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Random walks in random scenery are processes defined by Z, :=
> k1 EX 4t x> Where (X, k > 1) and (§y, y € Z) are two independent
sequences of i.i.d. random variables. We assume here that their distributions
belong to the normal domain of attraction of stable laws with index « € (0, 2]
and B € (0, 2], respectively. These processes were first studied by H. Kesten
and F. Spitzer, who proved the convergence in distribution when « # 1 and
as n — 0o, of n_SZn, for some suitable § > 0 depending on « and §. Here,
we are interested in the convergence, as n — 00, of n®P(Z, = |n%x]), when
x € R is fixed. We also consider the case of random walks on randomly ori-
ented lattices for which we obtain similar results.

1. Introduction.

1.1. About the model. Random walks in random scenery (RWRS) are simple
models of processes in disordered media with long-range correlations. They have
been used in a wide variety of models in physics to study anomalous dispersion
in layered random flows [30], diffusion with random sources, or spin depolariza-
tion in random fields (we refer the reader to Le Doussal’s review paper [27] for a
discussion of these models).

On the mathematical side, motivated by the construction of new self-similar
processes with stationary increments, Kesten and Spitzer [24] and Borodin [3, 4]
introduced RWRS in dimension one and proved functional limit theorems. These
processes are defined as follows. Let & := (§,,y € Z) and X := (Xi,k > 1) be
two independent sequences of independent identically distributed random vari-
ables taking values in R and Z, respectively. The sequence £ is called the ran-
dom scenery. The sequence X is the sequence of increments of the random walk
(S, n > 0) defined by So :=0and S, := "7, X;, for n > 1. The random walk in
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random scenery Z is then defined for all n > 1 by

n—1
Zn = Zssk.
k=0

Denoting by N, (y) the local time of the random walk S:
Ny(y)=#k=0,...,n—1:85 =y},

it is straightforward to see that Z,, can be rewritten as Z, = >_, &, Ny (y).

As in [24], the distribution of & is assumed to belong to the normal domain of
attraction of a strictly stable distribution Sg of index B € (0, 2], with characteristic
function given by

b (1) = e~ 1P (Ar+iAzsgn) ueR,

where 0 < A] < 0o and |A1_1A2| < |tan(wB/2)|. When B # 1, this is the most
general form of a strictly stable distribution. In the case 8 = 1, this is the general
form of a random variable Y with strictly stable distribution satisfying the follow-
ing symmetry condition:

(1) sup [E(Y Ly |<py)| < +oc.
M=>0

We will denote by fz the density function of the law Sg.

Concerning the random walk, the distribution of X is assumed to belong to
the normal domain of attraction of a strictly stable distribution S, with index « €
(0, 2]. In this paper, we will actually not consider the case @ = 1 (see Remark 2 in
[24] for some discussion on this case).

Then the following weak convergences hold in the space of cadlag real-valued
functions defined on [0, 00) and on R, respectively:

1/ L
(0™ S 1)), 120, =2, (U )0

and

[nx]
_ c
(n Y %‘k) =2 (Y (¥))xer,
k=0 xeR

where U and Y are two independent Lévy processes such that U (0) =0, Y (0) =0,
U (1) has distribution Sy, Y (1) and Y (—1) have distribution Sg. When « € (1, 2],
the random walk (S,,, n > 0) is recurrent, and the limiting process U admits a local
time process. We denote by (L;(x),t € RT, x € R) the jointly continuous version
of this local time.

Let
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Papers [3, 4, 24] proved that the following weak convergences hold in the space of
continuous real-valued functions defined on [0, 00):

@ ifa>1 (07 Zuimo == (A0,

n—o0
@ ifa<l, 7VPZy)m0 = (V) BINE 0)1F);20,
where

e Z; is defined as the linear interpolation Zs = Z,, + (s — n)(Z,4+1 — Z,) when
n<s<n+1,
e A is the process defined by

+00
a0 = " Lware.
—00
° ]\700 (0) is the total time spent in O by the two-sided random walk (Sk, k € Z)
with S_; = —Z’,‘n:l X _m [where (X_¢, k > 1) is independent of (Xg, &k > 1)
and with the same distribution].

The limiting process A is known to be a continuous §-self-similar process with
stationary increments. It can be seen as a mixture of S-stable processes, but it is
not a stable process.

Since these seminal papers, RWRS have been extensively studied. Far from
being exhaustive, we can cite limit theorems in higher dimension [2], strong ap-
proximation results and laws of the iterated logarithm [12, 13, 25], limit theorems
for correlated sceneries or walks [11, 19], large and moderate deviations results [1,
7, 8, 17], ergodic and mixing properties (see the survey [14]). Our contribution in
this paper is a local version of the convergence results from [24], as we make more
precise in the next subsection.

1.2. The results. Our first statement is obtained in the case when the §’s are
Z-valued random variables. Let ¢z (1) := E[e“1] be the characteristic function of

&1. Remember that there exists an integer d > 1 such that {u : @z (u)| =1} = %’TZ
(d is the g.c.d. of the set of b — ¢ where b and ¢ belong to the support of the
distribution of &; )1

Our first result concerns the case o > 1.

THEOREM 1 (Lattice case, @ > 1). Assume that o € (1,2] and S € (0, 2]. Let
C(x) be the continuous function defined by

Cx):= E[|L|Elfﬁ(|L|/§1x)] forall x e R,

where |L|g := ([ Lf(y) dy)'/B . Then, for every x € R, we have 0 < C(x) < 00
and

INote that & is said to be nonarithmetic if d = 1.
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o ifP(ng; — |nx| ¢ dZ) =1, then P(Z,, = |n’x]) =0;
o ifP(ng; — |nx| €dZ) =1, then
C(x)

P(Z, = [n°x]) =d—5=+ o),
n

where the o(n°) is uniform in x.

REMARK. There is no other alternative for the law of &;. Indeed, let b be in the
support of &. Then n&; belongs to nb + dZ. Hence, the condition n&; — |n’x] €
dZ is equivalent to [n°x | —nb € dZ.

Our second result concerns the case @ < 1.

THEOREM 2 (Lattice case, a < 1). Assume that a € (0,1), B € (0,2] and
x €R. Let D(x) :==rfg(rx), withr := E[ﬁfo_l(O)]_l/ﬂ.

o IfP(ng — [n'/Px] ¢ dZ) =1, then P(Z, = |n'/Px]) = 0;
o ifP(n& — |n'Px| €dZ) =1, then

D)

—-1/8
nl/ﬂ +0(n )7

P(Zy=n'Px))=d
where the o(n=1/) is uniform in x.

REMARK. We notice that in (2) and (3) it was assumed for simplicity that
d =1, but analogous results hold with general d. It can then be seen by using the
Fourier inverse transform that C(x) and D(x) are the densities, respectively, of
A(1) and r=1Y (1).

Finally, we get the local limit theorem when & is strongly nonlattice, that is,
when limsup,,,|_, 4o l9g ()| < 1.

THEOREM 3 (Strongly nonlattice case).

e I[fa>1and B €(0,2], then for all a, b € R such that a < b,
lim n’P[Z, € [n°x +a;n’x +b]] = C(x)(b — a).

n—oo

e Ifa<1andpB €(0,2], then for all a, b € R such that a < b,
lim n'/PP[Z, € [n'Px +a;n'Px + b]] = D(x)(b — a).
n—oo

On the one hand, these results give some qualitative information about the be-
havior of Z. For instance, the transience of the process Z is easily deduced (with
Borel-Cantelli lemma) when 8 < 1. Note that since Z is not a Markov chain, the
recurrence property when 8 > 1 does not directly follow from the above local
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limit theorems. However, this can be proved by using an argument from ergodic
theory (see [31]). Indeed, it is enough to remark that when g € (1, 2], the random
variables &g,, kK € N form an ergodic and stationary sequence of integrable and
centered random variables.

On the other hand, this work was motivated by the study of random walks on
randomly oriented lattices. In the simplest case, one should think to the simple
random walk defined on a random sublattice of the oriented lattice Z?, which is
constructed as follows. On each horizontal line, one removes all edges oriented to
the right with probability 1/2 or those oriented to the left with probability 1/2, and
so independently on each level. Then it is known, and not difficult to see, that the
first coordinate of the resulting random walk is closely related to a random walk
in random scenery Z =}  &s,, with S the simple random walk on Z and the &,
i.i.d. random variables with geometric distribution (see Section 5 or [18] for more
explanations). In [18], it was conjectured that the probability of return to the origin
of this random walk is equivalent to a constant times n /4. Here, we prove a local
limit theorem for even more general random walks, giving in particular a proof of
this conjecture. We refer the reader to Section 5 for more precise statements of our
results.

1.3. Outline of the proof. Let us give a very rough description of the proofs
for RWRS. To fix ideas, we do it for x = 0 and « > 1. By the Fourier inverse
transform, we have to study the asymptotic behavior of

4) /E[e”z"]dt:/E[]_[ ws(th(Y))] dr.

yeEZL

For ¢ such that N, (y) is small, only the behavior of ¢¢ around O is relevant.
Therefore, for |¢| < (sup, N,(y) L p~1Hle,

E[]‘[ sosuNn(y))} :E[exp(—|r|ﬁ S NP (A +iA2sgn(r>))]
y

yEZ

Now, 3., Ny (y)? is of order n#®, and a change of variable ¢ ~ n’t leads to the
dominant part in the integral (4).

Fort > (sup, Ny (y)) "' ~n~1+1/« the behavior of @g away from O comes into
play. In the strongly nonlattice case, one can find €p > 0 and p € (0, 1) such that
lpg ()] < p for |t| > €, so that for || > n~!T1/e

[T (an(y))' < pHyiNazeo/1) < [y Na(zeon' =1}
VEZ

It is easily seen that there is a large number of points visited at least n!~1/¢ times,
leading to the result.
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The lattice case is more delicate, since in this case |pg(f)] =1 for ¢ €
%”Z, so that the inequality |¢z(tN,(y))| < p is only valid for the y such that
d(tN,(y); 2T’TZ) > €g. Thus, the main difficulty is to show that for |¢| > nl-le
there are a lot of such sites. This is done by a surgery on the trajectories of the
random walk.

Let us briefly describe now the organization of the paper. In the next section,
we prove Theorem 1. In Sections 3 and 4, we sketch the proofs of Theorem 2 and
Theorem 3 which are easier and follow the same lines. In Section 5, the local limit
theorem for random walks evolving on randomly oriented lattices is obtained by
using similar techniques as for the proof of Theorem 1. Finally, in the Appendix,
we prove some auxiliary results on the range of the random walk S, that we should
need, but which could also be of independent interest.

2. Lattice case, a > 1: Proof of Theorem 1.

2.1. Finiteness of C(x).

LEMMA 4. Forallx eR,0 < C(x) < +o0.

PROOF. Letx € R. Since [p Li(y)dy =1and g <2, we have as.

/Ruf@dyg 14 sup Ly (y) B+,
y

Hence, [ L’f(y) dy is a.s. finite. So C(x) > 0.
Let us prove now that C (x) is finite. First, we have

Cx) < [ fpllooBIILI5 1.

Let us assume now that 8 > 1. By Holder’s inequality,

1-1/8
1=/RL1(y>dys|L|,s(/Rl(L1<y>>0)dy) .

Thus, by using Jensen’s inequality, we get

cw = ptt]( [ 1> 0a) ]

< 1 fallos (B| ([ 14212 > 0) dy)DH/ﬂ

= | f5lloo (B[A(U ([0, 11)])' ~#,

where A denotes the Lebesgue measure on R and U ([0, 1]) the set of points visited
by U before time 1. This finishes the proof in the case 8 > 1, since the last quantity
is finite (see, e.g., [28], page 703).
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Next, if 8 =1, then |[L|g =1 and C(x) = fg(x) < +00.
Assume finally that 8 < 1. Then

1-8
1= [ Ligdy =L (swp i)
R X
so that
_ 1-p)/B 1—8 [T 4
E[|L|3" <E|(supLy(x =—/ tYP=2P|sup Ly (x) > t|dt.
121 <E[(supLico) " === | [sup L1 () = 1]
Therefore, it suffices to prove that there exists a constant ¢ > 0 such that
5) P[sule(x) > t] <2exp(—ct) for all r > 0.
X

This follows from stronger results proved in [26], but for sake of completeness,
let us give a soft argument here. For a > 0, let 7, := inf{¢ :sup, L;(x) > a}. The
random variable 7, is a stopping time, and by continuity of ¢ — sup, L;(x),
sup, L, (x) =a on {r, < oo}. It follows then from the inequality

sup L;y5(x) < sup Ly (x) + sup(L4s(x) — L (x))

and from the strong Markov property that for any a > 0 and b > 0,

]P’[sule(x) >a —{—b] :}P’[ra <l;supLi(x)>a —I—b]
X X
< E[l{ragl}PUm [Sljp Li(x)> b]]

where for any v, P, denotes the law of the process U starting from v. By transla-
tion invariance, the law of sup, L1 (x) does not depend on the starting point of U.
Therefore, for any a > 0 and b > 0,

P[sule(x) >a+ b] <Plr, < l]IP’[sup Li(x)> b]

(6)
= }P’[sgp Li(x)> a]lP’[Sl;le(x) > b].

Let M > 0 be a median of sup, Li(x). By (6), forall # > 0,

Lt/M] 1\ /Ml
IED[sule(x) > t] < P[sule(x) > M] < (_> ,
X X 2

which ends the proof of (5). U
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2.2. A first reduction.
LEMMA 5. Letn > 1 and x € Z be given.

o [fPné& —x ¢dZ)=1, then P(Z,, =x) =0.
o [fPné —x €dZ]) =1, then

d w/d ]
P(Z,=x)= > /_ o exp(—ztx)E[yE[Z @ (tNy, (y))} dt.

PROOF. This kind of result is relatively general (see, e.g., [20], Chapter 4), but
we give a proof for reader’s convenience. We have

1 2
P(Zy=n)= 5 [ exp(-itgneydr,
2w Jo

where ¢, is the characteristic function of Z, given by

on(t) = E[H gog(th(y))} for all t € R.

YEZL
Notice that e%7¢1/4 = E[¢?7€1/4] almost surely. Hence, for any integer m > 0 and
any u € R,
2mm 2 \"
o 45) () o
Therefore,

1 4=l prya 2k 2k
P(Z, =x)= — —ilr+ — — +1t)dt
Zn=x) = kg(:)./—n/dexp( l( T )x)%< a " )

d—1
= %]{2:;)/_]:; exp(—itx) exp(—iZanx>
27\ FNa(2)
<E[[Mee(5)  eeemaon}|ar

y

—TT

1 dZI ( 'an> (ZH)kn /ﬂ/d (—itx)gn (1) dt
= exp| —i —x — exp(—itx ,
2\ o exp( == e (5 45 On

since Yy, Nu(y) = n. Moreover, [e‘i(Z”/d)x(pg(%”)"]d = e i2mx2imnElL — | thuys
e‘i(Z”/d)"gog (27”)” is a dth root of the unity. Hence,

d—1 k 2 n )
Y ik, (2_71) " [d, if g (%) e—iCr/dx _ .
d

k=0 0, otherwise.

Since ¢ (27”) = ¢2761/d 3 5., the lemma follows. [
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2.3. The event ,,. Set
N, :=supN,(y) and R,:=#{y:N,(y)>0}.
y

LEMMA 6. Foreveryn>1andy > 0, set

INn(¥) = Na )| _ n(1_1/a+y)/2}
ly—z|@-Dz = '

Q,=Qu(y) = {Rn <Vt and sup

V#2Z

Then P(2,) =1— o(n_s). Moreover, given n >y max(«/2,2(8 — 1)/B), the fol-
lowing also holds on 2,:

8p—np/2 j
* 1—-1/a+n o Z B n s ifg>1,
(7) Ni’l S n and Vn = Nn (Z) Z {naﬁ_n(l_ﬂ) UCIB < 1
b4 ’ -

PROOF. We prove in the Appendix that for every y > 0, there exists C > 0
such that
P(Ry <E[R,n") =1 -0 ).
Since there exists ¢ > 0 such that E[R,,] ~ cn!/®
that

(see [32], page 36), we conclude

P(R, <n'/**7y=1—0n™?%).

Now let us prove that

P(Sup Na) = Na @] m) g
y#2

|y _ Z|(a¢—l)/2

According to the proof of Proposition 5.4 in [28], we have: E[|S,|P] = OnP/®),
for all p € (1, @). Then Doob’s inequality gives that, for all 8 > §/p,

P(sup Sk =) =00y = o).
k=1,..., n

So we can restrict ourselves to the set A, := {sup_; ., [Sk| < n'/@+%)y But on
Ay, if Ny(z) > 0 then necessarily z € (—n!/@+9 pl/e+8") Thys,

IP’(sup |Nn(y) — N (2)| > Jpl=Taty. An>
v,z

|y_Z|(afl)/2

®)

< 5p2/a+28' supP(lN” (y) = Nu(2)| - m)
#2

y |y_z|(a71)/2 —

Moreover, the Markov inequality gives for all m > 1

P<|Nn(y>—Nn(z>| >W> __EIN.) = Na@)P]

ly — z|@=D/2 = ~ly— z|@=Dmp(A=1/a+y)m

©)
for all y # z.
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In addition, according to [23] [see the formula in the middle of page 77, with
m=0n),a,' =0nm"Y*) and Q(z)~! = O(z%)], we have for all m > 1,

E[| Ny () — Nu(2)*"]

(10) sup Iy — z@Dm

y#2
Thus, if we take m > (§ +2/a + 258") /v, then by using (8), (9) and (10), we get

B 2/at26'
P(Sup |Nn(y) — Np(2)] > W) — (’)(n ) =on™?).

vt |y —z|@=D2
We now prove (7), starting with the upper bound for N,'. For this, let yo be such
that N, (yo) = N,, and let z be the closest point to yo such that N, (zo) = 0. Then
on 2,

— O(n(l—l/oc)m).

nym

lyo — zo| < R, <n'/*T7,

and thus

N, (y0) < \/Iyo _ ZO|oz—lnl—1/o¢+y < \/n(l/cx—l—y)(a—l)nl—l/oﬁy

(11

— nl—l/a—i—oty/Z.

The desired upper bound for N, follows if n > oy /2.
To prove the lower bound for V,, we use the fact that n =, N,(y). When
B > 1, this gives by using Holder’s inequality

/B
n= (Z er?(z)) R,ll_l/ﬂ < (V)V/Bp /et A=1/F)
Z

Hence an /P > pd=7(B=D/B and the desired lower bound for V,, follows if 2(8 —
1)y <nB. When 8 < 1, we write

n=7y Ny < Vu(ND'P,
y

and the desired lower bound follows from the upper bound for N’ proved just
above. [

2.4. Scheme of the proof. Let n > 0. Set y := nB/2. We observe that y <1
and that (7) holds with this choice of (1, ). We also set

—_In itg>1,
”'—{n/ﬁ, ifg<1.

By Lemmas 5 and 6, we have to estimate

/ M ith&xJE[l |(p N, (y)1q ]dt
- e .
27_[ _ /d v E n n

This is done in several steps presented in the following propositions.
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PROPOSITION 7. Let n € (0, m). Then, we have

d
2

[ B Toe0N, 0010, [t =a 52 4 07,
t|<m—oTh y

uniformly in x € R.

Recall next that the characteristic function ¢ of the stable distribution Sg has
the following form:

b (1) = e~ 1P (ArFiArsgn)

for some 0 < A; < o0, |A1_1A2| < |tan(wB/2)|. It follows (see [22], Theo-
rem 2.6.5) that the characteristic function ¢¢ of &; satisfies

(12) 1 — g (u) ~ |ulP (A] +iApsgn(u)) when u — 0.
Therefore, there exist constants g > 0 and o > 0 such that
(13)  max(|p )], |z w)]) <exp(—alulf)  forall u € [—&o, go].

Since @g (t) = @e(—t) for every t > 0, the following propositions achieve the
proof of Theorem 1:

PROPOSITION 8. Let 1 be as in Proposition 7. Then there exists ¢ > 0 such
that

—1+1/a—n

/n—m E[l:[ (7 (an(Y))llszn} dt =o(e™).

PROPOSITION 9. Let 1 be as in Proposition 7T and let € € (1, m) be
given. Then there exists ¢ > 0 such that

n—1+1/a+s

-/ ~1+1/a— E[n"pf(’Nn(y))ﬂQn]dt=0(e—"”)_
gon n v

PROPOSITION 10. Let n be such that y < mln(z—z, l0’—1) and let ¢ € ((2“

Dy, 1— é) be given. Then there exists ¢ > 0 such that

w/d .
/ E[]—[st(th(y))Ilszn]dt =o(e™).
y

n—1+1/ate

To end the proof of Theorem 1, we observe that there exists (1, ¢) satisfying
all the hypotheses of these propositions (by taking n > 0 small enough and ¢ <

—1
m large enough).
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2.5. Proof of Proposition 7. Remember that V, =} N,'? (z). We start with
a preliminary lemma.

LEMMA 11. IfB > 1, then

nd \B/B-D
supIE[( l/ﬁ) }<+oo.

If B <1, then forall p>1,
n® \?
supE|:< 1//6) }<+oo.

A direct consequence of this lemma is that the sequence (n’ Vn_l/ P ,n>1)is
uniformly integrable.

PROOF OF LEMMA 11. We start with the case 8 > 1. We already observed in
the proof of Lemma 6 that for every n > 1,
n< an/ﬁRé—l/ﬁ_

But it is proved in [28], equation (7.a), that E[R, ] = On'/*). The result follows.
We suppose now that 8 < 1. Since we have

(14) n=> Nuy(x) < Vi(NH'P,
X
we get
) N 1/8—1
n N
(15) g = ( l—rll/oe) .
Vn n
We use next the fact that N,* is a subadditive functional
(16) N,f+m <N, + N, 006y,
where
m—1
Ny o6y :=sup ¥ 15, —x}
* k=0
m—1
= Sup Z I{Sn+k_S11:x}’
Y k=0
is independent of o (S, ..., Sp—1). Moreover, 0 < N;l“ 1 N < 1. Therefore, we

can prove in exactly the same way as for the range [see (46) in the Appendix], that

(17) P(N* >a+b) <P(N}>a)P(N*>b)  foralla,beN.
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Now it is known (see, e.g., [5]) that N7/ nl—1e converges in distribution toward
sup, Li(x). Let r > 0, be such that P[sup, L1(x) >¢] <1/2. Since

. * 1-1/«a
lim P(N; > !V ) sP(sgmex) >1) <1/2,

we obtain that for n large enough, P(N,; > ltn'=1/% |y < 2/3. Hence for n large
enough, and all p > 1,

N* p 00 1 1-1
E[(ﬁ) }:pf xPTIP(NG = xn' ) dx
n 0

e}
< pt”/ uP PN = tn' V) du
0
(18) ~
< ptpf uPIP(NF > [en! Vel gy
0

00 2\ Lud
< pt”/ up_l<—) du,
0 3

where the first inequality in (18) comes from (17). Thus, for all p > 1,
Ny \?
The lemma now follows from (15). [
The next step is the following lemma.
LEMMA 12. Under the hypotheses of Proposition 7, we have
/ e—itl_néxJE[{H@s(th(y)) o P Va(AFiA sgn(z))}lgn:| dt = o(n=),
|t|<n=0+7 y
uniformly in x € R, where A1 and Aj are the constants appearing in (12).
PROOF. It suffices to prove that
/ . E[l_[ 0: (th(y))IQn] — E[e I ValA1+idz Sgn(t))lgn]‘dt =o(n™’).
[t|<n=0t1 y

Set

En(t) =[] e:tNa(»)) =[] exp(—1tIP NP () (A1 +i Az sgn(®))).
y y

Observe that
E,(1) = Z(l_[ @z (N, (Z))> (s (tN2 () — e IHPNE D) Ar+iA sn(o))

y <y

y (H o IHPNE @) (A +iA sgn(t)))_

7>y
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But on §,,, if |t| < n~%*7, then
(20) |t| Ny (z) < n 11/ @F)

This implies in particular that |¢| N, (z) < &g for n large enough, since the hypoth-
esis on n implies n + 7 < 1/(apB). Thus, by using (13), we get

|Ex(D)] <) |pe (tN2 () — exp(—[t1P NP (y) (A1 +iAzsgn(D)))|
y

X exp<—0|t|’3 Z N,’f(Z)),

z#y

for n large enough. Observe next that (12) implies
e (u) — exp(—ulP (A1 +iAzsgn)))| < |ulPh(lu])  forallu R,

with & a continuous and monotone function on [0, +00) vanishing in 0. Therefore,
by using (20), we get

|En(0)] < 1P h(umH =1/ @) 3 N (y)exp(—a|z|ﬂ > N/f(z)).
y F£y

Now on €2, according to (7) and the hypothesis on n, if n is large enough,

Y Nf@)=V,/2  forallyeZ.
#y

By using this and the change of variables v = tV,,1 /P , we get
f E[|E,()|1g,1dr < h(n”+ﬁ—1/<“ﬁ))1€[vn—1/ﬁ]/ lv|? exp(—c|v|? /2) dv
|t|<n—8+7 R
= o(ELV, /P,
which proves the result according to Lemma 11. [J

Finally, Proposition 7 follows from the following lemma.

LEMMA 13. Under the hypotheses of Proposition 7, we have

d

. . C(x
E'/ y 7e_lttnaxJE[e_ltlﬁV"(AI—HAZSgn(t))lgn]dt =d (8) +0(n—5)’
|t]<n—o+n n

uniformly in x € R.

PROOF. Set

I ;=/ oitlnx] =P V(A1 +i Ay sen() g,
' |t]<n—8+7
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Since ||n’x | —n’x| < 1, for all n and x, it is immediate that
I :/ _e—imsxe—|z|ﬂvn(Al+iA2 sen(t) gy 4 O (n~25+27),
t|<n—0+7
But 277 < 1/(a¢f) < § by hypothesis, so actually

]nx :/ e—itn‘sxe—|f|ﬁVn(A1+iAzsgn(l‘)) dt+0(n_5).
T Jitjsnse

Next, after some changes of variables, we get

/ =it = It1P Vo (A1 +iAs sgn(0) g,
lt|<n =047
_$ l’l(S n‘sx
=n e\ s ) T e

Ty = / o= i0% =01 (Va/nP) (A1 +i Ay sgn(v) g
’ v|=n"

ey

where

Now it is known that W,, := n® Vn_l/ A converges in distribution, as n — o0, to-
ward W = |L|/§1 (see [10], Lemma 14 or [24], Lemma 6). Then by Skorohod’s

representation theorem, we can find a sequence (Wn,n > 1) and W distributed,
respectively, as (W, n > 1) and W such that W, converges almost surely toward
W. Moreover, Lemma 11 ensures that the sequence (Wy,n > 1) is uniformly inte-
grable, so actually the convergence holds in L!. Let us deduce that

(22) Elgx(Wn)] = El[gx(W)] +o(1),
where gy : z+> zfg(xz) and the o(1) is uniform in x. First,
B2 (W) —Elg: (W] < sup [(gx) @)IE[W, — W|]

x,zeR
< sup | fp(u) + ufg ) [E[| W, — W]].
u
But remember that
Folu) = 1 f it =t (A1 +iAzsen() g
2m JR
So after differentiation under the integral sign and integration by parts, we get
1 . ,

ufp(u)=—— e”“(l — Bsgn()|t|P (A1 + i Ay sgn(p)))e I (Artidasen®) gy

In partlcular, sup,, | fpu) +u fé (u)| is finite, and this proves (22).
In view of (21), it only remains to prove that E[J,, x1q,] = o(1). But this follows
from the basic inequality

E[[Jyxlg, [ < f E[e M 1 Tdy

[v|=n"

and from the lower bound for V,, given in (7). O
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2.6. Proof of Proposition 8. Recall that on ,, N,(y) < n!=V**1 for all
y € Z. Hence, by (13),

gon~1H1/a=n 80,1—1+1/a—n

/;;—Hﬁ E[l:[ lps (th(y))Ilgzn] dt < _/,-,—6+ﬁ E[exp(—atﬁVn)lgzn]dt.

But on €2,,, we can also use the lower bound for V), given in (7), which implies that

8()n—1+1/cx—n

[0 E|TTeenonitg, |dr e,
n=oTl y

for some constant ¢ > 0, depending on g. This proves the proposition.

2.7. Proof of Proposition 9. First note that by using again (13), we get

[T1e: N ()| < exp(—atﬂ > N§ (z))
(23) ’ 7: Ny (z)<ggnl—l/e—e
forall t < p—1tl/ete,

The proof will then be a consequence of the following.

LEMMA 14. Under the hypotheses of Proposition 9, for n large enough and
on ,, we have

2/(a—1)
#{Z:%nl—l/a—e < N,(2) Seonl—l/a—e} > (%) /e pl/a=Qety)/(@=1)

Indeed according to this lemma and (23), we get for n large enough and on €2,,,

H g (t N ()] < exp(—o'n~PU—Vatmyl/a=Qety)/@=D, f1=1/a=e))
y
< exp(_g/n1/a*ﬂ(n+e)f(28+y)/(a*1))
for all ggn~ 11— < < p—1+1/ete
for some constant o’ > 0. This proves Proposition 9, since the hypothesis on & and
y implies that
2e +y 1 3¢

1
— —B(n+e) - >~ — 286 —
o a—1 o a—1

> 0.
PROOF OF LEMMA 14. Let y; be such that N, (y1) = N;; = sup, N, (z). Since
n=Y,Ny(z) < NiRy, we have N,(y1) > n'=1/%=7 on Q,. Set

. 0 |1 /0
Y0 :=mm{y2y1:Nn(y)§3nl lea—et
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Observe that yg > y; for n large enough, since ¢ > y by hypothesis. In particular,
€0 1_1/g—
Na(yo = 1) > ! =178 = Ny (30).
But on £2,,,
Na(yo = 1) = Nu(yo) < n!71/et02,

Moreover, the hypotheses made on y and e imply that y < (1 — 1/«)/3 and ¢ <
(1—-1/a)/3. Thus e < (1 —1/a — y)/2, or equivalently (1 — 1/ +y)/2 <1 —
1/a — €. Therefore,

(24) ! T8 < Ny (o) < Tl e

for n large enough. Next if |yg — z| < (f—%)z/("‘_])n1/"‘_(28+7’)/(“_1), then on €2,

[Nu(2) = Na(o)| =/ Iyo — 2l m! ety < ! =V,

Together with (24), this proves the lemma. [J

2.8. Proof of Proposition 10. Let M and N be two positive integers such
that P(X; = N) > 0 and P(X; = —M) > 0. We denote by C* the (M + N)-

tuple (N,...,N,—M,...,—M) in which N is repeated M times and then
—M is repeated N times. We denote by C~ the “symmetric” (M + N)-tuple
(-M,...,—M,N,...,N) in which —M is repeated N times and then N is re-

peated M times. Set T := M + N and observe that
p:=P(X1,....,Xr)=C")=P((X1,..., X7)=C") > 0.

Let us notice that (X1,..., X7) = CT corresponds to a trajectory going up to
MN (in M steps) and then coming back down to O (in N steps). Analogously,
(X1,...,Xr) =C" corresponds to a trajectory that goes down to —MN (in N
steps) and comes back up to O (in M steps).

We introduce now the event

n
D, :={Cn>%},

where
n
Cn =#{k=0, ey \‘?J —1: (XkT+1, ...,X(k+1)T) =C:i:}

Since the sequences (Xx7+1, ..., Xk+1)7), for kK > 0, are independent of each
other, Chernoff’s inequality implies that there exists ¢ > 0 such that
P(D,) =1—o0(e™").

We introduce now the notion of “peak.” We say that there is a peak based on y at
time n if S, =y and (X;,+1,..., Xpn+1) = C*. We will see (in Lemma 15 below)
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that, on 2, N D,, there is a large number of y € Z on which are based a large
number of peaks. For any y € Z, let

n
Cn(y) = #{k = 0, ey \;?J —1: SkT =Yy and (XkT—H, ey X(k+1)T) IC:E},
be the number of peaks based on y before time »n (and at times which are multiple
of T), and let
pni=#y €L:Cu(y) zn'~H72)
be the number of sites y € Z on which at least n' ~1/=2 peaks are based.
LEMMA 15. On Q, ND,, we have p, = 3NMn'/*=%" for n large enough.
PROOF. Note that C,(y) < N, (y) forall y € Z. Thus, on 2, N D,,
np
— < > Ca(y) + > Ca(y)
2T
YEZL: Cu(y)<nl=1/a=2y yE€Z: Cp(y)=nl=1/a=2y
<n!"VeR, + N¥p,
< nl—y +pnnl—1/a+ay/2,
according to (11). This proves the lemma. [
We have proved that, if n is large enough, the event €2, N D,, is contained in the
event
Ep = {pn > 3NMn'/*—o7},
Now, on &,, we define Y; fori =1, ..., Lnl/“_“yj, by
Y| :=min{y € Z:Cp(y) > n'~1/2727}
and
Yir1 :=min{y > Y; + 3NM :C,(y) = n'~1/*=2r}  fori>1.
The Y;’s are sites on which at least n!~1/#=2¥ peaks are based and are such that

1-1/a—2
|Y; — Y;| > 3NM,ifi # j. Foreveryi=1,..., [n"/e= | lets], ... t" g

l
be the [n!~1/2=27| first times (which are multiples of 7') when a peak is based

on the site Y;. We also define N,? (Y; + NM) as the number of visits of S before

time n to Y; + N M, which do not occur during the time intervals [tl-j , tl-j + T, for
j < a2,

LEMMA 16. Conditionally to the event &,, (N,(Y; + MN) — N,?(Y,- +
MN),i > 1) is a sequence of independent identically distributed random vari-
ables with binomial distribution B(|n'~1/¢=2v |; %). Moreover, this sequence is

independent of((N,g(Y,- + MN),i>1).
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PROOF. On &,, we have

Lnl—l/o{—ZyJ

Na(Yi+ MN) = NJ(Yi + MN)= > Lix, ..x

) +1,
j=1 e XS

since the peaks based on the other Y;’s cannot pass through Y; + M N. But condi-
dent Bernoulli random variables with parameter 1/2, which is independent of
Xk, k ¢ U,-,j[ti’, e tl-J + T1). Since N,?(Y,- + M N) only depends on the values
of the Xj’s for k ¢ Ui,j[ti]’ cees tl-J + T, the result follows. [

Let now p :=sup{|ps (u)|:d(u, 27”2) > go}. According to (13),

2 \P
lpe ()| < pliaw,r/d)z)>ep) + CXP(—O’d<u, FZ) >l{d(u,(2n/d)Z)<eo}

S exp(_o,n—l/(x+20l)/)’

as soon as d(u, 27”Z) > n V@) +2av/B and p < exp(—on~1/%+t227) But recall
that p < 1 and 2%y < 1. Therefore, for n large enough,

[Tle: ¢ Nu(2))]

(25)
< exp<—on1/a+2ay#{ztd<th(Z), %’Z) > nl/(aﬂ)+2ay/ﬂ}).

Then notice that

277
(26) d(an(Z), %) > n—l/(otﬁ)-l—Zoty/ﬁ = Nn(Z) el := U Iy,
keZ

where for all k € Z,

|:2k7'[ n— 1/ (@p)+2ay/p 2k + D7 n—l/(aﬁ)+2ay/,3]
k= ) .

dt * t dt t
In particular, R \ Z = {7z, Jk, where for all k € Z,

2kr  nV@B+2ay/B opn  p—1/(@f)+2ay/B
Jip = ( , + )
dt t dt t

LEMMA 17. Under the hypotheses of Proposition 10, for everyi < |n'/¢=%7 |,
t € (n~"TVe*e 7/d) and n large enough,

P(N,(Yi + MN) € Z|&,, NOY; + MN)) > % almost surely.
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Assume for a moment that this lemma holds true and let us finish now the
proof of Proposition 10. Lemmas 16 and 17 ensure that conditionally to &, and
((N,?(Y,- + MN),i > 1), the events {N,(Y; + MN) € I}, i > 1, are indepen-
dent of each other, and all happen with probability at least 1/3. Therefore, since
Q, ND, C&,, there exists ¢ > 0, such that

nl/a—ay nl/a—ay
}P’(QnﬂDn,#{i:Nn(YiJrMN)eI}g ) )f]P’(an ) >

= o(exp(—cn)),
where for all n» > 1, B,, has binomial distribution B(l_nl/ a—ay; %).

But if #{z: N, (z) € I} > n'/%=%¥ /4, then by (25) and (26) there exists a con-
stant ¢ > 0, such that

[ 10zt Nu(2))] < exp(—cn'/*=@7 p=1/et2er),
Z
which proves Proposition 10.

PROOF OF LEMMA 17. First notice that by Lemma 16, for any H > 0,
Q27)  P(N,(Y; + MN) € Z|&,, N°(Y; + MN) = H) =P(H + b, € T),
where b, is a random variable with binomial distribution B(|n!~1/*=27 |; %). We
will use the following result whose proof is postponed.

LEMMA 18. Under the hypotheses of Proposition 10, for every t €
(n=1TVe*e 7 /dy and for n large enough, the following hold:

(1) For any integer k such that all the elements of Iy — H are smaller than
%Lnl—l/a—ZyJ

P(bn e (I — H)) ZP(Z)" e (Jy — H))

(ii) For any integer k such that all the elements of Iy — H are larger than
%Lnl—l/a—ZyJ

]P)(bn e (Iy — H)) > ]P’(bn € (Jgg1 — H))
Now call ko the largest integer satisfying the condition appearing in (i) and k

the smallest integer satisfying the condition appearing in (ii). We have k1 = ko + 1
or ki = ko + 2. According to Lemma 18, we have

P(H+byeD)> Y P(H+byel)+ Y P(H+by € I)

k=<ko k>ki
> ) P(H+byeJ)+ ) P(H +by € Jey1)
k=<ko k>ki

=P(H+b, ¢1) —P(H + by € Jiy+1 U Ji).
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Hence,
P(H + by €T) > 3[1 — P(H + by, € Jyg11 U Ji)]-

Let by, := 2(b, — %Lnl_l/o‘_zyj) |n!=1/2=2v |=1/2 5o that b, converges in distrib-
ution to a standard normal variable, whose distribution function is denoted by ®.
The interval J;, being of length 2n =1/ @) +2av/B /¢
]P)(H + bn € Jkl)
n—1/(@B)+2ay/B

t /Lnl—l/a—Zy_]

=P(by, € [mn, M,]), with M,, —m, =4

C
<dM,) —dm,) + ———— (by the Berry—Esseen inequality)
nl—1/a=2y
M, —m, C
< +
N2 nl=1/a=2y
< Ol 2+ Q)Y +2ay 51 /@)~ 1fa—e | C
- [p1—Tja=2y"’

for t > n~!T1/¢+¢ and some constants C > 0 and C’' > 0. Since o <2, 8 < 2,
y < %“T_l and ¢ > 2ay /B + y by hypothesis, we conclude that P(H + b, € Ji,) =
o(1). The same holds for P(H + b, € Ji,+1), so that for n large enough,

P(H +by € D) = 511 —o()] = 3.
Together with (27), this concludes the proof of Lemma 17. [J

PROOF OF LEMMA 18. We only prove (i), since (ii) is similar. So let £ be
an integer such that all the elements of Iz — H are smaller than %Lnl_l/ =2y
Assume that (Jy — H) N Z contains at least one nonnegative integer [otherwise
P(b, € (Jx — H)) = 0 and there is nothing to prove]. Let zz denote the greatest
integer in Jr — H, so that by our assumption P(b, = zz) > 0 (remind that 0 <
7k < %Ln'_l/“_zyj). By monotonicity of the function z — P(b, = z), for z <
%l_nl_l/“_zyj, we get

on— 1/ (@B)+2ay /B
P(b, € Jx — H) <P(by, = zp)#((Jx — H) N Z) < P(by, =zk)[ ; —‘
In the same way,
P(by, € Iy — H) > P(by = z)#((Ix — H) N Z)
or op~V@p)+2ay/p
dr t J

zmmzaﬁ
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Hence,

L2 /(dt)) — 2n_1/(01,3)+2ay/ﬁ/tJ

P, ely—H)> [2n—1/@B)+2ay/B /1]

P, € Jy — H).

But 77/(dt) > 1 and 2’y < 1 by hypothesis. It follows immediately that for n
large enough, we have 2n =1/ @A) +22v/B 7 /(24), and so

Vﬂ 2n_1/(“/3)+2“7’/5J {37{J { P J [ T 1
— = > —|>214+|—|>|=—
dt t 2dt 2dt 2dt

2= 1/@B)+2ay /B
- |
t

This concludes the proof of the lemma. [

3. Lattice case, o < 1: Proof of Theorem 2. 'We only sketch the proof, since
it is very similar and simpler than in the case « > 1. In particular we keep the same
notation, for instance for N,’, R,, V,, €o, ...

We first introduce the analogue Q;, of Q,,:

Q, =Q (e) :={N} <n®},
which is well defined for any . Note that on €2/, we have
(28) V= Ryz=n'"".

Since N;f = supz;(l)[Nn(Sk) — Ni(Si)], we obtain that

P(N; > n*) <nP(sup N,y (0) = nf) <npfj ",
m

where po :=P(3k >1 : Sy =0). Since @ < 1, the random walk S is transient and
po < 1. It follows that P(Q2/)) = 1 — o(exp(—n®)), for some constant ¢ > 0, and
we can restrict our study to this set. Moreover, it is known (see, for instance, the
Introduction in [24] for an argument) that

1 1 ~

V. — — B -1 — =B

V=~ %NH 0, = EING O] =r as.

y

We claim now that (n!/# Vn_l/ A ,n > 1) is uniformly integrable. Indeed, if 8 > 1,
this comes from the fact that V,, is larger than n, and when g8 < 1, this follows from
the following.

LEMMA 19. If B < 1, there exists y > 0 such that

(29) sng[exp(y %)} < 00.

n
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PROOF. Sincen =), N,(x), Holder’s inequality gives
TN
V., — n

Since
=Y Na(x)> == Nu(S),
oy =0

Jensen’s inequality gives

¥, Nn(x>2> 1’

eXp<y < — Y exp(y Nu(Sp)).
n n k=0

Hence,

n

Ny (x)? 1
E[exp(y M)} < = 3" Blexp(y Nu(S0)]
k=0

< E[exp(y Noo (0))].

Then, (29) directly follows from the fact that Noo(0) is equal to 1 plus the sum of
two independent geometric variables with positive parameter, and thus has finite
exponential moments. [

Lete > 0andn > 0besuchthat n+¢ < 1/6 and ¢ < nB < 1/2. As in the proof
of Proposition 7, we deduce that

‘ —itln!Px] [ } D(x) o
2n /f|<n—1/ﬂ+ne 1:[905( 2 () 1P +o(n )

where the o(n~!/#) is uniform in x. It remains to prove that

w/d
(30) d / dt =o(n~/P).

27 Jp—1/B+n

E[l‘[ wgaNn(y))lQ;]
y

As in the proof of Proposition 10 [see the beginning of Section 2.8 for the defini-
tions of D, C,;, C,, (), ...], we are led to prove that

d w/d
E /yrl/ﬁJrn
Let p, :=#{y:C,(y) > 1} be the random variable equal to the number of sites of
Z on which at least one peak is based. Let us notice that on €2), N D,,, we have

n
ec,=m=s Y N <pnt.
y

27 y:Cr(y)=1

dt = o(n_l/’s).

E[]‘[ Ve (th(y))lgmn}
y
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Thus, ), N D, C &, where &, := {p), > con'—¢}, for a well chosen constant
co > 0. As in the proof of Proposition 10, we construct (Y¥;); such that C,(¥;) > 1
and Y; 1 —Y; > MN.For every i, we define N,?(Yi + M N) as the number of visits
to the site Y; + M N without taking into account the possible visit during the first
peak based on Y;. Next, we see that on &, (N,(Y; + MN) — N,?(Y,- + MN),i <
con' %) is a sequence of i.i.d. random variables with Bernoulli distribution with
parameter 1/2.
Lett € [n~!/B+n, 71- We define the good and bad intervals, respectively, by

dt 2’ dt 2

I = [an l 2k + DHrm 1]

and

I 2kr 1 2km 1

"'_( dt 2 dt +2)‘

SetalsoZ’ := (U7 I} We observe that J] is an open interval of length 1 and [} isa
closed interval of length 27 /(dt) — 1 > 1 (since t < 7 /d). Hence, if N,?(Yi +MN)
isnotinZ’, then N,?(Y,- +MN)+1isinZ’. This ensures that,on &, N, (Y; + M N)
belongs to Z’ with probability at least 1/2. Therefore, as after Lemma 17, we get

1—¢

P(Qn NDy; #{i: No(Yi + MN) €T’} < C°”3 ) =o(n~ /Py,

Hence, we just have to prove that
d w/d
Z /n—l/ﬁ+n

with H, ;== {#{y :N,(y) € Z'} > 60"3175 }. As after Lemma 16, we notice that, if n
is large enough, we have

2 —1/B+n
d<u, §Z> > 2 3 = )| < eXP(-S—ﬁnH’s")-

dt = o(n_l/’g),

E[]:[ v (an<y))1H,l,t]

We notice also that if N,,(y) € Z', then d(tN,,(y), 27’TZ) >t/2, and thus d(t N, (y),
ZFNZ) > n_l/ﬂ+’7/2. Now, on ‘H, ;, we know that at least con1_8/3 sites y satisfy
this property. Therefore,

< exp(—ﬂnl_sn_lﬂs”) =o(n~P),

‘E[H @e (t Ny (y))lHn.z} 283
y

since ¢ < n. This gives (30) and achieves the proof of Theorem 2.
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4. The strongly nonlattice case: Proof of Theorem 3. We assume here that
£ is strongly nonlattice. In that case, there exist? &g > 0, 0 > 0 and p < 1 such that

log )| < p if |u| > e,
o ()| < exp(—olul?)  if ju| < &p.

Case o > 1. We use here the notation of Section 2 with the hypotheses on y, 7,

1 and ¢ of Propositions 7-10. Let i be the density of Polya’s distribution

1 1—cos(y)

ho(y) = ———5——.

T y
Its Fourier transform is lAzo(t) = (1 —[t])+. For6 € R, let hg(y) = exp(ify)ho(y)
with the Fourier transform hg () = ho(¢ + 6). As proved in [16] (see the proof of
Theorem 5.4, page 114), it is enough to show that for all 8 € R,

(31) lim n®Elhg(Z, — n®x)] = C(x)hy(0).

By the Fourier inverse transform,

nS
5 ) _
n’Elhg(Z, —n°x)] = /
2 JR

e—"“"5XE[]_[ s (uN, (x))i|ﬁg(u) du.

XEZL

Since hy € L', we can restrict our study to the event €2, of Lemma 6. The part
of the integral corresponding to |u| < n~%*7 is treated exactly as in Proposition 7.
The only change is that we have to check that

lim n? / R [e W Vi A A2 @) 1 Yy () — o (0)) dit = O,
n—o00 ‘M‘SH—M—W

which is obviously the case since 21 < §, using the fact that he is a Lipschitz
function.

Now since /g is bounded, the part corresponding to n=3%7 < || < p~1+1/e+e
does not need any additional treatment. Actually, the proofs of Propositions 8 and 9
only use the behavior of ¢¢ around 0, which is the same in the lattice or nonlattice
case.

We now turn our attention to the part of the integral corresponding to |u| >
n~1+1/¢+¢ and prove that

n—oo

(32)  lim n5/ e_i”"SXE[H 73 (uNn(x))lszn}fle(u) du =0.
|M|Zn71+1/a+s .

2The existence of go satisfying the second assertion comes from (12). Now the hypothesis &
strongly nonlattice ensures that there exist M > 0 and py < 1 such that |ps (u)| < py if |u| >
M. Moreover there cannot exist u € [eg, M] such that |gg (u)| = 1. Otherwise, we would have
|@g (nu)] =1 for every integer n and this would contradict the nonlattice hypothesis. Since ¢ is
continuous, this ensures the existence of pp < 1 such that |¢g (u)| < oy if &9 < [u| < M. Finally, we
get the first assertion with p :=max(p1, p3).
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To this end, note that

E[H Ve (uN, (x))19n1| < E[p#{x: |MN"(X)|Z£0}IQH]
X

and that on Q,, for [u| > n=!F1/ete

&
n=3 Nyx) < |7°|Rn + NE#x: [uN, (V)] = &)
X

< eon! TETI2 g1V UN, (x)] = eo).
Hence, since ¢ > n8/2, for n large enough, on €2, and for |u| > n~1T1/a+e,
#x: [uN, (x)] = g0} = $n' /@77,

Therefore, for n large enough,

8 —iun®x 7
E N, 1q, |h d
L [le e, ()1, [ o)

< ngp(]/z)nl/ﬂt*ﬂ/ ]:\lg(l/l) dI/t,
R

which tends to zero since n < 1/a.
Case o < 1. Using the notation and hypotheses on ¢, 1, y of Section 3, one has
to prove that for all # € R and all x € R,

(33) nli)nolonl/ﬂ/Re_i”"I/ﬂxE[n(pg(uNn(x))IQ;l}lAlg(u)du — D(x)hy(0).

Again, the only change in the proof concerns the part of the integral corresponding
to |u| > n~YB+"_ We use here the bound

l0e (N, (x))] < exp(—o [ul? NP ) 1w, oy<eo) + 0 1{uN, ()=o)

<exp(—on " NP )1 un, o)1 <e0) + O1{uN, ()= e0) -

If n < 1/, then for n large enough, p < exp(—on~!T"). Therefore, if n is large
enough, then for all x and u such that N,,(x) > 1 and |u| > n~ VB we have

|0g (N, ()] < exp(—on~ 7).,

Hence,

E[H Pe (uNy (x))lsz;l:H < E[eXp(—Gn_H"ﬁRn)lsz;J <exp(—on"’ 7).
X
Therefore, since ¢ < g,

lim n'/# e_i""l/ﬁxE[H <ps<uzvn(x))1g;l]ﬁe(u)du =0.
X

n—oo |M|Zn—l/ﬂ+n

This concludes the proof of Theorem 3.



A LOCAL LIMIT THEOREM FOR RWRS AND RWROL 2105

5. Random walks on randomly oriented lattices.

5.1. Model and result. 'We consider parallel moving pavements with different
fixed speeds, independently chosen at the beginning with the same distribution.
We study the random walk (M,,, n > 0) representing the position of a walker who
at each time stays on the same moving pavement with probability p € (0, 1), or
jumps to another one with probability 1 — p.

Let us define (M,,, n > 0) more precisely. Let ux be a distribution on Z in the
normal domain of attraction of a centered stable distribution with index 1 <o <2
and density function denoted by fy(-). Let also & := (§,, y € Z) be a sequence of
independent centered Z-valued random variables with distribution j.¢ belonging to
the normal domain of attraction of a stable distribution with index 1 < 8 <2 and
density function denoted by fz(-). For each y € Z, &, will be the only horizontal
displacement allowed on line y. Let p € (0, 1). Given &, the random walk (M, =
(M,El), M,@ ), n > 0) is a Markov chain starting from My := (0, 0) and such that at
time n + 1, it moves either horizontally of &, ) (with probability p) or makes a
vertical jump with distribution px [with probai;)ility (1 — p)], that is,

P(Mn_H - M, = (%'M’gz),())@, Ml,...,Mn) =p if%'M’(lz) #0,
P(My41 — My =(0,x)[§, My,...,My)=(1—pux(x)  ifx#0
and
P(Mpt1=Mul§, My, ..., Mp)=p+ (1 =pux©  if§ o =0.

These random walks were first introduced by Campanino and Pétritis in [6] in the
particular case when p =1/3 and when px and g are Rademacher distributions,
that is, take values =1 with probability 1/2. They proved the transience of M as
well as a law of large numbers. In [18], Guillotin-Plantard and Le Ny established
the link between the Campanino and Pétritis random walk and the random walk in
random scenery and proved a functional limit theorem for the first one. It was also
conjectured there that the probability of return to the origin of the Campanino and
Pétritis random walk is equivalent to a constant times n~>/4. We prove this result
here, as well as a generalization to the case of the random walks M considered
above.

To state our result, we will use the following representation of M:

Let X :=(X,,n > 1) be a sequence of independent random variables with dis-
tribution wy. The random variable X,, corresponds to the vertical move at time n
which will be chosen with probability 1 — p. Let also (e,,n > 0) be a sequence
of independent Bernoulli random variables with parameter p, that is, such that
P(e; =1) =1 —P(e; =0) = p, and independent of X. If €, = 1, the particle M
moves horizontally at time 7, otherwise it moves vertically. We then first define S
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by Sop :=0 and

Sy ::XH:Yk forn >1,
where Y, := X (1 — €;). We next define 7 by Zo :=0and

n
Zn 3=Z§Sk71€k=Z§yNn(y) fOrnZL

k=1 yeZ
where
No(y):=#{k=1,...,n:S—1=yand ¢ = 1}.

Then it is straightforward that the couple (Z, S) has the same distribution as M.

We just notice that the process S in this section is not exactly the same as in the
previous sections (it is the same if we replace X by Y). However, we use the same
notation just for convenience.

Now it is known that (n—1/¢ Sint1-t > 0) converges in distribution, when n —
00, to a Lévy process U= (l7,, t > 0) where U= (1 —p)l/"‘U and U is the process
introduced in the Introduction. We will use the fact that (n—1/ S, t =018, =0)
converges in distribution to U 0 = = (U;, 09,1 > 0) the associated brldge that is, the
process U starting from O and conditioned by U 1 =0. Let (LO(x) tel0,1],x €
R) be the local time process of U° and set |L0|5 (fR(LO(x))ﬂ dx)/B,

Let ¢¢ be the characteristic function of &;. Recall that d is the positive inte-
ger such that {u:|ps(u)| = 1} = 2n/d)Z. Let dy be the smallest positive inte-
ger m such that g (2w /d)™ =1 and let d; be the greatest common divisor of
m>1:PX1+---+ X, =0) > 0}.

THEOREM 20. Assume that dy is a multiple of dy, and let E = dp_lfa (0) x
fﬂ(O)EﬂLOIEl). Then

—1-1/(ap) —1-1/ap o ;
P(M, = (0,0)) = { Exn +o(n ), ifnis a multiple of dy,
0, otherwise.

REMARK 21. In the case of the Campanino and Pétritis random walk, dy =
dy =2. So the hypothesis of the theorem is satisfied.

REMARK 22. A corollary of our result is that the processes M considered
here are transient, this can be seen by using Borel-Cantelli lemma.

REMARK 23. It is most likely that an analogue result can be proved when
a<1or B <1. We leave the details to the interested reader. In the same way,
one could certainly obtain similar estimates for the probabilities of return in
([n‘sx], [nl/"‘y]), with a constant £ depending on x and y.

REMARK 24. An analogue result holds true for the couple (Z,, S,) and can
be proved similarly.
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5.2. The event SNZH. Let (N, (y), y € Z) and R, denote, respectively, the local
time process and the range of § at time n:

Ny(y):=#k=0,...,n—1:S=y} and R, :=#{y:N,(y) > 0}.
Fory > 0, set Q, = 2, (y) := A, N B, N Cy, where

A, = {R,, <n**7 and sup N, (y) < nl_l/"‘+7’},
y

s

and

. |]Vn(y)—ﬁn(z)| (1-1/a+y)/2
Cn.:{yiz @ Dn <n aty }

LEMMA 25. Forally > 0,P(2,) =1—o(n~'="1/@h),

PROOF. According to the proof of Lemma 6, P(R, < n!/**t7) =1 —

o(n_l_l/ (“ﬂ)). Moreover, according to the proof of Lemma 11 [see (19)], we have
forallv>1,
(34) E[sup N} ()] = O(n"=1/).

y

Hence, by the use of the Markov inequality, we get

P(SupNn(y) > nl*l/O!Jr)/) — O(H*Ifl/(olﬂ)).
veZ
It follows that P(A,) = 1 — o(n~ =1/ (@B))y,
Next, it is well known that P(B,) = 1 — o(n~1~1/(@)),
Finally, as in the proof of Lemma 6, the estimate of P(C,) comes from the
following lemma.

LEMMA 26. For any integer v > 1, there exists a constant C,, > 0 such that,
foreveryn > 1 and every x,y € Z

E[(Na() = Na()™] < Colx — " @ Dpr=1/e,

PROOF. Letx and y be fixed, with x # y (otherwise, there is nothing to prove).
We have

(35) Na(x) = pNa(0) + > Lis, =)
k=1
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where €, = 1{¢,=1) — p. Set H,(x) := > }_; Iys,_,=x)€k. For all x € Z, (H,(x),
n > 1) is a martingale with respect to the filtration F,, = o (X, €x, kK < n). Hence,
(Hy(x) — Hy(y),n > 1) is a martingale as well. According to Burkholder’s in-
equality (see [21], Theorem 2.11, page 23), for all integer v > 1, there exists a
constant C = C(v) such that foralln > 1,

E[(Hy(x) — Hy(y)*']/®

n vo1/2v)
§C{E[(ZE(d£(x,y)IFk-1)> } +E[ Sup

1/(@v)
i (x, )] }
k=1 k=1,.... n

where di (x, y) is the martingale increment
di(x,y) = Hi(x) — Hi—1(x) — Hr(y) + He—1 (y) = (115, =x} — L5, =0}) ék-
Note that for all k > 1, and all x, y € Z, |di(x, y)| <1, and that

n n
2
> E(dg (x, Y)|Fr—1) = Var(en) D (L, =) — L{se_1=y})
k=1 k=1

= Var(e1)(Nn (y) + Nu(x)).
Therefore,

]E[(Hn (X) _ Hn (y))ZV]l/(ZU) < C{l + E[N;l) (y)]l/(zl)) + E[N;;(X)]]/(ZV)}
<C(1+2n"71®2) by using (34)]
< 3Cn(1—1/a)/2|x _ y|(a—1)/2’

since |[x — y| > 1 and n > 1. Hence, according to [23] [see equation (10)],
~ ~ 2vy1/(2 2vy1/(2
E{(Ny () = Na ()™} < pE{(Na(x) — Nu ()"} /)
+E{(Hy(x) — Hy ()™}
< Cn1=1/0/2) _ y@=D/2,
for some constant C,, > 0. This proves Lemma 26. [

This concludes also the proof of Lemma 25. [

5.3. Expression of the return probability by an integral. ~According to the re-
sult of the previous subsection, we are led to the study of P(Z, =0, S, =0, 2,).
As in Lemma 5, we have

P(M, = (0,0),2,) =P(Z, =0, S, =0, ,)

1 (= ~
/ IE[]_[ <Ps(th(y))1{sn=0}1§n]dt.
VeZ

:E .
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By following the proof of Lemma 5 [note that a priori }_, Ny (y) is not equal to n
here], we get

IP>(Zn =0,5,=0, SAén)
(36)

d [m/d -
= g/_ﬂ/dE[yl;[zgog(th(y))l{Zyﬁn(y)edoz}l{5n=0}1§n]dt.

In the sequel, we consider n, y and ¢ satisfying all the hypotheses of Section 2.4
and y < (@ — 1)/(4w).

5.4. Estimate of the integral away from the origin. The following is very sim-
ilar to the case of RWRS.

LEMMA 27. We have

w/d ~
/ E[H l@e (1 N» () 1 ]dr =o(n~!7V@A),
n—0+n Ve n

PROOF. First, set
Vo= Na(y)P.
YEZ
Since on 2y, Xy Na(y) = Yy & = np/2 and Ny (v) < Na(y) <n' =147 by
following the proof of Lemma 6, we get on €2,
Vo = en®7,
for some constant ¢ > 0. Let now ¢ be as in Proposition 9. Then the proofs of

Propositions 8 and 9 lead to
n71+l/a+£

f,,fm E[n|¢S(tﬁn()’))|1§n]dt=o(n_1—1/(01/3))‘

VeZ
But we can also easily adapt the proof of Proposition 10 to obtain

w/d ~
/ E[H st<th<y))|1@n} dt = o(n~ 1= 1/P),

—1+1/a+e
YEZL

Indeed, we just need to use “flat peaks” instead of peaks. These “flat peaks™ are
defined as follows. Let M and N be such that P(Y; =N) >0and P(Y; =—-M) >
0. Then an “upper flat peak™ is a sequence of the type

YH41, - YH4 Mo €H4M41, YHAMA2, - YHAMAN+1)
=(N,...,N,1,-M,...,.—M),
where H is any multiple of M + N + 1, and one can define analogously a “lower
flat peak.” We leave to the reader to check that we can then follow the proof of

Proposition 10 simply by replacing everywhere peaks by flat peaks. This concludes
the proof of Lemma 27. [J
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5.5. Estimate of the integral near the origin. We turn now to the estimate of
the integral in (36) on the interval [—n %t n=3%7]. For this, we will roughly
follow the same lines as for the proof of Proposition 7. However, the technical
details are more involved here, since we have to make all calculus conditionally to
{S;, = 0}. The first step is the following lemma.

LEMMA 28. We have

ndB\1/(B=1)
37) sup E[(T> 1
n % "

n

PROOF. Remind that on $,, np/2 <%, ]Vn(y) < an/ﬂR,i_l/ﬁ. Observe on
the other hand that §8/(8 — 1) = /(8 — 1) — 1 /«. Thus, there is a constant C > 0
such that for all » > 1, on £2,,,

<n5l3)1/(/3—1) R,
\

It follows from the above inequality that

8B\ 1/(B=1) R
El | = 15 1{5 =0} <CE u 1{5 =0} |-
Vv Q2 n — nl/ot n

n

Set m := |n/2] and m’ := [n/2]. By using that R,, < R,y +#{S;/41,...,Sn} =
Ry +#{Sp+1— Sy ..., Sp=1 — Sn, 0} and Markov property [resp., on the se-
quences (S, k > 0) and (S, — S,—k, 0 <k <n)], we get

ndB\ 1/ (B=D) R,
=01,

since sup, P, (S, = 0) = Om~ Y and E(R,y) = On'/?) (see [28], equa-
tion (7.a), page 703). We next divide all terms by P(S, = 0) which is of order
n~1/® and this proves the lemma. [J

We deduce the following lemma.
LEMMA 29. We have

)
- ~ 1 n

P(Zy =0,8, =0,8,) =n~'71/C0) dE[VI U, Fuediz 18,
n

5, =0]

X fo(0) f5(0) + o(n~171/@P)),
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PROOF. By following the proof of Lemma 12, we see that, uniformly on Q.
we have

/|t|<n‘5+”

By using Lemma 28, we get

[
lt|<n=5+n

=o0(1) x E[V;l/ﬂlﬁnl{sn:o}]

dt =o(V VP,

[T 0s (N, (y)) — el VnArtiAasen®
y

1_[‘/)5 (tNa(y)) — e [t]P Vi, (A1+i Ap sgn(t)) lfln 1{S,,:0}i| dt
y

= 0(}’1_5—1/01) % E[(f’laﬁ ‘7}1_1)1/('3_1)162” |Sn _ 0]03_1)//3

[since P(S, = 0) = O(n~"/%)]
zo(n—l—l/(oeﬁ))‘

By using (36) and Lemma 27, we see that it remains to estimate

—[t1P Vi (A1+i Ay sgn(t)) - -
f|t|<n—8+n Ele e 1{zy ¥, nedozy Lisi=0y1g3, ] dt.

But, as in the proof of Lemma 13, we have
BV (A i nd
/ o P Tu(Ar A s () g, _ n—é{zjr u fﬂ(o)} 4o,
lt|<n=0%n AL

uniformly on €2,,. We next take the expectation in both sides and we conclude the
proof by using that P(S, = 0) ~ fo,(O)n~1/%. O

The following lemma allows us to get rid of 1;y~ ¥ (yyeayz)-

LEMMA 30. Assume that dy is a multiple of dy. On {S, = 0}, we have
Y Ni(y) edoZ ¢ nedol.
y

PROOF. Letm, := Zy I\NJn (¥) = >_f_; €k be the number of horizontal moves
before time n.

If S, =0, the number n — m,, of vertical moves is necessarily in d1Z and so in
doZ, since d; is a multiple of dy by hypothesis. Hence, m,, is in doZ if and only if
nisindyZ. [0

We will need the following estimate.

LEMMA 31. LetV,: =) ,c7 Ny (x)ﬂ. Then
E[V;, — pPV,lIS, = 0] = O(n¥—@= /),
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PROOF. Set again m = |n/2] and m’ = [n/2]. By using the inequality |a? —
bP| < Bla — b|(aP~! 4 bP~1) and the Cauchy-Schwarz inequality, we get
EL|Vy — pPVallSy =01
~ ) 1/2
(38) sﬂE[Z(Nnoc)ﬂ—‘ + PPN P, =0}

xX€Z

_ 1/2
x E[Z(Nn(x) — pN.())|S, = 0} .
X€Z
We now estimate both expectations in the right-hand side of the above inequal-
ity. First, note that N, (x) = Ny, (x) + (N,(x) — N, (x)) and that the sequence
((Np(x) — Np(x),x € Z)|S, = 0) has the same distribution as ((Np/41(—x) —
N1(—x),x € Z)|S, = 0). Thus, the Markov property gives

E[Z(ﬁn(xﬂ"l + PPN (P Y)S, = 0}

X€Z
<43 E[N,(0)*PVis, =0]
X€Z
_ P(S,, =—M)
= C{Z Z E[Nm(x)z(ﬂ l)l{Sm=M}]—
X€Z MeZ P(S» =0)
_ P(Sn =M)
U5 3P - (WATEICLa IR e}
X€EZMEZL P(S» =0)
for some constant C > 0. Since sup,; P(S,y = —M)/P(S, = 0) < +00 and

supy P(S; = M) /P(S, =0) < 400, we get

E[Z(ﬁn(x)ﬁ—l n pﬁ—an(x)ﬂ—l)2|Sn _ 0] <c ZE[Nm/(x)Z(ﬁ—l)].
X€Z el

Then the Markov property again and (34) show that

B[ ¥ (R0 + p N1 1s, =0

X€EZ
(39) < CE[Ryy] x E[N,y (0*#V]
— O(u2-DU-Vert1/a),
The same argument gives

3" E[(Na(x) = pNa())?1S, = 0]

X€Z

< c{ S B[N (0) — pNm@))2] 4 3 B[ (R () — mef<x>)2]},

x€Z x€eZ
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for some constant C > 0. Then by using (35) [note that & is centered and inde-
pendent of (S¢—1, &¢, Sxk—1) if £ < k], we get

(40) S E[(Na (@) — pNa())*]S, = 0] = O(m).
X€Z
The lemma now follows by combining (38), (39) and (40) since (8 — 1)(1 — é) +
1 1 _ a—1
wt2= "5 U

LEMMA 32. Conditionally to the event {S, = 0}, the sequence (V,,/n®® n >
0) converges in distribution to the random variable fR(L?(x))ﬁ dx.

PROOF. According to [15], the lemma will essentially follow from the two
following statements:

(RW1) The sequence of conditioned processes ~((n_1/ “Siney | Sn =0),¢ €0, 1])
converges in distribution to the bridge (Uto, t €[0,1]), as n — oo.
(RW2) (i)

Sup E[N, (y)*[S, = 0] = O(n*~%/%).
y

(ii) There exists a constant C > 0 such that for every x, y € R,
E[(Na(Ln'/*x]) = Na(Ln"/*y]))?|Sp = 0] < Cn? 2/ |x — y|* =1,

Part (RW1) is proved in [29].
We prove now (RW?2) starting with part (i). By using the same argument as in
the proof of Lemma 31, we get

E[N, (3)?S, = 0] < C(E[Npu (¥)*] + E[Npw41(—y)?),

for some constant C > 0, with m and m’ as in the previous lemma. The desired
result now follows from Lemma 1 in [24].

For part (i1), set N, (x, y) := N,(x) — N,(y). Then use again the argument of
the previous lemma, which gives

E[N,(x, )*Sy = 0] < C(E[N (x, )*1+ B[Ny 11 (—x, —y)*1+ 1),

for some constant C > 0. The result then follows from Lemma 3 in [24].

We can now apply Theorem 4.1 in [15] in the case when the random scenery
is a sequence of i.i.d. random variables with B-stable distribution and with char-
acteristic function of the form 6 — exp(—c|9|ﬂ). We deduce that conditionally to
{Sn = O},

n
—$ L 0
n ,;gs"n:;o/RLl(x)dYx’
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where (Y., x € R) is a two-sided B-stable Lévy process independent of U9 and

limit in distribution of (n—1/# Z,E’ZBJ &, x € R), when n — oo. Therefore (see, for

instance, Lemma 5 in [24]), for every 0 € R,
E(exp(—c|01Pn=PV,)|S, = 0) — E(e_c|9|ﬁ fr(@Y0x)? dx) when n — oo,

which proves the lemma. [J

LEMMA 33. Conditionally to the event {S, = 0}, the sequence (n‘sﬁ Vn_llfzn,
n > 0) converges in distribution to the random variable ( p|LO| 5)_ﬁ .

PROOF. By Lemma 32, the sequence (n® Vn_l,n > 0) converges in distrib-

ution to |LO|_ﬁ , conditionally to {S, = 0}. On the other hand, Lemma 25 im-
plies that the sequence (1g ,n > 0) converges in distribution to the constant 1,

conditionally to {S, = 0}. Hence, the sequence (n®f anllgzn, n > 0) converges
in distribution to |L0|/§‘3 , conditionally to {S, = 0}. Next, recall that on Q,
V, > ‘7,, > cn% =7 for some constant ¢ > 0. Thus, Lemma 31 gives

B B
IE[ n n

V. PPV,
Therefore, since y < (o — 1)/(4a), the left-hand side in the above equation con-
verges to 0 when n — oo. The lemma follows. [l

15 S, = 0} — (9(”—28/3+2y+25ﬂ—(a—1)/2a)

— O(n2}/—(a—1)/(2a))‘

We finally obtain the following proof.

PROOF OF THEOREM 20. The uniform integrability of the sequence (n® x
‘7,,_1/ h 1g ,n > 0) conditionally to {S, = 0} is deduced from Lemma 28 (since it
is bounded in L#/(#=1)_ Tt then follows from Lemma 33 that

8
n
an /B S

The theorem now follows from Lemmas 29 and 30. [

S, = 0] — p_IIE[|L0|El] when n — 0.

APPENDIX: CONTROL OF THE RANGE

We first gather some known facts about the range R, of the random walk
(S,,n > 0). First of all, this walk is transient if, and only if, « < 1. Moreover,
there exists a constant ¢ > 0 such that
n, if @ < 1 (see [32], page 36),

" , if @ =1 (see [28], Theorem 6.9, page 698),
log(n)
nl/e, if @ > 1 (see [28], equation (7.a), page 703).

41)  E[Ru] ~c
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In addition, if ¢ < 1 (see [32], pages 38—40, for @ < 1, and [28], Theorem 6.9, for
o =1), then

(42) Ry 1
— a.s.
E[Ry]
If « > 1, it is proved in [28], Theorem 7.1, page 703, that
Ry

Te LU0, 1])) in distribution,
nl/
where A denotes the Lebesgue measure, and (U(s),s € [0, 1]) is an «-stable
process. In this case, it is also proved in [28] that the constant ¢ appearing in (41)
is E[A(U([0, 1]))], so that

Ry, AU([0, 11))

(43) E[R.] — EG. (U (0. 1D)] in distribution.

Our aim in this Appendix is to prove the following result.

LEMMA 34. Assume that o« € (0, 2]. Let y € (0, 1/a) and set
Ry = {E[Rn]n_y <R, < E[Rn]ny}-
Then there exists a constant C > 0, such that

(44) P(R,) =1— O(exp(—Cn")).

PROOF. We first prove that for n large enough,
(45) P[R, = E[R,]n"] < exp(—Cn”).
Let us recall that for every a, b € N, we have
(46) P(R, = a+b) <P(R, = a)P(R, = b).

The proof is given for instance in [9] and goes as follows. Let t :=inf{k : Ry > a}.
Note that 7 is a stopping time, and that R; = a on {t < oo}. Moreover,

P(R, >a+b)=P(t <n; R, >a-+b)

n
:ZP(‘[:j;RnZRj +b).
j=1

Now, for j <n, Ry < R; +#{Sj11,.... S =R; + #{S;11 = S;,.... 8 — S;}.
By independence, we have

P(R,>a+b) <) P(t=j)P(R,—j >b)
j=1

<P(R, = b)P(r <n),
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proving (46). Hence,

nv? y
P(R, > E[R,]n") < P(Rn > [3E[R,]] bJ) <P(R, = 3E[R, 1)/

E[R,] [n¥ /3] E[R,] [n¥ /3] 1\ 7 /3]
< — <|———— <| = .
- (L3E[Rn”) - <3E[Rn] - 1) - (2)

This finishes the proof of (45). It remains now to prove that for n large enough,
(47) P(R, <E[R,]n"7) <exp(—=Cn”).
To this end, let Iy, ..., Iy be disjoint subsequent intervals of {0, ..., n}, of the
same length /,, depending on n, so that/, > 1 and N = |n/[,|. Note that
Ry = miax(#(S¢. k € ).
J:

and that the random variables (#{Sy,k € I;},1 < j < N) are i.i.d. with the same
law as R;, . Hence,

PR, <BIR, ™) < P(mix(h(S. k€ 1)) < ERn 7 )
(48) .
=P(R, <E[R,In"")N.

n —

Choose now [, such that E[R;, ] ~ 3E[R,]n"7. By (41), this gives

3n!77, ifo <1,
Li~130 -y,  ifa=1,
3apl-ay, ifo>1,
so that
—n?, ifoo <1,
1 .
(49) N~{ ——n’, ifa=1,
31(1 -y)
—nY, ifoa>1.
30[
For n large enough, E[R;, ] > 2[E[R,]n"7, and it follows from (48) that
E[R, \N
(50) PR, <BIR ") <P(R, <=1
Fora <1,P(R;, < %) tends to zero by (42). By (43), for « > 1, we have

hmsupP(Rzn < E“;’"]) < P[(A(U([O, ) < %E[A(U([O, 1]))]} <1,

n—oo
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since a.s. A(U ([0, 1])) > 0. In any case, there exists p < 1, such that for all y €
(0, 1/a), and for n large enough,

E[R
IP’<R1,1 < %) <p

Together with (50) and (49), this proves (47) and the lemma. [
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