λ)

}
dλ,(7)

where fθ (u,λ) = |Aθ(u,λ)|2 is the time-varying spectral density of the limit-

ing process specified by the parameter θ , IN(u,λ) = |DN(u,λ)|2
2πH2,N (0)

is a tapered pe-
riodogram with

DN(u,λ) =
N−1∑
s=0

h

(
s

N

)
Y[uT ]−N/2+s+1,T e−iλs, Hk,N =

N−1∑
s=0

h

(
s

N

)k

e−iλs,

T = S(M − 1) + N , uj = tj /T , tj = S(j − 1) + N/2, j = 1, . . . ,M and h(·)
is a data taper. The intuition behind this extended version of the Whittle estima-
tion procedure (7) is as follows: the sample {Y1,T , . . . , YT ,T } is subdivided into M

blocks of length N each shifting S places from block to block. For instance, if
we split a time series of T = 652 observations into M = 100 blocks of length
N = 256 each, shifting S = 4 positions forward each time we get the blocks
(Y1,652, Y2,652, . . . , Y256,652), . . . , (Y397,652, Y398,652, . . . , Y652,652). Then, the spec-
trum is locally estimated by means of the data tapered periodogram on each one of
these M = 100 blocks and then averaged to form (7). Finally, the Whittle estimator
of the parameter vector θ is given by

θ̂T = arg min LT (θ),(8)

where the minimization is over a parameter space 
. The analysis of the asymp-
totic properties of the Whittle locally stationary estimates (8) is discussed in detail
next. Before stating these results, we introduce a set of the regularity conditions.
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2.3. Assumptions. The first assumption below is concerned with the time-
varying spectral density of the process. The second assumption is related to the
data tapering function and the third assumption is concerned with the block sam-
pling scheme. It is assumed that the parameter space 
 is compact. In what fol-
lows, K is always a positive constant that could be different from line to line.

A1. The time-varying spectral density of the limiting process (1) is strictly pos-
itive and satisfies

fθ (u,λ) ∼ Cf (θ,u)|λ|−2dθ (u),

as |λ| → 0, where Cf (θ,u) > 0, 0 < infθ,u dθ (u), supθ,u dθ (u) < 1
2 and dθ (u) has

bounded first derivative with respect to u. There is an integrable function g(λ)

such that |∇θ logfθ (u,λ)| ≤ g(λ) for all θ ∈ 
, u ∈ [0,1] and λ ∈ [−π,π ]. The
function A(u,λ) is twice differentiable with respect to u and satisfies∫ π

−π
A(u,λ)A(v,−λ) exp(ikλ) dλ ∼ C(θ,u, v)kdθ (u)+dθ (v)−1,

as k → ∞, where |C(θ,u, v)| ≤ K for u, v ∈ [0,1] and θ ∈ 
. The function
fθ (u,λ)−1 is twice differentiable with respect to θ , u and λ.

A2. The data taper h(u) is a positive, bounded function for u ∈ [0,1] and sym-
metric around 1

2 with a bounded derivative.
A3. The sample size T and the subdivisions integers N , S and M tend to

infinity satisfying S/N → 0,
√

T log2 N/N → 0,
√

T /M → 0 and N3 log2 N/

T 2 → 0.

EXAMPLE 2.1. As an illustration of the assumptions described above, con-
sider the extension of the usual fractional noise process with time-varying Hurst
parameter, described by (4) and (5). The spectral density of this LSFN process is
given by

fθ (u,λ) = σ 2

2π

(
2 sin

λ

2

)−2dθ (u)

.

Note that this function is integrable over λ ∈ [−π,π ] for every u ∈ [0,1] as
long as dθ (u) < 1

2 for all u ∈ [0,1] and θ ∈ 
. Furthermore, we have that

fθ (u,λ) ∼ σ 2

2π
|λ|−2dθ (u), as λ → 0. By assuming that |∇θdθ (u)| ≤ K , we have that

|∇θ logfθ (u,λ)| = |∇θdθ (u)||log(2 sin λ
2 )2| ≤ K|log|λ||, which is an integrable

function in λ ∈ [−π,π ]. In addition, from (5) the function A(u,λ) of this process
satisfies∫ π

−π
A(u,λ)A(v,−λ) exp(ikλ) dλ = �[1 − dθ (u) − dθ (v)]�[k + dθ (u)]

�[1 − dθ (u)]�[dθ (u)]�[k + 1 − dθ (v)] ,
for k ≥ 0. Thus, by Stirling’s approximation, we get∫ π

−π
A(u,λ)A(v,−λ) exp(ikλ) dλ ∼ �[1 − dθ (u) − dθ (v)]

�[1 − dθ (u)]�[dθ (u)]k
dθ (u)+dθ (v)−1,
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for k → ∞. Besides, a simple calculation shows that fθ (u,λ)−1 is twice differen-
tiable with respect to u and λ as long as dθ (u) is twice differentiable with respect
to u. Thus, under these conditions the time-varying spectral density fθ (u,λ) sat-
isfies assumption A1. On the other hand, an example of data taper that satisfies
assumption A2 is the cosine bell function

h(x) = 1
2 [1 − cos(2πx)].(9)

Note that if S = O(Na) and M = O(Nb) then T = O(Na+b) for a + b ≥ 1. Thus,
by choosing exponents a and b such that (a, b) ∈ C = {a < 1, 3

2 < a + b < 2, a <

b}, assumption A3 is fulfilled. Observe that the C is a nonempty set.

2.4. Main results. Some fundamental large sample properties of the Whittle
quasi-likelihood estimators (8), including consistency, asymptotic normality and
efficiency are established next. In addition, we establish an asymptotic result about
the estimation of the time-varying long-memory parameter for a class of locally
stationary processes. The proofs of these four results are provided in Section 3.

THEOREM 2.1 (Consistency). Let θ0 be the true value of the parameter θ .
Under assumptions A1–A3, the estimator θ̂T satisfies θ̂T → θ0, in probability, as
T → ∞.

THEOREM 2.2 (Normality). Let θ0 be the true value of the parameter θ . If
assumptions A1–A3 hold, then the Whittle estimator θ̂T satisfies a central limit
theorem

√
T (θ̂T − θ0) → N [0,�(θ0)

−1],
in distribution, as T → ∞, where

�(θ) = 1

4π

∫ 1

0

∫ π

−π
[∇ logfθ (u,λ)][∇ logfθ (u,λ)]′ dλdu.(10)

THEOREM 2.3 (Efficiency). Assuming that conditions A1–A3 hold, the Whit-
tle estimator θ̂T is asymptotically Fisher efficient.

REMARK 2.1. Recall that for a stationary fractional noise process FN(d), the
asymptotic variance of the maximum likelihood estimate of the long-memory pa-
rameter, d̂ , satisfies

lim
T →∞T Var(d̂) = 6

π2 .

On the other hand, suppose that we consider a LSFN process where the long-
memory parameter varies according to, for example, d(u) = α0 + α1u. Thus, in
order to estimate d(u), the parameters α0 and α1 must be estimated. Let α̂0 and
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α̂1 be their Whittle estimators, respectively, so that d̂(u) = α̂0 + α̂1u. According to
Theorem 2.2, the asymptotic variance of this estimate of d(u) satisfies

lim
T →∞T Var[d̂(u)] = 24

π2 (1 − 3u + 3u2),

and then integrating over u we get

lim
T →∞T

∫ 1

0
Var[d̂(u)]du = 12

π2 .

Since two parameters are being estimated, on the average, the asymptotic variance
of the estimate d̂(u) is twice the asymptotic variance of d̂ from a stationary FN
process. This result can be generalized to the case where three or more coefficients
are estimated and to more complex trends, as established on the following theorem.

THEOREM 2.4. Consider a LSFN process (4) with time-varying long-memory
parameter dβ(u) = ∑p

j=1 βjgj (u), where {gj (u)} are basis functions as defined

in (12) below. Let d̂(u) = ∑p
j=1 β̂j gj (u) be the estimator of dβ(u) for u ∈ [0,1].

Then under assumptions A1–A3 we have that

lim
T →∞T

∫ 1

0
Var[d̂(u)]du = 6p

π2 .(11)

REMARK 2.2. Note that according to Theorem 2.4 the limiting average of the
variances of d(u) given by (11) does not depend on the basis functions gj (·) for
j = 1, . . . , p.

2.5. Illustrations. As an illustration of the asymptotic results discussed above,
consider the class of LSARFIMA models defined by (6). The evolution of these
models can be specified in terms of a general class of functions. For example, let
{gj (u)}, j = 1,2, . . . , be a basis for a space of smoothly varying functions and let
dθ (u) be the time-varying long-memory parameter in model (6). Then we could
write dθ (u) in terms of the basis {gj (u)} as follows:

�[dθ (u)] =
k∑

j=0

αjgj (u),(12)

for unknown values of k and θ = (α0, α1, . . . , αk)
′, where �(·) is a known link

function. In this situation, estimating θ involves determining k and estimating
the coefficients α0, . . . , αk . Important examples of this approach are the classes
of polynomials generated by the basis {gj (u) = uj }, Fourier expansions gen-
erated by the basis {gj (u) = eiuj } and wavelets generated by, for instance, the
Haar or Daubechies systems. Extensions of these cases can also be considered.
For example, the basis functions could also include parameters as in the case
{gj (u) = eiuβj }, where {βj } are unknown values.
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In order to illustrate the application of the theoretical results established in Sec-
tion 2.4, we discuss next a number of combinations of polynomial and harmonic
evolutions of the long-memory parameter, the noise variance, the autoregressive
and moving average components of the LSARFIMA process (6). Additional ex-
amples are provided in Section 2 of Palma and Olea (2010).

EXAMPLE 2.2. Consider first the case P = Q = 0 in model (6) where d(u)

and σ(u) are specified by

�1[d(u)] =
p∑

j=0

αjgj (u), �2[σ(u)] =
q∑

j=0

βjhj (u),

for u ∈ [0,1], where �1(·) and �2(·) are differentiable link functions, gj (·) and
hj (·) are basis functions. The parameter vector in this case is θ = (α0, . . . , αp ,
β0, . . . , βq)

′ and the matrix � can be written as

� =
(

�α 0
0 �β

)
,(13)

where

�α = π2

6

[∫ 1

0

gi(u)gj (u) du

[�′
1(d(u))]2

]
i,j=0,...,p

,

�β = 2
[∫ 1

0

hi(u)hj (u) du

[σ(u)�′
2(σ (u))]2

]
i,j=0,...,q

.

EXAMPLE 2.3. As a particular case of the parameter specification of the pre-
vious example, consider the case P = Q = 0 in model (6) where d(u) and σ(u)

are both specified by polynomials,

d(u) = α0 + α1u + · · · + αpup, σ (u) = β0 + β1u + · · · + βquq,

for u ∈ [0,1]. Similar to Example 2.2, in this case the parameter vector is θ =
(α0, . . . , αp,β0, . . . , βq)

′, �1(u) = �2(u) = u and the matrix � given by (10) can
be written as in (13) with

�α =
[

π2

6(i + j + 1)

]
i,j=0,...,p

,

�β = 2
[∫ 1

0

ui+j du

(β0 + β1u + · · · + βquq)2

]
i,j=0,...,q

.

The above integrals can be evaluated by standard calculus procedures; see, for
example, Gradshteyn and Ryzhik [(2000), page 64] or by numerical integration.
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EXAMPLE 2.4. Considering now a similar setup as Example 2.3 with p =
q = 1, but with link function �(·) = log(·) such that

log[d(u)] = α0 + α1u, log[σ(u)] = β0 + β1u,

for u ∈ [0,1]. Then � can be written as (13) with

�α = π2

6

e2α0

4α3
1

[
2α2

1(e2α1 − 1) α1
(
(2α1 − 1)e2α1 + 1

)
α1

(
(2α1 − 1)e2α1 + 1

)
(2α2

1 − 2α1 + 1)e2α1 + 1

]
,

�β =
[

2 1
1 2/3

]
.

EXAMPLE 2.5. Following with the assumption P = Q = 0 in model (6), con-
sider that d(u) and σ(u) are defined by the harmonic expansions

d(u) = α0 + α1 cos(λ1u) + · · · + αp cos(λpu),

σ (u) = β0 + β1 cos(ω1u) + · · · + βq cos(ωqu),

for u ∈ [0,1], where λ0 = 0, λ2
i �= λ2

j for all i, j = 0, . . . , p, i �= j , ω0 = 0 and

ω2
i �= ω2

j for all i, j = 0, . . . , q , i �= j . For simplicity, the values of the frequencies
{λj } and {ωj } are assumed to be known. As in Example 2.3, in this case the pa-
rameter vector is θ = (α0, . . . , αp,β0, . . . , βq)

′ and the matrix � appearing in (10)
can be written as in (13) with

�α = π2

12

[
sin(λi − λj )

λi − λj

+ sin(λi + λj )

λi + λj

]
i,j=0,...,p

and

�β = π2

12

[
sin(ωi − ωj )

ωi − ωj

+ sin(ωi + ωj )

ωi + ωj

]
i,j=0,...,q

.

EXAMPLE 2.6. Consider now the case P = Q = 1 in model (6) where σ(u) =
1 and d(u), 	(u,B), 
(u,B) are specified by

d(u) = α1u,

	(u,B) = 1 + φ(u)B, φ(u) = α2u,


(u,B) = 1 + θ(u)B, θ(u) = α3u,

for u ∈ [0,1]. In this case, the parameter vector is θ = (α1, α2, α3)
′, with 0 < α1 <

1
2 , |αj | < 1, j = 1,2 and the matrix � from (10) can be written as

� =
⎛⎝γ11 γ12 γ13

γ21 γ22 γ23
γ31 γ32 γ33

⎞⎠ ,
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where

γ11 = 1

2α3
1

log
1 + α1

1 − α1
− 1

α2
1

, γ12 = g(α1α2)

(α1α2)3/2 − 1

α1α2
,

γ13 = 1

2α1

{[
1

2
− 1

α1

]
−

[
1 − 1

α2
1

]
log(1 + α1)

}
,

γ22 = 1

2α3
2

log
1 + α2

1 − α2
− 1

α2
2

,

γ23 = 1

2α2

{[
1 − 1

α2
2

]
log(1 + α2) −

[
1

2
− 1

α2

]}
, γ33 = π2

18
,

with g(x) = arctanh(
√

x) for x ∈ (0,1) and g(x) = arctan(
√−x) for x ∈ (−1,0).

3. Proofs. This section is devoted to the proof of Theorems 2.1–2.4. Before
presenting the proofs of these results, we introduce and prove three useful propo-
sitions which are of independent interest. These propositions involve the large
sample properties of the functional operator defined next. Consider the function
φ : [0,1] × [−π,π ] → R and define the functional operator

J (φ) =
∫ 1

0

∫ π

−π
φ(u,λ)f (u,λ) dλdu,(14)

where f (u,λ) is the time-varying spectral density of the limit process (1). Define
the sample version of J (·) as

JT (φ) = 1

M

M∑
j=1

∫ π

−π
φ(uj , λ)IN(uj , λ) dλ,(15)

where M and uj , j = 1, . . . ,M are given in Section 2. Furthermore, define the
matrix

Q(u) =
(∫ π

−π
φ(u,λ)eiλ(s−t) dλ

)
s,t=1,...,N

,(16)

and the block-diagonal matrix Q(φ) = diag[Q(u1), . . . ,Q(uM)]. For notational
simplicity, sometimes in what follows we have dropped θ from dθ (u) so that it
becomes d(u).

REMARK 3.1. Since the function A(u,λ) and the spectral density f (u,λ)

of a locally stationary long-memory process are unbounded at zero frequency,
the techniques used next to prove the large sample properties of J (φ) and the
quasi-likelihood estimators are different from those used in the short-memory con-
text. For instance, the function A(u,λ) does not satisfy the key assumption A.1 of
Dahlhaus (1997) or the coefficients ψj(

t
T
) of (3) fail to meet conditions (2) and

(3) of Dahlhaus and Polonik (2009). Due to the unboundeness of f (u,λ) at the
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origin, our proofs exploit the properties of the Fourier transforms

f̂ (u, ·) =
∫ π

−π
f (u,λ)eiλ· dλ,

f̂ (u, v, ·) :=
∫ π

−π
A(u,λ)A(v,−λ)eiλ· dλ.

3.1. Propositions.

PROPOSITION 1. Let f (u,λ) be a time-varying spectral density satisfying as-
sumption A1 and assume that the function φ(u,λ) appearing in (14) is symmetric
in λ and twice differentiable with respect to u. Let f̂ (u, k) and φ̂(u, k) be their
Fourier coefficients, respectively. If there is a positive constant K such that

|f̂ (u, k)φ̂(u, k)| ≤ K

(
log k

k2

)
,

for all u ∈ [0,1] and k > 1, then, under assumptions A2 and A3 we have that

E[JT (φ)] = J (φ) + O
(

log2 N

N

)
+ O

(
1

M

)
.

PROOF. From definition (15), we can write

E[JT (φ)] = 1

M

M∑
j=1

∫ π

−π
φ(uj , λ)E[IN(uj , λ)]dλ

= 1

2πMH2,N (0)

M∑
j=1

∫ π

−π
φ(uj , λ)E|DN(uj , λ)|2 dλ

= 1

2πMH2,N (0)

M∑
j=1

∫ π

−π
φ(uj , λ)

N−1∑
t,s=0

h

(
t

N

)
h

(
s

N

)

× c(uj , t, s)e
iλ(s−t) dλ,

where

c(u, t, s) = E
(
Y[uT ]−N/2+t+1,T Y[uT ]−N/2+s+1,T

)
.

Thus,

E[JT (φ)] = 1

2πMH2,N (0)

×
M∑

j=1

N−1∑
t,s=0

h

(
t

N

)
h

(
s

N

)
c(uj , t, s)

∫ π

−π
φ(uj , λ)eiλ(s−t) dλ
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= 1

2πMH2,N (0)

M∑
j=1

N−1∑
t,s=0

h

(
t

N

)
h

(
s

N

)
c(uj , t, s)φ̂(uj , s − t)

= 1

2πMH2,N (0)

M∑
j=1

N−1∑
t=0

N−t∑
k=0

h

(
t

N

)
h

(
t

N
+ k

N

)
c(uj , t, t + k)

× φ̂(uj , k)(2 − δk),

where δk = 1 for k = 0 and δk = 0 for k �= 0. By assumption A2 and Taylor’s
theorem,

h

(
t

N
+ k

N

)
= h

(
t

N

)
+ h′(ξt,k,N )

k

N
,

for some ξt,k,N ∈ ( t
N

, t+k
N

), for k ≥ 0. Thus,

E[JT (φ)] = 1

2πMH2,N (0)

M∑
j=1

N−1∑
t=0

N−t∑
k=0

h2
(

t

N

)
c(uj , t, t + k)

× φ̂(uj , k)(2 − δk)
(17)

+ 1

2πMH2,N (0)

M∑
j=1

N−1∑
t=0

N−t∑
k=0

h

(
t

N

)
h′(ξt,k,N )c(uj , t, t + k)

× φ̂(uj , k)(2 − δk).

Under assumption A1, we can expand c(u, t, t + k) by Taylor’s theorem as

c(u, t, t + k)

= f̂ (u, k) + f̂ (u, k)ϕ1(u, k)

(
t + 1 − N/2

T

)
+ f̂ (u, k)ϕ2(u, k)

(
k

T

)
+ R(u, t, k,N,T ),

where

ϕ1(u, k) = C1(θ, u,u)

C(θ,u,u)
+ 2d ′(u) logk,

C1(θ, u,u) = ∂C(θ,u,u + v)

∂u

∣∣∣∣
v=0

,

ϕ2(u, k) = C2(θ, u,u)

C(θ,u,u)
+ d ′(u) log k,

C2(θ, u,u) = ∂C(θ,u,u + v)

∂v

∣∣∣∣
v=0

,
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d ′(u) = ∂dθ (u)
∂u

, C(θ,u, v) is defined in assumption A1 and the remainder term is
given by

R(u, t, k,N,T ) = O
{
f̂ (u, k)

[(
k

T

)2

+
(

t

T

)2]
log2 k

}
.

Thus, since by assumption A1 |d ′(u)| ≤ K for all u ∈ [0,1], we have |ϕj (u, k)| ≤
K log k for j = 1,2 and k > 1. Now we can write

N−t∑
k=0

c(uj , t, t + k)φ̂(uj , k)(2 − δk)

=
N−t∑
k=0

f̂ (uj , k)φ̂(uj , k)(2 − δk)

+
N−t∑
k=0

f̂ (uj , k)φ̂(uj , k)ϕ1(uj , k)(2 − δk)

(
t + 1 − N/2

T

)
(18)

+
N−t∑
k=0

f̂ (uj , k)φ̂(uj , k)ϕ2(j , k)(2 − δk)
k

T

+
N−t∑
k=0

R(uj , t, k,N,T )φ̂(uj , k)(2 − δk).

Since by assumption |f̂ (u, k)φ̂(u, k)| ≤ K log k/k2, for k > 1, uniformly in u ∈
[0,1], we conclude that there is a finite limit A(u) < ∞ such that

A(u) = lim
N→∞

N∑
k=0

f̂ (u, k)φ̂(u, k)(2 − δk).

Consequently,
N−1∑
t=0

h2
(

t

N

) N−t∑
k=0

f̂ (uj , k)φ̂(uj , k)(2 − δk)

=
N−1∑
t=0

h2
(

t

N

) N−1∑
k=0

f̂ (uj , k)φ̂(uj , k)(2 − δk)

−
N−1∑
t=0

h2
(

t

N

) N−1∑
k=N−t+1

f̂ (uj , k)φ̂(uj , k)(2 − δk)

=
N−1∑
t=0

h2
(

t

N

)[
A(uj ) −

∞∑
k=N

f̂ (uj , k)φ̂(uj , k)(2 − δk)

]

+ O(log2 N),
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by Lemma 7. Hence,
N−1∑
t=0

h2
(

t

N

) N−t∑
k=0

f̂ (uj , k)φ̂(uj , k)(2 − δk)

= A(uj )

N−1∑
t=0

h2
(

t

N

)
−

N−1∑
t=0

h2
(

t

N

) ∞∑
k=N

f̂ (uj , k)φ̂(uj , k)(2 − δk)

+ O(log2 N).

But, ∣∣∣∣∣
∞∑

k=N

f̂ (uj , k)φ̂(uj , k)(2 − δk)

∣∣∣∣∣ < K

∞∑
k=N

logk

k2 = O
(

logN

N

)
,

and consequently,∣∣∣∣∣
N−1∑
t=0

h2
(

t

N

) ∞∑
k=N

f̂ (uj , k)φ̂(uj , k)(2 − δk)

∣∣∣∣∣ = O(logN).

Therefore,
N−1∑
t=0

h2
(

t

N

) N−t∑
k=0

f̂ (uj , k)φ̂(uj , k)(2 − δk) = A(uj )

N−1∑
t=0

h2
(

t

N

)
+ O(log2 N).

On the other hand, by analyzing the term involving the second summand of (18)
we get
N−1∑
t=0

h2
(

t

N

) N−t∑
k=0

ϕ1(uj , k)f̂ (uj , k)φ̂(uj , k)(2 − δk)

(
t + 1 − N/2

T

)

=
N−1∑
t=0

h2
(

t

N

)[
N−1∑
k=0

ϕ1(uj , k)f̂ (uj , k)φ̂(uj , k)(2 − δk)

](
t + 1 − N/2

T

)

+
N−1∑
t=0

h2
(

t

N

) N−1∑
k=N−t+1

ϕ1(uj , k)φ̂(uj , k)f̂ (uj , k)

(
t + 1 − N/2

T

)

=
[

N−1∑
t=0

h2
(

t

N

)(
t + 1 − N/2

T

)][
N−1∑
k=0

ϕ1(uj , k)f̂ (uj , k)φ̂(uj , k)(2 − δk)

]

+ O
(

N log2 N

T

)
,

by Lemma 8. Now, since h(·) is symmetric around 1/2, we have
N−1∑
t=0

h2
(

t

N

)(
t + 1 − N/2

T

)
= O

(
1

T

)
.
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Besides, |∑N−1
k=0 ϕ1(uj , k)f̂ (uj , k)φ̂(uj , k)(2 − δk)| ≤ K

∑N
k=1

(logk)2

k2 < ∞. Con-
sequently,

N−1∑
t=0

h2
(

t

N

) N−t∑
k=0

ϕ1(uj , k)f̂ (uj , k)φ̂(uj , k)(2 − δk)

(
t + 1 − N/2

T

)

= O
(

N

T
log2 N

)
.

The third term of (18) can be bounded as follows:∣∣∣∣∣
N−t∑
k=0

ϕ2(uj , k)f̂ (uj , k)φ̂(uj , k)k

∣∣∣∣∣ ≤ K

N∑
k=1

logk

k
≤ K log2 N,

and then ∣∣∣∣∣
N−1∑
t=0

h2
(

t

N

) N−t∑
k=0

ϕ2(uj , k)f̂ (uj , k)φ̂(uj , k)
k

T

∣∣∣∣∣ ≤ K
N

T
log2 N.

The last term of (18) can be bounded as follows:∣∣∣∣∣
N−t∑
k=0

R(uj , t, k,N,T )φ̂(uj , k)(2 − δk)

∣∣∣∣∣ ≤ K log2 N

(
N

T

)2

,

and then∣∣∣∣∣
N−1∑
t=0

N−t∑
k=0

h2
(

t

N

)
R(uj , t, k,N,T )φ̂(uj , k)(2 − δk)

∣∣∣∣∣ ≤ K
N3

T 2 log2 N.

Note that by assumption A3, the term above converges to zero as N,T → ∞.
Therefore, the first term in (17) can be written as

1

2πMH2,N (0)

M∑
j=1

N−1∑
t,k=0

h2
(

t

N

)
c(uj , t, t + h)φ̂(uj , h)(2 − δk)

= 1

2πM

M∑
j=1

A(uj ) + O
(

log2 N

N

)
.

Now, by Lemma 1 we can write A(u) = 2π
∫ π
−π φ(u,ω)f (u,ω)dω, and then

1

2πM

M∑
j=1

A(uj ) = J (φ) + O
(

1

M

)
.(19)
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On the other hand, the second term in (17) can be bounded as follows:

|c(uj , t, t + k)φ̂(uj , k)(2 − δk)|

≤ K

{
f̂ (uj , k)φ̂(uj , k) + N

T
|f̂ (uj , k)φ̂(uj , k)ϕ1(uj , k)|

+ N

T
|f̂ (uj , k)φ̂(uj , k)ϕ2(uj , k)| + N2

T 2 log2 N |f̂ (uj , k)φ̂(uj , k)|
}
.

Since |ϕi(uj , k)| ≤ K log k for i = 1,2, j = 1, . . . ,M and k > 1, we conclude that

|c(uj , t, t + k)φ̂(uj , k)(2 − δk)| ≤ K
N

T

log k

k2 .

Therefore, since |h′(u)| ≤ K for u ∈ [0,1] by assumption A2, we have∣∣∣∣∣
N−t∑
k=0

c(uj , t, t + k)φ̂(uj , k)
k

N
h′(ξt,k,N )

∣∣∣∣∣ ≤ K

T

N∑
k=1

log k

k
≤ K

log2 N

T
.

Consequently,∣∣∣∣∣
N−1∑
t=0

h

(
t

N

) N−t∑
k=0

c(uj , t, t + k)φ̂(uj , k)(2 − δk)
k

N
h′(ξt,k,N )

∣∣∣∣∣ ≤ KN
log2 N

T
.

Hence, the second term of (17) is bounded by K(log2 N)/T . From this and (19),
the required result is obtained. �

PROPOSITION 2. Let f (u,λ) be a time-varying spectral density satisfying as-
sumption A1. Let φ1, φ2 : [0,1]×[−π,π ] → R be two functions such that φ1(u,λ)

and φ2(u,λ) are symmetric in λ, twice differentiable with respect to u and their
Fourier coefficients satisfy |φ̂1(u, k)|, |φ̂2(u, k)| ≤ K|k|−2d(u)−1 for u ∈ [0,1] and
|k| > 1. If assumptions A2 and A3 hold, then

lim
T →∞T cov[JT (φ1), JT (φ2)] = 4π

∫ 1

0

∫ π

−π
φ1(u,λ)φ2(u,λ)f (u,λ)2 dλdu.

PROOF. We can write

T cov[JT (φ1), JT (φ2)]

= T

M2

M∑
j,k=1

∫ π

−π

∫ π

−π
φ1(uj , λ)φ2(uk,μ)

× cov[IN(uj , λ), IN(uk,μ)]dλdμ.



2974 W. PALMA AND R. OLEA

But,

cov[IN(uj , λ), IN(uk,μ)]

= 1

[2πH2,N (0)]2 cov(|DN(uj , λ)|2,DN(uk,μ)|2)

= 1

[2πH2,N (0)]2

N−1∑
t,s,p,m=0

h

(
t

N

)
h

(
s

N

)
h

(
p

N

)
h

(
m

N

)

× eiλ(s−t)+iμ(m−p)

× cov
(
Y[ujT ]−N/2+s+1,T Y[ujT ]−N/2+t+1,T ,

Y[ukT ]−N/2+p+1,T Y[ukT ]−N/2+m+1,T

)
.

Now, an application of Theorem 2.3.2 of Brillinger (1981) yields

cov[IN(uj , λ), IN(uk,μ)]

= 1

[2πH2,N (0)]2

×
N−1∑

t,s,p,m=0

h

(
t

N

)
h

(
s

N

)
h

(
p

N

)
h

(
m

N

)
eiλ(s−t)+iμ(m−p)

× {
cov

(
Y[uj T ]−N/2+t+1,T , Y[ukT ]−N/2+m+1,T

)
× cov

(
Y[ujT ]−N/2+s+1,T , Y[ukT ]−N/2+p+1,T

)
+ cov

(
Y[ujT ]−N/2+t+1,T , Y[ukT ]−N/2+p+1,T

)
× cov

(
Y[ujT ]−N/2+s+1,T , Y[ukT ]−N/2+p+1,T

)}
= 1

[2πH2,N (0)]2

×
∫ π

−π

∫ π

−π
HN

(
A0

tj−N/2+1+·,T (x)h

( ·
N

)
, λ − x

)
× HN

(
A0

tk−N/2+1+·,T (x)h

( ·
N

)
, x − μ

)
× HN

(
A0

tj−N/2+1+·,T (y)h

( ·
N

)
,−y − λ

)
× HN

(
A0

tk−N/2+1+·,T (y)h

( ·
N

)
, y + μ

)
× eiλ(s−t)+iμ(m−p) dx dy



LOCALLY STATIONARY LONG-MEMORY PROCESSES 2975

+ 1

[2πH2,N (0)]2

∫ π

−π

∫ π

−π
HN

(
A0

tj−N/2+1+·,T (x)h

( ·
N

)
, λ − x

)

× HN

(
A0

tk−N/2+1+·,T (x)h

( ·
N

)
, x + μ

)
× HN

(
A0

tj−N/2+1+·,T (y)h

( ·
N

)
,−y − λ

)
× HN

(
A0

tk−N/2+1+·,T (y)h

( ·
N

)
, y − μ

)
× eiλ(s−t)+iμ(m−p) dx dy.

Thus,

T cov(JT (φ1), JT (φ2)) = T

[2πMH2,N (0)]2

[
B

(1)
N + B

(2)
N

]
,(20)

where

B
(1)
N =

M∑
j,k=1

∫
�

φ1(uj , λ)φ2(uk,μ)HN

(
A0

tj−N/2+1+·,T (x)h

( ·
N

)
, λ − x

)

× HN

(
A0

tk−N/2+1+·,T (x)h

( ·
N

)
, x − μ

)
HN

×
(
A0

tj−N/2+1+·,T (y)h

( ·
N

)
,−y − λ

)
× HN

(
A0

tk−N/2+1+·,T (y)h

( ·
N

)
, y + μ

)
× ei(x+y)(tj−tk) dx dy dμdλ,

with � = [−π,π]4, and

B
(2)
N =

M∑
j,k=1

∫
�

φ1(uj , λ)φ2(uk,μ)HN

(
A0

tj−N/2+1+·,T (x)h

( ·
N

)
, λ − x

)

× HN

(
A0

tk−N/2+1+·,T (x)h

( ·
N

)
, x + μ

)
× HN

(
A0

tj−N/2+1+·,T (y)h

( ·
N

)
,−y − λ

)
× HN

(
A0

tk−N/2+1+·,T (y)h

( ·
N

)
, y − μ

)
× ei(x+y)(tj−tk) dx dy dμdλ.
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The term B
(1)
N can be written as follows:

B
(1)
N =

M∑
j,k=1

∫
�

φ1(uj , λ)φ2(uk,μ)

× A(uj , x)A(uk,−x)A(uj , y)A(uk,−y)

× HN(λ − x)HN(x − μ)HN(μ + y)HN(−y − λ)

× ei(x+y)(tj−tk) dx dy dλdμ + RN

(21)

=
M∑

j,k=1

∫
�

φ1(uj , x)A(uj , x)A(uk,−x)φ2(uk, y)A(uj , y)

× A(uk,−y)HN(λ − x)HN(x − μ)HN(μ + y)

× HN(−y − λ)ei(x+y)(tj−tk) dx dy dλdμ

+ �
(1)
N + �

(2)
N + RN,

with

�
(1)
N =

M∑
j,k=1

∫
�

[φ1(uj , λ) − φ1(uj , x)]φ2(uk,μ)A(uj , x)A(uk,−x)A(uj , y)

× A(uk,−y)HN(λ − x)HN(x − μ)HN(μ + y)

× HN(−y − λ)ei(x+y)(tj−tk) dx dy dλdμ,

�
(2)
N =

M∑
j,k=1

∫
�

φ1(uj , x)[φ2(uk,μ) − φ2(uk, y)]A(uj , x)A(uk,−x)A(uj , y)

× A(uk,−y)HN(λ − x)HN(x − μ)HN(μ + y)

× HN(−y − λ)ei(x+y)(tj−tk) dx dy dλdμ,

and by Lemma 2 the remainder term RN can be bounded as follows:

|RN | ≤ N

T

∣∣∣∣∣
M∑

j,k=1

∫
�

φ1(uj , λ)φ2(uk,μ)A(uj , x)A(uk,−x)

× A(uj , y)y−d(uk)LN(y + μ)
(22)

× HN(λ − x)HN(x − μ)

× HN(−y − λ)ei(x+y)(tj−tk) dx dy dλdμ

∣∣∣∣∣.
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By integrating with respect to μ the term �
(1)
N can be written as

�
(1)
N =

M∑
j,k=1

N−1∑
t,s=0

h

(
t

N

)
h

(
s

N

)
φ̂2(uk, t − s)

×
∫ π

−π

∫ π

−π

∫ π

−π
[φ1(uj , λ) − φ1(uj , x)]A(uj , x)A(uk,−x)

× A(uj , y)A(uk,−y)HN(λ − x)HN(−y − λ)

× ei(x+y)(tj−tk)−ixt−iys dx dy dλ,

and by integrating with respect to y we get

�
(1)
N =

M∑
j,k=1

N−1∑
t,s,p=0

h

(
t

N

)
h

(
s

N

)
h

(
p

N

)
× φ̂2(uk, t − s)f̂ (uj , uk, tj − tk − s + p)

×
∫ π

−π

∫ π

−π
[φ1(uj , λ) − φ1(uj , x)]
× A(uj , x)A(uk,−x)HN(λ − x)

× eix(tj−tk−t)+iλp dx dλ

=
M∑

j,k=1

N−1∑
t,s,p=0

h

(
t

N

)
h

(
s

N

)
h

(
p

N

)
φ̂2(uk, t − s)

× f̂ (uj , uk, tj − tk − s + p)

× εN(uj , uk,p, tj − tk − t),

where f̂ (u, v, k) and εN(r) are given by f̂ (u, v, k) = ∫ π
−π A(u,λ)A(v,−λ)eiλk dλ,

and

εN(uj , uk,p, r)

=
N−1∑
m=0

h

(
m

N

)
φ̂1(uj ,p − m)

∫ π

−π
A(uj , x)A(uk,−x)eix(r+m) dx

− 2πh

(
p

m

)∫ π

−π
φ1(uj , x)A(uj , x)A(uk, x)eix(r+p) dx

=
∫ π

−π

∫ π

−π
φ1(uj , λ)A(uj , x)A(uk,−x)ei(pλ+rx)

N−1∑
m=0

h

(
m

N

)
eim(x−λ) dλdx

− 2π

∫ π

−π
h

(
m

N

)
φ1(uj , x)A(uj , x)A(uk,−x)ei(r+p)x dx.
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But h( m
M

) = h(
p
M

) + h′(ξp,m)
m−p

N
for some ξp,m ∈ [0,1]. Thus,

εN(uj , uk,p, r)

= h

(
p

N

){∫ π

−π

∫ π

−π
φ1(uj , λ)A(uj , x)A(uk,−x)ei(pλ+rx)

×
N−1∑
m=0

eim(x−λ) dλdx

− 2π

∫ π

−π
φ1(uj , x)A(uj , x)A(uk,−x)ei(r+p)x dx

}

+
N−1∑
m=0

h′(ξp,m)
m − p

N

∫ π

−π

∫ π

−π
φ1(uj , λ)A(uj , x)A(uk,−x)

× eim(x−λ)+i(pλ+rx) dλdx

= h

(
p

N

)
ε
(1)
N (uj , uk,p, r) + ε

(2)
N (uj , uk,p, r),

where the term ε
(1)
N (uj , uk,p, r) is given by

ε
(1)
N (uj , uk,p, r) =

∫ π

−π
g(ω)eirω

N−1∑
m=0

eimω dω − 2πg(0),

with g(ω) = ∫ π
−π φ1(uj , λ)A(uj ,ω + λ)A(uk,−ω − λ)ei(p+r)λ dλ. Observe that

by Lemma 1, for every uj ,uk,p, r , ε
(1)
N (uj , uk,p, r) → 0 as N → ∞, conse-

quently we can write

ε
(1)
N (uj , uk,p, r) =

∫ π

−π
g(ω)

∞∑
m=N

ei(m+r)ω dω

=
∞∑

m=N

φ̂1(uj ,p − m)f̂ (uj , uk, r + m).

On the other hand, by assumption A1, |f̂ (uj , uk, r +m)| ≤ K|r +m|d(uj )+d(uk)−1.

Thus, the term ε
(2)
N (uj , uk,p, r) is bounded by∣∣ε(2)

N (uj , uk,p, r)
∣∣

≤ K

N

N−1∑
m=0

|m − p|φ̂1(uj ,m − p)f̂ (uj , uk, r + m)

≤ K

N

N−1∑
m=0

|m − p|−2d(uj )|r + m|d(uj )+d(uk)−1
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≤ K

{
N−1∑
m=0

∣∣∣∣mN − p

N

∣∣∣∣∣∣∣∣ r

N
− m

N

∣∣∣∣d(uj )+d(uk)−1 1

N

}
Nd(uk)−d(uj )−1

≤ K

∫ 1

0

∣∣∣∣x − p

m

∣∣∣∣−2d(uj )∣∣∣∣ r

N
+ x

∣∣∣∣d(uj )+d(uk)−1

dxNd(uk)−d(uj )−1

≤ KNd(uk)−d(uj )−1
(

r

N

)d(uj )+d(uk)−1 ∫ 1

0

∣∣∣∣x − p

m

∣∣∣∣−2d(uj )

dx

≤ KN−2d(uj )rd(uj )+d(uk)−1,

where for notational simplicity we have dropped θ from dθ (·). Thus,

εN(uj , uk,p, r) = h

(
p

N

) ∞∑
m=N

φ̂1(uj ,p − m)f̂ (uj , uk, r + m)

+ O
(
N−2d(uj )rd(uj )+d(uk)−1)

.

Hence, �
(1)
N can be written as

�
(1)
N =

M∑
j,k=1

N−1∑
t,s,p=0

h

(
t

N

)
h

(
s

N

)
h

(
p

N

)
φ̂2(uk, t − s)f̂ (uj , uk, tj − tk)

×
{
h

(
p

N

) ∞∑
m=N+1

φ̂1(uj ,p − m)f̂ (uj , uk, tj − tk + m)

+ O
(
N−2d(uj )|tj − tk − t |d(uj )+d(uk)−1)}

:= �
(1.1)
N + �

(1.2)
N ,

say. Therefore, |�(1)
N | ≤ |�(1.1)

N |+|�(1.2)
N |. Observe that since φ2(u,λ) ∼ C|λ|2d(u)

as λ → 0 and d(u) > 0 for all u ∈ [0,1], we conclude that φ2(u,0) = ∑∞
k=−∞φ̂2(u,

k) = 0. Thus,

N−1∑
t,s=0

h

(
t

N

)
h

(
s

N

)
φ̂2(u, t − s)

=
N−1∑
t=0

N−1∑
k=1−N

h

(
t

N

)
h

(
t

N
+ k

N

)
φ̂2(u, k),

where for simplicity we assume that h(x) = 0 for x outside [0,1]. Now, by an
application of Taylor’s theorem we can write h( t

N
+ k

N
) = h( t

N
) + h′(ξ(t, k)) k

N
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for some ξ(t, k) ∈ ( t
N

− |k|
N

, t
N

+ |k|
N

). Hence,

N−1∑
t=0

N−1∑
k=1−N

h

(
t

N

)
h

(
t

N
+ k

N

)
φ̂2(u, k)

=
N−1∑
t=0

h

(
t

N

)2 N−1∑
k=1−N

φ̂2(u, k)

+
N−1∑
t=0

N−1∑
k=1−N

h

(
t

N

)
h′(ξ(t, k))φ̂2(u, k)

k

N
.

Note that
∑N−1

k=1−N φ̂2(u, k) = 2
∑∞

k=N φ̂2(u, k). Therefore, |∑N−1
k=1−Nφ̂2(u, k)| ≤

K
∑∞

k=N k−2d(u)−1 ≤ KN−2d(u). Consequently, |∑N−1
t=0 h( t

N
)2 ∑N−1

k=1−N φ̂2(u,

k)| ≤ KN1−2d(u). On the other hand, |∑N−1
t=0

∑N−1
k=1−N h( t

N
)h′(ξ(t, k))φ̂2(u, k) ×

k
N

| ≤ K
∑N

k=1 k−2d(u) ≤ KN1−2d(u). Hence,∣∣∣∣∣
N−1∑
t=0

N−1∑
k=1−N

h

(
t

N

)
h

(
t

N
+ k

N

)
φ̂2(u, k)

∣∣∣∣∣ ≤ KN1−2d(u).

Thus, we conclude that

∣∣�(1.1)
N

∣∣ ≤ K

M∑
j,k=1,j �=k

N−1∑
p=0

N1−2d(uk)|S(j − k) + p|d(uj )+d(uk)−1

×
∞∑

m=N+1

|p − m|−2d(uj )−1|S(j − k) + m|d(uj )+d(uk)−1

≤ K

M∑
j,k=1,j �=k

N−1∑
p=0

∣∣∣∣ S

N
(j − k) + p

N

∣∣∣∣d(uj )+d(uk)−1

× 1

N

∞∑
m=N+1

∣∣∣∣ p

N
− m

N

∣∣∣∣−2d(uj )−1

×
∣∣∣∣ S

N
(j − k) + m

N

∣∣∣∣d(uj )+d(uk)−1 1

N

≤ K

M∑
j,k=1,j �=k

∫ 1

0

∫ ∞
1

∣∣∣∣ S

N
(j − k) + x

∣∣∣∣d(uj )+d(uk)−1

|x − y|−2d(uj )−1

×
∣∣∣∣ S

N
(j − k) + y

∣∣∣∣d(uj )+d(uk)−1

dy dx.
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Let δ > 0 and define I1(δ) = {j, k = 1,M :k < j ∨ k − j > N
S
(1 + δ)} and I2(δ) =

{j, k = 1,M : 0 < k − j ≤ N
S
(1 + δ)}. Therefore, the sum above can be written as∑M

j,k=1,j �=k · = ∑
I1(δ)

· + ∑
I2(δ)

· := |�(1.1.1)
N | + |�(1.1.2)

N |, say. Observe that over

I1(δ) we have that | S
N

(j − k) + x|−α ≤ K| S
N

(j − k)|−α for α > 0. Hence,

∣∣�(1.1.1)
N

∣∣ ≤ K
∑
I1(δ)

∣∣∣∣ S

N
(j − k)

∣∣∣∣d(uj )+d(uk)−1

×
∫ 1

0

∫ ∞
1

|x − y|−2d(uj )−1

×
∣∣∣∣ S

N
(j − k) + y

∣∣∣∣d(uj )+d(uk)−1

dy dx

≤ K

M∑
j,k=1,j �=k

∣∣∣∣ S

N
(j − k)

∣∣∣∣d(uj )+d(uk)−1

×
∫ 1

0

∫ ∞
1

|x − y|−2d(uj )−1

×
∣∣∣∣ S

N
(j − k) + y

∣∣∣∣d(uj )+d(uk)−1

dy dx.

Since the integrands in the above expression are all positive, an application of
Tonelli’s theorem yields

∣∣�(1.1.1)
N

∣∣ ≤ K

M∑
j,k=1,j �=k

∣∣∣∣ S

N
(j − k)

∣∣∣∣d(uj )+d(uk)−1

×
∫ ∞

1

∫ 1

0
|x − y|−2d(uj )−1

×
∣∣∣∣ S

N
(j − k) + y

∣∣∣∣d(uj )+d(uk)−1

dx dy

≤ K

M∑
j,k=1,j �=k

∣∣∣∣ S

N
(j − k)

∣∣∣∣d(uj )+d(uk)−1

×
∫ ∞

1

[
(y − 1)−2d(uj ) − y−2d(uj )]

×
∣∣∣∣ S

N
(j − k) + y

∣∣∣∣d(uj )+d(uk)−1

dy.
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Then, by Lemma 3 we conclude that

∣∣�(1.1.1)
N

∣∣ ≤ K

M∑
j,k=1,j �=k

∣∣∣∣ S

N
(j − k)

∣∣∣∣2d(uj )+2d(uk)−2

≤ K

[
M∑

j,k=1,j �=k

d(uj )+d(uk)≤1/2

∣∣∣∣ S

N
(j − k)

∣∣∣∣2d(uj )+2d(uk)−2

+
M∑

j,k=1,j �=k

d(uj )+d(uk)>1/2

∣∣∣∣ S

N
(j − k)

∣∣∣∣2d(uj )+2d(uk)−2
]
.

For the first summand above, we have the upper bound

M∑
j,k=1,j �=k

|j − k|−1
(

N

S

)2

≤ K

(
N

S

)2

M logM,

while the second summand can be bounded as follows:

M∑
j,k=1,j �=k

d(uj )+d(uk)>1/2

∣∣∣∣SM

N

(
j

M
− k

M

)∣∣∣∣2d(uj )+2d(uk)−2

≤ K

(
T

N

)−ε M∑
j,k=1

∣∣∣∣ j

M
− k

M

∣∣∣∣ε−1

≤ K

(
T

N

)−ε

M2
∫ 1

0

∫ 1

0
|x − y|ε−1 dx dy

≤ K

(
T

N

)−ε

M2 ≤ KM2.

Thus,

∣∣�(1.1.1)
N

∣∣ ≤ K

(
N

S

)2

M logM + M2.(23)

On the other hand, if z = S
N

(k − j) then 0 < z ≤ 1 + δ for j, k ∈ I2(δ). Thus, an
application of Lemma 9 yields for 2 > δ > 0

∣∣�(1.1.2)
N

∣∣ ≤ K
∑
I2(δ)

∣∣∣∣1 − S

N
(k − j)

∣∣∣∣2d−1

,
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where d := inf0≤u≤1 d(u) > 0. Hence, by defining p = k − j and P = N/S we
can write

∣∣�(1.1.2)
N

∣∣ ≤ KM

P(1+δ)∑
p=1

∣∣∣∣1 − p

P

∣∣∣∣2d−1

≤ KM
N

S

∫ 1+δ

0
|1 − x|2d−1 dx ≤ KM

N

S
.

Note that from assumption A3, N/S → ∞. Thus, by combining the above bound
and (23) we conclude that

∣∣�(1.1)
N

∣∣ ≤ K

(
N

S

)2

M logM + M2.(24)

A similar bound can be found for |�(1.2)
N | and consequently for |�(1)

N |. Further-

more, an analogous argument yields a similar bound for the term |�(2)
N | appearing

in (21). Now, we focus on obtaining an upper bound for the remaining term RN

from (22). By integrating that expression with respect to λ we get

|RN | ≤ N

T

∣∣∣∣∣
M∑

j,k=1

N−1∑
t,s=0

h

(
t

N

)
h

(
s

N

)
φ̂1(uj , s − t)

×
∫
�

φ2(uk,μ)A(uj , x)A(uk,−x)

× A(uj , y)y−d(uk)LN(y + μ)H(x − μ)

× eix(tj−tk+t)+iy(tj−tk+s) dx dy dμ

∣∣∣∣∣,
where the function LN(·) is defined as

LN(x) =
{

N, |x| ≤ 1/N ,
1/|x|, 1/N < |x| ≤ π .

Hence,

|RN | ≤ N

T

∣∣∣∣∣
M∑

j,k=1

N−1∑
t,s,p=0

h

(
t

N

)
h

(
s

N

)
h

(
p

N

)
× φ̂1(uj , s − t)f̂ (uj , uk, tj − tk + t − p)

×
∫ π

−π

∫ π

−π
φ2(uk,μ)A(uj , y)y−d(uk)

× LN(μ + y)eiy(tj−tk+s)+ipμ dy dμ

∣∣∣∣∣
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≤ K
N

T

M∑
j,k=1

N−1∑
t,s,p=0

|φ̂1(uj , s − t)||f̂ (uj , uk, tj − tk + t − p)|

×
∣∣∣∣∫ π

−π

∫ π

−π
φ2(uk,μ)A(uj , y)y−d(uk)

× LN(μ + y)eiy(tj−tk+s)+ipμ dy dμ

∣∣∣∣
≤ K

N

T

M∑
j,k=1

N−1∑
t,s,p=0

|φ̂1(uj , s − t)||f̂ (uj , uk, tj − tk + t − p)|

×
∣∣∣∣∫ π

−π

∫ π

−π
LN(μ + y)y−d(uj )−d(uk) dy dμ

∣∣∣∣
≤ K

N logN

T

M∑
j,k=1

N−1∑
t,s,p=0,t �=s

|s − t |−2d(uj )−1

× |S(j − k) + t − p|d(uj )+d(uk)−1

≤ K
N2 logN

T

M∑
j,k=1

N−1∑
t,s,p=0,t �=s

|s − t |−2d(uj )−1Sd(uj )+d(uk)−1

× |j − k|d(uj )+d(uk)−1

≤ K
N3 logN

T
M2

M∑
j,k=1

(SM)d(uj )+d(uk)−1
∣∣∣∣ j

M
− k

M

∣∣∣∣d(uj )+d(uk)−1 1

M2 .

Since by assumption A3, T/N2 → 0, we conclude that

|RN | ≤ K
N3M2

T 2−d

∫ π

−π

∫ π

−π
|x − y|2d−1 dx dy ≤ KN3M2T d−2.(25)

Thus, from (24) and (25), we conclude

T B
(1)
N

[2πMH2,N (0)]2

= T

[2πMH2,N (0)]2

×
M∑

j,k=1

∫
�

φ1(uj , x)A(uj , x)A(uk,−x)φ2(uk, y)

× A(uj , y)A(uk,−y)HN(λ − x)HN(x − μ)HN(μ + y)

× HN(−y − λ)ei(x+y)(tj−tk) dx dy dλdμ + CN,



LOCALLY STATIONARY LONG-MEMORY PROCESSES 2985

where

CN = O
(

logM

S
+ T

N2 + NT d−1
)
.(26)

Therefore, by assumption A3 we conclude that CN = o(1). By following succes-
sive decompositions as in (21), we replace φ2(uk, y) by φ2(uk, x), A(uk,−y) by
A(uk,−x) and A(uj , y) by A(uj , x), respectively. Thus,

T B
(1)
N

[2πMH2,N (0)]2 = T

[2πMH2,N (0)]2

×
M∑

j,k=1

∫
�

φ1(uj , x)A(uj , x)A(uk,−x)φ2(uk, x)A(uj , x)

× A(uk,−x)HN(λ − x)HN(x − μ)HN(μ + y)

× HN(−y − λ)ei(x+y)(tj−tk) dx dy dλdμ + o(1).

By integrating with respect to μ and λ, we get

T B
(1)
N

[2πMH2,N (0)]2

= T

[MH2,N (0)]2

M∑
j,k=1

∫ π

−π

∫ π

−π
φ1(uj , x)A(uj , x)

× A(uk,−x)φ2(uk, x)A(uj , x)A(uk,−x)

× |H2,N (x + y)|2ei(x+y)(tj−tk) dx dy + o(1)

= T

[MH2,N (0)]2

M∑
j,k=1

∫ π

−π

∫ π

−π
[φ1(uj , x)f (uj , x)][φ2(uk, x)f (uk, x)]

× |H2N(x + y)|2ei(x+y)[s(j−k)] dx dy + o(1)

= T

[MH2,N (0)]2

M∑
j,k=1

∫ π

−π

∫ π

−π
[φ1(uj , x)f (uj , x)][φ2(uk, x)f (uk, x)]

× |H2N(z)|2eiz[s(j−k)] dx dz + o(1)

= T

[MH2,N (0)]2

×
M∑

j,k=1

∫ π

−π
[φ1(uj , x)f (uj , x)][φ2(uk, x)f (uk, x)]

×
N−1∑
s,t=0

h2
(

t

N

)
h2

(
s

N

)∫ π

−π
eiz[s(j−k)+t−s] dx dz + o(1)
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= 2πT

[MH2,N (0)]2

N−1∑
s,t=0

M∑
j,k=1

S(j−k)=s−t

h2
(

t

N

)
h2

(
s

N

)

×
∫ π

−π
[φ1(uj , x)f (uj , x)]
× [φ2(uk, x)f (uk, x)]dx + o(1).

By assumption A3, for S < N we can write

T

[2πMH2,N (0)]2 B
(1)
N

= 2πT

[MH2,N (0)]2

×
N−1∑
t=0

(N−t)/S∑
p=−t/S

h2
(

t

N

)
h2

(
t

N
+ pS

N

)

×
M−|p|∑
j=1

∫ π

−π
[φ1(uj , x)f (uj , x)]

× [φ1(uj+p, x)f (uj+p, x)]dx + o(1).

Observe that by the assumptions of this proposition the products φ1(u, x)f (u, x)

and φ2(u, x)f (u, x) are differentiable with respect to u. Furthermore, note that by
assumption A3, limT ,S→∞ S|p|

T
= 0 for any |p| ≤ N

S
. Consequently,

S

T

M−|p|∑
j=1

∫ π

−π
[φ1(uj , x)f (uj , x)][φ2(uj+p, x)f (uj+p, x)]dx

→
∫ 1

0

∫ π

−π
φ1(u, x)φ2(u, x)f (u, x)2 dx du,

for any |p| < N
S

as M,N,S,T → ∞. On the other hand,

2πT 2N2

S2[MH2,N (0)]2

N−1∑
t=0

(N−t)/S∑
p=−t/S

h2
(

t

N

)
h2

(
t

N
+ pS

N

)
S

N2

→ 2π

∫ 1

0

∫ 1−x

−x
h2(x)h2(x + y)dx dy

(∫ 1

0
h2(x) dx

)−2

= 2π,

as M,N,S,T → ∞. Therefore, in this case

T

[2πMH2,N (0)]2 B
(1)
N → 2π

∫ 1

0

∫ π

−π
φ1(u, x)φ2(u, x)f (u, x)2 dx du,
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as M,N,S,T → ∞. Similarly, we have that

T

[2πMH2,N (0)]2 B
(2)
N → 2π

∫ 1

0

∫ π

−π
φ1(u, x)φ2(u, x)f (u, x)2 dx du,

as M,N,S,T → ∞. Therefore, by virtue of (20) this proposition is proved. �

PROPOSITION 3. Let cump(·) be the pth order cumulant with p ≥ 3. Then,
T p/2 cump(JT (φ)) → 0, as T → ∞.

PROOF. Observe that JT (φ) can be written as

JT (φ) = 1

2πMH2,N (0)
Y ′Q(φ)Y,

where the block-diagonal matrix Q(φ) is defined in (16) and Y ∈ R
NM is a

Gaussian random vector defined by Y = (Y (u1)
′, . . . , Y (uM)′)′, Y(u) = (Y1(u),

. . . , YN(u)), Yt (u) = h( t
N

)Y[uT ]−N/2+t+1,T with Y[uT ]−N/2+t+1,T satisfying (1).
For simplicity, denote the matrix Q(φ) as Q. Since Y is Gaussian,

cump[JT (φ)] = 2p−1(p − 1)!
(2πMH2,N (0))p

tr(RQ)p,

where R = Var(Y ). Let |A| = [tr(AA′)]1/2 be the Euclidean norm of matrix A and
let ‖A‖ = sup‖x‖=1(Ax)′Ax be the spectral norm of A. Now, since | tr(QB)| ≤
|Q||B| and |QB| ≤ ‖Q‖|B| we get |tr(RQ)p| ≤ ‖RQ‖p−2|RQ|2.

On the other hand, for fixed λ, decompose the function φ(·, λ) as φ(·, λ) =
φ+(·, λ)−φ−(·, λ) where φ+(·, λ),φ−(·, λ) ≥ 0. Thus, we can write Q = Q(φ) =
Q(φ+−φ−) = Q(φ+)−Q(φ−) := Q+−Q−, say. Now, by Lemma 6 we conclude
that

‖RQ‖ = ‖RQ+ − RQ−‖ ≤ ‖RQ+‖ + ‖RQ−‖ ≤ K(MN1−2dT 2d−1),

and by Proposition 2 we have that |RQ|2 ≤ K M2N2

T
. Thus,

|tr(RQ)p| ≤ K(MN1−2dT 2d−1)
M2N2

T
.

Consequently,

|T p/2 cump[JT (φ)]| ≤ KM1−p/2
(

N

T

)(1−2d)(p−2)(√
T

N

)p−2

.

Since p ≥ 3 and by assumption A2, N/T → 0 and
√

T /N → 0 as T ,N → ∞,
the required result is obtained. �
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3.2. Proof of theorems.

PROOF OF THEOREM 2.1. To prove the consistency of the Whittle estimator,
it suffices to show that

sup
θ

|LT (θ) − L(θ)| → 0,

in probability, as T → ∞, where L(θ) := 1
4π

∫ 1
0

∫ π
−π [logfθ (u,λ)+ fθ0 (u,λ)

fθ (u,λ)
]dλdu.

Define gθ (u,λ) = fθ (u,λ)−1. By assumption A1, gθ (u,λ) is continuous in θ , λ

and u. Thus, gθ can be approximated by the Cesaro sum of its Fourier series

g
(L)
θ (u,λ) = 1

4π2

L∑
�=−L

L∑
m=−L

(
1 − |�|

L

)(
1 − |m|

L

)
× ĝθ (�,m) exp(−i2πuj� − iλm),

such that supθ |gθ (u,λ) − g
(L)
θ (u,λ)| < ε; see, for example, Theorem 1.5(ii) of

Körner (1988). Following Theorem 3.2 of Dahlhaus (1997), we can write

sup
θ

|LT (θ) − L(θ)|

≤ O
(

1

M

)
+ ε

4π

1

M

M∑
j=1

∫ π

−π
[IN(uj , λ) + f (uj , λ)]dλ

+ 1

16π3

L∑
�=−L

L∑
m=−L

(
1 − |�|

L

)(
1 − |m|

L

)
sup
θ

|ĝθ (�,m)|

×
∣∣∣∣∣ 1

M

M∑
j=1

∫ π

−π
exp(−i2πuj� − iλm)

× {IN(uj , λ) − f (uj , λ)}dλ

∣∣∣∣∣,
where

ĝθ (�,m) =
∫ 1

0

∫ π

−π
gθ (u,λ) exp(i2πu� + iλm)dudλ.

Consequently, |ĝθ (�,m)| ≤ 2π sup(θ,u,λ) |gθ (u,λ)|. However, by assumption A1,
|gθ (u,λ)| is continuous in θ , u and λ. Thus, since the parameter space is
compact we have that |ĝθ (�,m)| ≤ K , for some positive constant K . Now, by
defining for fixed �,m = 1, . . . ,L, φ(u,λ) = cos(2πu�) cos(λm) or φ(u,λ) =
sin(2πu�) cos(λm) in Proposition 1 and φ1(u,λ) = φ2(u,λ) = cos(2πu�) cos(λ×
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m) or φ1(u,λ) = φ2(u,λ) = sin(2πu�) cos(λm) in Proposition 2, we deduce that

1

16π3

L∑
�=−L

L∑
m=−L

(
1 − |�|

L

)(
1 − |m|

L

)
sup
θ

|ĝθ (�,m)|

×
∣∣∣∣∣ 1

M

M∑
j=1

∫ π

−π
exp(−i2πuj� − iλm)

× [IN(uj , λ) − f (uj , λ)]dλ

∣∣∣∣∣
≤ 1

16π3

L∑
�=−L

L∑
m=−L

(
1 − |�|

L

)(
1 − |m|

L

)
sup
θ

|ĝθ (�,m)|
(27)

×
{∣∣∣∣∣ 1

M

M∑
j=1

∫ π

−π
cos(2πuj�) cos(λm)

× [IN(uj , λ) − f (uj , λ)]dλ

∣∣∣∣∣
+

∣∣∣∣∣ 1

M

M∑
j=1

∫ π

−π
sin(2πuj�) cos(λm)

× [IN(uj , λ) − f (uj , λ)]dλ

∣∣∣∣∣
}

→ 0

and

1

M

M∑
j=1

∫ π

−π
{IN(uj , λ) + f (uj , λ)}dλ → 2

∫ 1

0

∫ π

−π
f (u,λ) dλdu,(28)

in probability, as M → ∞. Now, from the limits (27) and (28), this theorem fol-
lows. �

PROOF OF THEOREM 2.2. Let θ̂T be the parameter value that minimizes the
Whittle log-likelihood function LT (θ) given by (7) and let θ0 be the true value
of the parameter. By the mean value theorem, there exists a vector θ̄T satisfying
‖θ̄T − θ0‖ ≤ ‖θ̂T − θ0‖, such that

∇LT (θ̂T ) − ∇LT (θ0) = [∇2LT (θ̄T )](θ̂T − θ0).(29)

Therefore, it suffices to show that (a) ∇2LT (θ0) → �(θ0), as T → ∞; (b)
∇2LT (θ̄T ) − ∇2LT (θ0) → 0 in probability, as T → ∞; and (c)

√
T ∇LT (θ0) →
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N [0,�(θ0)], in distribution, as T → ∞. To this end, observe that

∇2LT (θ) = 1

4π

1

M

M∑
j=1

∫ π

−π
[IN(uj , λ) − fθ (uj , λ)]∇2fθ (uj , λ)−1

− ∇fθ(uj , λ)[∇fθ(uj , λ)−1]′ dλ

= 1

4π

1

M

{
M∑

j=1

∫ π

−π
φ(uj , λ)[IN(uj , λ) − fθ(uj , λ)]

+
M∑

j=1

∫ π

−π
∇ logfθ (uj , λ)[∇ logfθ (uj , λ)]′ dλ

}

= 1

4π
[JT (φ) − J (φ)] + �(θ) + O

(
1

M

)
,

where φ(u,λ) = ∇2fθ (u,λ)−1. Hence, an application of Proposition 1 and Propo-
sition 2 yields parts (a) and (b). On the other hand, part (c) can be proved by means
of the cumulant method. That is, by showing that all the cumulants of

√
T ∇LT (θ0)

converge to zero, excepting the second order cumulant. To this end, note that

∇LT (θ0) = 1

4π

1

M

M∑
j=1

∫ π

−π
[IN(uj , λ) − fθ0(uj , λ)]∇fθ0(uj , λ)−1 dλ

= 1

4π
JT (φ) − 1

4π

M∑
j=1

∫ π

−π
fθ0(uj , λ)∇fθ0(uj , λ)−1 dλ(30)

= 1

4π
[JT (φ) − J (φ)] + O

(
1

M

)
,

where φ(u,λ) = ∇fθ0(u,λ)−1. Hence, by Proposition 1 and assumption A3, the
first-order cumulant of

√
T ∇LT (θ0) satisfies

√
T E[∇LT (θ0)] = O

(√
T log2 N

N

)
+ O

(√
T

M

)
(31)

→ 0,

as T → ∞. Furthermore, by (30) we have that the second-order cumulant of√
T ∇LT (θ0) can be written as

T cov[∇LT (θ0),∇LT (θ0)] = 1

16π2 T cov[JT (φ), JT (φ)].
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Therefore, by Proposition 2 we have that

lim
T →∞T cov[∇LT (θ0),∇LT (θ0)]

= 1

4π

∫ 1

0

∫ π

−π
∇fθ0(u,λ)−1[∇fθ0(u,λ)−1]′fθ0(u,λ)2 dλdu

= 1

4π

∫ 1

0

∫ π

−π
∇ logfθ0(u,λ)[∇ logfθ0(u,λ)]′ dλdu = �(θ0).

Finally, for p > 2, Proposition 3 gives T p/2 cump[∇LT (θ0)] → 0, as T → ∞,
proving part (c). �

PROOF OF THEOREM 2.3. By observing that the Fisher information matrix
evaluated at the true parameter, �T (θ0), is given by

�T (θ0) = T cov[∇LT (θ0),∇LT (θ0)],
the result is an immediate consequence of Proposition 2. �

PROOF OF THEOREM 2.4. Let V (T ) = [V (T )
ij ]i,j=1,...,p = Var(β̂), then

∫ 1

0
Var[d̂(u)]du =

∫ 1

0

p∑
i=1

p∑
j=1

gi(u)V
(T )
ij gj (u) du

=
p∑

i=1

p∑
j=1

V
(T )
ij

∫ 1

0
gi(u)gj (u) du

=
p∑

i=1

p∑
j=1

V
(T )
ij bij ,

where bij = ∫ 1
0 gi(u)gj (u) du = bji . Therefore, by Theorem 2.2

lim
T →∞T

∫ 1

0
Var[d̂(u)]du =

p∑
i=1

p∑
j=1

lim
T →∞

[
T V

(T )
ij

]
bij =

p∑
i=1

p∑
j=1

aij bij ,

where A = (aij )i,j=1,...,p = �−1 and

�ij = 1

4π

∫ 1

0

∫ π

−π

∂

∂βi

logf (u,λ)
∂

∂βj

logf (u,λ) dλdu.

But, logf (u,λ) = log(σ 2) − log(2π) − dβ(u) log|1 − eiλ|2. Thus,

∂

∂βi

logf (u,λ) = −gi(u) log|1 − eiλ|2.
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Hence, �ij = ∫ 1
0 gi(u)gj (u) du × 1

4π

∫ π
−π(log |1 − eiλ|2)2 dλ = π2

6 bij . Therefore,

� = π2

6 B and A = 6
π2 B−1. Consequently, since A and B are symmetric matrices

limT →∞ T
∫ 1

0 Var[d̂(u)]du = tr(AB) = 6
π2 tr(Ip) = 6p

π2 . �

4. Simulations. In order to gain some insight into the finite sample perfor-
mance of the Whittle estimator discussed in Section 2, we report next a number of
Monte Carlo experiments for the LSARFIMA model

Yt,T = σ(t/T )(1 − ϑB)(1 − B)−d(t/T )εt ,

for t = 1, . . . , T with d(u) = α0 +α1u, σ(u) = β0 +β1u and Gaussian white noise
{εt } with unit variance. The samples of this LSARFIMA process are generated by
means of the innovation algorithm; see, for example, Brockwell and Davis (1991),
page 172. In this implementation, the covariances of the process {Yt,T } is given by

E[Ys,T Yt,T ] = σ

(
s

T

)
σ

(
t

T

)
�[1 − d(s/T ) − d(t/T )]�[s − t + d(s/T )]

�[1 − d(s/T )]�[d(s/T )]�[s − t + 1 − d(t/T )]
×

[
1 + ϑ2 − ϑ

s − t − d(t/T )

s − t − 1 + d(s/T )
− ϑ

s − t + d(s/T )

s − t + 1 − d(t/T )

]
,

for s, t = 1, . . . , T , s ≥ t . Let θ = (α0, α1, β0, β1, ϑ)′ be the parameter vector. The
Whittle estimates in these Monte Carlo simulations have been computed by using
the cosine bell data taper (9). Figure 1 displays the contour curves for the empir-
ical mean squared error (MSE) for the Whittle estimator θ̂ defined in this case as
the average of ‖θ̂ − θ‖2 over 100 replications of θ̂ , where θ is the true value of
the parameter. These contour curves correspond to θ = (0.20,0.25,0.5,0.3,0.5),
for sample sizes T = 512 and T = 1024, respectively. In these graphs, the darkest
regions represent the minimal empirical MSE while clear regions indicate greater
MSE values. Note that for the case T = 512, shown in the left panel, the minimal
empirical MSE region is located around N ≈ 105 and S ≈ 35. For the sample size
T = 1024, displayed on the right panel, the minimal empirical MSE is reached
close to N ≈ 200 y S ≈ 45. As noted in these graphs, there is a degree of flexibil-
ity for selecting N and S as long they belong to the areas with minimal empirical
MSE. Contour curves for other parameters θ such as those presented in Tables 1
and 2 are similar to Figure 1 and produce similar empirical optimal regions for N

and S. Tables 1 and 2 report the results from the Monte Carlo simulations for sev-
eral parameter values, based on 1000 replications. These tables show the average
of the estimates as well as their theoretical and empirical standard deviations (SD).
The theoretical SD are based on Theorem 2.2 with matrix �θ given by

�θ =
⎛⎝ �α 0 γαϑ

0 �β 0
γ ′
αϑ 0 γϑ

⎞⎠ ,
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FIG. 1. Contour curves of the empirical MSE of Whittle estimator. Left: sample size T = 512.
Right: sample size T = 1024.

TABLE 1
Whittle estimation: sample size T = 512, block size N = 105 and shift S = 35

Parameters Estimates

Case α0 α1 β0 β1 ϑ α̂0 α̂1
̂β0

̂β1 ̂ϑ

1 0.15 0.20 0.5 0.3 0.5 0.130 0.177 0.497 0.299 0.473
2 0.15 0.20 0.8 −0.2 0.5 0.124 0.167 0.795 −0.201 0.463
3 0.20 0.25 0.5 0.3 0.5 0.161 0.219 0.497 0.301 0.455
4 0.20 0.25 0.8 −0.2 0.5 0.163 0.218 0.797 −0.201 0.453
5 0.30 −0.20 0.5 0.3 0.5 0.291 −0.183 0.498 0.299 0.506
6 0.30 −0.20 0.8 −0.2 0.5 0.287 −0.183 0.797 −0.203 0.501
7 0.15 0.20 0.5 0.3 −0.4 0.138 0.189 0.496 0.301 −0.407
8 0.15 0.20 0.8 −0.2 −0.4 0.138 0.190 0.799 −0.206 −0.410
9 0.20 0.25 0.5 0.3 −0.4 0.195 0.228 0.498 0.299 −0.409

10 0.20 0.25 0.8 −0.2 −0.4 0.193 0.229 0.795 −0.197 −0.412
11 0.30 −0.20 0.5 0.3 −0.4 0.286 −0.197 0.498 0.298 −0.404
12 0.30 −0.20 0.8 −0.2 −0.4 0.279 −0.180 0.796 −0.203 −0.404

Theoretical SD Estimated SD

Case σ(α̂0) σ (α̂1) σ (̂β0) σ (̂β1) σ (̂ϑ) σ̂ (α̂0) σ̂ (α̂1) σ̂ (̂β0) σ̂ (̂β1) σ̂ (̂ϑ)

1 0.115 0.119 0.035 0.069 0.109 0.117 0.146 0.045 0.089 0.106
2 0.115 0.119 0.047 0.075 0.109 0.115 0.146 0.057 0.100 0.103
3 0.115 0.119 0.035 0.069 0.109 0.107 0.132 0.043 0.091 0.096
4 0.115 0.119 0.047 0.075 0.109 0.110 0.131 0.056 0.098 0.102
5 0.115 0.119 0.035 0.069 0.109 0.131 0.140 0.043 0.090 0.108
6 0.115 0.119 0.047 0.075 0.109 0.125 0.140 0.057 0.099 0.107
7 0.074 0.119 0.035 0.069 0.051 0.089 0.155 0.045 0.091 0.058
8 0.074 0.119 0.047 0.075 0.051 0.088 0.150 0.054 0.096 0.053
9 0.074 0.119 0.035 0.069 0.051 0.090 0.142 0.044 0.091 0.053

10 0.074 0.119 0.047 0.075 0.051 0.088 0.142 0.057 0.099 0.054
11 0.074 0.119 0.035 0.069 0.051 0.089 0.140 0.046 0.093 0.055
12 0.074 0.119 0.047 0.075 0.051 0.093 0.146 0.057 0.099 0.056
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TABLE 2
Whittle estimation: sample size T = 1024, block size N = 200 and shift S = 45

Parameters Estimates

Case α0 α1 β0 β1 ϑ α̂0 α̂1
̂β0

̂β1 ̂ϑ

1 0.15 0.20 0.5 0.3 0.5 0.127 0.193 0.498 0.301 0.475
2 0.15 0.20 0.8 −0.2 0.5 0.131 0.195 0.796 −0.198 0.479
3 0.20 0.25 0.5 0.3 0.5 0.179 0.239 0.497 0.304 0.473
4 0.20 0.25 0.8 −0.2 0.5 0.176 0.241 0.798 −0.199 0.475
5 0.30 −0.20 0.5 0.3 0.5 0.286 −0.189 0.500 0.298 0.493
6 0.30 −0.20 0.8 −0.2 0.5 0.286 −0.197 0.799 −0.202 0.488
7 0.15 0.20 0.5 0.3 −0.4 0.143 0.198 0.498 0.302 −0.404
8 0.15 0.20 0.8 −0.2 −0.4 0.144 0.197 0.797 −0.197 −0.404
9 0.20 0.25 0.5 0.3 −0.4 0.195 0.245 0.500 0.300 −0.405

10 0.20 0.25 0.8 −0.2 −0.4 0.197 0.243 0.797 −0.199 −0.405
11 0.30 −0.20 0.5 0.3 −0.4 0.293 −0.197 0.500 0.299 −0.402
12 0.30 −0.20 0.8 −0.2 −0.4 0.293 −0.200 0.797 −0.199 −0.403

Theoretical SD Estimated SD

Case σ(α̂0) σ (α̂1) σ (̂β0) σ (̂β1) σ (̂ϑ) σ̂ (α̂0) σ̂ (α̂1) σ̂ (̂β0) σ̂ (̂β1) σ̂ (̂ϑ)

1 0.081 0.084 0.025 0.049 0.077 0.089 0.106 0.032 0.064 0.081
2 0.081 0.084 0.033 0.053 0.077 0.097 0.106 0.040 0.069 0.085
3 0.081 0.084 0.025 0.049 0.077 0.093 0.097 0.031 0.062 0.078
4 0.081 0.084 0.033 0.053 0.077 0.090 0.095 0.038 0.067 0.073
5 0.081 0.084 0.025 0.049 0.077 0.107 0.103 0.030 0.061 0.091
6 0.081 0.084 0.033 0.053 0.077 0.101 0.104 0.040 0.068 0.079
7 0.052 0.084 0.025 0.049 0.036 0.066 0.110 0.031 0.061 0.039
8 0.052 0.084 0.033 0.053 0.036 0.065 0.113 0.039 0.066 0.040
9 0.052 0.084 0.025 0.049 0.036 0.066 0.100 0.030 0.060 0.040

10 0.052 0.084 0.033 0.053 0.036 0.058 0.087 0.040 0.068 0.037
11 0.052 0.084 0.025 0.049 0.036 0.066 0.103 0.029 0.060 0.039
12 0.052 0.084 0.033 0.053 0.036 0.064 0.101 0.039 0.068 0.039

where γαϑ = [ log(1−ϑ)
ϑ

,
log(1−ϑ)

2ϑ
]′, γϑ = 1

1−ϑ2 , and the matrices �α and �β are
given in Example 2.3. The bandwidth parameters N and S for each table are
based on values found in Figure 1 for θ = (0.20,0.25,0.5,0.3,0.5). As mentioned
above, these values are very similar for the other parameters reported in Tables 1
and 2. Observe from these tables that the estimated parameters are close to their
true values. Besides, the empirical standard deviations are close to their theoreti-
cal counterparts. These simulations suggest that the finite sample performance of
the proposed estimators seems to be very good in terms of bias and standard de-
viations. This, despite the fact that in many of these simulations we have tested
the method with large values of the long-memory parameter, that is, close to 1

2 .
In Table 1, for example, for the combination α0 = 0.20, α1 = 0.25, the maximum
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value of d(u) is 0.45. Additional Monte Carlo experiments with other model spec-
ifications are reported in Palma and Olea (2010). Those simulations explore the
empirical optimal selection of N and S and the finite sample performance of the
Whittle estimators. Note, however, that further research is needed to establish op-
timal selection of N and S from a theoretical perspective. A comparison of the
performances of the Whittle method with a kernel maximum likelihood estimation
approach proposed by Beran (2009) and two data illustrations are also discussed
in that paper.

5. Final remarks. A class of locally stationary long-memory processes has
been addressed in this paper, which is capable of modeling nonstationary time
series data exhibiting time-varying long-range dependence. A computationally ef-
ficient Whittle estimation method has been proposed and it has been shown that
these estimators possess very desirable asymptotic properties such as consistency,
normality and efficiency. Moreover, several Monte Carlo simulations indicate that
the estimates perform well even for relatively small sample sizes.

APPENDIX

This appendix contains nine auxiliary lemmas used to prove the theorems stated
in Section 2 and the propositions stated in Section 3. Proof of these results are
provided in Palma and Olea (2010).

LEMMA 1. Let f (u,λ) be a time-varying spectral density satisfying assump-
tion A1 and let φ : [0,1] × [−π,π ] → R be a function such that φ(u,λ) is contin-
uously differentiable in λ. Consider the function defined by

g(u,λ) =
∫ π

−π
φ(u,λ + ω)f (u,ω)dω,

and its Fourier coefficients ĝ(u, k) = ∫ π
−π g(u,λ)e−ikλ dλ. Under assumption A1,

for every u ∈ [0,1] we have that limn→∞
∑n

k=−n ĝ(u, k) = 2πg(u,0).

LEMMA 2. Consider the function φ : [0,1] × [−π,π ] → C, such that ∂φ(u,
γ )/∂u exists and |∂φ(u, γ )/∂u| ≤ K|γ |−2d(u), where 0 ≤ d(u) ≤ d for all u ∈
[0,1]. Then, for any 0 ≤ t ≤ N we have that

HN

[
φ

( ·
T

,γ

)
h

( ·
N

)
, λ

]
= φ

(
t

T
, γ

)
HN(λ) + O

[
N

T
|γ |−2dLN(λ)

]
.

LEMMA 3. Consider d1, d2 ∈ [0,1/2) and for any � ∈ Z define the integral
I (�) = ∫ ∞

1 [(x − 1)−2d1 − x−2d1]|� + x|d1+d2−1 dx. Then I (�) = O(|�|d1+d2−1).

LEMMA 4. Let φ(u,λ) be a positive function, symmetric in λ, such that
φ(u,λ) ≥ C|λ|2d(u), for λ ∈ [−π,π ], where d(u) is a positive bounded function
for u ∈ [0,1] and C > 0. Let Q(u) for u ∈ [0,1] be the matrix defined in (16). Then
there exists K > 0 such that X′Q(u)−1X ≤ KX′XN2d(u), for all vector X ∈ R

N .
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LEMMA 5. Let φ(u,λ) be a positive function, symmetric in λ, such that
φ(u,λ) ≥ C|λ|2d(u), for λ ∈ [−π,π ], where d(u) is a positive bounded function
for u ∈ [0,1] and C > 0. Let Q(u) for u ∈ [0,1] and Q(φ) be the matrices defined
in (16). Then there exists K > 0 such that

|X′[Q(φ)−1 − Q(ϕ)]X| ≤ KX′XN2d+1/2,

where ϕ(u, ·) = φ(u, ·)−1/4π2, d = supd(u) < ∞ and X ∈ R
NM .

LEMMA 6. Let φ(u,λ) be a positive function, symmetric in λ, such that
φ(u,λ) ≥ C|λ|2d(u), for λ ∈ [−π,π ], where d(u) is a positive bounded function
for u ∈ [0,1] and C > 0. Let Q(φ) be the block-diagonal matrix defined in (16).
Then there exists K > 0 such that

sup
X

∣∣∣∣ X′RX

X′Q(φ)−1X

∣∣∣∣ ≤ KMN1−2dT 2d−1,

where d = supd(u) < 1
2 and X ∈ R

NM .

LEMMA 7. Let f (λ) and φ(λ) be two real-valued functions defined over
λ ∈ [−π,π ] with Fourier coefficients f̂ (k) and φ̂(k), respectively, satisfying
|f̂ (k)φ̂(k)| ≤ K/k2, for some positive constant K and |k| > 0. Let C(N) be given
by C(N) = ∑N−1

t=0 h2( t
N

)
∑N−1

k=N−t f̂ (k)φ̂(k) with bounded data taper, |h(u)| < K ,
for all u ∈ [0,1]. Then there exits a positive constant K such that |C(N)| ≤
K log2 N .

LEMMA 8. Define D(N,T ) = 1
N

∑N−1
t=0

∑N−1
k=N−t+1

ϕ(k)

k2−d2 (
t−N/2

T
) with func-

tion |ϕ(k)| < C logN for all 0 ≤ k ≤ N , N > 1, where C is a positive constant.

Then there exists a constant K > 0 such that |D(N,T )| ≤ K
log2 N

T
.

LEMMA 9. Let z ∈ [0,1 + δ] with 2 > δ > 0 and 2β > 2α > 0. Then, the pos-
itive double integral I (z) = ∫ 1

0 |z − x|α−1 ∫ ∞
1 (y − x)−β(y − z)α−1 dy dx, satisfies

I (z) ≤ K|1 − z|2α−β .
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