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ODED SCHRAMM: FROM CIRCLE PACKING TO SLE

BY STEFFEN ROHDE1

University of Washington

Dedicated to the memory of Oded Schramm

In this note, I will describe some highlights of Oded Schramm’s work in
circle packings and the Koebe conjecture, as well as on SLE.

1. Introduction. When I first met Oded Schramm in January 1991 at the
University of California, San Diego, he introduced himself as a “Circle Packer.”
This modest description referred to his Ph.D. thesis around the Koebe–Andreev–
Thurston theorem and a discrete version of the Riemann mapping theorem, ex-
plained below. In a series of highly original papers, some joint with Zhen-Xu He,
he created powerful new tools out of thin air and provided the field with elegant
new ideas. At the time of his deadly accident on September 1st, 2008, he was
widely considered as one of the most innovative and influential probabilists of his
time. Undoubtedly, he is best known for his invention of what is now called the
Schramm–Loewner evolution (SLE), and for his subsequent collaboration with
Greg Lawler and Wendelin Werner that led to such celebrated results as a determi-
nation of the intersection exponents of two-dimensional Brownian motion and a
proof of Mandelbrot’s conjecture about the Hausdorff dimension of the Brownian
frontier. But already his previous work bears witness to the brilliance of his mind,
and many of his early papers contain both deep and beautifully simple ideas that
deserve better knowing.

In this note, I will describe some highlights of his work in circle packings and
the Koebe conjecture, as well as on SLE. As Oded has co-authored close to 20
papers related to circle packings and more than 20 papers involving SLE, only
a fraction can be discussed in detail here. The transition from circle packing to
SLE was through a long sequence of influential papers concerning probability on
graphs, many of them written jointly with Itai Benjamini. I will present almost
no work from that period (some of these results are described elsewhere in this
volume, for instance, in Christophe Garban’s article on Noise Sensitivity). In that
respect, the title of this note is perhaps misleading.

In order to avoid getting lost in technicalities, arguments will be sketched at
best, and often ideas of proofs will be illustrated by analogies only. In an attempt to
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present the evolution of Oded’s mathematics, I will describe his work in essentially
chronological order.

Oded was a truly exceptional person: not only was his clear and innovative way
of thinking an inspiration to everyone who knew him, but also his caring, modest
and relaxed attitude generated a comfortable atmosphere. As inappropriate as it
might be, I have included some personal anecdotes as well as a few quotes from
email exchanges with Oded, in order to at least hint at these sides of Oded that are
not visible in the published literature.

This note is not meant to be an overview article about circle packings or SLE.
My prime concern is to give a somewhat self-contained account of Oded’s contri-
butions. Since SLE has been featured in several excellent articles and even a book,
but most of Oded’s work on circle packing is accessible only through his original
papers, the first part is a bit more expository and contains more background. The
expert in either field will find nothing new, and will find a very incomplete list of
references. My apology to everyone whose contribution is either unmentioned or,
perhaps even worse, mentioned without proper reference.

2. Circle packing and the Koebe conjecture. Oded Schramm was able to
create, seemingly without effort, ingenious new ideas and methods. Indeed, he
would be more likely to invent a new approach than to search the literature for
an existing one. In this way, in addition to proving wonderful new theorems, he
rediscovered many known results, often with completely new proofs. We will see
many examples throughout this note.

Oded received his Ph.D. in 1990 under William Thurston’s direction at Prince-
ton. His thesis, and the majority of his work until the mid-1990s, was concerned
with the fascinating topic of circle packings. Let us begin with some background
and a very brief overview of some highlights of this field prior to Oded’s thesis.
For other surveys, see [104] and [130].

2.1. Background. According to the Riemann mapping theorem, every simply
connected planar domain, except the plane itself, is conformally equivalent to a
disc. The conformal map to the disc is unique, up to postcomposition with an
automorphism of the disc (which is a Möbius transformation). The standard proof
exhibits the map as a solution of an extremal problem (among all maps of the
domain into the disc, maximize the derivative at a given point). The situation is
quite different for multiply connected domains, partly due to the lack of a standard
target domain. The standard proof can be modified to yield a conformal map onto a
parallel slit domain (each complementary component is a horizontal line segment
or a point). Koebe showed that every finitely connected domain is conformally
equivalent to a circle domain (every boundary component is a circle or a point), in
an essentially unique way. No proof similar to the standard proof of the Riemann
mapping theorem is known.
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THEOREM 2.1 [68]. For every domain � ⊂ C with finitely many connected
boundary components, there is a conformal map f onto a domain �′ ⊂ C all of
whose boundary components are circles or points. Both f and �′ are unique up
to a Möbius transformation.

Koebe conjectured ([68], page 358) that the same is true for infinitely connected
domains. It later turned out that uniqueness of the circle domain can fail (e.g., it
fails whenever the set of point-components of the boundary has positive area, as
a simple application of the measurable Riemann mapping theorem shows). But
existence of a conformally equivalent circle domain is still open, and is known as
Koebe’s conjecture or “Kreisnormierungsproblem.” It motivated a lot of Oded’s
research.

There is a close connection between Koebe’s theorem and circle packings. A cir-
cle packing P is a collection (finite or infinite) of closed discs D in the two-
dimensional plane C, or in the two-dimensional sphere S2, with disjoint interiors.
Associated with a circle packing is its tangency graph or nerve G = (V ,E), whose
vertices correspond to the discs, and such that two vertices are joined by an edge if
and only if the corresponding discs are tangent; see Figure 1. We will only consider
packings whose tangency graph is connected.

Conversely, the Koebe–Andreev–Thurston circle packing theorem guarantees
the existence of packings with prescribed combinatorics. Loosely speaking, a pla-
nar graph is a graph that can be drawn in the plane so that edges do not cross. Our
graphs will not have double edges (two edges with the same endpoints) or loops
(an edge whose endpoints coincide).

THEOREM 2.2 [3, 69, 132]. For every finite planar graph G, there is a circle
packing in the plane with nerve G. The packing is unique (up to Möbius transfor-
mations) if G is a triangulation of S2.

FIG. 1. A circle packing and its tangency graph.
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FIG. 2. A circle packing approximation to a Riemann map.

See the following sections for the history of this theorem, and sketches of
proofs. In particular, in Section 2.3 we will indicate how the circle packing The-
orem 2.2 can be obtained from the Koebe Theorem 2.1, and conversely that the
Koebe theorem can be deduced from the circle packing theorem. Every finite pla-
nar graph can be extended [by adding vertices and edges as in Figure 3(c)] to a tri-
angulation, hence packability of triangulations implies packability of finite planar
graphs (there are many ways to extend a graph to a triangulation, and uniqueness
of the packing is no longer true). The situation is more complicated for infinite
graphs. Oded wrote several papers dealing with this case. Thurston conjectured
that circle packings approximate conformal maps, in the following sense: consider
the hexagonal packing Hε of circles of radius ε [a portion is visible in Figures 2
and 3(a)]. Let � ⊂ C be a domain (a connected open set). Approximate � from the
inside by a circle packing Pε of circles of � ∩ Hε , as in Figures 2 and 3(a) (more
precisely, take the connected component containing p of the union of those circles
whose six neighbors are still contained in �). Complete the nerve of this packing
by adding one vertex for each connected component of the complement to obtain
a triangulation of the sphere [there are three new vertices v1, v2, v3 in Figure 3(c);
the three copies of v3 are to be identified]. By the circle packing theorem, there is
a circle packing P ′

ε of the sphere with the same tangency graph [Figures 2 and 3(d)
show these packings after stereographic projection from the sphere onto the plane;
the circle corresponding to v3 was chosen as the upper hemisphere and became the
outside of the large circle after projection]. Notice that each of the complementary
components now corresponds to one (“large”) circle of P ′

ε , and the circles in the
boundary of Pε are tangent to these complementary circles. Now consider the map
fε that sends the centers of the circles of Pε to the corresponding centers in P ′

ε ,
and extend it in a piecewise linear fashion. Rodin and Sullivan proved Thurston’s
conjecture that fε approximates the Riemann map, if � is simply connected (see
Figure 2):
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(a) (b)

(c) (d)

FIG. 3. A circle packing approximation of a triply connected domain, its nerve, its completion to a

triangulation of S2, and a combinatorially equivalent circle packing; (a)–(c) are from Oded’s thesis;
thanks to Andrey Mishchenko for creating (d).

THEOREM 2.3 [102]. Let � be simply connected, p,q ∈ �, and P ′
ε normal-

ized such that the complementary circle is the unit circle, and such that the circle
closest to p (resp., q) corresponds to a circle containing 0 (resp., some positive
real number). Then the above maps fε converge to the conformal map f :� → D
that is normalized by f (p) = 0 and f (q) > 0, uniformly on compact subsets of �

as ε → 0.
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Their proof depends crucially on the nontrivial uniqueness of the hexagonal
packing as the only packing in the plane with nerve the triangular lattice. Oded
found remarkable improvements and generalizations of this theorem. See Sec-
tion 2.6 for further discussion.

2.2. Why are circle packings interesting? Despite their intrinsic beauty (see
the book [130] for stunning illustrations and an elementary introduction), circle
packings are interesting because they provide a canonical and conformally nat-
ural way to embed a planar graph into a surface. Thus they have applications to
combinatorics (e.g., the proof of Miller and Thurston [94] of the Lipton–Tarjan
separator theorem; see e.g., the slides of Oded’s circle packing talk on his memo-
rial webpage), to differential geometry (e.g., the construction of minimal surfaces
by Bobenko, Hoffmann and Springborn [21] and their references), to geometric
analysis (e.g., the Bonk–Kleiner [22] quasisymmetric parametrization of Ahlfors
2-regular LLC topological spheres) to discrete probability theory (e.g., through the
work of Benjamini and Schramm on harmonic functions on graphs and recurrence
on random planar graphs [15–17]) and of course to complex analysis (discrete an-
alytic functions, conformal mapping). However, Oded’s work on circle packing
did not follow any “main-stream” in conformal geometry or geometric function
theory. I believe he continued to work on them just because he liked it. His interest
never wavered, and many of his numerous late contributions to Wikipedia were
about this topic.

Existence and uniqueness are intimately connected. Nevertheless, for better
readability I will discuss them in two separate sections.

2.3. Existence of packings. Oded applied the highest standards to his proofs
and was not satisfied with “ugly” proofs. As we shall see, he found four (!) different
new existence proofs for circle packings with prescribed combinatorics. Before
discussing them, let us have a glance at previous proofs.

The circle packing theorem was first proved by Koebe [69] in 1936. Koebe’s
proof of existence was based on his earlier result that every planar domain � with
finitely many boundary components, say m, can be mapped conformally onto a
circle domain. A simple iterative algorithm, due to Koebe, provides an infinite se-
quence �n of domains conformally equivalent to � and such that �n converges to
a circle domain. To obtain �n+1 from �n, just apply the Riemann mapping theo-
rem to the simply connected domain (in C ∪ {∞}) containing �n whose boundary
corresponds to the (nmodm)th boundary component of �. With the conformal
equivalence of finitely connected domains and circle domains established, a cir-
cle packing realizing a given tangency pattern can be obtained as a limit of circle
domains: just construct a sequence of m-connected domains so that the boundary
components approach each other according to the given tangency pattern. For in-
stance, if the graph G = (V ,E) is embedded in the plane by specifying simple
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curves γe : [0,1] → S2, e ∈ E, then the complement �ε of the set⋃
e∈E

γe[0,1/2 − ε] ∪ ⋃
e∈E

γe[1/2 + ε,1]

is such an approximation. It is not hard to show that the (suitably normalized)
conformally equivalent circle domains �′

ε converge to the desired circle packing
when ε → 0.

Koebe’s theorem was nearly forgotten. In the late 1970s, Thurston rediscovered
the circle packing theorem as an interpretation of a result of Andreev [3, 4] on con-
vex polyhedra in hyperbolic space, and obtained uniqueness from Mostow’s rigid-
ity theorem. He suggested an algorithm to compute a circle packing (see [102]) and
conjectured Theorem 2.3, which started the field of circle packing. Convergence
of Thurston’s algorithm was proved in [34]. Other existence proofs are based on a
Perron family construction (see [130]) and on a variational principle [35].

Oded’s thesis [105] was chiefly concerned with a generalization of the existence
theorem to packings with prescribed convex shapes instead of discs, and to appli-
cations. A consequence ([105], Proposition 8.1) of his “Monster packing theorem”
is, roughly speaking, that the circle packing theorem still holds if discs are replaced
by smooth convex sets, as in Figure 4.

THEOREM 2.4 ([105], Proposition 8.1). For every triangulation G = (V ,E)

of the sphere, every a ∈ V , every choice of smooth strictly convex sets Dv for
v ∈ V \ {a}, and every smooth simple closed curve C, there is a packing P =
{Pv :v ∈ V } with nerve G, such that Pa is the exterior of C and each Pv, v ∈ V \{a}
is positively homothetic to Dv .

Sets A and B are positively homothetic if there is r > 0 and s ∈ C with
A = rB + s. Strict convexity (instead of just convexity) was only used to rule out

FIG. 4. A packing of convex shapes in a Jordan domain, from Oded’s thesis.
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that three of the prescribed sets could meet in one point (after dilation and transla-
tion), and thus his packing theorem applied in much more generality. Oded’s ap-
proach was topological in nature: based on a cleverly constructed spanning tree
of G, he constructed what he called a “monster.” This refers to a certain |V |-
dimensional space of configurations of sets homothetic to the given convex shapes,
with tangencies according to the tree, and certain nonintersection properties. Ex-
istence of a packing was then obtained as a consequence of Brower’s fixed point
theorem. Here is a poetic description, quoted from his thesis:

One can just see the terrible monster swinging its arms in sheer rage, the tenta-
cles causing a frightful hiss, as they rub against each other.

Applying Theorem 2.4 to the situation of Figure 3, with Dv chosen as circles
when v /∈ {v1, v2, v3}, and arbitrary convex sets Dvj

, Oded adopted the Rodin–
Sullivan convergence proof to obtain a new proof of the following generalization
of Koebe’s mapping theorem. The original proof of Courant, Manel and Shiffman
[33] employed a very different (variational) method.

THEOREM 2.5 ([105], Theorem 9.1; [33]). For every (n + 1)-connected do-
main �, every simply connected domain D ⊂ C and every choice of n convex sets
Dj , there are sets D′

j which are positively homothetic to Dj such that � is con-
formally equivalent to D \ ⋃n

1 D′
j .

Later [111] he was able to dispose of the convexity assumption, and proved
the packing theorem for smoothly bounded but otherwise arbitrary shapes. As a
consequence, he was able to generalize Theorem 2.5 to arbitrary (not necessarily
convex) compact connected sets Dj , thus rediscovering a theorem due to Brandt
[24] and Harrington [50].

Oded then developed a differentiable approach to the circle packing theorem. In
[107] he shows:

THEOREM 2.6 ([107], Theorem 1.1). Let P be a three-dimensional convex
polyhedron, and let K ⊂ R3 be a smooth strictly convex body. Then there exists a
convex polyhedron Q ⊂ R3 combinatorially equivalent to P which midscribes K .

Here “Q midscribes K” means that all edges of Q are tangent to ∂K . He also
shows that the space of such Q is a six-dimensional smooth manifold, if the bound-
ary of K is smooth and has positive Gaussian curvature. For K = S2, Theorem 2.6
has been stated by Koebe [69] and proved by Thurston [132] using Andreev’s the-
orem [3, 4]. Oded notes that Thurston’s midscribability proof based on the circle
packing theorem can be reversed, so that Theorem 2.6 yields a new proof of the
circle packing theorem (given a triangulation, just take K = S2, Q the midscrib-
ing convex polyhedron with the combinatorics of the packing, and for each vertex
v ∈ V , let Dv be the set of points on S2 that are visible from v).
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One defect of the continuity method in his thesis was that it did not provide a
proof of uniqueness (see next section). In [108] he presented a completely different
approach to prove a far more general packing theorem, that had the added benefit
of yielding uniqueness, too. A quote from [108]:

It is just about the most general packing theorem of this kind that one could
hope for (it is more general than I have ever hoped for).

A consequence of [108] (Theorems 3.2 and 3.5) is:

THEOREM 2.7. Let G be a planar graph, and for each vertex v ∈ V , let Fv

be a proper 3-manifold of smooth topological disks in S2, with the property that
the pattern of intersection of any two sets in Fv is topologically the pattern of
intersection of two circles. Then there is a packing P whose nerve is G and which
satisfies Pv ∈ Fv for v ∈ V .

The requirement that Fv is a 3-manifold requires specification of a topol-
ogy on the space of subsets of S2: say that subsets An ⊂ S2 converge to A if
lim supAn = lim infAn = A and Ac = int(lim supAc

n). An example is obtained by
taking a smooth strictly convex set K in R3 and letting F be the family of inter-
sections H ∩ ∂K , where H is any (affine) half-space intersecting the interior of K .
Specializing to K = S2, F is the family of circles and the choice Fv = F for all v

reduces to the circle packing theorem.
The proof of Theorem 2.7 is based on his incompatibility theorem, described in

the next section. It provides uniqueness of the packing (given some normalization),
which is key to proving existence, using continuity and topology (in particular
invariance of domains).

2.4. Uniqueness of packings. I was always impressed by the flexibility of
Oded’s mind, in particular his ability to let go of a promising idea. If an idea did
not yield a desired result, it did not take long for him to come up with a completely
different, and in many cases more beautiful, approach. He once told me that if he
did not make progress within three days of thinking about a problem, he would
move on to different problems.

Following Koebe and Schottky, uniqueness of finitely connected circle domains
(up to Möbius images) is not hard to show, using the reflection principle: if two
circle domains are conformally equivalent, the conformal map can be extended by
reflection across each of the boundary circles, to obtain a conformal map between
larger domains (that are still circle domains). Continuing in this fashion, one ob-
tains a conformal map between complements of limit sets of reflection groups.
As they are Cantor sets of area zero, the map extends to a conformal map of the
whole sphere, and hence is a Möbius transformation. Uniqueness of the (finite)
circle packing can be proved in a similar fashion. To date, the strongest rigidity
result whose proof is based on this method is the following theorem of He and
Schramm. See [23] for the related rigidity of Sierpinski carpets.
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THEOREM 2.8 ([55], Theorem A). If � is a circle domain whose boundary
has σ -finite length, then � is rigid (any conformal map to another circle domain
is Möbius).

For finite packings, there are several technically simpler proofs. The shortest
and most elementary of them is deferred to the end of this section, since I believe
it has been discovered last. Rigidity of infinite packings lies deeper. The rigidity of
the hexagonal packing, crucial in the proof of the Rodin–Sullivan theorem as elab-
orated in Section 2.6 below, was originally obtained from deep results of Sullivan’s
concerning hyperbolic geometry. He’s thesis [52] gave a quantitative and simpler
proof, still using the above reflection group arguments and the theory of quasicon-
formal maps. In one of his first papers [106], Oded gave an elegant combinatorial
proof that at the same time was more general:

THEOREM 2.9 ([106], Theorem 1.1). Let G be an infinite, planar triangula-
tion and P a circle packing on the sphere S2 with nerve G. If S2 \ carrier(P ) is at
most countable, then P is rigid (any other circle packing with the same combina-
torics is Möbius equivalent).

The carrier of a packing {Dv :v ∈ V (G)} is the union of the (closed) discs Dv

and the “interstices” (bounded by three mutually touching circles) in the comple-
ment of the packing. The rigidity of the hexagonal packing follows immediately,
since its carrier is the whole plane.

The ingenious new tool is his Incompatibility theorem, a combinatorial analog
to the conformal modulus of a quadrilateral. To fully appreciate it, let’s first look
at its classical continuous counterpart, and defer the statement of the theorem to
Section 2.4.2 below.

2.4.1. Extremal length and the conformal modulus of a quadrilateral. If you
conformally map a 3 × 1-rectangle to a disc, such that the center maps to the
center, what fraction of the circle does the image of one of the two short sides
occupy? Despite having known the effect of “crowding” in numerical conformal
mapping, I was surprised to learn of the numerical value of 0.0114 . . . from Don
Marshall (see [93]). Of course, the precise value can be easily computed as an
elliptic integral, but if asked for a rough guess, most answers are around 1/10 (the
uniform measure with respect to length would give 1/8). Oded’s answer, after a
moments thought (during a tennis match in the early 1990s), was 1/64, reasoning
that this is the probability of a planar random walker to take each of his first three
steps “to the right.”

An important classical conformal invariant, masterfully employed by Oded in
many of his papers, is the modulus of a quadrilateral. Let � be a simply connected
domain in the plane that is bounded by a simple closed curve, and let p1,p2,p3
and p4 be four consecutive points on ∂�. Then there is a unique M > 0 such
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that there is a conformal map f :� → [0,M] × [0,1] and such that f takes the
pj to the four corners with f (p1) = 0 (by a classical theorem of Caratheodory,
f extends homeomorphically to the boundary of the domains). There are several
quite different instructive proofs of uniqueness of M . Each of the following three
techniques has a counterpart in the circle packing world that has been employed
by Oded. Suppose we are given two rectangles and a conformal map f between
them taking corners to corners.

One method to prove uniqueness is to repeatedly reflect f across the sides of the
rectangles. The resulting extention is a conformal map of the plane, hence linear,
and it follows that the aspect ratio is unchanged. This is similar to the aforemen-
tioned Schottky group argument.

A second method is to explicitly define a quantity λ depending on a config-
uration (�,p1, . . . , p4) in such a way that it is conformally invariant and such
that one can compute λ for the rectangle [0,M] × [0,1]. This is achieved by the
extremal length of the family � of all rectifiable curves γ joining two opposite
“sides” [p1,p2] and [p3,p4] of �. The extremal length of a curve family � is
defined as

λ(�) = sup
ρ

(infγ
∫
γ ρ|dz|)2

∫
C ρ2 dx dy

,(1)

where the supremum is over all “metrics” (measurable functions) ρ : C → [0,∞).
For the family of curves joining the horizontal sides in the rectangle [0,M]×[0,1],
it is not hard to show λ(�) = M . This simple idea is actually one of the most
powerful tools of geometric function theory. See, for example, [48] or [98] for
references, properties and applications.

Discrete versions of extremal length (or the “conformal modulus” 1/λ) have
been around since the work of Duffin [41]. In conformal geometry, they have been
very successfully employed beginning with the groundbreaking paper [28]. Can-
non’s extremal length on a graph G = (V ,E) is obtained from (1) by viewing
nonnegative functions ρ :V → [0,∞) as metrics on G, defining the length of a
“curve” γ ⊂ V as the sum

∑
v∈γ ρ(v), and the “area” of the graph as

∑
ρ(v)2. See

[29] for an account of Cannon’s discrete Riemann mapping theorem, and, for in-
stance, the papers [22] and [62] concerning applications to quasiconformal geome-
try. Oded’s applications to square packings and transboundary extremal length are
briefly discussed in Section 2.7 below.

A third and very different method is topological in nature and is one of the
key ideas in [54]. Suppose we are given two rectangles �,�′ with different as-
pect ratio and overlapping as in Figure 5, and a conformal map f between them
mapping corners to corners. Then the difference f (z) − z is 	= 0 on the boundary
∂�. Traversing ∂� in the positive direction, inspection of Figure 5 shows that the
image curve under f (z) − z winds around 0 in the negative direction. But a neg-
ative winding is impossible for analytic functions (by the argument principle, the
winding number counts the number of preimages of 0).
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FIG. 5. Conformally inequivalent rectangles; from [54].

2.4.2. The incompatibility theorem. Again consider the overlapping rectan-
gles �,�′ of Figure 5, and two combinatorially equivalent packings P,P ′ whose
nerves triangulate the rectangles, as in Figure 6. Assume for simplicity that the
sets Dv and D′

v of the packings are closed topological discs (except for the four
sides D1, . . . ,D4, D′

1, . . . ,D
′
4 of the rectangles, which are considered to be sets of

the packing). Intuitively, two topological discs D and D′ are called incompatible
if they intersect as in Figure 5. More formally, say that D cuts D′ if there are two
points in D′ \ interior(D) that cannot be connected by a curve in interior(D′ \ D).
Then Oded calls D and D′ incompatible if D cuts D′ or D′ cuts D. As he notes,
the motivation for the definition comes from the simple but very important obser-
vation that the possible patterns of intersection of two circles are very special,
topologically. Indeed, any two circles are compatible.

THEOREM 2.10 ([106], Theorem 3.1). There is a vertex v for which Dv and
D′

v are incompatible.

FIG. 6. An incompatibility at the center.
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Oded calls this result a combinatorial version of the modulus. However, it has
rather little in common with the above notion of discrete modulus, except for the
setup.

Oded’s clever proof by induction on the number of sets in the packing uses
arguments from plane topology. An immediate consequence is that two rectangles
cannot be packed by the same circle pattern, unless they have the same modulus
M and hence are similar: if they could, just place the two packings on top of each
other as in Figure 6 and obtain two incompatible circles, a contradiction. In the
same vein, it is not difficult to reduce the proof of the rigidity Theorem 2.9 to an
application of the incompatibility theorem.

2.4.3. A simple uniqueness proof. To end this section, here is a beautifully
simple proof of the rigidity of finite circle packings whose nerve triangulates S2.
I copied it from the wikipedia (search for circle packing theorem), and believe
it is due to Oded. As before, stereographically project the packing to obtain a
packing of discs in the plane. This time, assume that the north pole belongs to the
complement of the discs, so that the planar packing will consist of three “outer”
circles and the remaining circles contained in the interstice between them.

“There is also a more elementary proof based on the maximum principle, which
we now sketch. The key observation here is that if you look at the triangle formed by
connecting the centers of three mutually tangent circles, then the angle formed at
the center of one of the circles is monotone decreasing in its radius and monotone
increasing in the two other radii. Consider two packings corresponding to G. First
apply reflections and Möbius transformations to make the outer circles in these
two packings correspond to each other and have the same radii. Next, consider a
vertex v where the ratio between the corresponding radius in the one packing and
the corresponding radius in the other packing is maximized. Since the angle sum
formed at the center of the corresponding circles is the same (360 degrees) in both
packings, it follows from the above observation that the radius ratio is the same at
all the neighbors of v as well. Since G is connected, we conclude the radii in the
two packings are the same, which proves uniqueness.”

2.5. Koebe’s Kreisnormierungsproblem. Koebe’s 1908 conjecture [68] that
every planar domain can be mapped conformally onto a circle domain is still
open, despite considerable effort by Koebe and others. Important contributions
were made by Grötzsch, Strebel, Sibner and others. One difficulty is the afore-
mentioned lack of uniqueness. Another problem is that Theorem 2.5 is not true in
the infinitely connected case, as the following example from [110] illustrates: if
K = {x + iy :x = 0,±1,±1

2 ,±1
3 , . . . , y ∈ [−1,1]}, and if D = Ĉ \ K , then there

is no conformal map f of D, normalized by f (z) − z → 0 as z → ∞, such that
the component {iy :y ∈ [−1,1]} of ∂D corresponds to a horizontal line segment
(or a point) while the other complementary components of f (D) are vertical line
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segments. The same example also illustrates the fundamental continuity problem:
there is a circle domain D′ conformally equivalent to D, but the boundary compo-
nent corresponding to {iy :y ∈ [−1,1]} is just a point, so that the conformal map
from D′ to D cannot be extended to the boundary.

The first joint paper of He and Schramm provided a breakthrough:

THEOREM 2.11 [54]. If � has at most countably many boundary components,
then � is conformally equivalent to a circle domain �′, and �′ is unique up to
Möbius transformation.

Essentially, this result is still the strongest to date. Oded later [110] gave a con-
ceptually different and simpler proof based on his transboundary extremal length,
which also applies to certain classes of domains with uncountably many boundary
components.

The proof in [54] used transfinite induction and was based on the topological
concept of the fixed-point index. I will illustrate the beautiful idea by sketching
their proof of uniqueness. As it turned out, this argument for uniqueness had been
given earlier by Strebel [131]. The simple but crucial idea is to use the following
(see [54], Lemma 2.2): if f is a fixed-point free orientation preserving homeo-
morphism between two circles C′ and C′′, then the winding number of the curve
f (z) − z, z ∈ C′, around 0 is nonnegative (recall Figure 5 for a situation where the
winding number is negative). Let f :�′ → �′′ be a conformal map and assume for
simplicity that f extends continuously to the boundary (in case of finitely many
boundary components this is immediate from the reflection principle, but in the
countable case this step is nontrivial), and that f has no fixed points on the bound-
ary. Composing with Möbius transformations, we may assume that ∞ ∈ �′ and
that f (z) = z + a1/z + a2/z

2 + · · · . We want to show that f is the identity. If not,
denote aj the first nonzero Taylor coefficient, then f (z) − z has winding num-
ber −j as z traverses a large circle |z| = R, because f (z) − z behaves like aj z

−j .
Moreover, each circular boundary component maps to a circular component. These
boundary components are oriented negatively (to keep the domain to the left) and
thus, by the above crucial idea, contribute a nonpositive number to the winding
of f (z) − z, z ∈ ∂(� ∩ {|z| ≤ R} around 0. Hence the total winding number is
negative, contradicting their generalization of the argument principle [the winding
number counts the number of zeroes of f (z) − z]. Of course, I have swept most
details under the rug, most notably the proof of continuity based on a powerful
generalization of Schwarz’ lemma to circle domains (Theorem 0.6 in [54]).

Combining the fixed-point index method of [54] with an analysis of quasicon-
formal deformations using the reflection group approach and Sullivan’s rigidity
theorems, He and Schramm [58] improve Theorem 2.11 to domains � for which
all boundary components are circles or points except those in a countable and
closed family. They also obtain the following generalization of the Riemann map-
ping theorem. Let A ⊆ C be simply connected.
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THEOREM 2.12 [58, 59]. If � ⊂ A is a relative circle domain (each connected
component of A \ � is a point or a closed disc), then there is a relative circle
domain �∗ in D conformally equivalent to �, and so that ∂A corresponds to ∂D.
Conversely, if �∗ is a relative circle domain in D, there is such � ⊂ A.

The converse direction is the main result of [59].

2.6. Convergence to conformal maps. Let us return to the setting of the
Rodin–Sullivan Theorem 2.3 about convergence of the discrete map fε to the con-
formal map f . Consider the piecewiese linear extension of fε from the carrier of
P to the carrier of P ′ that maps equilateral triangles to the corresponding trian-
gles (formed by the centers of P ′). By the elementary “Ring lemma” of [102], the
angles of these triangles are bounded away from 0 and π (so that fε is quasicon-
formal with dilation uniformly bounded above). At the heart of the Rodin–Sullivan
proof is the uniqueness of the hexagonal packing as the only packing in the plane
with nerve the triangular lattice (see the discussion in Section 2.4). It rather easily
implies that tangent circles centered in a compact set of � correspond to tangent
circles in D whose radii are asymptotically equal as ε → 0. Hence the triangles in
P ′ are nearly equilaterals when ε is small (the angles tend to π/3), so that fε is
nearly angle preserving in each triangle. Now the theory of quasiconformal maps
readily yields equicontinuity of the family of maps fε , and shows that every sub-
sequential limit limfεj

is a conformal map. The theorem follows from uniqueness
of normalized conformal maps.

He’s thesis [52] provided a quantitative estimate for the rate of convergence of
the angles [the difference to π/3 is O(ε)]. This estimate was known to imply con-
vergence of the ratio of corresponding radii rad(D′)/ rad(D) to the absolute value
|f ′| of the derivative. A probabilistic proof of C0 (locally uniform) convergence
of circle packings was given by Stephenson [129]. Convergence of fε to f for
packings other than the hexagonal was proved in [53], under the assumption of
bounded valency of the graph. In [36], the quality of convergence was improved
to convergence in C2 (i.e., convergence of first and second derivatives; strictly
speaking, instead of fε they considered the “piecewise Möbius” map that sends
interstices between triples of mutually tangent circles to the corresponding inter-
stices). He and Schramm [60] found an elementary new convergence proof, based
on the topological ideas discussed above and thus avoiding quasiconformal maps.
Their proof also gave convergence up to C2, and worked in a more general setting.
In particular, it does not need the assumption of uniformly bounded degree of [53].

In the remarkable paper [61], He and Schramm proved C∞-convergence of
hexagonal disk packings to the Riemann map:

THEOREM 2.13 ([61], Theorem 1.1). The discrete functions fε :Vε → D con-
verge in C∞ to the Riemann mapping f :� → D, in the sense that the discrete par-
tial derivatives of fε of any order converge locally uniformly to the corresponding
partial derivatives of f .
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The discrete first-order derivatives for v ∈ Vε are

∂ε,kfε(v) = ε−1(
fε(v + εωk) − fε(v)

)
,

where k ∈ 0,1, . . . ,5 and ω = (1 + i
√

3)/2 is a 6th root of unity. In particular, it
follows that (∂ε,0)

kfε converges to the kth derivative f (k) locally uniformly on G.
The Schwarzian derivative,

S(f )(z) = f ′′′(z)
f ′(z)

− 3

2

f ′′(z)2

f ′(z)2 ,(2)

of a locally univalent analytic function measures the deviation of f from a Möbius
transformation, in particular S(f ) ≡ 0 if f is Möbius. A key idea in the proof is
to define a discrete analog of the Schwarzian derivative, to compute the (discrete)
Laplacian of this Schwarzian, and to employ a regularity theorem for discrete el-
liptic equations to obtain boundedness of all partials of the Schwarzian. The def-
inition of the discrete Schwarzian is the circle packing analog of an invariant that
Oded so masterfully employed in his earlier work [112] on circle patterns with the
combinatorics of the square grid.

2.7. Other topics. Oded’s approach to both mathematics and to life was ex-
traordinarily innovative and unaccepting of conventions. Notions that most people
take for granted, without even thinking about, he would open-mindedly question,
often coming up with amazing alternative solutions. For example, I would not even
think about camping on the foot of a glacier without a sleeping bag. Climbing little
Tahoma peak with Oded, he proved to me that even this idea can be pursued. It was
perhaps one of his less successful innovations, though.

In the lovely paper [109], Oded shows that for each triangulation G of a quadri-
lateral, there is a packing of a rectangle R by (horizontal) squares with the combi-
natorics of G (a square might degenerate to a point, as in Figure 7). The packing
is actually a tiling: indeed, Oded points out the following simple observation.

(a) (b)

FIG. 7. A triangulation and the associated square packing. Thanks to David Wilson for providing
this figure from [109].
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Let Pa , Pb, Pc be three rectangles whose edges are parallel to the coordinate
axis. Suppose that the intersection of every two of these rectangles is nonempty.
Then Pa ∩ Pb ∩ Pc 	= ∅.

The same tiling theorem was obtained independently by Cannon, Floyd and
Parry in [29]. Both employ Cannon’s discrete extremal length (see Section 2.4.1)
and obtain the side lengths s(v) of the squares as the weights ρ(v) of the extremal
metric (corresponding to the family of “combinatorial curves” joining two opposite
sides of the quadrilateral). It is quite different from the classical square packings
of Brooks, Smith, Stone and Tutte [25], in particular, since the metrics considered
here live on the vertices rather than the edges of the graph.

A very similar idea is exploited in the important paper [110]. The classical set-
ting of extremal length [recall (1)] is a family � of curves contained in a domain �.
Invariance

λ(f (�)) = λ(�)

under conformal maps of � is almost trivial [just pull back metrics from f (�)].
Oded’s notion of transboundary extremal length λ�(�) applies to curve families
� that are not necessarily contained in �. The metrics are now replaced by gen-
eralized metrics ρ that, roughly speaking, also assign length to complementary
components. The length

∫
γ ρ|dz| is replaced by

∫
γ∩� ρ|dz| + ∑

p ρ(p) if γ is not
contained in �, where the sum is over all boundary components of � that γ meets.
Then the definition is λ�(�) = supρ(infγ

∫
γ∩� ρ|dz| + ∑

p ρ(p))/
∫
C ρ2 dx dy,

and conformal invariance is again immediate. Using this innocent-looking exten-
sion, Oded provides an elegant self-contained proof of the countable Koebe con-
jecture, and moreover is able to deal with the case of domains for which the com-
plementary component satisfy a certain fatness condition [area(A∩B(x, r)) ≥ cr2

for each component A, each x ∈ A and each disc B(x, r) that does not contain A].
Circle packings corresponding to infinite graphs G can be obtained by taking

Hausdorff limits of packings corresponding to finite subgraphs, but where do they
“live?” Beardon and Stephenson [12, 13] have shown, under the assumption that
the degrees of the vertices are uniformly bounded, that the carrier of such a packing
is either the plane (call this case parabolic), or that it can be chosen to be the disc
(hyperbolic). They also showed that both cases are mutually exclusive, and that the
packing is hyperbolic if each degree is at least seven. The uniform boundedness
assumption was later removed by He and Schramm [54], and they proved in gen-
eral that the type of a packing is unique (i.e., there is no infinite graph that packs
both the disc and the plane). In the impressive paper [56], they characterize the
type in terms of the discrete extremal length, and use it to show that the packing is
parabolic if simple random walk on G is recurrent. They conclude (Theorem 10.1)
that a packing is parabolic if at most finitely many vertices have degree greater
than 6 (notice that every vertex of the hexagonal packing has degree 6). This paper
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(a) (b)

FIG. 8. The square grid and the
√

iSG erf pattern, from [112].

contains their earlier result [57] that a packing is hyperbolic if the lower average
degree is greater than 6. By definition, the lower average degree is

lav(G) = sup
W0

inf
W⊃W0

1

|W |
∑
v∈W

deg(v).

In the case that the degrees of the vertices are uniformly bounded, they also show
that transience implies hyperbolicity. Jointly with Itai Benjamini, this line of in-
vestigation was carried further in [16] and [15], by applying circle and square
packings to constructions of harmonic functions on graphs. Another nice applica-
tion of circle packings is the recurrence of (weak) limits of random planar graphs
with bounded degree [16].

I have always admired Oded’s ability to find a good modification of a difficult
problem that turns it into a tractable problem while keeping its essential features.
One of the many examples is his work on discrete analytic function [112]. Since
circle packings can be viewed as discrete analogs of conformal maps, it is natural
to ask for the analogs of analytic functions, thus giving up injectivity (disjoint-
ness of the discs). See [130] for the state of the art and beautiful illustrations.
Peter Doyle described collections of discs that are tangent according to the hexag-
onal pattern that are analogs of the exponential function. He conjectured that these
would be the only “entire” circle packing immersions. While Oded was not able
to resolve this conjecture, he did find that collections of overlapping discs based
on the square grid seem better suited for the problem, and constructed the analog
of the error function

∫
e−z2

dz in this setting; see Figure 8. Along the way, he in-
troduced Möbius invariants that are discrete analogs of the Schwarzian derivative
and became instrumental in his later work [61].

3. The Schramm–Loewner evolution. There are several excellent lecture
notes, overview articles and a textbook on SLE [73], mostly by and for probabilists
or theoretical physicists (see [8, 31, 42, 49, 63, 115, 134, 135] and the references
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therein). It is not my intention to provide another streamlined introduction to the
area. Instead, I would like to give a somewhat historic account with an emphasis on
Oded’s contributions, highlighting some of the mathematical challenges he faced.

3.1. Pre-history. It is perhaps appropriate to very briefly describe the state of
knowledge related to conformally invariant scaling limits prior to Oded’s discovery
of SLE, and to describe some of the results that were instrumental in his work.
Oded’s own historical narrative is Section 1.2 in [115].

Two-dimensional lattice processes such as the Self-Avoiding Walk (SAW), the
Ising model, percolation and diffusion limited aggregation (DLA), to name just a
few, have been intensively studied by physicists and by probabilists for a long time.
See Figure 21 for some pictures, and the aforementioned articles for descriptions
of the models. In the physics community, many problems such as finding the Haus-
dorff dimension of scaling limits of these sets were considered well understood.
The implicit assumption of conformal invariance of the scaling limit allowed the
use of the powerful machinery of conformal field theory and led to results such
as Cardy’s formula for the crossing probability of critical percolation [30]. On the
mathematical side, progress was much slower, one of the hurdles being that in
most cases the existence of a scaling limit was unknown. Even finding suitable
definitions of the concept of scaling limit was a nontrivial task.

In the late 1980s, Christian Pommerenke told me how compositions of (random)
conformal maps onto slitted discs could be viewed as a variant of the Witten–
Sander model for DLA [137]. At the same time, Richard Rochberg and his son
David were working on this setup. It seems that the only trace of this is a talk given
by Rochberg at the March 1990 AMS Regional meeting in Manhattan, Kansas,
titled “Stochastic Loewner Equation.” Their model is similar to an approach to
Laplacian growth proposed by Hastings and Levitov [51], and is quite different
from what is now called stochastic Loewner evolution or Schramm–Loewner evo-
lution SLE. At that time, other analysts such as Lennart Carleson, Peter Jones and
Nick Makarov worked with similar ideas (see, e.g., [32]). Oded was at best dimly
aware of these activities, and was not really interested in stochastic processes such
as DLA until much later.

Greg Lawler’s invention [71] of the Loop Erased Random Walk (LERW) pro-
vided the mathematics community with a process that shared some features with
the Self-Avoiding Walk, but at the same time was more tractable, partly due to
its Markovian property. Pemantle’s work [96] and Wilson’s algorithm provided
a link between Uniform Spanning Trees (UST) and LERWs. Intensive research
on the UST [90] culminated in the paper [19] by Benjamini, Lyons, Peres and
Schramm. The deep work of Rick Kenyon [65] combined powerful combinatorics
and discrete complex analysis and exhibited conformal invariance properties of the
LERW. He was also able to determine its expected length.
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3.2. Definition of SLE. Oded told me in 1997 about his idea to exploit confor-
mal invariance in order to study the LERW. The streamlined way to present SLE in
courses or texts, beginning with a crash course on the Loewner equation followed
by a crash course on stochastic calculus (or the other way round) is, of course, not
quite representative of its emergence. In a 2006 email exchange with Yuval Peres
and myself about the history of SLE, Oded wrote:

Up to the time when I started thinking about SLE, I did not really know what
Loewner’s equation was, or what was the idea behind it, though I did know that
it was a tool which was important for the coefficients problem and that it involved
slit mappings and a differentiation in the space of conformal maps. I kind of redis-
covered it in the context of SLE and then made the connection.

3.2.1. The (radial) Loewner equation. Loewner ([89]; see also [45, 73] or
[98]) introduced his differential equation as a tool in his attempt to prove the
Bieberbach conjecture |an| ≤ n concerning the Taylor coefficients of normalized
conformal maps f (z) = z + ∑∞

n=2 anz
n of the unit disc. It was also instrumental

in the final solution by de Branges in 1984.
Let γ be a simple path that is contained in D except for one endpoint on ∂D.

More precisely, let γ : [0, τ ] → D be continuous and injective with γ (0) ∈ ∂D
and γ (τ) = 0, such that γ (0, τ ] ⊂ D. Denote Gt = D \ γ [0, t] so that G0 = D.
Then, for each 0 ≤ t < τ , there is a unique conformal map gt :Gt → D that is
normalized by gt (0) = 0 and g′

t (0) > 0; see Figure 9. By Schwarz’s lemma, g′
t (0)

strictly increases, g′
0(0) = 1, and it is not hard to see that g′

t (0) → ∞ as t → τ .

FIG. 9. Conformal maps from slit discs onto discs.
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Hence we can reparametrize γ so that τ = ∞ and g′
t (0) = et . Loewner’s theorem

says that

∂

∂t
gt (z) = gt (z)

ζt + gt (z)

ζt − gt (z)
(3)

for all t ≥ 0 and all z ∈ Gt , where the “driving term”

ζt = gt (γ (t)) ∈ ∂D

is continuous [a priori, gt is only defined in Gt , but it can be shown that gt extends
to γ (t)].

A simple but crucial observation is that the driving term ζ T of the curve
γ T = gT (γ ) [more precisely, the parametrized curve γ T (s) := gT (γ (T + s))] is
given by ζ T

s = ζT +s . Thus “conformally pulling down” a portion of γ corresponds
to shifting the driving term. Intuitively, one can think of the Loewner equation as
describing a conformal map to a slitted disc as a composition of conformal maps
onto infinitesimally slitted discs with slit at ζt , plus the statement that the confor-
mal map onto such a disc is z �→ z + z

ζt+z
ζt−z

�t up to first order in �t .
Thus the Loewner equation associates with each simple curve γ ⊂ D a con-

tinuous function ζt with values in ∂D. Conversely, it is not hard to show that the
solution gt (z) to the initial value problem (3), g0(z) = z, forms a family of confor-
mal maps of simply connected domains Gt onto D. In fact, Gt is the set of those
points ζ ∈ D for which the solution is well defined on the interval [0, t]. It easily
follows that Gt increases in t , and that z ∈ Gt unless gs(z) = ζs for some s ≤ t .
The complement

Kt = D \ Gt

is called the hull of ζ . In our original setup of a slit disc, we simply recover the
curve, Kt = γ [0, t]. It has been known since Kufarev [70] that smooth functions
ζ generate smooth curves γ , but that there also exist continuous functions ζ for
which the associated hull is not a simple arc in D. Kufarev’s example simply is the
computation that a circular chord γ of the unit circle has continuous driving term.
In fact, it can be topologically wild (not locally connected) (see [92]). My own
interest in the Loewner equation originated when Oded asked me which driving
terms generate curves.

3.2.2. The scaling limit of LERW. The LERW is obtained from simple random
walk by erasing loops chronologically. The main result of Oded’s celebrated paper
[113] was a conditional theorem: assuming the existence and conformal invariance
of the scaling limit of LERW, he showed that the Loewner driving term of the
resulting (random) limiting curve is a Brownian motion on the unit circle, ζt =
eiB2t . To make this rigorous, he first gave the following definition of the notion of
scaling limit: let D � C be a domain, fix a ∈ D, and for δ > 0, consider the LERW
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FIG. 10. A loop erased random walk in the disc, from [113].

on the graph δZ2 ∩D, started at a point closest to a and stopped when reaching ∂D.
Viewing the path of the LERW as a random subset of the sphere S2 = C ∪ {∞},
its distribution is a discrete measure μδ on the space of compact subsets of S2.
Equipped with the Hausdorff distance, the space of compact subsets of S2 is a
compact metric space, and so is the space of its Borel measures. The existence
of subsequential weak limits μ = limj μδj

follows at once. If the limit measure
μ = limδ→0 μδ exists, it is called the scaling limit of LERW from a to ∂D.

THEOREM 3.1 ([113], Theorem 1.1). If each connected component of ∂D has
positive diameter, then every subsequential scaling limit measure μ of the LERW
from a to ∂D is supported on simple paths.

In other words, the measure of the set of nonsimple curves is zero. This theorem
is interesting in its own right. It has been known previously that, loosely speak-
ing and under mild assumptions, random curves have uniform continuity proper-
ties that imply their (subsequential) scaling limits to be supported on continuous
curves [1]. However, the fact that the loop erased paths are simple curves does
not directly imply that the limiting objects have no loops. Indeed, the limits of
other discrete random simple curves such as the critical percolation interface or
the uniform spanning tree Peano path are not simple. The proof uses estimates for
the probability distribution of “bottlenecks,” based on harmonic measure estimates
and Wilson’s algorithm, and a topological characterization of simple curves.

Next, Oded formulated the conjecture of existence and conformal invariance of
the scaling limit as follows.

CONJECTURE ([113], Conjecture 1.2). Let D � C be a simply connected do-
main in C, and let a ∈ D. Then the scaling limit of LERW from a to ∂D exists.
Moreover, suppose that f :D → D′ is a conformal homeomorphism onto a do-
main D′ ⊂ C. Then f∗μa,D = μf (a),D′ , where μa,D is the scaling limit measure
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of LERW from a to ∂D, and μf (a),D′ is the scaling limit measure of LERW from
f (a) to ∂D′.

The most important and exciting result of [113] was the insight that this conjec-
ture implied an explicit construction of the limit in terms of the Loewner equation.
By Theorem 3.1, the conjectural scaling limit μ induces a measure on the space
of continuous real-valued functions ζ̂t via the correspondence γ �→ ζ = eiζ̂ of
the Loewner equation. Oded showed that the law of ζ̂ is that of a time-changed
Brownian motion, B2t :

THEOREM 3.2 ([113], Theorem 1.3). Assuming the above conjecture, the
scaling limit μ is equal to the law of the hulls K associated with the driving term
ζ = eiB2t , where Bt, t ≥ 0, is a Brownian motion started at a uniform random point
in [0,2π).

In his characteristic way, Oded pointed out the simple idea behind the theorem.
From his paper:

At the heart of the proof of Theorem 3.2 lies the following simple combinatorial
fact about LERW. Conditioned on a subarc β ′ of the LERW β from 0 to ∂D, which
extends from some point q ∈ β to ∂D, the distribution of β \ β ′ is the same as that
of LERW from 0 to ∂(D −β ′), conditioned to hit q . When we take the scaling limit
of this property, and apply the conformal map from D − β ′ to D, this translates
into the Markov property and stationarity of the associated Löwner parameter ζ .

He also notes that “the passage to the scaling limit is quite delicate.” The trans-
lation into the Markov property and stationarity is by means of the aforementioned
principle that “conformally pulling down” a portion γ ′ of γ corresponds to shifting
the driving term. Thus ζ̂ is a continuous process with stationary and independent
increments. Now the theory of Lévy processes (and the symmetry of LERW un-
der reflection) implies that ζ̂t has the law of

√
κBt for some κ > 0 and a standard

Brownian motion B . It remained to determine the constant κ . To this end, Oded
gives the following:

DEFINITION. The (radial) stochastic Loewner evolution SLEκ with parameter
κ > 0 is the random process of conformal maps gt generated by the Loewner
equation driven by ζt = ei

√
κBt .

In Section 7 of [113] he actually defined SLE as a process of random paths
generated by the Loewner equation, and therefore had to restrict to those values
of κ for which the resulting hulls are simple curves; he conjectured that this is the
interval [0,4].
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Next, he analyzed the winding number of the SLE-path around 0, and of the
LERW: If θκ(t) = argγ (t), t ≥ 0, denotes the continuously defined argument
along the curve, then he computed the variance

E[θκ(t)2] = (
κ + o(1)

)
log t.

It follows that the winding number of the portion of the SLE path until its first
hitting of the circle of radius ε centered at 0 has variance (κ + o(1)) log(1/ε).
On the other hand, Kenyon’s work [66] implies that the variance of the winding
number of LERW in D ∩ εZ2 is (2 + o(1)) log(1/ε), and after some work the
conclusion κ = 2 follows.

Oded went on to compute what he called the critical value for SLE: he proved
that for κ > 4, almost surely SLE will not generate simple paths, and conjectured
that it will for κ ∈ [0,4]. See the discussion in Section 3.3.3 for the simple proof us-
ing Itô’s formula (in the chordal case). However, Oded was a self-taught newcomer
to stochastic calculus, discovered some of the basics himself and commented on
his proof in an email in January 1999:

This must all be quite standard, to people with the right background. But not for
me.

3.2.3. The chordal Loewner equation, percolation and the UST. The classical
(radial) Loewner equation is well suited for curves that join an interior point to a
boundary point, such as curves generated by the LERW. Other processes generate
curves joining two boundary points. Oded realized how important the “correct”
normalizations are in dealing with conformal maps and in particular the Loewner
equation, and found the appropriate variant of the Loewner equation (it turned out
later that this version has been described earlier, beginning with Popova [99, 100];
I would like to thank Alexander Vasiliev for this reference). He describes this in
another email in January 1999:

I have a mathematical querry. Before the question itself, here’s the motivation. For the
LERW scaling limit, the natural object is a probability measure on the set of paths from
a point in the domain to the boundary. In other settings, the natural object is a proba-
bility measure joining two points on the boundary of a domain. Consider, for example,
percolation in the unit disk. Let (γ,β) be a partition of the boundary of the disk to
two arcs, disjoint except for the endpoints. Let K be the union of all percolation clus-
ters inside the disk that are connected to γ . Then the outer boundary of K is a path,
α, joining the two endpoints of γ (as in Figure 11). The scaling limit of α is conjec-
turally conformally invariant (but not a simple path). Assuming conformal invariance,
I’m optimistic that the scaling limit can be represented by a Loewner-like Brownian
evolution. The first step for this seems to be the following variation on Loewner’s theo-
rem:
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FIG. 11. Percolation in a domain, from [115].

THM. Let α : [0,∞) → C be a continuous simple path such that α(0) = 0,
limt→∞ α(t) = ∞ and Im(α(t)) > 0 when t > 0. Let ft be the conformal map from the
upper half plane to the upper half plane minus {α(s) : 0 ≤ s ≤ t}, which is normalized
by ft (z) = z + O(1/z) near infinity. By change of parameterization of α (and perhaps
changing its interval of definition), we may assume that ft (z) = z + t/z + O(1)/z2

near infinity. Set g(w, t) = f −1
t (w). Then {∂g/∂t} = 1/(g − k(t)), where k(t) =

g(α(t), t).

In the situation of percolation and related conformal invariance models, one should
expect k(t) = cBM(t), where BM is on the real line. Have you seen this theorem? The
proof should not be difficult. It can either be derived from Loewner’s theorem, or by
adapting the proof.

In order to coincide with the normalization of the radial Loewner equation, he
later slightly adjusted the parametrization of the path α so that

ft (z) = z + 2t/z + O(1)/z2

and
∂

∂t
gt (z) = 2

gt (z) − Wt

.(4)

With this normalization and assuming conformal invariance of the percolation
scaling limit, he showed that the (nonsimple) limit curves [see Figure 12(b)] would
satisfy the chordal Loewner equation (4) with Wt = √

6Bt . The value 6 can be
found as the only κ such that the random sets generated by

√
κBt satisfy Cardy’s

formula, or the locality property discussed below. This led to the definition of
chordal SLEκ as the random process of conformal maps

gt : H \ Kt → H

generated by the Loewner equation (4) with driving function W(t) = √
κBt , where

B is a standard Brownian motion.
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(a) (b)

FIG. 12. The percolation exploration path.

The hull Kt is the set of those points z for which gs(z) = Ws for some s ≤ t so
that (4) becomes undefined. Since gt is determined by Kt , one has the equivalent:

DEFINITION. Chordal SLEκ is the process of random hulls (Kt , t ≥ 0) gener-
ated by the Loewner equation (4) with Wt = √

κBt .

In the same paper, Oded also defines and analyzes subsequential scaling limits
of the uniform spanning tree. He ends the paper by speculating (i.e., stating without
giving detailed proofs) about the Loewner driving term of the UST Peano curve in
the upper half plane H; see Figure 13. He finds that, again assuming existence and

FIG. 13. The UST Peano curve, from [103].
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conformal invariance of the limit, this random space filling curve is SLE8. At the
end of the introduction, he summarizes the findings of the paper as follows:

The emerging picture is that different values of κ in the differential equation (3)
or (4) produce paths which are scaling limits of naturally defined processes, and
that these paths can be space-filling, or simple paths, or neither, depending on the
parameter κ .

3.3. Properties and applications of SLE. Two exciting developments took
place shortly after the introduction of SLE, namely the very productive collabo-
ration of Greg Lawler, Oded Schramm and Wendelin Werner, and the surprising
proof of existence and conformal invariance of the percolation scaling limit by Stas
Smirnov. I will begin describing the former, and defer the latter to Section 3.3.4.

3.3.1. Locality. In the important papers [84] and [85], Lawler and Werner dis-
covered that Brownian excursions have a certain restriction property (explained
below), and that intersection exponents of conformally invariant processes with
this property are closely related to those of Brownian motion. What was missing
was a way to compute exponents of some conformally invariant process. Lawler,
Schramm and Werner discovered that SLE provided such a process to which the
universality arguments of Lawler and Werner [85] applied. The following email
from Oded describes the crucial property:

I do not remember if I have mentioned to you the restriction property for SLE(6)

that Greg, Wendelin and I have proved. It says that (up to time parameterization)
the law of SLE(6) in an arbitrary domain D starting from a point p on the boundary
and stopped when it exits a small ball B around p, does not depend on the shape
of the domain outside B (provided that D–B is connected, say). Thus, SLE(6) is
purely a local process, like BM. This is not true for κ 	= 6. For example, SLE(6)

in the disk (with Loewner’s original equation) is the same as SLE(6) in the half
plane, with my variation on Loewner’s equation. This seems to say that SLE(6) is
a very special process.

The above property is trivial for the discrete critical percolation exploration
path, since the path can be grown “dynamically” by deciding the color of a hexagon
only when the path meets it and needs to decide whether to turn “right” or “left.”
Hence, in light of the conjectured scaling limit, locality for chordal SLE6 was not
unexpected. The coincidence of chordal and radial SLE6, discussed below, was
more surprising.

Here is a precise statement of the locality property. Let D = H \ A be a simply
connected subdomain of H such that A is bounded and also bounded away from 0.
Denote gA the conformal map from D onto H with the hydrodynamic normaliza-
tion [gA(z)− z → 0 as z → ∞], and set �A = gA −gA(0). Then SLE in D from 0
to ∞ is defined as the preimage of SLE in H from 0 to ∞ under �A. The following
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expresses the fact that SLE in D is a time-change of SLE in H, up to the time that
the process hits A. Let T = inf{t :Kt ∩A 	= ∅} and T̃ = inf{t :Kt ∩�A(∂A) 	= ∅}.

THEOREM 3.3 ([75], Theorem 2.2). For κ = 6, the processes (�A(Kt), t <

T ) and (Kt , t < T̃ ) have the same law, up to re-parametrization of time.

The equivalence of chordal and radial SLE6 was established in [76], Theo-
rem 4.1: define the hulls Kt of chordal SLEκ in D from 1 to −1 as the image
of chordal SLEκ in H, under the conformal map f (z) = (i − z)/(i + z). Thus Kt

are hulls growing from 1 toward −1 in D. Denote T ≤ ∞ the first time when Kt

contains 0. Similarly, denote K̃t the chordal SLEκ hulls in D, started at 1, and de-
note T̃ the first time when K̃t contains −1. Then, for κ = 6, the laws of (Kt , t < T )

and (K̃t , t < T̃ ) are the same, up to a random time change s = s(t). The proof and
Girsanov’s theorem also show that for all values of κ , the laws of Kt and K̃s(t) are
equivalent (in the sense of absolute continuity of measures), if t and t̃ are bounded
away from T and T̃ . See Proposition 4.2 in [76].

The first proof of the locality Theorem 3.3 was rather long and technical, based
on an analysis of the Loewner driving function of a curve under continuous defor-
mation of the surrounding domain. A different and simpler proof was found later
(see Proposition 5.1 in [81]), by analyzing W̃t := ht (Wt), where ht := g̃t ◦gA ◦g−1

t

and g̃t = ggt (D\Kt) is the normalized conformal map of gt (D \ Kt) to H. Writing

g̃t (z) = z + at

z
+ O

(
1

z2

)
,

computation shows that

∂t g̃t (z) = ∂tat

g̃t (z) − W̃t

= 2h′
t (Wt)

2

g̃t (z) − W̃t

.

With Wt = √
κBt , computation using Itô’s formula shows

dW̃t = h′
t (Wt ) dWt + (

(κ/2) − 3
)
h′′

t (Wt) dt.(5)

Thus W̃t is a local martingale if (and only if) κ = 6, and a time change shows that
(g̃t , t ≥ 0) is SLE6.

3.3.2. Intersection exponents and dimensions. The locality of SLE6 has been
used to determine the so-called intersection exponents of two-dimensional Brown-
ian motion, and to compute the Hausdorff dimensions of various sets associated
with its trace. These results established Schramm’s SLE and the Lawler–Werner
universality arguments as a fundamental and powerful new tool.

If B1
t and B2

t are two independent planar Brownian motions started at two differ-
ent points B1

0 	= B2
0 , it easily follows from the subadditivity of t �→ log P[B1[0, t]∩

B2[0, t] = ∅] that there is a number ζ > 0 such that

P
[
B1[0, t] ∩ B2[0, t] = ∅

] =
(

1

t

)ζ+o(1)

.



ODED SCHRAMM: FROM CIRCLE PACKING TO SLE 1649

Similarly, the half-plane exponent ζ̃ of the event that two independent motions
do not intersect and stay in a halfplane is given by

P
[
B1[0, t] ∩ B2[0, t] = ∅ and Bj [0, t] ⊂ H, j = 1,2

] =
(

1

t

)ζ̃+o(1)

.

More generally, one considers exponents ζp for the probability of the event that p

independent motions are mutually disjoint, ζ(j, k) for the event that two packs of
Brownian motions B1 ∪· · ·∪Bj and Bj+1 ∪· · ·∪Bj+k are disjoint, and the corre-
sponding half-plane exponents ζ̃p and ζ̃ (j, k). So ζ = ζ(1,1). Also relevant is the
disconnection exponent 2ηj for the event that the union of j Brownian motions,
started at 1, does not disconnect 0 from ∞ before time t .

These and other intersection exponents have been studied intensively, and val-
ues such as ζ = 5/8 had been obtained by Duplantier and Kwon [43] using the
mathematically nonrigorous method of conformal field theory.

An extension of ζ(j, k) for positive real k > 0 was given in [84], and some
fundamental properties (in particular the “cascade relations”) were established.
In the series of papers [75, 76, 78, 80] (see [74] for a guide and sketches of
proofs), Lawler, Schramm and Werner were able to confirm the predictions, and
they proved:

THEOREM 3.4. For all integers j ≥ 1 and all real numbers k ≥ 0,

ζ(j, k) = (
√

24j + 1 + √
24k + 1 − 2)2 − 4

96
, ζn = 4n2 − 1

48
,

ζ̃ (j, k) = (
√

24j + 1 + √
24k + 1 − 1)2 − 1

48
, ζ̃n = 2n2 + n

6

and

ηk = ζ(k,0) = (
√

24k + 1 − 1)2 − 4

48
.

In particular,

ζ = 5
8 , ζ̃ = 5

3 , η1 = 1
4 , η2 = 2

3 .

The proofs are technical masterpieces combining a variety of different meth-
ods. A very rough description is as follows: first, half-plane intersection exponents
of SLE6 are computed, based on estimates for the crossing probability of (long)
rectangles. This is done by establishing a version of Cardy’s formula. Then, the
universality ideas of [85] are employed to pass from SLE6 to Brownian motion.
Finally, to cover the case k < 1, real analyticity of the exponent is shown by recog-
nizing e−2ζ(j,k) as the leading eigenvalue of an operator Tk on a space of functions
on pairs of paths.
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FIG. 14. A Brownian path, with part of the frontier highlighted.

For a fixed time t , the Brownian frontier (Figure 14) is the boundary of the
unbounded connected component of the complement of B[0, t], and the set of cut
points is the set of those points p for which B[0, t] \ {p} is disconnected. The
set of pioneer points is the union of the frontiers over all t > 0. Mandelbrot [91]
observed that the Brownian frontier looks like a long self-avoiding walk. Since
the Hausdorff dimension of the self-avoiding walk was predicted by physicists
to have Hausdorff dimension 4/3, he conjectured that the Hausdorff dimension
of the Brownian frontier is 4/3. Greg Lawler had shown in a series of papers
(see [72]) how the intersection exponents are related to the Hausdorff dimension
of subsets of the Brownian path. He found the values 2 − 2ζ , 2 − η2 and 2 − η1
for the dimension of the Brownian frontier, the set of cut points, and the set of
pioneer points. This actually required his stronger estimates of the intersection
probabilities up to constant factors, rather than up to (1/t)o(1). Simpler proofs of
those estimates are the content of [79]. In combination with Theorem 3.4, this
proved Mandelbrot’s conjecture.

THEOREM 3.5 [76, 80]. The Hausdorff dimension of the frontier, the set of cut
points and the set of pioneer points of two-dimensional Brownian motion is 4/3,
3/4 and 7/4 almost surely.

To put this result in perspective, notice that it is rather difficult to show even that
the dimension of the Brownian frontier is more than one [20], and that the set of
cutpoints is nonempty [26]. It should also be mentioned that by work of Lawler,
the intersection exponents for simple random walk are the same as for Brownian
motion, so that Theorem 3.4 also shows, for instance, that

P
[
S1[0, n] ∩ S2[0, n] = ∅

] =
(

1

n

)5/8+o(1)

,
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if S1 and S2 are two independent planar simple random walks started at different
points.

Meanwhile, there is a more elegant approach to these dimension results, also
due to Lawler, Schramm and Werner (see Section 3.3.5).

3.3.3. Path properties. I have been fortunate to collaborate with Oded on sev-
eral projects over the past two decades. Sometimes this meant just trying to catch
up with his fast output, and watching in awe how one clever idea replaced another.
But perhaps even more impressively, Oded had an amazing ability and willingness
to listen, and to think along. Sometimes, when I failed in an attempt to articulate
a vague idea and was about to give up a faint line of thought, he surprised me by
completely understanding what I tried to express, and by continuing the thought,
almost like mind reading.

The definition of SLEκ as a family of conformal maps gt through a stochas-
tic differential equation does not shed much light upon the structure of the hulls
Kt = g−1

t (H). By Section 3.3.1, it is enough to consider chordal SLE. We say that
the hull (Kt)t≥0 is generated by a curve γ if γ : [0,∞) → H is continuous and if
Kt is obtained from γ by “filling in the holes” of γ [0, t] (more precisely, Kt is the
complement in H of the unbounded connected component of H \ γ [0, t]). Since
continuity of the driving term Wt is equivalent to the requirement that the incre-
ments Kt+ε \ Kt have “small diameter within Dt” (more precisely, there is a set
S ⊂ Dt of small diameter that disconnects Kt+ε \ Kt from ∞ within Dt (see [75],
Theorem 2.6)), such a curve cannot cross itself, but it can have double points and
“bounce off” itself [97]. There are examples of continuous W for which Kt is not
locally connected, and such sets cannot be generated by curves [92]. Fortunately,
this does not happen for SLE:

THEOREM 3.6 ([103], Theorem 5.1; [82], Theorem 4.7). For each κ > 0, the
hulls Kt are generated by a curve, almost surely.

It follows that, a.s., the conformal maps ft = g−1
t extend continuously to the

closed half space H, and γ (t) = ft (Wt). For κ 	= 8, the proof hinges on estimates
for the derivative expectations E[|f ′

t (z)|p]. For κ = 8, the only known proof is by
exploiting the fact that SLE8 is the scaling limit of UST, and that the UST scaling
limit is a continuous curve a.s. [82].

As Oded already noticed in [113], the SLEκ trace has different phases (see Fig-
ure 15), depending on the value of κ .

THEOREM 3.7 [103]. For κ ≤ 4, the SLE trace γ is a simple curve in H∪{0},
almost surely. It “swallows” points (for fixed z ∈ H \ {0}, a.s. z ∈ Kt for large t ,
but z /∈ γ [0,∞)) if 4 < κ < 8, and it is space-filling (γ [0,∞) = H) if κ ≥ 8. For
all κ , the trace is transient a.s.: |γ (t)| → ∞ as t → ∞.
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FIG. 15. The three phases of SLE; picture courtesy of Michel Bauer and Denis Bernard [6].

Let us explain the phase transition at κ = 4, already observed and conjectured
in [113] (in the radial case). Let x > 0 and denote

Xt = gt (x) − Wt,

where Wt = √
κBt . Then

dXt = 2

Xt

dt − √
κ dBt

is an Itô diffusion and can be easily analyzed using stochastic calculus. In fact, Xt

is a Bessel process of dimension 1+4/κ . Thus Xt > 0 for all t if and only if κ ≤ 4.
In this range, we obtain Kt ∩ R = {0} for all t , and it is an easy consequence of
Theorem 3.6 that γ is simple (if r < s < t are such that γ (r) = γ (t) 	= γ (s), then
the curve gs(γ [s, t]) has the law of SLEκ shifted by gs(γ (s)), but has two points
on R).

The other phase transition can be seen by examining the SLE-version of Cardy’s
formula: if X = inf([1,∞) ∩ γ [0,∞)) denotes the first intersection of the SLE
trace with the interval [1,∞), then a.s. X = 1 if κ ≥ 8, whereas for κ ∈ (4,8)

P[X ≥ s] = 4(κ−4)/κ
√

π2F1(1 − 4/κ,2 − 8/κ,2 − 4/κ,1/s)s(4−κ)/κ

�(2 − 4/κ)�(4/κ − 1/2)
,(6)

where 2F1 denotes the hypergeometric function. At the corresponding time where
γ (t) = X, the nontrivial interval [1,X] gets “swallowed” by K at once. The proof
of Cardy’s formula in [103] is similar to the more elaborate Theorem 3.2 in [75]
and based on computing exit probabilities of a renormalized version of gt ,

Yt = gt (1) − Wt

gt (s) − Wt

∈ (0,1).

At the exit time T , we have YT = 0 or 1 according to whether X < s or > s. Now
Cardy’s formula can be obtained using standard methods of stochastic calculus.

For a simply connected domain D 	= C and boundary points p,q , chordal SLE
from p to q in D is defined as the image of SLE in H under a conformal map of
H onto D that takes 0 and ∞ to p and q . Since the conformal map between H
and D generally does not extend to H, the continuity of the SLE trace in D does
not follow from Theorem 3.6. However, using Theorem 3.9 below and general
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properties of conformal maps, it can be shown to still hold true [47]. Another
natural question is whether SLE is reversible, namely if SLE in D from p to q has
the same law as SLE from q to p. This question was recently answered positively
for κ ≤ 4 by Dapeng Zhang [139]. It is known to be false for κ ≥ 8 [103], and
unknown for 4 < κ < 8.

THEOREM 3.8 [139]. For each κ < 4, SLEκ is reversible, and for κ ≥ 8 it is
not reversible.

The aforementioned derivative expectations E[|f ′
t (z)|p] also led to upper

bounds for the dimensions of the trace and the frontier. The technically more
difficult lower bounds were proved by Vincent Beffara [14] for the trace.

For κ > 4, notice that the outer boundary of Kt is a simple curve joining two
points on the real line. There is a relation between SLEκ and SLE16/κ , first derived
by Duplantier with mathematically nonrigorous methods, and recently proved in
the papers of Zhang [140] and Dubedat [39]. Roughly speaking, Duplantier duality
says that this curve is SLE16/κ between the two points. A precise formulation
is based on a generalization of SLE, the so-called SLE(κ, ρ) introduced in [81].
As a consequence, the dimension of the frontier can thus be obtained from the
dimension of the dual SLE.

Based on a clever construction of a certain martingale, in [121] Oded and Wang
Zhou determined the size of the intersection of the trace with the real line. The
same result was found independently and with a different method by Alberts and
Sheffield [2]. Summarizing:

THEOREM 3.9. For κ ≤ 8,

dimγ [0, t] = 1 + κ

8
.

For κ > 4,

dim ∂Kt = 1 + 2

κ
.

For 4 < κ < 8,

dimγ [0, t] ∩ R = 2 − 8

κ
.

The paper [121] also examined the question of how the SLE trace tends to infin-
ity. Oded and Zhou showed that for κ < 4, almost surely γ eventually stays above
the graph of the function x �→ x(logx)−β , where β = 1/(8/κ − 2).

3.3.4. Discrete processes converging to SLE. In [75], Lawler, Schramm and
Werner wrote that:
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. . . at present, a proof of the conjecture that SLE6 is the scaling limit of critical
percolation cluster boundaries seems out of reach. . . .

Smirnov’s proof [125] of this conjecture came as a surprise. More precisely, he
proved convergence of the critical site percolation exploration path on the triangu-
lar lattice [see Figure 12(b)] to SLE6. See also [27] and [126]. This result was the
first instance of a statistical physics model proved to converge to an SLE. The key
to Smirnov’s theorem is a version of Cardy’s formula. Lennart Carleson realized
that Cardy’s formula assumes a very simple form when viewed in the appropriate
geometry: when κ = 6, the right-hand side f (s) of (6) is a conformal map of the
upper half plane onto an equilateral triangle ABC such that 0,1 and ∞ correspond
to A,B and C. Since SLE6 in ABC from A to B has the same law as the image
of SLE6 in H from 0 to ∞, the first point X′ of intersection with BC has the law
of f (X). It follows that X′ is uniformly distributed on BC. (A similar statement is
true for all 4 < κ < 8, where “equilateral” is replaced by “isosceles,” and the angle
of the triangle depends on κ , [37].) Smirnov proved that the law of a corresponding
observable on the lattice converges to a harmonic function, as the lattice size tends
to zero. And he was able to identify the limit, through its boundary values. The
proof makes use of the symmetries of the triangular lattice, and does not work on
other lattices such as the square grid, where convergence is still unknown.

The next result concerning convergence to SLE was obtained by the usual sus-
pects Lawler, Schramm and Werner [82]. They proved Oded’s original Conjec-
ture 3.2.2 about convergence of LERW to SLE2, and the dual result (also conjec-
tured in [113]) that the UST converges to SLE8 (see Figures 10 and 13).

The harmonic explorer (Figure 17) is a (random) interface defined as follows:
given a planar simply connected domain with two marked boundary points that
partition the boundary into black and white hexagons, color all hexagons in the
interior of the domain gray [see Figure 16(a)]. The (growing) interface γ starts
at one of the marked boundary points and keeps the black hexagons on its left

(a) (b)

FIG. 16. Definition of the harmonic explorer path, from [116].
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FIG. 17. Harmonic explorer path, from [115].

and the white hexagons on its right. It is (uniquely) determined (by turning left
at white hexagons and right at black) until a grey hexagon is met. When it meets
a grey hexagon h (marked by ? in Figure 16) the (random) color of h is deter-
mined as follows. A random walk on the set of hexagons is started, beginning with
the hexagon h. The walk stops as soon as it meets a white or black hexagon, and
h assumes that color. Continuing in this fashion, γ will eventually reach the other
boundary point. In [116], Oded and Scott Sheffield showed (distributional) conver-
gence of γ to SLE4. The overall strategy is again to directly analyze the Loewner
driving term of the discrete path. The crucial property of SLE4 is that, conditioned
on the SLE trace γ [0, t], the probability that a point z ∈ H will end up on the left
of γ [0,∞) is a harmonic function of z [it is equal to the argument of gt (z) − Wt ,
divided by π ].

Other processes are believed to converge to SLE4, too, in particular Rick
Kenyon’s double domino path, and the q-state Pott’s model with q = 4.

The self-avoiding walk (see Figure 18), first proposed in 1949 as a simple model
for the structure of polymers, has played an important role in the development of
SLE, in several ways: first, Lawler’s invention of the LERW was partly motivated
by the desire to create a model that is simpler than SAW. Second, the apparent
similarity to the Brownian frontier motivated Mandelbrot’s conjecture. Third, and
most significantly, the SAW is conjectured to converge to SLE8/3. See [83] for pre-
cise formulations, and a proof of this conjecture assuming existence and conformal
invariance of the scaling limit, and [64] for strong numerical evidence. However,
still very little is known rigorously about the SAW.

Another famous classical model is the Ising model for ferromagnetism (see
Figure 19). Stas Smirnov [127] has recently obtained another breakthrough con-
cerning convergence of lattice models to SLE. He found observables for the Ising
model at criticality and was able to prove their conformal invariance in the scaling
limit. As a consequence, he obtained SLE3 in the limit. Quoting from [126]:
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FIG. 18. Half-plane SAW, picture courtesy of Tom Kennedy.

THEOREM. As the lattice step goes to zero, interfaces in Ising and Ising random
cluster models on the square lattice at critical temperature converge to SLE(3) and
SLE(16/3) correspondingly.

3.3.5. Restriction measures. The elegant and important paper [81] is a culmi-
nation of the universality arguments that have been initiated in [85] and developed
in the subsequent collaboration of Lawler, Schramm and Werner. In the setting of
random sets joining two boundary points of a simply connected domain, [81] gives
a complete characterization of laws satisfying the conformal restriction property,
and various constructions of them.

FIG. 19. Critical Ising interface, picture courtesy of Stas Smirnov [126].
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Roughly speaking, a family of random sets K joining 0 and ∞ in H satisfies
conformal restriction, if for every reasonable subdomain D = H \ A of H, the law
of K conditioned on K ⊂ D is the same as the law of g(K), where g is a conformal
map from D to H fixing 0 and ∞. More precisely, the sets K are supposed to be
connected, have connected complement, and are such that H\K has two connected
components. The subdomain D is reasonable if it is simply connected and contains
(relative) neighborhoods of 0 and ∞.

An equivalent definition is to consider, for each simply connected domain D

and each pair of boundary points a, b, a law PD,a,b on subsets of D joining a

and b. Then the two required properties are conformal invariance, namely

g∗PD,a,b = Pg(D),g(a),g(b)

for conformal maps g of D, and “restriction”: for reasonable D′ ⊂ D, the law
PD,a,b of K , when restricted to K ⊂ D′, equals PD′,a,b. The remarkable main
result is that there is a unique one-parameter family of such measures.

THEOREM 3.10. P = PH,0,∞ is a conformal restriction measure if and only
if there is α > 0 such that

P[K ⊂ D] = g′
D(0)α(7)

for every reasonable D ⊂ H. For each α ≥ 5
8 there is a conformal restriction mea-

sure Pα . Furthermore, α0 = 5
8 is the smallest α for which there is a restriction

measure, P5/8 is the only restriction measure supported on simple curves, and
P5/8 is SLE8/3.

An important observation, due to Balint Virag [133], is that P1 is the law of
Brownian excursions from 0 to ∞ in H (roughly, Brownian motion started at 0 and
conditioned to “stay in H” for all time). An elegant application goes as follows.
If K1 and K2 are independent samples from Pα1 and Pα2 , then (7) implies that
K1 ∪ K2 has the law of Pα1+α2 (after the “loops” of the union have been filled
in). By uniqueness, it follows that the law of the union of 5 independent Brownian
excursions in H (plus loops) is the same as that of 8 copies of SLE8/3 (with loops
added). In particular, the frontiers are the same and thus have Hausdorff dimension
4/3 by Theorem 3.9. A similar result is [81], Theorem 9.1: the law of the hull
of whole-plane SLE6, stopped when reaching the boundary of a disc D, is the
same as the law of a planar Brownian motion (with the bounded complementary
components added), stopped upon leaving D.

The proof that SLE8/3 is P5/8 is based on the following computation. Using the
same notation as (5), one can show

dh′
t (Wt) = h′′

t (Wt) dWt +
(

h′′
t (Wt )

2

2h′
t (Wt )

+
(

κ

2
− 4

3

)
h′′′

t (Wt)

)
dt.(8)
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For κ = 8
3 , it follows that

dh′
t (Wt)

5/8 = 5

8

h′′
t (Wt)

h′
t (Wt)3/8 dWt

so that h′
t (Wt)

5/8 is a local martingale. Writing as before T = inf{t :Kt ∩ A 	= ∅},
it is not hard to show that h′

t (Wt) tends to 0 as t → T if K ∩ A 	= ∅ (the case
T < ∞), and limt→T h′

t (Wt) → 1 otherwise. Thus

P[K ⊂ D] = P[T = ∞] = E[h′
T (WT )5/8] = E[h′

0(W0)
5/8] = g′

D(0)5/8.

For values greater than 5/8, there are several constructions of the restriction mea-
sures described in [81]. One is by adding “Brownian bubbles” to SLE-traces.

3.3.6. Other results. There are other versions of the Loewner equation. The
“whole plane” equation was developed and used in [76] to deal with hulls Kt that
are growing in the plane rather than a disc or half-plane. “Di-polar SLE” was intro-
duced in [7]; see also [9]. An important generalization of SLE are the SLE(κ, ρ)

and variations, first introduced in [81]. An elegant and unified treatment of all these
variants is in [120]. Also, defining SLE in multiply connected domains creates a
new difficulty that is not present in the simply connected case, since a slit multiply
connected domain is not conformally equivalent to the unslit domain. See [10, 11,
138].

Since SLE is amenable to computations, the convergence of discrete processes
to SLE can be used to obtain results about the original process. In this fashion,
Oded [114] obtained the limiting probability, as the lattice size tends to zero in
critical site percolation on the triangular lattice in the disc D, that the union of a
given arc A ⊂ ∂D and a percolation cluster surrounds 0. In [77], Lawler, Schramm
and Werner showed that the probability of the event 0 ↔ CR that the percolation
cluster containing the origin reaches the circle of radius R behaves like R−5/48,

P [0 ↔ CR] = R−5/48+o(1)

as R → ∞. See also [128] for related exponents.
Because of space, in this note we have ignored the mathematically nutritious

“Brownian loop soup” [86] and its relation to restriction measures, as well as the
growing literature around the important Conformal Loop Ensemble CLEκ intro-
duced by Scott Sheffield [123]. See [119] and [136].

There are deep and exciting connections between the Gaussian Free Field and
SLE, as explored by Oded and Scott Sheffield. The GFF has made its first ap-
pearance in this area in Rick Kenyon’s work on the height of domino tilings [67].
See [122] for definitions and properties. Here is a very brief description of their
work. Let D ⊂ C be a domain bounded by a simple closed curve that is parti-
tioned into two arcs by two marked boundary points. Approximate D by a portion
G = (V ,E) of the triangular grid as before (see Figure 20, where again vertices are
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FIG. 20. Level set of the Discrete GFF, from [117].

represented by hexagons), and denote ∂V the boundary vertices. Fix a constant λ,
and let h = hε be an instance of the Discrete Gaussian Free Field, with bound-
ary values ±λ on the two boundary arcs. This means that h(v), v ∈ V \ ∂V , is a
�(V \ ∂V )-dimensional Gaussian random variable whose density is proportional
to exp(−∑

(u,v)∈E(h(v) − h(u))2/2). Extend h in a piecewise linear fashion from
the vertices to the triangles. The main result of the deep and very long paper [117]
is, roughly speaking, the following. If λ = 3−1/4√π/8, then the level curve γε of
level h = 0, joining the two marked boundary points, converges to SLE4 as ε → 0.
Other values of λ lead to variants of SLE4. See also [40] and [118].

Finally, there are several collaborations of Oded being written at the moment.
For instance, there are deep results of Christophe Garban, Gabor Pete and Oded
concerning near-critical percolation and its scaling limit, which is different from
SLE6 (see [46]). The nice paper [124] describes Oded’s (unpublished) proof of
Watt’s formula for double crossings in critical percolation, and provides insight
into Oded’s masterful use of Mathematica. Watt’s formula was first proved rigor-
ously by Dubedat [38].

3.4. Problems. Many of Oded’s papers contain open problems, some (such
as [110]) even propose a direction to tackle them. His ICM talk [115] contains a
large number of problems around SLE, and has provided the field with a sense
of direction. Some additional SLE-related problems are in [103]. Several of his
problems have been solved since their publication.

As already mentioned, the convergence of the Ising interface to SLE3, Prob-
lem 2.5 in [115], was proved by Smirnov. The reversability of the chordal SLE
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(a) (b)

(c) (d)

(e) (f)

FIG. 21. Various random curves converging to SLEs. (a) LERW, κ = 2; (b) SAW, κ = 8
3 ; (c) Ising,

κ = 3; (d) harmonic explorer, κ = 4; (e) percolation, κ = 6; (f) UST, κ = 8.

path, Problem 7.3 of [115], has been established for κ ≤ 4 by Zhang [139], and the
method has even led to a proof of a version of Duplantier’s duality by Zhang and
by Dubedat [39, 140]. Near-critical percolation and dynamical percolation (Sec-
tions 2.6 and 5 of [115]) are now well understood by [46] and [95].
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Spectacular progress has been made concerning the mathematical foundations
of quantum gravity. Whereas the existence of an (unscaled) limit of “random tri-
angulations of the sphere” was already established in [5], the important Knizhnik–
Polyakov–Zamolodchikov formula (relating exponents of statistical physics mod-
els in “random geometries” to corresponding exponents in plane geometry) seemed
out of reach until recently. In Section 4 of [115], Oded wrote:

However, there is still no mathematical understanding of the KPZ formula. In fact, the
author’s understanding of KPZ is too weak to even state a concrete problem.

Problem 4.1 in [115], to show the existence of the (weak) Gromov–Hausdorff
scaling limit of the graph metric on random triangulations of the sphere, was solved
in the impressive work of Le Gall [87]. Le Gall and Paulin showed [88] that the
limiting space is a topological sphere, almost surely. Duplantier and Sheffield [44]
described a random measure (a scaling limit of the measure echε dx dy where hε

is the Gaussian free field, averaged over circles of radius ε) which exhibits a KPZ-
like relation. They conjecture a precise relation between a scaling limit of [5] and
their random continuous space, and discuss connections to SLE. Following Du-
plantier and Sheffield, simpler random metric spaces exhibiting KPZ were consid-
ered in [18] and [101].

3.5. Conclusion. We have seen how Oded shaped the field of circle packings,
and how he developed a deep understanding of discrete approximations to confor-
mal maps. His results on the Koebe conjecture are still the best to date. We have
also seen how Oded’s discovery of SLE led to a powerful new tool in probabil-
ity theory and in mathematical physics. In fact, it has changed the way physicists
and mathematicians think about critical lattice interfaces, and has led to very fruit-
ful interactions across disciplines. The number of mathematicians and physicists
working with SLE is increasing fast, and the last few years have seen a number
of exciting developments. Oded has already established his place in the history of
mathematics. I have no doubt that we will see many more wonderful developments
directly or indirectly related to Oded’s work, thus keeping his spirit alive through
the work of his fellow mathematicians, coauthors and friends.
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