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ON INFORMATION PLUS NOISE KERNEL RANDOM MATRICES

BY NOUREDDINE EL KAROUI1

University of California, Berkeley

Kernel random matrices have attracted a lot of interest in recent years,
from both practical and theoretical standpoints. Most of the theoretical work
so far has focused on the case were the data is sampled from a low-
dimensional structure. Very recently, the first results concerning kernel ran-
dom matrices with high-dimensional input data were obtained, in a setting
where the data was sampled from a genuinely high-dimensional structure—
similar to standard assumptions in random matrix theory.

In this paper, we consider the case where the data is of the type
“information + noise.” In other words, each observation is the sum of two
independent elements: one sampled from a “low-dimensional” structure, the
signal part of the data, the other being high-dimensional noise, normalized
to not overwhelm but still affect the signal. We consider two types of noise,
spherical and elliptical.

In the spherical setting, we show that the spectral properties of kernel
random matrices can be understood from a new kernel matrix, computed only
from the signal part of the data, but using (in general) a slightly different
kernel. The Gaussian kernel has some special properties in this setting.

The elliptical setting, which is important from a robustness standpoint, is
less prone to easy interpretation.

1. Introduction. Kernel techniques are now a standard tool of statistical prac-
tice and kernel versions of many methods of classical multivariate statistics have
now been created. A few important examples can be found in Schölkopf and Smola
(2002) (see the description of kernel PCA, pages 41–45) and Bach and Jordan
(2003) (for kernel ICA), for instance. There are several ways to describe kernel
methods, but one of them is to think of them as classical multivariate techniques
using generalized notions of inner-product. A basic input in these techniques is
a kernel matrix, that is, an inner-product (or Gram) matrix, for generalized inner-
products. If our vectors of observations are X1, . . . ,Xn, the kernel matrices studied
in this paper have (i, j) entry f (‖Xi −Xj‖2

2) or f (X′
iXj ), for a certain f . Popular

examples include the Gaussian kernel [entries exp(−‖Xi − Xj‖2
2/2s2)], the Sig-

moid kernel [entries tanh(κX′
iXj + θ)] and polynomial kernels [entries (X′

iXj )
d ].
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We refer to Rasmussen and Williams (2006) for more examples. As explained in,
for instance, Schölkopf and Smola (2002), kernel techniques allow practitioners to
essentially do multivariate analysis in infinite-dimensional spaces, by embedding
the data in a infinite-dimensional space through the use of the kernel. A nice nu-
merical feature is that the embedding need not be specified, and all computations
can be made using the finite-dimensional kernel matrix. Kernel techniques also
allow users to do certain forms of nonlinear data analysis and dimensionality re-
duction, which is naturally very desirable. Zwald, Bousquet and Blanchard (2004)
and von Luxburg, Belkin and Bousquet (2008) are two interesting relatively recent
papers concerned broadly speaking with the same types of inferential questions we
have in mind and investigate in this paper, though the settings of these papers is
quite different from the one we will work under.

Kernel matrices and the closely related Laplacian matrices also play a central
role in manifold learning [see, e.g., Belkin and Niyogi (2003) and Izenman (2008)
for an overview of various techniques]. In “classical” statistics, they have been a
mainstay of spatial statistics and geostatistics in particular [see Cressie (1993)].

In geostatistical applications, it is clear that the dimension of the data is at
most 3. Also, in applications of kernel techniques and manifold learning, it is of-
ten assumed that the data live on a low-dimensional manifold or structure, the
kernel approach allowing us to somehow recover (at least partially) this infor-
mation. Consequently, most theoretical analyses of kernel matrices and kernel or
manifold learning techniques have focused on situations where the data is assumed
to live on such a low-dimensional structure. In particular, it is often the case that
asymptotics are studied under the assumption that the data is i.i.d. from a fixed
distribution—independent of the number of points. Some remarkable results have
been obtained in this setting [see Koltchinskii and Giné (2000) and also Belkin and
Niyogi (2008)].

Let us give a brief overview of such results. In Koltchinskii and Giné (2000), the
authors prove that if Xi are i.i.d. with distribution P , under regularity conditions on
the kernel k(x, y), the kth largest eigenvalue of the kernel matrix M , with entries

M(i, j) = 1

n
k(Xi,Xj ),

converges to the kth largest eigenvalue of the operator K defined as

Kf (x) =
∫

k(x, y)f (y) dP (y).

In this important paper, the authors were also able to obtain fluctuation behav-
ior for these eigenvalues, under certain technical conditions [see Theorem 5.1 in
Koltchinskii and Giné (2000)]. Similar first-order convergence results were ob-
tained, at a heuristic level but through interesting arguments, in Williams and
Seeger (2000).

These results gave theoretical confirmation to practitioners’ intuition and heuris-
tics that the kernel matrix could be used as a good proxy for the operator K on
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L2(dP ), and hence kernel techniques could be explained and justified through the
spectral properties of this operator.

To statisticians well versed in the theory of random matrices, this set of results
appears to be similar to results for low-dimensional covariance matrices stating
that when the dimension of the data is fixed and the number of observations goes
to infinity, the sample covariance matrix is a spectrally consistent estimator of
the population covariance matrix [see, e.g., Anderson (2003)]. However, it is well
known [see, e.g., Marčenko and Pastur (1967), Bai (1999), Johnstone (2007)] that
this is not the case when the dimension of the data, p, changes with n, the number
of observations, and in particular when asymptotics are studied under the assump-
tion that p/n has a finite limit. We refer to the asymptotic setting where p and
n both tend to infinity as the “high-dimensional” setting. We note that given that
more and more datasets have observations that are high dimensional, and kernel
techniques are used on some of them [see Williams and Seeger (2000)], it is natural
to study kernel random matrices in the high-dimensional setting.

Another important reason to study this type of asymptotics is that by keeping
track of the effect of the dimension of the data, p, and of other parameters of the
problem on the results, they might help us give more accurate prediction about the
finite-dimensional behavior of certain statistics than the classical “small p, large n”
asymptotics. An example of this phenomenon can be found in the paper Johnstone
(2001) where it turned out in simulation that some of the doubly asymptotic results
concerning fluctuation behavior of the largest eigenvalue of a Wishart matrix with
identity covariance are quite accurate for p and n as small as 5 or 10, at least
in the right tail of the distribution. [We refer the interested reader to Johnstone
(2001) for more details on the specific example we just described.] Hence, it is
also potentially practically important to carry out these theoretical studies for they
can be informative even for finite-dimensional considerations.

The properties of kernel random matrices under classical random matrix as-
sumptions have been studied by the author in the recent El Karoui (2010). It was
shown there that when the data is high dimensional, for instance Xi ∼ N (0,�p),
and the operator norm of �p is, for example, bounded, kernel random matrices
essentially act like standard Gram/“covariance matrices,” up to recentering and
rescaling, which depend only on f . Naturally, a certain scaling is needed to make
the problem nondegenerate, and the results we just stated hold, for instance, when
M(i, j) = f (‖Xi −Xj‖2

2/p), for otherwise the kernel matrix is in general degener-
ate. We refer to El Karoui (2010) for more details and discussions of the relevance
of these results in practice. In limited simulations, we found that the theory agreed
with the numerics even when p was of the order of several 10’s and p/n was not
“too small” (e.g., p/n � 0.2). These results came as somewhat of a surprise and
seemed to contradict the intuition and numerous positive practical results that have
been obtained, since they suggested that the kernel matrices we considered were
just a (centered and scaled) version of the matrix XX′. However, it should be noted
that the assumptions implied that the data was truly high dimensional.
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So an interesting middle ground, from modeling, theoretical and practical points
of view is the following: what happens if the data does not live exactly on a fixed-
dimensional manifold, but lives “nearby?” In other words, the data is now sampled
from a “noisy” version of the manifold. This is the question we study in this paper.
We assume now that the data points Xi ∈ R

p we observe are of the form

Xi = Yi + Zi,

where Yi is the “signal” part of the observations (and live, for instance, on a low-
dimensional manifold, e.g., a three-dimensional sphere) and Zi is the noise part
of the observations (and is, e.g., multivariate Gaussian in dimension p, where p

might be 100).
We think this is interesting from a practical standpoint because the assumption

that the data is exactly on a manifold is perhaps a bit optimistic and the “noisy man-
ifold” version is perhaps more in line with what statisticians expect to encounter
in practice (there is a clear analogy with linear regression here). From a theoretical
standpoint, such a model allows us to bridge the two extremes between truly low-
dimensional data and fully high-dimensional data. From a modeling standpoint,
we propose to scale the noise so that its norm stays bounded (or does not grow
too fast) in the asymptotics. That way, the “signal” part of the data is likely to be
affected but not totally drowned by the noise. It is important to note, however, that
the noise is not “small” in any sense of the word—it is of a size comparable with
that of the signal.

In the case of spherical noise (see below for details but note that the Gaussian
distribution falls into this category) our results say that, to first-order, the kernel
matrix computed from information + noise data behaves like a kernel matrix com-
puted from the “signal” part of the data, but, we might have to use a different kernel
than the one we started with. This other kernel is quite explicit. In the case of dot-
product kernel matrices [i.e., M(i, j) = f (X′

iXj )/n], the original kernel can be
used (under certain assumptions)—so, to first-order, the noise part has no effect on
the spectral properties of the kernel matrix. The results are different when looking
at Euclidean distance kernels [i.e., M(i, j) = f (‖Xi − Xj‖2

2)/n] where the effect
of the noise is basically to change the kernel that is used. This is in any case a quite
positive result in that it says that the whole body of work concerning the behavior
of kernel random matrices with low-dimensional input data can be used to also
study the “information + noise” case—the only change being a change of kernels.

The case of elliptical noise is more complicated. The dot-product kernels results
still have the same interpretation. But the Euclidean distance kernels results are not
as easy to interpret.

2. Results. Before we start, we set some notation. We use ‖M‖F to denote
the Frobenius norm of the matrix M [so ‖M‖2

F = ∑
i,j M2(i, j)] and ‖|M‖|2 to

denote its operator norm, that is, its largest singular value. We also use ‖v‖2 to
denote the Euclidean norm of the vector v. a∨b is shorthand for max(a, b). Unless
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otherwise noted, functions that are said to be Lipschitz are Lipschitz with respect
to Euclidean norm.

We split our results into two parts, according to distributional assumptions on
the noise. One deals with the Gaussian-like case, which allows us to give a simple
proof of the results. The second part is about the case where the noise has a dis-
tribution that satisfies certain concentration and ellipticity properties. This is more
general and brings the geometry of the problem forward. It also allows us to study
the robustness (and lack thereof) of the results to the sphericity of the noise, an
assumption that is implicit in the high-dimensional Gaussian (and Gaussian-like)
case.

We draw some practical conclusions from our results for the case of spherical
noise in Section 2.3.

2.1. The case of Gaussian-like noise. We first study a setting where the noise
is drawn according to a distribution that is similar to a Gaussian, but slightly more
general.

THEOREM 2.1. Suppose we observe data X1, . . . ,Xn in R
p , with

Xi = Yi + Zi√
p

,

where Zi = �
1/2
p Ui where the p-dimensional vector Ui has i.i.d. entries with

mean 0, variance 1, and fourth moment μ4, and {Yi}ni=1 ∼ Pn. We assume that
there exists a deterministic vector a and a real C1 > 0, possibly dependent on n,
such that ∀i,E(‖Yi − a‖2

2) < C1. Also, μ4 might change with n but is assumed to
remain bounded.

{Zi}ni=1 are i.i.d., and we also assume that {Yi}ni=1 and {Zi}ni=1 are independent.
We consider the random matrices Mf with (i, j) entry

Mf (i, j) = 1

n
f (‖Xi − Xj‖2

2) for functions f ∈ FC0(n),

where

FC0(n) =
{
f such that sup

x,y
|f (x) − f (y)| ≤ C0(n)|x − y|

}
.

Let us call ν = trace(�p)

p
. Let M̃f be the matrix with (i, j)th entry

M̃f (i, j) =

⎧⎪⎪⎨⎪⎪⎩
1

n
f (‖Yi − Yj‖2

2 + 2ν), if i �= j ,

1

n
f (0), if i = j .
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Assuming only that μ4 is bounded uniformly in n, we have, for a constant C inde-
pendent of n, p and �p ,

E∗(
sup

f ∈FC0(n)

‖Mf − M̃f ‖2
F

)
≤ CC2

0(n)

[ trace(�2
p)

p2 + ‖|�p‖|2
p

C1

]
.(1)

We place ourselves in the high-dimensional setting where n and p tend to infin-
ity. We assume that trace(�2

p)/p2 → 0, as p tends to infinity.
Under these assumptions, for any fixed C0 > 0 and C1 > 0,

lim
n,p→∞ sup

f ∈FC0

‖Mf − M̃f ‖2
F = 0 in probability.

If we further assume that ν remains, for instance, bounded, the same result holds
if we replace the diagonal of M̃ by f (2ν)/n, because |f (2ν) − f (0)| ≤ 2νC0 and
therefore supf ∈FC0

|f (2ν)−f (0)| ≤ 2νC0. The approximating matrix we then get

is the matrix with (i, j)th entry fν(‖Yi − Yj‖2
2), where fν(x) = f (x + 2ν), that

is, a “pure signal” matrix involving a different kernel from the one with which we
started.

We note that there is a potential measurability issue that we address in the proof.
Our theorem really means that we can find a random variable that dominates the
“random element” supf ∈FC0(n)

‖Mf − M̃f ‖2
F and goes to 0 in probability. (This

measurability issue could also be addressed through separability arguments but
outer-probability statements suffice for our purposes in this paper.)

A subcase of our result is the case of Gaussian noise: then Ui is N (0, Idp) and
our result naturally applies.

We also note that Pn can change with n. The class of functions we consider is
fixed in the last statement of the theorem but if we were to look at a sequence of
kernels we could pick a different function in the class FC0 for each n [the proof also
applies to matrices with entries M(i, j) = f(i,j)(‖Xi − Xj‖2

2)/n, where the func-
tions considered also depend on (i, j), but we present the results with a function f

common to all entries]. It should also be noted that the proof technique allows us to
deal with classes of functions that vary with n: we could have a varying C0(n). As
(1) makes clear, the approximation result will hold as soon as the right-hand side of
(1) goes to 0 asymptotically, that is, C2

0(n)max(trace(�2
p)/p2,‖|�p‖|2/p) → 0.

Finally, we work here with uniformly Lipschitz functions. The proof technique
carries over to other classes, such as certain classes of Hölder functions, but the
bounds would be different.

PROOF OF THEOREM 2.1. The strategy is to use the same entry-wise ex-
pansion approach that was used in El Karoui (2010). To do so, we remark that
‖Zi − Zj‖2

2/p remains essentially constant [across (i, j)] in the setting we are
considering—this is a consequence of the “spherical” nature of high-dimensional
Gaussian distributions. We can therefore try to approximate M(i, j) by f (‖Yi −
Yj‖2

2 + 2ν)/n and all we need to do is to show that the remainder is small.
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We also note that if, as we assume, trace(�2
p)/p2 → 0, then ‖|�p‖|2 = o(p),

since ‖|�p‖|22 ≤ trace(�2
p).

- Work conditional on Yn = {Yi}ni=1, for i �= j .
We clearly have

‖Xi − Xj‖2
2 = ‖Yi − Yj‖2

2 + 2
(Zi − Zj)

′
√

p
(Yi − Yj ) + ‖Zi − Zj‖2

2

p
.

Let us study the various parts of this expansion. Conditional on Yn, if we call
yi,j = Yi − Yj , we see easily that

Zi − Zj = �1/2
p (Ui − Uj)

and

(Zi − Zj)
′(Yi − Yj ) = (Ui − Uj)

′�1/2
p yi,j .

Note that Ui −Uj , which we denote �i,j , has i.i.d. entries, with mean 0, variance 2
and fourth moment 2μ4 + 6. We call

αi,j = (Zi − Zj)
′(Yi − Yj )/

√
p

and

βi,j = ‖Zi − Zj‖2
2

p
− 2

trace(�p)

p
.

With this notation, we have

‖Xi − Xj‖2
2 − (‖Yi − Yj‖2

2 + 2ν) = 2αi,j + βi,j .

Therefore, for any function f in FC0(n),∣∣f (‖Xi − Xj‖2
2) − f (‖Yi − Yj‖2

2 + 2ν)
∣∣ ≤ C0(n)|βi,j + 2αi,j |,

and hence,

[f (‖Xi − Xj‖2
2) − f (‖Yi − Yj‖2

2 + 2ν)]2 ≤ 2C0(n)2[β2
i,j + 4α2

i,j ].
We naturally also have

sup
f ∈FC0(n)

[f (‖Xi − Xj‖2
2) − f (‖Yi − Yj‖2

2 + 2ν)]2 ≤ 2C0(n)2[β2
i,j + 4α2

i,j ].

So we have found a random variable τn = 2C2
0(n)[β2

i,j + 4α2
i,j ] that dominates the

random element ζn = supf ∈FC0(n)
[f (‖Xi − Xj‖2

2) − f (‖Yi − Yj‖2
2 + 2ν)]2. One

might be concerned about the measurability of ζn—but by using outer expectations
[see van der Vaart (1998), page 258], we can completely bypass this potential
problem. In what follows, we denote by E∗(·) an outer expectation. (Though this
technical point does not shed further light on the problem, it naturally needs to be
addressed.)
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Hence,

E∗(
sup

f ∈FC0(n)

(
f (‖Xi − Xj‖2

2) − f (‖Yi − Yj‖2
2 + 2ν)

)2|Yn

)
≤ 2C0(n)2(

E(β2
i,j ) + E(4α2

i,j |Yn)
)
.

Let us focus on E(β2
i,j ) for a moment. Let us call �i,j = Ui − Uj . We first note

that ‖Zi − Zj‖2
2 = �′

i,j�p�i,j = trace(�p�i,j�
′
i,j ). In particular,

E(‖Zi − Zj‖2
2) = 2 trace(�p),

so E(βi,j ) = 0. Therefore, E(β2
i,j ) = var(‖Zi − Zj‖2

2)/p
2. Now recall the results

found, for instance, in Lemma A-1 in El Karoui (2010): if the vector γ has i.i.d.
entries with mean 0, variance σ 2 and fourth moment κ4, and if M is a symmetric
matrix,

E((γ ′Mγ)2) = σ 4(
2 trace(M2) + trace(M)2) + (κ4 − 3σ 4) trace(M ◦ M),

where M ◦ M is the Hadamard product of M with itself, that is, the entrywise
product of two matrices.

Applying this result in our setting [i.e., using the moments (given above) of �i,j ,
which has i.i.d. entries, in the previous formula] gives

var(‖Zi − Zj‖2
2) = var(�′

i,j�p�i,j ) = 8 trace(�2
p) + 2(μ4 − 3) trace(�p ◦ �p).

It is easy to see that trace(�p ◦ �p) ≤ trace(�2
p), since trace(�2

p) = ∑
i,j σ 2

p(i, j)

and trace(�p ◦ �p) = ∑
i σ

2
p(i, i). Therefore,

E(β2
i,j ) = var(‖Zi − Zj‖2

2)

p2 ≤ 8 + 2(μ4 − 3)

p2 trace(�2
p) = O

( trace(�2
p)

p2

)
.

We note that under our assumptions on trace(�2
p)/p2 and the fact that μ4 remains

bounded in n (and therefore p), this term will go to 0 as p → ∞.
On the other hand, because αi,j |Yn = �′

i,j�
1/2
p yi,j /

√
p, and because E(�i,j ) =

0 and cov(�i,j ) = 2 Idp , we have

E(α2
i,j |Yn) = 2

y′
i,j�pyi,j

p
≤ 2‖|�p‖|2 ‖yi,j‖2

2

p
≤ 4‖|�p‖|2 ‖Yi − a‖2

2 + ‖Yj − a‖2
2

p
.

Hence, we have for C a constant independent of �p , p and n,

E∗(
sup

f ∈FC0(n)

(
f (‖Xi − Xj‖2

2) − f (‖Yi − Yj‖2
2 + 2ν)

)2|Yn

)

≤ CC2
0(n)

[ trace(�2
p)

p2 + ‖|�p‖|2
p

(‖Yi − a‖2
2 + ‖Yj − a‖2

2)

]
.
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This inequality allows us to conclude that, for another constant C,

E∗(
sup

f ∈FC0(n)

‖Mf −M̃f ‖2
F |Yn

)
≤ CC2

0(n)

[
trace(�2

p)

p2 + ‖|�p‖|2
p

1

n

n∑
i=1

‖Yi −a‖2
2

]
,

since clearly,

sup
f ∈FC0(n)

‖Mf − M̃f ‖2
F ≤ 1

n2

∑
i,j

sup
f ∈FC0(n)

(
f (‖Xi −Xj‖2

2)− f (‖Yi −Yj‖2
2 + 2ν)

)2
.

Under the assumption that E(‖Yi − a‖2
2) exists and is less than C1, we finally

conclude that

E∗(
sup

f ∈FC0(n)

‖Mf − M̃f ‖2
F

)
≤ CC2

0(n)

[ trace(�2
p)

p2 + ‖|�p‖|2
p

C1

]
,

and (1) is shown.
Therefore, under our assumptions,

E∗(
sup

f ∈FC0

‖Mf − M̃f ‖2
F

)
= o(1).

Hence, when n and p tend to ∞,

sup
f ∈FC0

‖M − M̃‖2
F → 0 in probability,

as announced in the theorem. �

2.2. Case of noise drawn from a distribution satisfying concentration inequal-
ities. The proof of Theorem 2.1 makes clear that the heart of our argument is
geometric: we exploit the fact that ‖Zi − Zj‖2

2/p is essentially constant across
pairs (i, j). It is therefore natural to try to extend the theorem to more general
assumptions about the noise distribution than the Gaussian-like one we worked
under previously. It is also important to understand the impact of the implicit geo-
metric assumptions (i.e., sphericity of the noise) that are made and in particular the
robustness of our results against these geometric assumptions.

We extend the results in two directions. First, we investigate the generalization
of our Gaussian-like results to the setting of Euclidean-distance kernel random
matrices, when the noise is distributed according to a distribution satisfying a con-
centration inequality multiplied by a random variable, that is, a generalization of
elliptical distributions. This allows us to show that the Gaussian-like results of
Theorem 2.1 essentially hold under much weaker assumptions on the noise distri-
bution, as long as the Gaussian geometry (i.e., a spherical geometry) is preserved
(see Corollary 2.3). The results of Theorem 2.2 show that breaking the Gaussian
geometry results in quite different approximation results.

We also discuss in Theorem 2.4 the situation of inner-product kernel random
matrices under the same “generalized elliptical” assumptions on the noise.
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2.2.1. The case of Euclidean distance kernel random matrices. We have the
following theorem.

THEOREM 2.2 (Euclidean distance kernels). Suppose we observe data X1, . . . ,

Xn in R
p , with

Xi = Yi + Ri

Zi√
p

.

We place ourselves in the high-dimensional setting where n and p tend to infinity.
We assume that {Yi}ni=1 ∼ Pn.

{Zi}ni=1 are i.i.d. with E(Zi) = 0, and we also assume that Yn = {Yi}ni=1 and
{Zi}ni=1 are independent. Ri are random variables independent of {Zi}ni=1.

We now assume that the distribution of Zi is such that, for any 1-Lipschitz func-
tion F , if μF = E(F (Zi)),

P
(|F(Zi) − μF | > r

) ≤ C exp(−c0r
b) � h(r),

where for simplicity we assume that c0, C and b are independent of p. We call
ν = E(‖Zi‖2

2)/p and assume that ν stays bounded as p → ∞.
We assume that ∀i, |Ri | ∈ [r∞(p),R∞(p)], where r∞(p) and R∞(p) are de-

terministic sequences depending on p. We assume without loss of generality that
R∞(p) ≥ 1.

Calling M(Yn) = maxi �=j ‖Yi − Yj‖2
2, we assume that there exists Mp such

that P(M(Yn) ≤ Mp) → 1 and ε > 0 such that

max(M1/2
p ,R∞(p))

R∞(p)(logn + (logn)ε)1/b

√
p

→ 0.

Then we have

max
i �=j

∣∣‖Xi − Xj‖2
2 − [‖Yi − Yj‖2

2 + ν(R2
i + R2

j )]
∣∣ → 0 in probability.(2)

We call W(Yn) = mini �=j‖Yi − Yj‖2
2, and suppose we pick Wp such that

P(W(Yn) ≥ Wp) → 1. (Note that Wp = 0 is always a possibility.)
We call, for η > 0 given, Ip(η) = [Wp + 2νr2∞(p) − η, Mp + 2νR2∞(p) + η],

and

FC1,Ip(η) =
{
f such that sup

x,y∈Ip(η)

|f (x) − f (y)| ≤ C1|x − y|
}
.

We consider the random matrices Mf with (i, j) entry

Mf (i, j) = 1

n
f (‖Xi − Xj‖2

2) for f ∈ FC1,Ip(η).
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Let us call M̃f the matrix with (i, j)th entry

M̃f (i, j) =

⎧⎪⎪⎨⎪⎪⎩
1

n
f

(‖Yi − Yj‖2
2 + ν(R2

i + R2
j )

)
, if i �= j ,

1

n
f (0), if i = j .

We have, for any given C1 > 0 and η > 0,

lim
n,p→∞ sup

f ∈FC1,Ip(η)

‖Mf − M̃f ‖F = 0 in probability.(3)

We have the following corollary in the case of “spherical” noise, which is a
generalization of the Gaussian-like case considered in Theorem 2.1.

COROLLARY 2.3 (Euclidean distance kernels with spherical noise). Suppose
we observe data X1, . . . ,Xn in R

p , with

Xi = Yi + Zi√
p

,

where Yi and Zi satisfy the same assumptions as in Theorem 2.2 [with r∞(p) =
R∞(p) = 1]. Then the results of Theorem 2.2 apply with

Ip(η) = [Wp + 2ν − η, Mp + 2ν + η]
and

M̃f (i, j) =

⎧⎪⎪⎨⎪⎪⎩
1

n
f (‖Yi − Yj‖2

2 + 2ν), if i �= j ,

1

n
f (0), if i = j .

As in Theorem 2.1, we deal with potential measurability issues concerning the
sup in the proof. Our theorem is really that we can find a random variable that goes
to 0 with probability 1 and dominates the random element supf ∈FC1,Ip(η)

‖Mf −
M̃f ‖F —an outer-probability statement.

This theorem generalizes Theorem 2.1 in two ways. The “spherical” case, de-
tailed in Corollary 2.3, is a more general version of Theorem 2.1 limited to
Gaussian noise. This is because the Gaussian setting corresponds to b = 2 and
c0 = 1/(2‖|�p‖|2). However, assuming “only” concentration inequalities allows
us to handle much more complicated structures for the noise distribution. Some
examples are given below. We also note that if the Yi’s (i.e., the signal part of the
Xi’s) are sampled, for instance, from a fixed manifold of finite Euclidean diame-
ter, the conditions on M are automatically satisfied, with Mp being the Euclidean
diameter of the corresponding manifold.



3202 N. EL KAROUI

Another generalization is “geometric”: by allowing Ri to vary with i, we move
away from the spherical geometry of high-dimensional Gaussian vectors (and gen-
eralizations), to a more “elliptical” setting. Hence, our results show clearly the
potential limitations and the structural assumptions that are made when one as-
sumes Gaussianity of the noise. Theorem 2.2 and Corollary 2.3 show that the
Gaussian-like results of Theorem 2.1 are not robust against a change in the geom-
etry of the noise. We note however that if Ri is independent of Zi and E(R2

i ) = 1,
cov(RiZi) = cov(Zi), so all the noise models have the same covariance but they
may yield different approximating matrices and hence different spectral behavior
for our information + noise models.

However, the spherical results have the advantage of having simple interpre-
tations. In the setting of Corollary 2.3, if we assume that f (0) and f (2ν) are
uniformly bounded (in n) over the class of functions we consider, we can replace
the diagonal of M̃ by f (2ν)/n and have the same approximation results. Then the
“new” M̃ is a kernel matrix computed from the signal part of the data with the new
kernel fν(x) = f (x + 2ν).

To make our result more concrete, we give a few examples of distributions for
which the concentration assumptions on Zi are satisfied:

• Gaussian random variables, for which we have c0 = 1/(2‖|�‖|2). We refer to
Ledoux [(2001), Theorem 2.7] for a justification of this claim.

• Vectors of the type
√

pv where v is uniformly distributed on the unit (�2-)sphere
in dimension p. Theorem 2.3 in Ledoux (2001) shows that our assumptions are
satisfied, with c(p) = (1 − 1/p)/2 ≥ c0 = 1/4, after noticing that a 1-Lipschitz
function with respect to Euclidean norm is also 1-Lipschitz with respect to the
geodesic distance on the sphere.

• Vectors �
√

pv, with v uniformly distributed on the unit (�2-)sphere in R
p and

with ��′ = � having bounded operator norm.
• Vectors of the type p1/bv, 1 ≤ b ≤ 2, where v is uniformly distributed in the

unit �b ball or sphere in R
p . (See Ledoux [(2001), Theorem 4.21] which refers

to Schechtman and Zinn (2000) as the source of the theorem.) In this case, c0
depends only on b.

• Vectors with log-concave density of the type e−U(x), with the Hessian of U

satisfying, for all x, Hess(U) ≥ 2c0 Idp , where c0 > 0 is the real that appears in
our assumptions. See Ledoux [(2001), Theorem 2.7] for a justification.

• Vectors v distributed according to a (centered) Gaussian copula, with corre-
sponding correlation matrix, �, having ‖|�‖|2 bounded. We refer to El Karoui
(2009) for a justification of the fact that our assumptions are satisfied. [If ṽ has
a Gaussian copula distribution, then its ith entry satisfy ṽi = �(Ni), where N is
multivariate normal with covariance matrix �, � being a correlation matrix, that
is, its diagonal is 1. Here � is the cumulative distribution function of a standard
normal distribution. Taking v = ṽ−1/2 gives a centered Gaussian copula.] This
last example is intended to show that the result can handle quite complicated and
nonlinear noise structure.
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We note that to justify that the assumptions of the theorem are satisfied, it is enough
to be able to show concentration around the mean or the median, as Proposition 1.8
in Ledoux (2001) makes clear.

The reader might feel that the assumptions concerning the boundedness of the
Ri’s will be limiting in practice. We note that the same proof essentially goes
through if we just require that |Ri |’s belong to the interval [r∞(p),R∞(p)] with
probability going to 1, but this requires a little bit more conditioning and we leave
the details, which are not difficult, to the interested reader. So for instance, if we
had a tail condition on |Ri |, we could bound max |Ri | with high probability to
get a choice of R∞(p). So this boundedness condition is here just to make the
exposition simpler and is not particularly limiting in our opinion. On the other
hand, we note that our conditions allow dependence in the Ri ’s and are therefore
rather weak requirements.

Finally, the theorem as stated is for a fixed C1, though the class of functions we
are considering might vary with n and p through the influence of Ip(η). The proof
makes clear that C1 could also vary with n and p. We discuss in more details the
necessary adjustments after the proof.

PROOF OF THEOREM 2.2. We use the notation Yn = {Yi}ni=1 and PYn to de-
note probability conditional on Yn. We call L = {Yn : M(Yn) ≤ Mp}.

Let us also call Y Rn = {{Yi}ni=1, {Ri}ni=1}; similarly, PY Rn denotes probabil-
ity conditional on Y Rn. We call L R = {Y Rn : Y ∈ L}. We will start by working
conditionally on Y Rn and eventually decondition our results.

We assume from now on that the Y Rn we work with is such that Yn ∈ L. Note
that P(Yn ∈ L) → 1 by assumption and also P(Y Rn ∈ L R) → 1.

The main idea now is that, in a strong sense,

∀i �= j ‖Xi − Xj‖2
2 � ‖Yi − Yj‖2

2 + (R2
i + R2

j )ν,

where ν = E(Z2
i ). To show this formally, we write

‖Xi − Xj‖2
2 − [‖Yi − Yj‖2

2 + (R2
i + R2

j )ν] = 2αi,j + βi,j ,

where

αi,j = (RiZi − RjZj )
′(Yi − Yj )√

p

and

βi,j = ‖RiZi − RjZj‖2
2

p
− (R2

i E(‖Zi‖2
2) + R2

j E(‖Zj‖2
2))

p
.

Our aim is to show that, as n and p tend to infinity,

max
i �=j

|αi,j | + |βi,j | → 0 in probability.
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- On maxi �=j |αi,j |.
Note that if i = j , αi,j = 0. Clearly,

PY Rn(|αi,j | > 2r) ≤ PY Rn

(
|Ri | |Z

′
i (Yi − Yj )|√

p
> r

)

+ PY Rn

(
|Rj |

|Z′
j (Yi − Yj )|√

p
> r

)
.

Since we assumed that |Ri | ≤ R∞(p), we see that the function Fi,j (Z) =
RiZ

′(Yi − Yj )/
√

p is Lipschitz (with respect to Euclidean norm), with Lip-
schitz constant smaller than (Mp)1/2R∞(p)/

√
p, when Yn is in L. Also, since

E(Zi) = 0, E(Fi,j (Z)|Y Rn) = 0, where the expectation is conditional on Y Rn.
Hence, our concentration assumptions on Zi imply that

PY Rn

(|Ri |
∣∣Z′

i(Yi − Yj )/
√

p
∣∣ > r

) ≤ C exp
(−c0

(
p1/2r/[M1/2

p R∞(p)])b)
.

Therefore, if we use a simple union bound, we get

PY Rn

(
max
i �=j

|αi,j | > 2r
)

≤ 2Cn2 exp
(−c0

(
p1/2r/[M1/2

p R∞(p)])b)
.

In particular, if we pick, for ε > 0, r0 = R∞(p)M1/2
p p−1/2(logn+ (logn)ε)1/b(2/

c0)
1/b, we see that

PY Rn

(
max
i �=j

|αi,j | > 2r0

)
≤ 2Cn2 exp

(−c0
(
p1/2r0/[M1/2

p R∞(p)])b)
= 2C exp(−2(logn)ε) → 0.

Since

P
(
max
i,j

|αi,j | > t
)

≤ P
(
max
i,j

|αi,j | > t and Y Rn ∈ L R
)

+ P(Y Rn /∈ L R),

and since the latter goes to 0, we have, unconditionally,

P
(
max
i,j

|αi,j | > 2r0

)
→ 0.

- On maxi �=j |βi,j |.
We see that if A and B are vectors in R

p , the map NRi,Rj
: (A,B) → ‖RiA −

RjB‖2 is (|Ri | ∨ |Rj |)-Lipschitz on R
2p equipped with the norm ‖A‖2 + ‖B‖2,

by the triangle inequality. Therefore, using Propositions 1.11 and 1.7 in Ledoux
(2001) [and using the fact that h(r) → 0 as r → ∞ and h is continuous when
using the latter], we conclude that

PY Rn

(|‖RiZi −RjZj‖2 − E(‖RiZi −RjZj‖2)| > r
) ≤ 4h

(
r/(2R∞(p))

)
.(4)
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If now γi,j = E(‖RiZi − RjZj‖2|Y Rn), and if r1 = 2R∞(p)(2/c0)
1/b(logn +

(logn)ε)1/bp−1/2,

PY Rn

(
max
i �=j

∣∣∣∣‖RiZi − RjZj‖2 − γi,j√
p

∣∣∣∣ > r1

)
≤ K exp(−(logn)ε) → 0,

where K is a constant which does not depend on Y Rn. So we conclude that un-
conditionally, if

�0 = max
i �=j

∣∣∣∣‖RiZi − RjZj‖2 − γi,j√
p

∣∣∣∣,
P (�0 > r1) → 0.

Note also that under our assumptions, r1 → 0. Recall that we aim to show that

�2 = max
i �=j

∣∣∣∣‖RiZi − RjZj‖2
2

p
− ν(R2

i + R2
j )

∣∣∣∣ → 0 in probability.

Let us first work on

�1 = max
i �=j

∣∣∣∣‖RiZi − RjZj‖2
2 − γ 2

i,j

p

∣∣∣∣.
Using the fact that a2 −b2 = (a−b)(a+b), and therefore, |a2 −b2| ≤ |a−b|(|a−
b| + 2|b|), we see that

max
i,j

|a2
i,j − b2

i,j | ≤ max
i,j

|ai,j − bi,j |
(
max
i,j

|ai,j − bi,j | + 2 max|bi,j |
)
.

If we choose ai,j = ‖RiZi − RjZj‖2/
√

p and bi,j = γi,j /
√

p, we see that the
previous equation becomes

�1 ≤ �0

(
�0 + 2 max

i �=j

γi,j√
p

)
.

Therefore, if we can show that �0 maxi �=j γi,j /
√

p goes to 0 in probability, we will
have �1 → 0 in probability. Using the concentration result given in (4), in connec-
tion with Proposition 1.9 in Ledoux (2001) and a slight modification explained in
El Karoui (2010), we have

(R2
i + R2

j )ν − γ 2
i,j

p
= varY Rn

(‖RiZi − RjZj‖2/
√

p
)

(5)

≤ R2∞(p)

p

32C

b(c0)2/b
�(2/b) = R2∞(p)

κb

p
.

Using our assumption that ν remains bounded, we see that

1

R∞(p)
max
i �=j

γi,j√
p

remains bounded.
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Therefore, for some K independent of p,

max
i �=j

γi,j√
p

�0 ≤ KR∞(p)r1,

with probability going to 1. Our assumptions also guarantee that R∞(p)r1 → 0,
so we conclude that, for a constant K independent of p,

max
i �=j

∣∣∣∣‖RiZi − RjZj‖2
2 − γ 2

i,j

p

∣∣∣∣ = �1 ≤ Kr1R∞(p) → 0

with probability going to 1.

Using (5), we have the deterministic inequality

max
i,j

∣∣∣∣(R2
i + R2

j )ν − γ 2
i,j

p

∣∣∣∣ ≤ R2∞(p)
κb

p
� r2

1 � r1.

So we can finally conclude that with high probability

�2 = max
i �=j

|βi,j | = max
i �=j

∣∣∣∣‖RiZi − RjZj‖2
2

p
− ν(R2

i + R2
j )

∣∣∣∣ ≤ Kr1R∞(p) → 0.

Putting all these elements together, we see that when

up = (M1/2
p ∨ R∞(p))R∞(p)(logn + (logn)ε)1/b

p1/2 ,

we can find a constant K such that

P
(
max
i �=j

|2αi,j + βi,j | > Kup

)
→ 0.

In other words,

P
(
max
i �=j

∣∣‖Xi − Xj‖2
2 − [‖Yi − Yj‖2

2 + ν(R2
i + R2

j )]
∣∣ > Kup

)
→ 0.(6)

This establishes (a strong form of) the first part of the theorem, that is, (2).
- Second part of the theorem [equation (3)]. To get to the second part, we recall

that, assuming that f is C1-Lipschitz on an interval containing {‖Xi −Xj‖2
2,‖Yi −

Yj‖2
2 + ν(R2

i + R2
j )}, we have∣∣f (‖Xi − Xj‖2

2) − f
(‖Yi − Yj‖2

2 + ν(R2
i + R2

j )
)∣∣

≤ C1
∣∣‖Xi − Xj‖2

2 − (‖Yi − Yj‖2
2 + ν(R2

i + R2
j )

)∣∣.
Let us define, for η > 0 given, the event

E = {∀i �= j,‖Xi − Xj‖2
2 ∈ Ip(η),‖Yi − Yj‖2

2 ∈ [Wp, Mp]},
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and the random element

ζn = sup
f ∈FC1,Ip(η)

max
i �=j

∣∣f (‖Xi − Xj‖2
2) − f

(‖Yi − Yj‖2
2 + ν(R2

i + R2
j )

)∣∣.
When E is true, all the pairs {‖Xi − Xj‖2

2,‖Yi − Yj‖2
2 + ν(R2

i + R2
j )} are in

Ip(η): the part concerning ‖Yi − Yj‖2
2 + ν(R2

i + R2
j ) is obvious, and the one con-

cerning ‖Xi − Xj‖2
2 comes from the definition of E. So when E is true, we also

have

∀i �= j
∣∣f (‖Xi − Xj‖2

2) − f
(‖Yi − Yj‖2

2 + ν(R2
i + R2

j )
)∣∣ ≤ C1|2αi,j + βi,j |.

Let us now consider the random variable τn such that τn = C1 on E and ∞ other-
wise, so τn = C11E + ∞1Ec . Our remark above shows that

ζn ≤ τn max
i �=j

|2αi,j + βi,j |.

Now, we see from our assumptions about {Yi}ni=1, (6) and the fact that up → 0,
that for any η > 0, P(E) → 1. So we have

P(τn ≤ C1) → 1.

Also, maxi �=j |2αi,j + βi,j | ≤ Kup with probability tending to 1, so we can con-
clude that

P
(
τn max

i �=j
|2αi,j + βi,j | ≤ C1Kup

)
→ 1.

Hence, we also have

P ∗(ζn ≤ C1Kup) → 1,

where this statement might have to be understood in terms of outer probabilities—
hence the P ∗ instead of P . [See van der Vaart (1998), page 258. In plain English,
we have found a random variable, τn maxi �=j |2αi,j + βi,j |, bounded by C1Kup

with probability going to 1, which is larger than the random element ζn.]
In other respects, we have, for all f ∈ FC1,Ip(η),

‖Mf − M̃f ‖2
F ≤ ζ 2

n ,

since

max
i,j

|Mf (i, j) − M̃f (i, j)|

≤ 1

n
max
i �=j

∣∣f (‖Xi − Xj‖2
2) − f

(‖Yi − Yj‖2
2 + ν(R2

i + R2
j )

)∣∣ ≤ ζn

n
.

Therefore,

sup
f ∈FC1,Ip(η)

‖Mf − M̃f ‖F ≤ ζn → 0 in probability,(7)
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where once again this statement may have to be understood in terms of outer prob-
abilities. The result stated in (3) is proved. �

We mentioned before the proof the possibility that we might let C1 vary with
n and p and still get a good approximation result. This can be done by looking at
(7) above: ζn is less than KC1up with high probability, so when upC1(n) → 0 the
main approximation result of Theorem 2.2 holds, for a C1 and therefore a class of
functions, that vary with n (and p).

2.2.2. The case of inner-product kernel random matrices. We now turn our
attention to kernel matrices of the form M(i, j) = f (X′

iXj )/n which are also of
interest in practice. In that setting, we are able to obtain results similar in flavor to
Theorem 2.2, with slight modifications on the assumptions we make about f .

THEOREM 2.4 (Scalar product kernels). Suppose we observe data X1, . . . ,Xn

in R
p , with

Xi = Yi + Ri

Zi√
p

.

We place ourselves in the high-dimensional setting where n and p tend to infinity.
We assume that {Yi}ni=1 ∼ Pn.

{Zi}ni=1 are i.i.d. with E(Zi) = 0, and we also assume that {Yi}ni=1 and {Zi}ni=1
are independent.

{Ri}ni=1 are assumed to be independent of {Zi}ni=1. We also assume that we can
find a deterministic sequence R∞(p) such that ∀i, |Ri | ≤ R∞(p) and R∞(p) ≥ 1.

We assume that the distribution of Zi is such for any 1-Lipschitz function F

(with respect to Euclidean norm), if μF = E(F (Zi)),

P
(|F(Zi) − μF | > r

) ≤ C exp(−c0r
b) � h(r),

where for simplicity we assume that c0, C and b are independent of p. We call
ν = E(‖Zi‖2

2)/p and assume that ν stays bounded as p → ∞.
We call M = maxi,j |Y ′

i Yj |, and Mp a real such that P(M ≤ Mp) → 1. We
assume that there exists ε > 0 such that

max(M1/2
p ,R∞(p))

R∞(p)(logn + (logn)ε)1/b

√
p

→ 0.

We then have

max
i,j

|X′
iXj − (Y ′

i Yj + δi,j νR2
i )| → 0 in probability.(8)

We call Jp(η) = [−Mp − η − R2∞(p)ν, Mp + η + R2∞(p)ν] and

FC1,Jp(η) =
{
f such that sup

x,y∈Jp(η)

|f (x) − f (y)| ≤ C1|x − y|
}
.
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We then consider the random matrices Mf with (i, j) entry

Mf (i, j) = 1

n
f (X′

iXj ) for f ∈ FC1,Jp(η).

Let us call M̃ the matrix with (i, j)th entry

M̃f (i, j) =

⎧⎪⎪⎨⎪⎪⎩
1

n
f (Y ′

i Yj ), if i �= j ,

1

n
f (‖Yi‖2

2 + νR2
i ), if i = j .

We have, for any C1 > 0 and η > 0,

lim
n,p→∞ sup

f ∈FC1,Jp(η)

‖Mf − M̃f ‖F = 0 in probability.

We note that under our assumptions, we also have |f (‖Yi‖2
2 + νR2

i ) −
f (‖Yi‖2

2)| ≤ νC1R
2∞(p), with high probability, and uniformly in f in FC1,Jp(η).

Therefore, when R4∞(p)/n → 0, the result is also valid if we replace the diagonal
of M̃f by {f (‖Yi‖2

2)}ni=1/n—in which case the new approximating matrix is the
kernel matrix computed from the signal part of the data. Furthermore, the same
argument shows that we get a valid operator norm approximation of M by this
“pure signal” matrix as soon as R2∞(p)/n tends to 0.

The same measurability issues as in the previous theorems might arise here and
the statement should be understood as before: we can find a random variable going
to 0 in probability that is larger than the random element supf ∈FC1,Jp(η)

‖Mf −
M̃f ‖F .

Finally, let us note that once again the theorem is stated for a fixed C1 [and
hence for an essentially fixed (with n) class of functions, though some changes in
this class might come from varying Jp(η)], but the proof allows us to deal with a
varying C1(n). The adjustments are very similar to the ones we discussed after the
proof of Theorem 2.2 and we leave them to the interested reader.

PROOF OF THEOREM 2.4. The proof is quite similar to that of Theorem 2.2,
so we mostly outline the differences and use the same notation as before. We now
have to focus on

X′
iXj = Y ′

i Yj + Ri

Z′
iYj√
p

+ Rj

Z′
jYi√
p

+ RiRj

Z′
iZj

p
.

The analysis of Ri
Z′

iYj√
p

is entirely similar to our analysis of αi,j in the proof of
Theorem 2.2. The key remark now is that as function of Zi , when Y Rn ∈ L R,
it is, with the new definition of Mp , R∞(p)

√
Mp/p-Lipschitz with respect to

Euclidean norm. So we immediately have, with the new definition of Mp: if r0 =
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R∞(p)(Mp/p)1/2(logn + (logn)ε)1/b(2/c0)
1/b, and Y Rn ∈ L R, for some K >

0 which does not depend on Y Rn,

PY Rn

(
max
i,j

∣∣∣∣Ri

Z′
iYj√
p

∣∣∣∣ > r0

)
≤ K exp(−2(logn)ε).

Now, since P(Y Rn /∈ L R) → 0, we conclude as before that

P

(
max
i,j

∣∣∣∣Ri

Z′
iYj√
p

∣∣∣∣ > r0

)
→ 0.

On the other hand, using the fact that 4RiRjZ
′
iZj = ‖RiZi + RjZj‖2

2 −
‖RiZi − RjZj‖2

2, and analyzing the concentration properties of ‖RiZi + RjZj‖2
2

in the same way as we did those of ‖RiZi − RjZj‖2
2, we conclude that if

up = R2∞(p)(2/c0)
1/b(logn + (logn)ε)1/bp−1/2, we can find a constant K such

that

P

(
max
i �=j

∣∣∣∣‖RiZi − RjZj‖2
2

p
− ν(R2

i + R2
j )

∣∣∣∣ > Kup

)
→ 0

and

P

(
max
i �=j

∣∣∣∣‖RiZi + RjZj‖2
2

p
− ν(R2

i + R2
j )

∣∣∣∣ > Kup

)
→ 0.

Similar arguments, relying on the fact that ‖ · ‖2 is obviously 1-Lipschitz with
respect to Euclidean norm, also lead to the fact that

P

(
max

i

∣∣∣∣R2
i ‖Zi‖2

2

p
− νR2

i

∣∣∣∣ > Kup

)
→ 0.

Therefore, we can find K , greater than 1 without loss of generality, such that

P

(
max
i,j

∣∣∣∣RiRj

Z′
iZj

p
− δi,j νR2

i

∣∣∣∣ > Kup

)
→ 0.

We can therefore conclude that

P
(
max
i,j

|X′
iXj − (Y ′

i Yj + δi,j νR2
i )| > Kup + 2r0

)
→ 0.

If R∞(p)max((Mp)1/2,R∞(p))(logn + (logn)ε)1/b/
√

p → 0, then both r0
and up tend to 0. Therefore, under our assumptions,

max
i,j

|X′
iXj − (Y ′

i Yj + δi,j νR2
i )| → 0 in probability.

So we have shown the first assertion of the theorem.
The final step of the proof is now clear: we have, for all (i, j),

|f (X′
iXj ) − f (Y ′

i Yj + δi,j νR2
i )| ≤ C1|X′

iXj − (Y ′
i Yj + δi,j νR2

i )|,
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when for all (i, j), X′
iXj and (Y ′

i Yj + δi,j νR2
i ) are in Jp(η). This event happens

with probability going to 1 under our assumptions. So following the same ap-
proach as before and dealing with measurability in the same way, we have, with
probability going to 1,

sup
f ∈FC1,Jp(η)

max
i,j

|f (X′
iXj ) − f (Y ′

i Yj + δi,j νR2
i )|

≤ C1 max
i,j

|X′
iXj − (Y ′

i Yj + δi,j νR2
i )|.

So we conclude that

sup
f ∈FC1,Jp(η)

max
i,j

|f (X′
iXj ) − f (Y ′

i Yj + δi,j νR2
i )| → 0 in probability.

From this statement, we get in the same manner as before,

sup
f ∈FC1,Jp(η)

‖Mf − M̃f ‖F → 0 in probability.
�

As before, the equations above show that if C1(n)(up + r0) → 0, the same
approximation result holds, now with a varying C1(n).

2.3. Practical consequences of the results: Case of spherical noise. Our aim
in giving approximation results is naturally to use existing knowledge concerning
the approximating matrix to reach conclusions concerning the information + noise
kernel matrices that are of interest here. In particular, we have in mind situations
where the “signal” part of the data, that is, what we called {Yi}ni=1 in the theo-
rems, and f [or f (· + 2ν), with ν being as defined in Theorems 2.1 or 2.2] are
such that the assumptions of Theorems 3.1 or 5.1 in Koltchinskii and Giné (2000)
are satisfied, in which case we can approximate the eigenvalues of M̃ by those
of the corresponding operator in L2(dP ). In this setting the matrix M̃ , which is
normalized so its entries are of order 1/n has a nondegenerate limit, which is why
we considered for our kernel matrices the normalization f (‖Xi − Xj‖2

2)/n. [This
normalization by 1/n makes our proofs considerably simpler than the ones given
in El Karoui (2010).]

Another potentially interesting application is the case where the signal part of
the data is sampled i.i.d. from a manifold with bounded Euclidean diameter, in
which case our results are clearly applicable.

2.3.1. Spectral properties of information + noise kernel random matrices from
pure signal kernel random matrices. The practical interest of the theorems we
obtained above lie in the fact that the Frobenius norm is larger than the operator
norm, and therefore all of our results also hold in operator norm. Now we recall
the discussion in El Karoui [(2008), Section 3.3], where we explained that con-
sistency in operator norm implies consistency of eigenvalues and consistency of
eigenspaces corresponding to separated eigenvalues [as consequences of Weyl’s
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inequality and the Davis–Kahane sin(θ) theorem—see Bhatia (1997) and Stewart
and Sun (1990)].

Theorems 2.1, 2.2, 2.4 therefore imply that under the assumptions stated there,
the spectral properties of the matrix M can be deduced from those of the matrix M̃ .
In particular, for techniques such as kernel PCA, we expect, when it is a reasonable
idea to use that technique, that M will have some separated eigenvalues, that is,
a few will be large and there will be a gap in the spectrum. In that setting, it is
enough to understand M̃ , which corresponds, if ∀i,Ri = 1, to a pure signal matrix,
with a possibly slightly different kernel, to have a theoretical understanding of the
properties of the technique.

For instance, if ∀i,Ri = 1, if the assumptions underlying the first-order results
of Koltchinskii and Giné (2000) are satisfied for M̃ , the (first-order) spectral prop-
erties of M are the same as those of M̃ , and hence of the corresponding operator
in L2(dP ).

2.3.2. On the Gaussian kernel. Our analysis reveals a very interesting feature
of the Gaussian kernel, that is, the case where M(i, j) = exp(−s‖Xi − Xj‖2

2)/n,
for some s > 0: when Theorem 2.1 or Corollary 2.3 (i.e., Theorem 2.2 with
∀i,Ri = 1) apply, the eigenspaces corresponding to separated eigenvalues of the
signal + noise kernel matrix converge to those of the pure signal matrix.

This is simply due to the fact that in that setting, if S is the matrix such that

S(i, j) = exp(−2νs)
1

n
exp(−s‖Yi − Yj‖2

2),

a rescaled version of the “pure signal” matrix M with (i, j)th entry 1
n

exp(−s‖Yi −
Yj‖2

2), we have

‖|S − M̃‖|2 → 0.

This latter statement is a simple consequence of the fact that S − M̃ is a diagonal
matrix with entries (exp(−2νs) − 1)/n on the diagonal, and therefore its operator
norm goes to 0. On the other hand, S clearly has the same eigenvectors as the
pure signal matrix M. Hence, because the eigenspaces of M̃ are consistent for the
eigenspaces of S corresponding to separated eigenvalues, they are also consistent
for those of M. (We note that our results are actually stronger and allow us to deal
with a collection of matrices with varying s and not a single s, as we just discussed.
This is because we can deal with approximations over a collection of functions in
all our theorems.)

Because of the practical importance of eigenspaces in techniques such as kernel
PCA, these remarks can be seen as giving a theoretical justification for the use of
the Gaussian kernel over other kernels in the situations where we think we might
be in an information + noise setting, and the noise is spherical.

On the other hand, S underestimates the large eigenvalues of M because S =
exp(−2νs)M, and obviously exp(−2νs) < 1. Using Weyl’s inequality [see Bhatia
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(1997)], we have, if we denote by λi(M) is the ith eigenvalue of the symmetric
matrix M ,

∀i,1 ≤ i ≤ n, |λi(M̃) − λi(S)| ≤ ‖|M̃ − S‖|2.
Since the right-hand side goes to 0 asymptotically, the eigenvalues of M (the “pure
signal” matrix) that stay asymptotically bounded away from 0 are underestimated
by the corresponding eigenvalues of M̃ .

When the noise is elliptical, that is, Ri’s are not all equal to 1, the “new” matrix
S we have to deal with has entries

S(i, j) = exp(−sR2
i ) exp(−sR2

j )
1

n
exp(−s‖Yi − Yj‖2

2),

so it can be written in matrix form

S = DMD,

where D is a diagonal matrix with D(i, i) = exp(−sR2
i ). By the same arguments

as above, ‖|S − M̃‖|2 → 0 in probability, but now S does not have the same eigen-
vectors as the pure signal matrix M. So in this elliptical setting if we were to do
kernel analysis on M , we would not be recovering the eigenspaces of the pure
signal matrix M.

2.3.3. Variants of kernel matrices: Laplacian matrices and the issue of center-
ing. In various parts of statistics and machine learning, it has been argued that
Laplacian matrices should be used instead of kernel matrices. See, for instance,
the very interesting Belkin and Niyogi (2008), where various spectral properties
of Laplacian matrices have been studied, under a “pure” signal assumption in our
terminology. For instance, it is assumed that the data is sampled from a fixed-
dimensional manifold. In light of the theoretical and practical success of these
methods, it is natural to ask what happens in the information + noise case.

There are several definitions of Laplacian matrices. A popular one [see, e.g.,
the work of Belkin and Niyogi (2008), among other publications], is derived from
kernel matrices: given M a kernel matrix, the Laplacian matrix is defined as

L(i, j) =
⎧⎨⎩

−M(i, j), if i �= j ,∑
i �=j

M(i, j), otherwise.

When our Theorems 2.2 or 2.4 apply, we have seen that, for relevant classes of
functions F , supf ∈F nmaxi �=j |Mf (i, j) − M̃f (i, j)| → 0 in probability.

Let us now focus on the case of a single function f . If we call L̃ the Laplacian
matrix corresponding to M̃ , we have

nmax
i �=j

|L(i, j) − L̃(i, j)| → 0 in probability,

max
i

|L(i, i) − L̃(i, i)| → 0 in probability.
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We conclude that ‖|L − L̃‖|2 → 0 in probability; we can therefore deduce that
the spectral properties of the Laplacian matrix L from those of L̃, which, when
∀i,Ri = 1, is a “pure signal” matrix, where we have slightly adjusted the kernel.
Here again, the Gaussian kernel plays a special role, since when we use a Gaussian
kernel, L̃ is a scaled version of the Laplacian matrix computed from the signal part
of the data.

Finally, other versions of the Laplacian are also used in practice. In partic-
ular, a “normalized” version is sometimes advocated, and computed as NL =
D

−1/2
L LD

−1/2
L , if D is the diagonal of the matrix L defined above. We have just

seen that ‖|DL − DL̃‖|2 → 0 in probability and ‖|L − L̃‖|2 → 0 in probability.
Therefore, if the entries of DL̃ are bounded away from 0 with probability going
to 1, we conclude that ‖|D−1

L̃
‖|2 stays bounded with high probability and

‖|NL − NL̃‖|2 → 0 in probability.

So once again, understanding the spectral properties of NL essentially boils down
to understanding those of NL̃, which is, in the spherical setting where ∀i,Ri = 1,
a “pure signal” matrix. In the case of the Gaussian kernel, NL̃ is equal to the
normalized Laplacian matrix computed from the “pure signal” data {Yi}ni=1.

The question of centering. In practice, it is often the case that one works with
centered versions of kernel matrices: either the row sums, the column sums or
both are made to be equal zero. These centering operations amount to multiplying
(resp., on the right, left or both) our original kernel matrix by the matrix H =
Idn −11′/n, where 1 is the n-dimensional vector whose entries are all equal to 1.
This matrix has operator norm 1, so when M̃ is such that ‖|M − M̃‖|2 → 0, the
same is true for HaMHb and HaM̃Hb, where a and b are either 0 or 1. This
shows that our approximations are therefore also informative when working with
centered kernel matrices.

3. Conclusions. Our results aim to bridge the gap in the existing literature be-
tween the study of kernel random matrices in the presence of pure low-dimensional
signal data [see, e.g., Koltchinskii and Giné (2000)] and the case of truly high-
dimensional data [see El Karoui (2010)]. Our study of information + noise kernel
random matrices shows that, to first order, kernel random matrices are somewhat
“spectrally robust” to the corruption of signal by additive high dimensional and
spherical noise (whose norm is controlled). In particular, they tend to behave much
more like a kernel matrix computed from a low-dimensional signal than one com-
puted from high-dimensional data.

Some noteworthy results include the fact that dot-product kernel random matri-
ces are, under reasonable assumptions on the kernel and the “signal distribution”
spectrally robust for both eigenvalues and eigenvectors. The Gaussian kernel also
yields spectrally robust matrices at the level of eigenvectors, when the noise is
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spherical. However, it will underestimate separated eigenvalues of the Gaussian
kernel matrix corresponding to the signal part of the data.

On the other hand, Euclidean distance kernel random matrices are not, in gen-
eral, robust to the presence of additive noise. As our results show, under reason-
ably minimal assumptions on both the noise, the kernel and the signal distribution,
a Euclidean distance kernel random matrix computed from additively corrupted
data behaves like another Euclidean distance kernel matrix computed from an-
other kernel: in the case of spherical noise, it is a shifted version of f , the shift
being twice the norm of the noise. For spherical noise, this is bound to create (ex-
cept for the Gaussian kernel) potentially serious inconsistencies in both estimators
of eigenvalues and eigenvectors, because the eigenproperties of the kernel matrix
corresponding to the function fν(·) = f (· + 2ν) are in general different from that
of the kernel matrix corresponding to the function f . The same remarks apply to
the case of elliptical noise, where the change of kernel is not deterministic and
even more complicated to describe and interpret.

Our study also highlights the importance of the implicit geometric assumptions
that are made about the noise. In particular, the results are qualitatively different
if the noise is spherical (e.g., multivariate Gaussian) or elliptical (e.g., multivari-
ate t). Interpretation is more complicated in the elliptical case and a number of
nice properties (e.g., robustness or consistency) which hold for spherical noise do
not hold for elliptical noise.

We note that our study suggests that simple practical (and entrywise) corrections
could be used to go from the “signal + noise” situation to an approximation of the
“pure signal” situation. Those would naturally depend on the noise geometry and
what information practitioners have about it.

Our results can therefore be seen as highlighting (from a theoretical point of
view) the strength and limitations of techniques which rely on kernel random ma-
trices as a primary element in a data analysis. We hope they shed light on an in-
teresting issue and will help refine our understanding of the behavior of kernel
techniques and related methodologies for high-dimensional input data.
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