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This paper is dedicated to the memory of Oded Schramm

Oded Schramm (1961–2008) influenced greatly the development of per-
colation theory beyond the usual Z

d setting; in particular, the case of nona-
menable lattices. Here, we review some of his work in this field.

1. Introduction. Oded Schramm was born in 1961 and died in a hiking ac-
cident in 2008, in what otherwise seemed to be the middle of an extraordinary
mathematical career. Although he made seminal contributions to many areas of
mathematics in general and probability in particular, I will here restrict attention
to his work on percolation processes taking place on graph structures more exotic
than the usual Zd setting. The title I have chosen alludes to the short but highly
influential paper Percolation beyond Z

d , many questions and a few answers from
1996 by Itai Benjamini and Oded Schramm [13].

I need to point out, however, that there are at least two respects in which I will
fail to deliver on what my chosen title suggests. First, I will not come anywhere
near an exhaustive exposition of Oded’s contributions to the field. All I can offer is
a personal and highly subjective selection of highlights. Second, Oded was a very
collaborative mathematician, and I will make no attempt (if it even makes sense)
at identifying his individual contributions as opposed to his coauthors’. Suffice it
to say that everyone who worked with him knew him as a very generous person
and as someone who would not put his name on a paper unless he had contributed
at least his fair share. I will just quote one recollection from Oded’s long-time
collaborator and friend Russ Lyons:

To me, Oded’s most distinctive mathematical talent was his extraordinary clarity of
thought, which led to dazzling proofs and results. Technical difficulties did not obscure
his vision. Indeed, they often melted away under his gaze. At one point when the four
of us [Oded, Russ, Itai Benjamini and Yuval Peres] were working on uniform spanning
forests, Oded came up with a brilliant new application of the Mass-Transport Principle.
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We were not sure it was kosher, and I still recall Yuval asking me if I believed it, saying
that it seemed to be “smoke and mirrors.” However, when Oded explained it again, the
smoke vanished [59].

Following the spirit of the aformentioned paper [13], I will take “percolation be-
yond Z

d” to mean percolation process that are not naturally thought of as embed-
ded in d-dimensional Euclidean space. This excludes contributions by Oded not
only to the theory of percolation on Z

d (such as [6]) but also to percolation on the
triangular lattice (such as [71] and [73]) and to continuum percolation in R

d (such
as [14]).

Other parts of Oded’s work are discussed in the papers by Angel, Garban and
Rohde in the present volume. For further reactions to Oded’s untimely death, and
memories of his life and work, see, for instance, Lyons [54], Häggström [33] and
Werner [79], as well as the blog [59].

2. How it began. It will be assumed throughout that G = (V ,E) is an infinite
but locally finite connected graph. In i.i.d. site percolation on G with retention
parameter p ∈ [0,1], each vertex v ∈ V is declared open (retained, value 1) with
probability p and closed (deleted, value 0) with the remaining probability 1 − p,
and this is done independently for different vertices. Alternatively, one may con-
sider i.i.d. bond percolation, which is similar except that it is the edges rather
than the vertices that are declared open or closed. Write Pp,site and Pp,bond for
the resulting probability measures on {0,1}V and {0,1}E , respectively. The choice
whether to study bond or site percolation is often (but not always) of little im-
portance and largely a matter of taste. In either case, focus is on the connectivity
structure of the resulting random subgraph of G. Of particular interest is the pos-
sible occurrence of an infinite connected component—an infinite cluster, for short.
The probability under Pp,site or Pp,bond of having an infinite cluster is always 0
or 1, and increasing in p. This motivates defining the site percolation critical value

pc,site(G) = inf{p : Pp,site(∃ an infinite cluster) > 0}
and the bond percolation critical value pc,bond(G) analogously.

By far the most studied case is where G = (V ,E) is the Z
d lattice with d ≥ 2,

meaning that V = Z
d and E consists of all pairs of Euclidean nearest neighbors.

Some selected landmarks in the history of percolation are the 1960 result of Har-
ris [37] that pc,bond(Z

2) ≥ 1
2 ; the 1980 result of Kesten [41] that pc,bond(Z

2) = 1
2 ;

the 1987 result of Aizenman, Kesten and Newman [1] establishing uniqueness of
the infinite cluster for arbitrary d; and the strikingly short and beautiful alterna-
tive proof from 1989 by Burton and Keane [21] of the same result. See Grimmett
[26] and Bollobás and Riordan [19] for introductions to percolation theory with
emphasis on the Z

d case.
Benjamini and Schramm [13] were of course not the first to study percolation

on more exotic graphs and lattices. The case where G is the (d + 1)-regular tree
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Td had been well understood for a long time, essentially because it can be seen
as a Galton–Watson process. Lyons [50, 51] had studied percolation on general
trees, and Grimmett and Newman [29] had considered percolation on the Cartesian
product Td × Z [the Cartesian product G = (V ,E) of two graphs G1 = (V1,E1)

and G2 = (V2,E2) has vertex set V = V1 × V2, and an edge connecting (x1, x2)

and (y1, y2) iff x1 = y2 are identical and x2 and y2 are neighbors or vice versa].
However, it was only with the publication of Benjamini and Schramm [13] that a
systematic study of percolation beyond Z

d began to take off toward anything like
escape velocity. Clearly, they managed to find just the right time for launching the
kind of informal research programme that their paper proposes. It should be noted,
however, that a large part of the meaning of “just the right time” in this context is
simply “soon after Oded Schramm had been drawn into probability theory.”

When, as in [13], we focus on the occurrence and properties of infinite clusters
for i.i.d. site (or bond) percolation on a graph G = (V ,E), a first basic issue is
of course whether such clusters occur at all for any nontrivial value of p, that is,
whether pc,site(G) < 1 [or pc,bond(G) < 1]. Benjamini and Schramm conjecture
the following, where, for v ∈ V , B(v,n) denotes the set of vertices w ∈ V such
that distG(v,w) ≤ n, and distG is graph-theoretic distance in G.

CONJECTURE 2.1 (Conjecture 2 in [13]). If G is a quasi-transitive graph
such that for some (hence any) v ∈ V , |B(v,n)| grows faster than linearly, then
pc,site(G) < 1.

Here, of course, we need to define quasi-transitivity of a graph (the term used in
[13] was almost transitive, but the mathematical community quickly decided that
quasi-transitive was preferable).

DEFINITION 2.2. Let G = (V ,E) be an infinite locally finite connected
graph. A bijective map f :V → V such that 〈f (u), f (v)〉 ∈ E if and only if
〈u, v〉 ∈ E is called a graph automorphism for G. The graph G is said to be tran-
sitive if for any u, v ∈ V there exists a graph automorphism f such that f (u) = v.
More generally, G is said to be quasi-transitive if there is a k < ∞ and a partition-
ing of V into k sets V1, . . . , Vk such that for i = 1, . . . , k and any u, v ∈ Vi there
exists a graph automorphism f such that f (u) = v.

An important subclass of transitive graphs is the class of graphs arising as
the Cayley graph of a finitely generated group. It may be noted that for quasi-
transitive graphs (and more generally for bounded degree graphs; cf. [32]) we
have pc,bond < 1 iff pc,site < 1, so Conjecture 2.1 may equivalently be phrased
for bond percolation. Benjamini and Schramm found a short and elegant proof of
the conjecture for the special case of so-called nonamenable graphs:
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DEFINITION 2.3. The isoperimetric constant h(G) of a graph G = (V ,E) is
defined as

h(G) = inf
S

|∂S|
|S| ,

where the infimum ranges over all finite nonempty subsets of V , and ∂S = {u ∈ V \
S :∃v ∈ S such that 〈u, v〉 ∈ E}. The graph G is said to be amenable if h(G) = 0;
otherwise, it is said to be nonamenable.

(Sometimes, as in [13], h(G) is also called the Cheeger constant.)

THEOREM 2.4 (Theorem 2 in [13]). Any nonamenable graph G satisfies
pc,site(G) < 1. In fact,

pc,site(G) ≤ 1

h(G) + 1
.(1)

PROOF. Fix p and a vertex ρ ∈ V , and consider the following sequential pro-
cedure for searching the open cluster containing ρ. If ρ is open, set S1 = {ρ},
otherwise stop. At each integer time n, check the status (open or closed) of some
thitherto unchecked vertex v in ∂Sn−1; if v is open we set Sn = Sn−1 ∪ {v}, if v is
closed we set Sn = Sn−1, while if no such v can be found the procedure terminates.
Define X0 = 0 and Xn = |Sn| for n ≥ 1, and note that {X0,X1, . . .} is a random
walk whose i.i.d. increments take value 0 with probability 1 −p and 1 with proba-
bility p, stopped at some random time. If G has isoperimetric constant h(G), then
the random walk can stop only when n−Xn

Xn
≥ h(G), that is, when

Xn

n
≤ 1

h(G) + 1
.(2)

But the random walk has drift p, so when p > 1
h(G)+1 the Strong Law of Large

Numbers implies that with positive probability Xn

n
never satisfies (2), in which case

the walk never stops and ρ belongs to an infinite cluster. �

It may be noted that the result is sharp in the sense that the bound (1) holds with
equality for the tree Td , for which pc,site(Td) = 1

d
and h(Td) = d − 1.

Once pc,site(G) < 1, we know that i.i.d. site percolation on G has two distinct
phases: for p < pc,site there is no infinite cluster, while for p > pc,site there is. But
what happens at the critical value? This has long been a central issue in percolation
theory. When G is the Z

d lattice with d ≥ 2, the consensus belief among percola-
tion theorists is that there is no infinite cluster at criticality; this is known for d = 2
(Russo [67]) and d ≥ 19 (Hara and Slade [36]), but the general case remains open.
Benjamini and Schramm suggest that “it might be beneficial to study the problem
in other settings.”
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CONJECTURE 2.5 (Conjecture 4 in [13]). For any quasi-transitive graph G

with pc,site(G) < 1, there is a.s. no infinite cluster at criticality.

This remains open (as of course it must be as long as the Z
d case with

3 ≤ d ≤ 18 stays unsolved), but Benjamini and Schramm were soon to be involved
in remarkable progress toward proving it; see Section 4. The quasi-transitivity con-
dition cannot be dropped, as it is easy to construct graphs with a nontrivial critical
value which nevertheless percolate at criticality (a tree growing slightly faster than
a binary tree will do; see, e.g., [51]).

Another natural next question, once the existence of infinite clusters at nontrivial
values of p (i.e., pc,site < 1) is established, concerns how many infinite clusters
there can be. Benjamini and Schramm [13] noted that the argument of Newman and
Schulman [61] for showing that the number of infinite clusters is, for fixed p, an
a.s. constant which must equal 0, 1 or ∞ extends to the setting of quasi-transitive
graphs. They furthermore saw that the argument of Burton and Keane [21] for
ruling out infinitely many infinite clusters extends to amenable quasi-transitive
graphs (a similar observation was made earlier in Theorem 1′ of Gandolfi, Keane
and Newman [25]). In other words, we get the following.

THEOREM 2.6. For any amenable quasi-transitive graph G and any p ∈
[0,1], the number of infinite clusters produced by i.i.d. site or bond percolation
on G with parameter p is either 0 or 1 a.s.

In contrast, i.i.d. site percolation the regular tree Td with d ≥ 2 exhibits in-
finitely many infinite clusters for all p ∈ (pc,site,1). Also, the Td × Z example
studied by Grimmett and Newman [29] exhibits the same phenomenon when p

is above but sufficiently close to pc,site (Grimmett and Newman showed this for
large d , and later Schonmann [69] indicated how to do it for all d ≥ 2). Ben-
jamini and Schramm [13] conjectured that the Burton–Keane argument is sharp
in the sense that whenever G is quasi-transitive and nonamenable, uniqueness of
the infinite cluster fails for p above but sufficiently close to pc,site. In terms of the
so-called uniqueness critical value

pu,site = pu,site(G)

= inf{p ∈ [0,1] : i.i.d. site percolation on G with parameter p

produces a.s. a unique infinite cluster},
their conjecture reads as follows.

CONJECTURE 2.7 (Conjecture 6 in [13]). For any nonamenable quasi-
transitive graph G, we have pc,site(G) < pu,site(G).
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In the spirit of the Grimmett–Newman result mentioned above, they proved that
for any quasi-transitive graph G, the product graph Td × G satisfies pc,site(G) <

pu,site(G) provided d is large enough (this is Corollary 1 in [13]).
Conjecture 2.7 has stimulated further research as well. For instance, Pak and

Smirnova-Nagnibeda [63] proved in the case of bond percolation that it holds for
the Cayley graph of any nonamenable group provided an appropriate choice of
generators. Lalley [43] and a later paper by Benjamini and Schramm [16] proved
it for certain classes of nonamenable planar graphs; this will be discussed in more
detail in Section 7.

By definition of pu,site and the Newman–Schulman 0–1–∞ law, we have infi-
nitely many infinite clusters a.s. for any p ∈ (pc,site,pu,site). It would be nice to add
that uniqueness holds for all p ∈ (pu,site,1), but for this we need the monotonicity
property that if p1 < p2 and uniqueness holds a.s. at parameter value p1, then it
holds at p2 as well; this is part of Question 5 in [13]. The required monotonic-
ity was proved by Häggström and Peres [35] for quasi-transitive graphs under the
additional assumption of unimodularity (see Definition 3.5 below), and by Schon-
mann [68] without this additional assumption.

The other part of Question 5 in [13] concerns, in the case where G is quasi-
transitive with pc,site < pu,site < 1, the number of infinite cluster at p = pu,site:
one or infinitely many? Somewhat surprisingly, the answer turned out to depend
on the choice of G. For the Grimmett–Newman example, Schonmann [69] showed
that there are infinitely many infinite clusters at the uniqueness critical point pu,site,
a result that Peres [65] extended to more general product graphs. In contrast, Ben-
jamini and Schramm [16] showed that for planar nonamenable graphs with one
end, there is a unique infinite cluster at pu,site; see Section 7 again.

There is a good deal more to say about the Percolation beyond Z
d paper [13],

but I must move on to some of Oded Schramm’s later contributions. The paper’s
influence will be evident from the coming sections, but see also Benjamini and
Schramm [15], Lyons [53] and Häggström and Jonasson [34] for partially overlap-
ping surveys of what happened in the wake of the paper.

3. Invariant percolation and mass transport. Soon after finishing the Per-
colation beyond Z

d paper [13], Itai Benjamini and Oded Schramm joined forces
with Russ Lyons and Yuval Peres (this quartet of authors will appear frequently
in what follows, and will be abbreviated BLPS). In [9], they broadened the scope
compared to [13] by considering percolation processes on quasi-transitive graphs
in a more general situation than the i.i.d., namely automorphism invariance.

DEFINITION 3.1. Let G = (V ,E) be a quasi-transitive graph and let Aut(G)

denote the group of graph automorphisms of G. A {0,1}V -valued random object
X is called a site percolation for G, and it is said to be automorphism invariant
if for any n, any v1, . . . , vn ∈ V , any b1, . . . , bn ∈ {0,1} and any γ ∈ Aut(G), we
have

P
(
X(γ v1) = b1, . . . ,X(γ vn) = bn

) = P
(
X(v1) = b1, . . . ,X(vn) = bn

)
.
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Automorphism invariance of a bond percolation for G is defined analogously.
In fact, much of the work in [9] concerns an even more general setting, namely
invariance under certain kinds of subgroups of Aut(G). Here, for simplicity, I will
restrict attention to the case of invariance under the full automorphism group
Aut(G).

There are plenty of automorphism invariant percolation processes beyond i.i.d.
that arise naturally. Examples in the site precolation case include certain Gibbs
distributions for spin systems such as the Ising model, and certain equilibrium
measures for interacting particle systems such as the voter model. In the bond
percolation case, they include the random-cluster model [27] as well as the random
spanning forest models to be discussed in Section 8.

Amongst the most important contributions of BLPS [9] is the introduction of
the so-called Mass-Transport Principle in percolation theory, and the beginning
of a systematic exploitation of it for understanding the behavior of percolation
processes. (This was partly inspired by an application in Häggström [31] of similar
ideas in the special case where G is a regular tree.) As a kind of warm-up for
readers unfamiliar with the mass-transport technique, let me suggest a very simple
toy problem.

PROBLEM 3.2. Given a transitive graph G = (V ,E), does there exist an auto-
morphism invariant bond percolation process which produces, with positive prob-
ability, some infinite open cluster consisting of a single self-avoiding path which
is infinite in just one direction? (We call such a self-avoiding path uni-infinite.)
In other words, this open cluster should consist of a single vertex of degree 1 in
the cluster, while all the other (infinitely many) vertices of the cluster should have
degree 2.

Call an infinite cluster slim if it is of the desired kind. (In a sense, a slim infi-
nite cluster is the smallest infinite cluster there can be.) Also, given an automor-
phism invariant bond percolation process X taking values in {0,1}E , we define
random variables {Y(v)}v∈V as follows. If v does not belong to a slim infinite
cluster in v, we set Y(v) = 0; otherwise, we let Y(v) be one plus the distance in
the slim cluster from v to the one endpoint of this cluster. For k = 0,1, . . . , write
α(v, k) = P(Y (v) = k). Automorphism invariance ensures that this is independent
of the choice of v, so we may write α(k) for α(v, k).

When G = (V ,E) is the Z
d lattice, we can argue as follows. Write �n for the

box {−n,−n + 1, . . . , n}d ⊂ V . The expected number of vertices v ∈ �n with
Y(v) = 1 is (2n + 1)dα(1). But for any k, and any vertex v with Y(v) = 1, there
must be a corresponding vertex u with Y(u) = k within distance k − 1 from v.
Hence, the expected number of vertices v ∈ �n+k−1 with Y(v) = k is at least
(2n + 1)dα(1), so

(
2(n + k) − 1

)d
α(k) ≥ (2n + 1)dα(1),
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and sending n → ∞ yields α(k) ≥ α(1). Similarly, α(1) ≥ α(k), so that in fact
α(1) = α(k), and since k was arbitrary we have α(1) = α(2) = α(3) = · · · . But∑∞

k=1 α(k) ≤ 1, so α(k) must be 0 for each k, whence slim infinite clusters do not
occur in the G = Z

d case.
The crucial property of the Z

d lattice that makes the argument work is that
|�n+k |
|�n| → 1 as n → ∞. Hence, the argument is easily extended to the more general

case where G is transitive and amenable.
But what about the case where G is nonamenable? Now the argument does not

generalize, and in fact the following example gives us problems. And end in a
graph G = (V ,E) is an equivalence class of uni-infinite self-avoiding paths in X,
with two paths equivalent if for all finite W ⊂ V the paths are eventually in the
same connected component of the graph obtained from G by deleting all v ∈ W .

EXAMPLE 3.3 (Trofimov’s graph [77]). Consider the regular binary tree T2,
and fix an end ξ in this tree. For each vertex v in the tree, there is a unique uni-
infinite self-avoiding path from v that belongs to ξ . Call the first vertex after v on
this path the ξ -parent of v, and call the other two neighbors of v its ξ -children.
The ξ -grandparent of v is defined similarly in the obvious way. Let G = (V ,E)

be the graph that arises by taking T2 and adding, for each vertex v, an extra edge
connecting v to its ξ -grandparent.

Clearly, Trofimov’s graph G is transitive, and it also inherits the nonamenability
property of T2. It turns out that on G, it is possible to construct an automorphism
invariant bond percolation exhibiting slim infinite clusters:

EXAMPLE 3.4. Let G = (V ,E) be Trofimov’s graph, and consider the fol-
lowing automorphism invariant bond percolation on G: each v ∈ V will have an
open edge to exactly one of its ξ -children, and for each v independently, toss a fair
coin to decide which ξ -child to connect to. All grandparent–grandchild edges are
closed. (To see that this bond percolation is indeed automorphism invariant, it is
necessary, but easy, to check that the end ξ can be identified by just looking at the
graph structure of G.) This produces a percolation configuration in which a.s. each
v sits in a slim infinite cluster. From v the open path extends downward (i.e., away
from ξ ) infinitely, and upward a geometric(1

2) number of steps.

So perhaps slim infinite clusters can arise as soon as G is nonamenable? In fact,
no. It turns out that the mass-transport method of BLPS [9] applies to rule out
slim infinite clusters also in the nonamenable case, as long as the graphs satisfy
the additional assumption of unimodularity. Unimodularity holds for all specific
examples considered so far except for Trofimov’s graph. It holds for Cayley graphs
in general, and I daresay it tends to hold for most transitive graphs that are not
constructed for the explicit purpose of being nonunimodular.
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DEFINITION 3.5. Let G = (V ,E) be a quasi-transitive graph with automor-
phism group Aut(G). For v ∈ V , the stabilizer of v is defined as Stab(v) = {γ ∈
Aut(G) :γ v = v}. The graph G is said to be unimodular if for all u, v ∈ V in the
same orbit of Aut(G) we have the symmetry

|Stab(u)v| = |Stab(v)u|.
[Note how Trofimov’s graph fails to be unimodular: for two vertices u and v

such that u is the ξ -parent of v, we get |Stab(u)v| = 2 but |Stab(v)u| = 1. Each
vertex has two children but just one parent.]

PROPOSITION 3.6. In automorphism invariant bond percolation on a quasi-
transitive unimodular graph G, there is a.s. no slim infinite cluster.

This, we will find, is an easy consequence of the Mass-Transport Principle of
BLPS [9]. For an automorphism invariant site (or bond) percolation on a quasi-
transitive graph G = (V ,E), let μ be the corresponding probability measure on
{0,1}V (or on {0,1}E). Consider a nonnegative function m(u,v,ω) of three vari-
ables: two vertices u, v ∈ V and the percolation configuration ω taking values
in 	 = {0,1}V (or 	 = {0,1}E). Intuitively, we should think of m(u,v,ω) as
the mass transported from u to v given the configuration ω. We assume that
m(u,v,ω) = 0 unless u and v are in the same orbit of Aut(G), and further-
more that m(·, ·, ·) is invariant under the diagonal action of Aut(G), meaning that
m(u,v,ω) = m(γu,γ v, γω) for all u, v,ω and γ ∈ Aut(G).

THEOREM 3.7 (The Mass-Transport Principle, Section 3 in [9]). Given G, μ

and m(·, ·, ·) as above, let

M(u,v) =
∫
	

m(u, v,ω)dμ(ω)

for any u, v ∈ V . If G is unimodular, then the expected total mass transported out
of any vertex v equals the expected mass transported into v, that is,∑

u∈V

M(v,u) = ∑
u∈V

M(u, v).(3)

The Mass-Transport Principle as stated here fails if G is not unimodular. [To see
this for Trofimov’s graph, we can consider the the mass transport in which each
vertex simply sends unit mass to its ξ -parent, regardless of the percolation config-
uration. Then each vertex sends mass 1 but receives mass 2, thus violating (3).] In
fact, BLPS [9] did state a version of the Mass-Transport Principle that holds also
in the nonunimodular case; this involves a reweighting of the mass sent from u to
v by a factor that depends on |Stab(u)v|

|Stab(v)u| . But it is in the unimodular case that the
Mass-Transport Principle has turned out most useful, and for simplicity we stick
to this case.
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The proof of the Mass-Transport Principle is particularly simple in the case
where G is the Cayley graph of a finitely generated group H , so here I will settle
for that case only:

PROOF OF THEOREM 3.7 IN THE CAYLEY GRAPH CASE. For u, v ∈ V , we
also have that u and v are group elements of H , and that there is a unique element
h = uv−1 ∈ H such that u = hv. This gives

∑
u∈V

M(v,u) = ∑
h∈H

M(v,hv) = ∑
h∈H

M(h−1v, v)

= ∑
h′∈H

M(h′v, v) = ∑
u∈V

M(u, v),

where the second equality follows from automorphism invariance. �

PROOF OF PROPOSITION 3.6. Consider the mass transport in which each ver-
tex v sitting in a slim infinite cluster sends unit mass to the unique endpoint of this
cluster. Vertices not sitting in a slim infinite cluster send no mass at all. Then the
expected mass sent from a vertex is at most 1, while if slim infinite clusters exist
with positive probability then some vertices will receive infinite mass with positive
probability, so that the expected mass received is infinite, contradicting (3). �

Proposition 3.6 is just an illustrative example, but BLPS [9] proved several other
more interesting reuslts using the Mass-Transport Principle, which turns out to be
quite a potent tool in nonamenable settings where classical density arguments and
ergodic averages are not available in the same way as in the amenable case. The
Mass-Transport Principle in itself is not especially deep or difficult. Rather, in the
words of BLPS [10], “the creative element in applying the mass-transport method
is to make a judicious choice of the transport function m(u,v,ω).” We will see
some examples in this section and the next. (For a remarkable recent development
of the mass-transport method, see Aldous and Lyons [3] and Schramm [72].)

The following result characterizes amenability of Cayley graphs (and more gen-
erally of unimodular transitive graphs) in terms of a certain percolation threshold
for invariant percolation. For a transitive graph G = (V ,E) and a automorphism
invariant site percolation on G with distribution μ on {0,1}V , write π(μ) for the
marginal probability that a given vertex is open.

THEOREM 3.8 [9]. Let G be a unimodular transitive graph, and define
pc,inv(G) is the infimum over all p ∈ [0,1] such that any automorphism invari-
ant site percolation μ on G with π(μ) = p is guaranteed to produce at least one
infinite cluster with positive probability. Then pc,inv(G) < 1 if and only if G is
nonamenable.
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Quantitative estimates for pc,inv(G) in the nonamenable case are also provided
in [9]. Theorem 3.9 below gives such a bound in the bond percolation case. For site
percolation, BLPS [9] show that if π(μ) ≥ d(G)

d(G)+h(G)
, where d(G) is the degree of

a vertex in G, and h(G) as before is the isoperimetric constant, then there is at least
one infinite cluster with positive probability. Similar bonds are given for the quasi-
transitive case as well. For the case G = Td the bounds go back to Häggström [31],
where they were established using a precursor of the mass-transport method, and
also shown to be sharp. The following bound in the bond percolation case is in
terms of the edge-isoperimetric constant hE(G), defined by

hE(G) = inf
S

|∂ES|
|S| ,

where as in Definition 2.3 the infimum ranges over all finite S ∈ V , while ∂ES =
{〈u, v〉 ∈ E :u ∈ S, v ∈ V \ S}. Clearly, h(G) ≤ hE(G) ≤ (d(G) − 1)h(G) when
G is transitive, so such a G is amenable in the sense of Definition 2.3 if and only
if hE(G) = 0.

THEOREM 3.9 [9]. Let G = (V ,E) be transitive and unimodular, and con-
sider an automorphism invariant bond percolation on G such that for each edge
e ∈ E we have

P(e is open) ≥ d(G) − hE(G)

d(G)
.(4)

Then the percolation produces an infinite cluster with positive probability.

The proof is worth exhibiting here, but in order to be able to follow the elegant
argument from the expository follow-up paper BLPS [10], I will be content with
considering the case where (4) holds with strict inequality.

PROOF OF (ALMOST) THEOREM 3.9. For a finite subgraph G′ = (V ′,E′)
of G, define its average internal degree

h∗
E(G′) = 2|E′|

|V ′|
and set

h∗
E(G) = sup

G′
h∗

E(G′),(5)

where the supremum is over all finite subgraphs G′ of G. For any given such G′,
we have

2|E′| + |{〈u, v〉 ∈ E :u ∈ V ′, v ∈ V \ V ′}| ≤ d(G)|V ′|
with equality if and only if all e ∈ E with both endpoints in V ′ are also in E′.
Hence, h∗

E(G) + hE(G) = d(G), so the right-hand side of (4) equals
h∗

E(G)

d(G)
. Now



PERCOLATION BEYOND Zd 1679

consider a {0,1}E-valued automorphism invariant bond percolation X on G such
that

P(e is open) >
h∗

E(G)

d(G)
(6)

for each e ∈ E, and assume for contradiction that it a.s. produces no infinite cluster.
We may define a mass transport where each vertex sitting in a finite open cluster
counts the number of open edges incident to it, sends out exactly this amount of
mass, and distributes it equally among all the vertices sitting in its connected com-
ponent in the percolation process. In other words, we take the transport function to
be

m(u,v,ω) =
⎧⎨
⎩

dω(u)

|K(u)| , if u is in a finite component of ω and v ∈ K(u),

0, otherwise,

where dω(u) is the degree of u in X, and K(u) is the set of vertices having an open
path in ω to u. Then (6) and the assumption that X produces no infinite clusters
give

E

[∑
v∈V

m(u, v,X)

]
≥ d(G)min

e∈E
P(e is open)

> d(G)
h∗

E(G)

d(G)
= h∗

E(G),

while the amount
∑

v∈V m(v,u,X) received at u is the average internal degree of
its connected component, which is bounded by h∗

E(G). Hence,

E

[∑
v∈V

m(u, v,X)

]
> E

[∑
v∈V

m(v,u,X)

]

contradicting the Mass-Transport Principle. �

The next result from BLPS [9] concerns the expected degree of a vertex given
that it belongs to an infinite cluster. Here it seems most natural to consider the bond
percolation case. For G transitive and an invariant bond percolation on G with
distribution μ that produces at least one infinite cluster with positive probability,
define β(G,μ) as the expected degree of a vertex given that it belongs to an infinite
cluster, and define β(G) = infμ β(G,μ) where the infimum ranges over all such
automorphism invariant bond percolation processes on G.

THEOREM 3.10 [9]. For G = (V ,E) transitive, we have β(G) = 2 if G is
unimodular, and β(G) < 2 otherwise.



1680 O. HÄGGSTRÖM

An exact expression for β(G) in the unimodular case is also given, namely
1+ inf〈u,v〉∈E

|Stab(u)v|
|Stab(v)u| , where transitivity implies that the infimum is in fact a min-

imum. Note how Theorem 3.10 immediately implies Proposition 3.6 above: a slim
infinite cluster would have vertices both of degree 1 and of degree 2, and these are
the only degrees appearing, so the average degree would have had to be strictly be-
tween 1 and 2. That average degree 2 is needed is quite intuitive, but what is more
surprising is that it is possible to go below 2 in the nonunimodular case. In fact,
the bond percolation on Trofimov’s graph in Example 3.4 has β(G,μ) = 3

2 , and
this can be pushed down to β(G,μ) = 5

4 (which is sharp for Trofimov’s graph) by
letting the slim infinite clusters live on grandparent–grandchild rather than parent–
child edges.

Another striking result in BLPS [9] concerns the number of ends of infinite
components: if G is quasi-transitive and unimodular and μ is an automorphism
invariant site or bond percolation, then the number of ends of any infinite com-
ponent must be either 1, 2 or ∞. (In the amenable case, the argument of Burton
and Keane [21] excludes also the case of infinitely many ends.) Furthermore, for
infinite clusters with infinitely many ends, BLPS [9] showed that that such clusters
have expected degree strictly greater than 2, and that they have critical values for
site or bond percolation that are strictly greater than 1.

4. No infinite cluster at criticality. I have yet to mention what is possibly
the most striking result of all from BLPS [9]. Namely, this study of automorphism
invariant percolation turned out to have the following implication for i.i.d. perco-
lation, which is a remarkable step in the direction of Conjecture 2.5.

THEOREM 4.1. Let G be a nonamenable unimodular quasi-transitive graph,
and consider i.i.d. site percolation on G at the critical value p = pc,site. Then there
is a.s. no infinite cluster. The analogous statement for i.i.d. bond percolation holds
as well.

Due to the focus in [9] being on the more general setting of automorphism
invariant percolation, the proof given there is not the most direct possible. The
authors therefore chose to publish a separate expository note, BLPS [10], with a
more direct proof which is well worth recalling here. Following [10], I will re-
strict to the case of bond percolation on a (nonamenable, unimodular) transitive
graph; the cases of site percolation and quasi-transitive graphs require only minor
modification.

The reason why unimodularity is needed in the proof is that the Mass-Transport
Principle is used—in fact, it is used several times (including in the proof of The-
orem 3.9 which the proof of Theorem 4.1 falls back on). But we should probably
expect the result to be true also in the nonunimodular case (certainly if we trust
Conjecture 2.5). See Timár [76] and Peres, Pete and Scolnicov [66] for what are
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perhaps the best efforts to date toward a better understanding of the nonunimodular
case.

PROOF OF THEOREM 4.1 FOR BOND PERCOLATION ON TRANSITIVE GRAPHS.
Let G = (V ,E) be a nonamenable unimodular transitive graph, and consider an
i.i.d. bond percolation X on G with p = pc,bond(G). By the Newman–Schulman
0–1–∞ law, the number of infinite clusters in X is an a.s. constant N which equals
either 0, 1 or ∞, and we need to rule out the possibilities N = 1 and N = ∞.

Case I. Ruling out N = 1. Assume for contradiction that the percolation con-
figuration X ∈ {0,1}E has a unique infinite cluster a.s. Let {Y(e)}e∈E be an i.i.d.
collection of random variables, uniformly distributed on the unit interval [0,1] and
independent also of X. For each ε ∈ (0,1) and e ∈ E, define

Xε(e) =
{

1, if X(e) = 1 and Y(e) > ε,
0, otherwise,

and note that

Xε ∈ {0,1}E is an i.i.d. bond percolation on G
(7)

with parameter (1 − ε)pc,bond.

For ε ∈ (0,1), define yet another bond percolation Zε ∈ {0,1}E , not i.i.d. but auto-
morphism invariant, as follows. As before let distG denote graph-theoretic distance
in G, and for each v ∈ V define U(v) as the set of vertices in the infinite cluster
of X that minimize distG(u, v). Note that U(v) is finite for all v ∈ V . For an edge
e = 〈v,w〉 ∈ E, set

Zε(e) =
⎧⎨
⎩

1, if all vertices in U(v) and U(w) are
in the same connected component of Xε,

0, otherwise.

This defines the percolation Zε ∈ {0,1}E . For any 〈v,w〉 ∈ E, there exists some
finite collection T (v,w) ⊂ E of open edges in X that together connect all the ver-
tices in U(v) and U(w) to each other (this is where the assumption N = 1 is used).
For definiteness, we take T (v,w) to be the edge set with minimal cardinality hav-
ing this property, and with minimization of

∑
e∈T (v,w) Y (e) acting as tie-breaker.

Each edge e′ in this collection has Y(e′) > 0 a.s., and so mine′∈T (v,w) Y (e′) > 0 so
that limε→0 Zε(e) = 1 a.s. Hence,

lim
ε→0

P[Zε(e) = 1] = 1,(8)

and Theorem 3.9 ensures that that the percolation process Zε contains an infinite
cluster with positive probability. But when Zε contains an infinite cluster, then so
does Xε . In view of (7), this contradicts the definition of pc,bond, so we are done
with Case I.
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Case II. Ruling out N = ∞. This time assume for contradiction that X contains
infinitely many infinite clusters a.s. Here we need the concept of encounter points
introduced by Burton and Keane [21] in their famous short proof of uniqueness of
the infinite cluster on Z

d . An encounter point in a percolation process X is a vertex
v ∈ V that has three disjoint open paths to infinity that would fall in different
connected components of X if the vertex v were to be removed, but does not
have four such paths. Burton and Keane showed that if N = ∞, then X contains
encounter points a.s.; their proof was formulated for G = Z

d , but goes through
unchanged for general (quasi-)transitive graphs.

BLPS [10] begin by noting that

if v ∈ V is an encounter point, then a.s. each of the three infinite clusters
C1(V ),C2(v),C3(v) that the removal of v would produce contains further
encounter points.

(9)

To see this, consider the mass transport in which each vertex u sitting in an infi-
nite cluster with encounter points sends unit mass to the nearest encounter point
with respect to distX , splitting it equally in case of a tie; here distX means graph-
theoretic distance in the open subgraph of G defined by X. Failure of (9) would
cause a contradiction to the Mass-Transport Principle similarly as in the proof of
Proposition 3.6.

Next, we go on to define a random graph H = (W,F ), whose vertex set W ⊂ V

is the set of encounter points in X, and whose edge set F , which we are about
to specify, will not necessarily be a subset of E (so H is not a subgraph of G).
Let {Y(v)}v∈W be i.i.d., uniformly distributed on [0,1] and independent of X.
Each v ∈ W selects three other u1, u2, u3 ∈ V to form edges to, according to the
following rule: one ui should be chosen in each of the components C1(v), C2(v)

and C3(v), and in each such component ui is chosen to minimize distX(v,ui),
with minimization of Y(ui) acting as a tie-breaker. An equivalent way to formulate
this is that ui is chosen in Ci to minimize the “distance” distX,Y (v,ui) defined as
distX,Y (v,ui) = distX(v,ui) + Y(v) + Y(ui).

Each v ∈ V thus gets H -degree at least 3, but the H -degree may exceed 3 if v is
selected by some w ∈ W which is not among v’s preferred triplet. An application
of the Mass-Transport Principle shows that the expected number of vertices that
choose v is exactly 3, so the expected H -degree of v (conditional on being in W )
is somewhere between 3 and 6, and in particular its degree is a.s. finite.

A crucial step of the argument is now to show that

the graph H has no cycles.(10)

To see this, we first note that if v ∈ W is in such a cycle, then its two neighbors
in this cycle must belong to the same Ci(v), as otherwise we would get a direct
contradiction to the definition of an encounter point. Using this, it is not hard to
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see (or consult [10] for a more detailed argument) that any cycle v1 ↔ v2 ↔ ·· · ↔
vk ↔ v1 would have to satisfy either

distX,Y (v1, v2) < distX,Y (v2, v3) < · · · < distX,Y (vk, v1) < distX,Y (v1, v2)

or

distX,Y (v1, v2) > distX,Y (v2, v3) > · · · > distX,Y (vk, v1) > distX,Y (v1, v2),

which in either case is of course a contradiction. Hence, (10).
Now take an ε > 0 and consider as in Case I the ε-thinned percolation process

Xε ∈ {0,1}E . Using Xε , we define the subgraph Hε = (W,Fε) obtained from H

by deleting each e = 〈v,w〉 ∈ F such that v and w fail to be in the same connected
component of Xε . By the definition of pc,bond, we have that Xε has no infinite
clusters, so that Hε has no infinite clusters either.

For v ∈ W , write Kε(v) for the set of vertices in W that belong to the same con-
nected component of Hε as v. Also write ∂intKε(v) (int as in “internal boundary”)
for the set of vertices in Kε(v) that have at least one neighbor in H which is not in
Kε(v).

Now define the following mass transport on G = (V ,E). No vertex v ∈ V sends
any mass unless it is an encounter point, that is, unless v ∈ W . Each encounter
point v sends unit mass and divides it equally amongst the vertices in Kε(v). This
defines the mass transport, and the mass received at v becomes

⎧⎨
⎩

|Kε(v)|
|∂intKε(v)| , if v is an encounter point and belongs to ∂intKε(v),

0, otherwise.

Since F is a forest in which each vertex has degree is at least 3, its isoperimetric
constant is easily seen to be at least 1 (which holds with equality on the binary
tree T2), and similarly |Kε(v)|/|∂intKε(v)| ≤ 2. So the expected mass received at
v is bounded by 2P(v ∈ W,v ∈ ∂intKε(v)), while the expected mass sent from
v ∈ V equals P(v ∈ W). Hence, the Mass-Transport Principle gives

P(v ∈ W) ≤ 2P
(
v ∈ W,v ∈ ∂intKε(v)

)
.(11)

But similarly as in the argument for (8), we get for any v ∈ W that v /∈ ∂intKε(v)

for all sufficiently small ε, so that

lim
ε→0

2P
(
v ∈ W,v ∈ ∂intKε(v)

) = 0.

Since (11) was shown to hold for any ε > 0, we get P(v ∈ W) = 0, which contra-
dicts N = ∞, so Case II is finished and the proof is complete. �



1684 O. HÄGGSTRÖM

5. Random walks on percolation clusters. One of the most natural proba-
bilistic objects, besides i.i.d. percolation, to define on a graph G = (V ,E), is sim-
ple random walk (SRW), which is a V -valued random process {Z0,Z1, . . .} where
one (typically) takes Z0 = ρ for some prespecified choice of ρ ∈ V , and then it-
erates the following: given Z0,Z1, . . . ,Zn−1, the value of Zn is chosen uniformly
among the neighbors in G of Zn−1.

In contrast to the study of percolation on nonamenable Cayley graphs and re-
lated classes of graphs which began to take off only in the 1990s, the literature
on SRWs on such graphs goes back much further. An early seminal contribution
is the work of Kesten [39, 40] from the late 1950s showing that if G is a Cayley
graph for a finitely generated group, then the return probability P[Zn = ρ] decays
exponentially if and only if G is nonamenable. See, for example, Woess [81] for
an introduction to this field.

Another topic of considerable interest is the study of SRW on percolation clus-
ters. For the Z

d case, see, for instance, papers like [23] and [17] on central limit
theorems, and [28] which extends Pólya’s classical d = 2 versus d ≥ 3 recurrence-
transience dichotomy for random walk on Z

d to the case of supercritical percola-
tion on Z

d .
Given these traditions, it was a very natural step for Schramm and his collabo-

rators to go on to consider random walks on percolation clusters on nonamenable
graphs. Their work is of two kinds: on one hand, the analysis of SRW on a per-
colation cluster as a worthwhile object of study in its own right, and, on the other
hand, the exploitation of random walk on a percolation cluster as a means toward
understanding properties of percolation clusters that do not primarily have any-
thing to do with random walk. A remarkable application of the second kind will be
described in Section 6 on so-called cluster indistinguishability, while in the present
section I will recall a result of the first kind (Theorem 5.1 below) from a rich paper
by Benjamini, Lyons and Schramm, henceforth BLS [12].

A natural question to ask for SRW on an infinite graph G is how fast it escapes
from the starting point ρ, that is, how fast does distG(ρ,Zn) grow? Define the
speed

S = lim
n→∞

distG(ρ,Zn)

n

provided the limit exists. When G is the Z
d lattice, distG(ρ,Zn) scales like

√
n,

and not surprisingly S = 0 a.s. More generally, when G is any transitive graph, the
Subadditive Ergodic Theorem immediately implies that the limit S exists and is an
a.s. constant.

If we go on on to consider the speed of SRW on an infinite cluster of, say, i.i.d.
bond percolation on G (still with the speed defined with respect to distG), then the
existence of the speed S is less obvious. However, BLS [12] showed, when G is
unimodular, and the percolation process is automorphism invariant, that the speed
does exist a.s. and does not depend on the random walk, but only on the percolation
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configuration. Having come that far, it is easy to see that the speed cannot depend
on where in an infinite cluster the random walk starts, so each infinite cluster has
a well-defined characteristic SRW speed. For the i.i.d. bond percolation case, we
can then invoke the cluster indistinguishability result of Lyons and Schramm [56]
(Theorem 6.1 below) to deduce that all infinite clusters have the same SRW speed.

Of particular interest is to determine whether the speed is zero or positive. For
the nonamenable unimodular case, BLS [12] found a general answer.

THEOREM 5.1. The speed S of SRW on an infinite cluster of an i.i.d. bond
percolation X on a unimodular nonamenable transitive graph G satisfies S > 0
a.s.

An important step in the proof of this is the following result (also of independent
interest) from [12] on the geometry of infinite clusters. That the nonamenability of
G should be inherited by the infinite clusters of X is too much to hope for: a
sufficient condition for a percolation cluster in X to be amenable is that it contains
arbitrarily long “naked” paths, that is, paths of vertices with X-degree 2, and it can
be shown that a.s. all infinite clusters arising from i.i.d. percolation on a transitive
graph contain such paths. But the infinite clusters of X do contain nonamenable
subgraphs.

THEOREM 5.2. Any infinite cluster in i.i.d. bond percolation X on a unimod-
ular nonamenable transitive graph G contains a nonamenable subgraph a.s.

The proof in [12] of this result involves yet another application of mass trans-
port. Both Theorems 5.2 and 5.1 are in fact proved more generally than just for
i.i.d. percolation. Automorphism invariance alone does not suffice (each of Exam-
ples 3.1, 3.2 and 3.3 of Häggström [31] shows this, and moreover that the > in
condition (d) below cannot be replaced by a ≥), but if we add any of the condi-
tions:

(a) X is i.i.d.,
(b) X has a unique infinite cluster a.s.,
(c) the infinite clusters of X have at least 3 (hence infinitely many) ends a.s., or
(d) X is ergodic with sufficiently large values of P(e is open), more precisely the

expected degree of a vertex should strictly exceed the quantity h∗
E defined

in (5),

then the conclusions of Theorems 5.2 and 5.1 hold; cf. Theorems 3.9 and 4.4 in
BLS [12].

6. Cluster indistinguishability. Consider an i.i.d. bond percolation X with
parameter p > pc,bond(C) on a graph G, so that X produces one or more infinite
clusters. It is then natural to ask questions about properties of these infinite clusters.
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Properties that we have already discussed in earlier sections include the number of
ends of an infinite cluster, whether it contains encounter points, and the speed of
SRW on the cluster.

Yet another natural such property of an infinite cluster C is the value of
pc,bond(C), that is, how much further i.i.d. edge-thinning can the infinite cluster
C take before it breaks apart into finite components only? For G transitive, it is
known (see Häggström and Peres [35] for the unimodular case, and Schonmann
[68] for the full result) that a.s. pc,bond(C) = pc,bond(G)/p for all infinite clusters
C of X.

All these properties are examples of invariant properties. For G = (V ,E) tran-
sitive with automorphism group Aut(G), a property (which may or may not hold
for clusters of bond percolation on G) can be identified with a Borel measurable
subset of {0,1}E , and a property A ⊂ {0,1}E is said to be invariant if for all ω ∈ A
and all γ ∈ Aut(G) we have γω ∈ A. Lyons and Schramm [56] proved the fol-
lowing Theorem 6.1, known as cluster indistinguishability. Shortly before [56],
a weaker result for the case of so-called increasing invariant properties was estab-
lished in [35].

THEOREM 6.1. Let G = (V ,E) be a nonamenable unimodular transitive
graph, and consider i.i.d. bond percolation X on G with p in the parameter regime
where X produces infinitely many infinite clusters a.s. Then, for any invariant com-
ponent property A, we have a.s. that either all infinite components of X satisfy A
or all infinite components of X satisfy ¬A.

Space does not permit me to give the full proof of this beautiful result, but I can
explain what the main steps are.

SKETCH PROOF OF THEOREM 6.1. Let G = (V ,E) and the percolation X ∈
{0,1}E be as in the theorem, and assume for contradiction that A is an invariant
property such that with positive probability, X contains both infinite clusters with
property A and infinite clusters with property ¬A.

Step I. Existence of pivotal edges. For an infinite cluster C of X and an edge
e ∈ E with X(e) = 0 that has an endpoint in C, call e pivotal for C if either C ∈ A
and switching on the edge e would create an infinite cluster (containing C) with
property ¬A, or vice versa. If there exists an e ∈ E with X(e) = 0 that has one
endpoint in an infinite cluster with property A and the other in an infinite cluster
with property ¬A, then clearly e is pivotal for one of the clusters. Otherwise,
there exists such a pair of clusters within finite distance from each other, and by
sequentially switching on one edge after another on a finite path between them we
see that somewhere along the way one infinite cluster of type A must turn into
¬A or vice versa. (This is an example of a well-known technique in percolation
theory known as local modification, pioneered by Newman and Schulman [61] and
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Burton and Keane [21]; cf. also Coupling 2.5 in [34] for a careful explanation.)
Hence, pivotal edges exist with positive probability.

Step II. Stationarity of random walk. Consider a SRW {Z0,Z1, . . .} on a per-
colation cluster of X, defined as in Section 5. It would be nice to think that the
percolation configuration “as seen from the point of view of the walker,” would be
stationary. To make this precise, fix for each v ∈ V a γv,ρ ∈ Aut(G) that maps v

on ρ, where, as in Section 5, ρ is the starting point of the random walk. The idea
of stationarity of the percolation configuration as seen from the random walker is
that for any Borel measurable Stab(ρ)-invariant B ∈ {0,1}E and any n we should
have

P(γZn,ρX ∈ B) = P(X ∈ B).

This is not true, however, and to see this, think, for example, about what happens
when the starting point ρ happens to be in a finite open cluster C which is simply
a path of length 2; in other words, C has three vertices, one of which has degree 2
and two of which have degree 1. Conditioned on ρ being in such a cluster, it has
probability 1

3 of being in the vertex of degree 2 (this follows from a straightfor-
ward mass-transport argument). But SRW on such an open cluster will spend half
the time (either all even or all odd times) on that vertex, so it cannot possibly be
stationary in the desired sense.

All is not lost, however. Stationarity can be recovered by a minor modification
of SRW, namely the delayed simple random walk (DSRW), denoted {Z̃0, Z̃1, . . .}.
This is again a V -valued random process, and as with SRW we take Z̃0 = ρ, but
the transition mechanism is slightly different: given Z̃0, . . . , Z̃n−1, a vertex w is
chosen according to uniform distribution on the set of Z̃n−1’s G-neighbors, and
we set

Z̃n =
{

w, if X(〈Z̃n−1,w〉) = 1,
Z̃n−1, otherwise.

Such a DSRW has the desired stationarity property, that is,

P(γ
Z̃n,ρ

X ∈ B) = P(X ∈ B)

for any B and any n, and this can be shown via yet another mass-transport argu-
ment.

(Stationarity of DSRW is clearly an interesting result in its own right, and the
idea was first exploited in [31]. Lyons and Schramm decided to put their most
general version of the stationarity result not in [56] but in a separate paper [57].
Without unimodularity, however, stationarity fails, as is easily seen by considering
DSRW in Example 3.4: here, Z̃0 has probability 1

2 of sitting in the “topmost”
(closest to ξ ) component of its open cluster, while the probability that Z̃n does so
tends to 0 as n → ∞.)

Step III. Lots of encounter points. Since X has infinitely many infinite clusters,
we can modify X by changing finitely many edges so as to connect three of them to
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form an encounter point. Hence, encounter points exist with positive probability;
this is just the local modification argument of Burton and Keane [21]. By (9), we
have that every infinite cluster with encounter points must in fact have infinitely
many. From this, it follows that every infinite cluster has infinitely many encounter
points, because otherwise we could use the local modification technique to connect
an infinite cluster with encounter points to one without and obtain a contradiction
to (9).

Step IV. Random walk is transient. Given the prevalence of encounter points,
infinite clusters contain, loosely speaking, a large-scale structure similar to the bi-
nary tree T2. This strongly suggests that DSRW on such an infinite cluster should
be transient. Lyons and Schramm [56] converts this intuition into a proof by com-
bining the result mentioned in the final paragraph of Section 3 about such infinite
clusters C having pc,bond(C) < 1, with a basic comparison of random walk and
percolation on trees due to Lyons [50]. (Alternatively, we could quote Theorem 5.1
here, but that would be a detour.)

Step V. Local modification applied to a pivotal edge. Let B be the event that the
starting point ρ of the DSRW is in an infinite cluster with property A. Given some
small ε > 0, we can find a k < ∞ and a Stab(ρ)-invariant event B∗ that depends
only on edges within G-distance k from ρ, approximating B in the sense that

P(B�B∗) < ε.(12)

Define, for each n,

Yn =
{

1, if γ
Z̃n,ρ

X ∈ B∗,
0, otherwise.

(13)

Then {Y0, Y1, . . .} is a stationary process, so the limit Ȳ = limn→∞ 1
n

∑n−1
i=0 Yn ex-

ists a.s. Furthermore,

the limit Ȳ depends only on the percolation configuration and not on the
DSRW.

(14)

To see (14), define a second DSRW {Z̃′
0, Z̃

′
1, . . .} from ρ which conditionally on

X is independent of {Z̃0, Z̃1, . . .}, define {Y ′
0, Y

′
1, . . .} analogously as in (13), and

set Ȳ ′ = limn→∞ 1
n

∑n−1
i=0 Y ′

n. Then we can define Y−i = Y ′
i for each i ≥ 1, and it

turns out (see [56], Lemma 3.13) that the two-sided sequence {. . . , Y−1, Y0, Y1, . . .}
becomes stationary. Now, if (14) failed we would with positive probability have
Ȳ �= Ȳ ′, which however would contradict stationarity of the two-sided sequence
{. . . , Y−1, Y0, Y1, . . .} in view of the ergodic theorem. Hence, (14).

Thus, we can assign each infinite cluster C a value α(C) as the a.s. value of Ȳ

that DSRW on that cluster would produce. By (12), we have that infinite clusters
with different values of α(C) coexist with positive probability, provided we chose
ε small enough to begin with. Call an edge e ∈ E α-pivotal if it is closed [X(e) =
0] with endpoints in two different infinite clusters C and C′ with

α(C) �= α(C′).(15)
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By the reasoning in Step 1, there exist α-pivotal edges in X with positive probabil-
ity. In particular, there exists an e ∈ E which with positive probability is α-pivotal
for the infinite cluster containing ρ. Suppose this happens, let C be the infinite clus-
ter containing ρ, and let C ′ be the other infinite cluster meeting e. Then Ȳ = α(C)

a.s.
But look what happens if we apply local modification to the edge e. If we turn

e on [X(e) = 1] and leave the status of all other edges intact, we get a new infinite
cluster C′′ uniting C and C′. What will then happen with Ȳ ? By transience of
DSRW, we get with positive probability that the DSRW escapes to infinity without
ever noticing the edge e, and we get a.s. on this event that Ȳ = α(C); this uses the
fact that Yn is a function of edges within bounded distance k from Z̃n only. On the
other hand, we get with positive probability that the DSRW reaches e, crosses it,
and then escapes to infinity without ever crossing it back; on this event we get a.s.
Ȳ = α(C′). In view of (15), this contradicts (14) and proves the theorem. �

An inspection of the proof to determine which properties of i.i.d. percolation
are actually used reveals that it is enough to assume automorphism invariance plus
so-called insertion tolerance, which is the term Lyons and Schramm [56] used
for a refinement of the finite energy property considered by Newman and Schul-
man [61], Burton and Keane [21], and others.

DEFINITION 6.2. A bond percolation X on a graph G = (V ,E) is called in-
sertion tolerant if it admits conditional probabilities such that for every e ∈ E

and every ξ ∈ {0,1}E\{e} we have P(X(e) = 1|X(E \ {e} = ξ) > 0. If instead
P(X(e) = 0|X(E \ {e} = ξ) > 0 for all such e and ξ , then X is called deletion
tolerant.

(The conjunction of insertion tolerance and deletion tolerance is precisely the
finite energy property.)

THEOREM 6.3. Let G = (V ,E) be a nonamenable unimodular transitive
graph, and consider an insertion tolerant automorphism invariant bond perco-
lation X on G. Then, for any invariant component property A, we have a.s. that
either all infinite components of X are in A or no infinite components of X are
in A.

In fact, the formulation in [56] is even more general than this: here, as in much
of the work discussed in Section 3, invariance under the full automorphism group
can be weakened to invariance under certain subgroups. Also, the result holds with
site percolation in place of bond percolation.

It is worth mentioning some limitations to the scope of cluster indistinguisha-
bility. For instance, insertion tolerance cannot be replaced by deletion tolerance in
Theorem 6.3, as the following example from [56] shows.
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EXAMPLE 6.4. Let G = (V ,E) be the binary tree T2, recall that pc,bond(T2) =
1
2 , and fix p1 and p2 such that 1

2 < p1 < p2 < 1. Let X ∈ {0,1}E be i.i.d. bond
percolation on G with parameter p2. Then obtain another bond percolation process
X′ ∈ {0,1}E from X as follows. For each infinite cluster C of X independently,
toss a fair coin. If the coin comes up heads, delete each edge of C independently
with probability 1 − p1

p2
; otherwise let all of C’s edges be intact. While X′ is auto-

morphism invariant and deletion tolerant, some of its infinite clusters C′ will have
all the characteristics of those produced by i.i.d. (p2) percolation and thus have
pc,bond(C

′) = 1
2p2

, while others will look like i.i.d. (p1) percolation clusters and

thus have pc,bond(C
′) = 1

2p1
, so cluster indistinguishability fails for X′.

How about the unimodularity assumption in Theorems 6.1 and 6.3? This cannot
be dropped, not even from Theorem 6.1. To see this, let G = (V ,E) be Trofi-
mov’s graph (Example 3.3), and consider i.i.d. bond percolation with parameter
p ∈ (pc,bond(G),1). Each infinite cluster C then has a “topmost” vertex w(C) (in
the direction of the designated end ξ ), and for i = 0,1,2 we may define the prop-
erty Ai by stipulating that C ∈ Ai if w(C) is directly linked to exactly i of its
ξ -children via open edges. Then A0, A1 and A2 are Aut(G)-invariant properties,
and the percolation will a.s. produce infinite clusters of all three kinds, so cluster
indistinguishability fails.

7. In the hyperbolic plane. In their Percolation beyond Z
d paper [13], Ben-

jamini and Schramm emphasized three properties of graphs that could be ex-
pected to be of particular relevance to the behavior of percolation processes: quasi-
transitivity, (non-)amenability, and planarity. The first two I have discussed at some
length, while the third was only mentioned in passing in Section 2. In this section,
I will briefly make up for this.

Planarity plays a crucial role in the classical study of percolation on the Z
2

lattice, such as in the seminal contributions by Harris [37] and Kesten [41]. A key
device is the notion of planar duality: for a graph G = (V ,E) with a planar embed-
ding in R

2 (or in some other two-dimensional manifold), it is often useful to define
its dual graph G† = (V †,E†) by identifying V † with the faces of the planar em-
bedding of G, and including an edge e† ∈ E† crossing each e ∈ E. If X ∈ {0,1}E
a bond percolation on G, then we can define a bond percolation X† ∈ {0,1}E on
G† by declaring, for each e ∈ E, X†(e†) = 1 − X(e). If X is i.i.d. (p), then X†

becomes i.i.d. (1 − p). Furthermore, if G is the Z
2 lattice, then G† is isomorphic

to G, and for p = 1 − p = 1
2 the distributions of X and X† will be the same; this

observation is basic to proving the Harris–Kesten theorem that pc,bond(Z
2) = 1

2 .
Suppose that G is infinite, planar and transitive. It is known (see Babai [5]) that

such a graph, equipped with the usual distance distG, is quasi-isometric to exactly
one of the four spaces R, R

2, T2 and the hyperbolic plane H
2, the last of which
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may be defined as the open unit disk {z ∈ C : |z| < 1} equipped with the metric s

given by

ds2 = dx2 + dy2

(1 − x2 − y2)2 .

In the paper Percolation in the hyperbolic plane [16], Benjamini and Schramm
consider the situation where G has one end, in which case it must be quasi-
isometric to either R

2 or H
2. Which of these is determined by amenability: if

G is amenable, then R
2, while if it is nonamenable, then H

2. The focus of [16]
is on the nonamenable case; hence, the title of the paper. A happy circumstance
here is that a planar nonamenable transitive graph with one end is also unimodular
(Proposition 2.1 in [16]), which allows the machinery developed in BLPS [9] to
come into play.

Recall the Newman–Schulman 0–1–∞ law about the number of infinite clusters
on transitive graphs. This result needs the percolation process to be automorphism
invariant and insertion tolerant (cf. Definition 6.2). In general, insertion tolerance
cannot be dropped (not even on the Z2 lattice; see Burton and Keane [22]), al-
though in the present setting, remarkably enough, it can:

THEOREM 7.1 (Theorem 8.1 in [9]). If G = (V ,E) is a planar nonamenable
quasi-transitive graph with one end, then a.s. any automorphism invariant bond
percolation X ∈ {0,1}E has 0, 1, or infinitely many infinite clusters.

PROOF. This proof from [16] differs somewhat from the original one in [9].
There is no loss of generality in assuming that the number of infinite clusters is an
a.s. constant k. Assume for contradiction that k ∈ {2,3, . . .}. By randomly delet-
ing all edges of all infinite clusters but two, chosen uniformly at random, we still
preserve automorphism invariance; thus we may assume k = 2. Call one of them
C1 and the other C2, using a fair coin toss to decide which is which. Then turn on
each edge e which does not meet C2 and from which there is a path in G to C1
that does not meet C2. This preserves automorphism invariance, and expands C1
to a larger infinite cluster Ĉ1 that, loosely speaking, sits as close to C2 as is possi-
ble without touching it. Now define a bond percolation X̂† on the dual graph G†

(which is also planar, nonamenable, quasi-transitive and one-ended) by turning on
exactly those edges e† ∈ E† whose corresponding e ∈ E are pivotal for connecting
Ĉ1 to C2. Then X̂† is Aut(G†)-invariant, and consists (due to one-endedness of G)
of a single bi-infinite open path. Hence, X̂† has a unique infinite cluster C† with
pc,bond(C

†) = 1. On the other hand, the reasoning in the proof of Theorem 4.1,
Case I, shows that any unique infinite cluster arising from automorphism invariant
percolation in such a graph has pc,bond < 1, and this is the desired contradiction.

�

From here, Benjamini and Schramm [16] go on to show a number of inter-
esting results for percolation in the hyperbolic plane. For starters, let G be as in
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Theorem 7.1, let G† be its planar dual, let X be an invariant bond percolation
process on G, let X† be its dual, and let k and k† be their (possibly random) num-
ber of infinite clusters. Then Theorem 7.1 leaves nine possibilities for the value
of (k, k†) : (0,0), (0,1), (0,∞), (1,0), (1,1), (1,∞), (∞,0), (∞,1) and (∞,∞),
but the following result rules out four of them.

THEOREM 7.2 (Theorem 3.1 in [16]). With G, G†, X and X† as above, we
have a.s. that

(k, k†) ∈ {(0,1), (1,0), (1,∞), (∞,1), (∞,∞)}.(16)

All five outcomes in (16) can actually happen. The cases (1,∞) and (∞,1)

arise in the so-called uniform spanning forest model (see Theorem 8.2 in the next
section), but cannot arise in i.i.d. percolation because of a local modification argu-
ment (Theorem 3.7 in [16]) that can turn (k, k†) = (1,∞) into (2,∞), contradict-
ing Theorem 7.1. Benjamini and Schramm show that, in fact,

outcomes (0,1), (1,0) and (∞,∞) are exactly those that happen for i.i.d.
percolation,

(17)

and they prove the following remarkable result, establishing Conjecture 2.7 for the
case of planar hyperbolic graphs:

THEOREM 7.3 (Theorem 1.1 in [16]). Let G = (V ,E) be a planar nona-
menable transitive graph with one end. Then 0 < pc,bond(G) < pu,bond(G) < 1.
The same is true for site percolation.

This generalizes a result of Lalley [43] who showed

0 < pc,site(G) < pu,site(G) < 1

for a more restrictive class of graphs. Together with (17), this yields

(k, k†) =
⎧⎨
⎩

(0,1), for p ∈ (0,pc,bond(G)),
(∞,∞), for p ∈ (pc,bond(G),pu,bond(G)),
(1,0), for p ∈ (pu,bond(G),1).

Concerning the behavior at the critical values, Theorem 4.1 yields (k, k†) = (0,1)

for p = pc,bond(G), and by exchanging the roles of G and G† we see that (k, k†) =
(1,0) at p = pu,bond(G). As mentioned in Section 2, this uniqueness of the infinite
cluster already at the uniqueness critical value contrasts with the behavior obtained
for certain other nonamenable transitive graphs by Schonmann [69] and Peres [65].

In fact, similar considerations for the hypothetical scenario that Theorem 7.3
fails show how smoothly Theorem 7.3 follows from (17). We would then have
(k, k†) = (0,1) for p < pc,bond(G) and (k, k†) = (1,0) for p > pc,bond(G). Hence
pc,bond(G

†) = 1 − pc,bond(G), and Theorem 4.1 applied to both G and G† yields
(k, k†) = (0,0) at p = pc,bond(G). This, however, contradicts (17).
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Benjamini and Schramm [16] go on to study properties of the infinite clusters
and their limit points on the boundary of the hyperbolic disk (see also Lalley [43,
44] for further results in this direction). The final part of their paper [16] con-
cerns i.i.d. site percolation on a certain random lattice in H

2, namely the Delaunay
triangulation of a Voronoi tesselation for a Poisson process with intensity λ > 0
in H

2. The counterpart in R
d of such a model has also been studied; see Bollobás

and Riordan [18, 19] for a recent breakthrough in R
2. However, the phase dia-

gram becomes richer and more interesting in the H
2 case, not just because of the

nonuniqueness phase between pc,site and pu,site, but also because it becomes a true
two-parameter family of models: in R

d , changing λ is just a trivial rescaling of the
model, while in H

2 there is no such scale invariance.
More recently, Tykesson [78] considered a different way of doing percolation

in H
2 based on a Poisson process, namely to place a ball of a fixed hyperbolic

radius R around each point, and consider percolation properties of the region cov-
ered by the union of the balls. (This is the so-called Boolean model of continuum
percolation, which has received a fair amount of attention in R

d ; see, e.g., Meester
and Roy [58].) Equally natural is to consider percolation properties of the vacant
region (i.e., the complement of the covered region). To consider percolation prop-
erties of both regions simultaneously is analogous to working with the pair (X,X†)

in the discrete lattice setting. The results in [78] turn out mostly analogous to those
of Benjamini and Schramm [16] discussed above for the discrete lattice setting.
However, in an even more recent paper by Benjamini, Jonasson, Schramm and
Tykesson [7], a phenomenon which is particular to the continuum setting is re-
vealed. Namely, are there hyperbolic lines entirely contained in the vacant region,
so that someone living in H

2 can actually “see infinity” in some (necessarily ran-
dom) directions? In R

d the answer to the analogous question is no (this is related
to Olbers’ paradox in astronomy; see, e.g., Harrison [38]) while in H

2 the answer
turns out to be yes in certain parts of the parameter space. The paper [7]—which,
sadly, became one of the last by Oded Schramm—also contains results on various
refinements and variants of this question.

8. Random spanning forests. So far, a lot has been said about percolation
on nonamenable transitive graphs under the general assumption of automorphism
invariance, but hardly anything about particular examples beyond the i.i.d. cases
(other than a few examples specifically designed to be counterexamples). But as
mentioned in Section 3, there are plenty of important examples, and time has come
to discuss one of them: the uniform spanning forest. Later in this section, I will go
on to discuss its cousin, the minimal spanning forest.

A spanning tree for a finite connected graph G = (V ,E) is a connected sub-
graph containing all vertices but no cycles. A uniform spanning tree for G is one
chosen at random according to uniform distribution on the set of possible spanning
trees. Replacing G by, say, the Z

d lattice, the number of possible spanning trees
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skyrockets to ∞, and it is no longer obvious how to make sense of the uniform
spanning tree. Pemantle [64] managed to make sense of it: for any infinite locally
finite connected graph G = (V ,E), let {G1 = (V1,E1),G2 = (V2,E2), . . .} be an
increasing sequence of finite connected subgraphs of G, which exhausts G in the
sense that each e ∈ E and each v ∈ V is in all but at most finitely many of the
Gi’s. Then, it turns out, the uniform spanning tree measures for G1,G2, . . . con-
verge weakly to a probability measure μG on {0,1}E which is independent of the
exhaustion {G1,G2, . . .}. In particular, μG is Aut(G)-invariant. Furthermore, it is
concentrated on the event that there are no open cycles and no finite open clusters,
so that in other words what we get is μG-a.s. a forest, all of whose trees are infi-
nite. Naively, one might expect to get a single tree, but this is not always the case.
Pemantle showed for the Z

d case that the number of trees is an a.s. constant N

satisfying

N =
{

1, if d ≤ 4,
∞, otherwise.

(18)

This d ≤ 4 vs. d > 4 dichotomy is related to the fact that two independent SRW
trajectories on the Z

d lattice intersect a.s. if and only if d ≤ 4 (though this innocent-
looking statement hides the fact that Pemantle [64] had to use deep results by
Lawler [45] on so-called loop-erased random walk; the proof was simplified in
the paper [11] to be discussed below). The behavior for d > 4 suggests uniform
spanning forest as a better term than uniform spanning tree when G is infinite. The
analysis of the uniform spanning forest μG builds to a large extent on the beautiful
collection of identities between uniform spanning trees, electrical networks and
random walks which has a long and disperse history beginning with the 1847 paper
by Kirchhoff [42]. For instance, Rayleigh’s Monotonicity Principle for effective
resistances in electrical networks (see, e.g., Doyle and Snell [24]) underlies the
stochastic monotonicity properties of the sequence μG1,μG2, . . . that allows us to
deduce the existence of the limiting measure μG.

Some years after Pemantle’s [64] pioneering 1991 paper, and at about the same
time that BLPS [9] and BLPS [10] were written, the BLPS quartet started getting
seriously interested in uniform spanning forests; see Lyons [54] for a more ex-
act statement about the timing and relation betweens the various BLPS projects.
This resulted in the magnificent paper Uniform spanning forests by Benjamini,
Lyons, Peres and Schramm [11], which provides a unified treatment and a num-
ber of simplications of what was known on uniform spanning trees and forests,
together with a host of new and important results. The methods involve, in addi-
tion to the aforementioned connections to random walks and electrical networks,
also mass-transport ideas, Hilbert space projections, and Wilson’s [80] substan-
tial improvement on the Aldous–Broder algorithm [2, 20] for generating uniform
spanning trees. Here, I will mention only a couple of the results from BLPS [11],
but see Lyons [52] for a gentle introduction to the same topic (note that despite the
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inverted publication dates, the 1998 paper [52] surveys much of the original work
in the 2001 paper [11]).

It turns out that there is another, equally natural, way to obtain a uniform span-
ning forest for an infinite graph G = (V ,E) via the exhaustion {G1,G2, . . .} con-
sidered above, namely if for each i we consider the uniform spanning tree not on
Gi but on the modified graph where an extra vertex w is introduced, together with
edges 〈v,w〉 for all v ∈ Vi \ Vi−1. We think of this as a “wired” version of Gi ,
and the limiting measure on {0,1}E , which is denoted WSFG and which exists
for similar reasons as for μG, should be thought of as the wired uniform span-
ning forest for G. For consistency of terminology, we call μG the free uniform
spanning forest, and switch to denoting it FSFG. (The free and wired uniform
spanning forests are analogous to the free and wired limiting measures for the
random-cluster model; cf. [27].) The wired measure WSFZd appeared implicitly
in Pemantle [64] together with the result that WSFZd = FSFZd ; this was made ex-
plicit in Häggström [30], and BLPS [11] noted that this extends to WSFG = FSFG

whenever G is transitive and amenable. On the other hand, WSFTd
�= FSFTd

for
the (d + 1)-regular tree Td when d ≥ 2, so a first guess might be that for transi-
tive graphs, WSFG = FSFG is equivalent to amenability. This turns out not to be
true, however, and BLPS [11] offer instead the following characterization (which
does not require G to be transitive or even quasi-transitive). Recall that for a graph
G = (V ,E) a function f :V → R is called harmonic if for any v ∈ V we have that
f (v) equals the average of f (w) among all its neighbors w, and that f is called
Dirichlet if

∑
〈u,v〉∈E(f (u) − f (v))2 < ∞.

THEOREM 8.1 (Theorem 7.3 in [11]). For any graph G, we have WSFG =
FSFG if and only if G admits no nonconstant harmonic Dirichlet functions.

As an example of a nonamenable transitive graph for which WSFG = FSFG

holds, we may take the Grimmett–Newman example discussed in Section 2; this
follows from Theorem 8.1 in combination with the result of Thomassen [74, 75]
that the Cartesian product of any two infinite graphs has no nonconstant harmonic
Dirichlet functions.

A nice class of graphs where WSFG �= FSFG are the planar hyperbolic lattices
considered in the previous section:

THEOREM 8.2 (Theorems 12.2 and 12.7 in BLPS [11]). For any planar nona-
menable transitive graph G = (V ,E) with one end, we have that WSFG �= FSFG.
In particular, they differ in the number of infinite clusters: FSFG produces a unique
infinite cluster a.s., while WSFG produces infinitely many a.s. If G† = (V †,E†) is
the planar dual of G, and X ∈ {0,1}E is given by WSFG, then the dual percolation
X† ∈ {0,1}E†

defined as in Section 7, has distribution FSFG† .
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There is a lot more to quote from BLPS [11] concerning uniform spanning
forests, but I will instead cite a result from a later paper by Benjamini, Kesten,
Peres and Schramm [8]. Strictly speaking the result falls outside the scope of the
present survey as I defined it in Section 1, because it concerns Z

d , but it is so
supremely beautiful that I find this inconsistency of mine to be motivated. For
a bond percolation process X ∈ {0,1}E on a graph G = (V ,E), and two vertices
u, v ∈ V , define the random variable Dclosed(u, v) as the minimal number of closed
edges that a path in G from u to v needs to traverse, and Dmax

closed as the supremum of
Dclosed(u, v) over all choices of u, v ∈ V . For percolation processes such as WSFG

and FSFG where a.s. all vertices belong to infinite clusters, Dmax
closed = 0 means pre-

cisely uniqueness of the infinite cluster, while Dmax
closed = 1 means that uniqueness

fails but that any pair of infinite clusters come within unit distance from each other
somewhere in G. The dichotomy by Pemantle quoted in (18) says that for uni-
form spanning forests on Z

d , we have Dmax
closed = 0 a.s. for d ≤ 4 but Dmax

closed ≥ 1
a.s. when d > 4. Benjamini, Kesten, Peres and Schramm [8] proved the following
refinement.

THEOREM 8.3. For the uniform spanning forest measure WSFZd (or equiva-
lently FSFZd ), we have, a.s.,

Dmax
closed =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if d ∈ {1,2,3,4},
1, if d ∈ {5,6,7,8},
2, if d ∈ {9,10,11,12},
3, if d ∈ {13,14,15,16},

...

Next, let us return briefly to the case where G = (V ,E) is a finite graph. Besides
the uniform spanning tree, there is another, much-studied and equally natural, way
of picking a random spanning tree for G: attach i.i.d. weights {U(e)}e∈E to the
edges of G, and pick the spanning tree for G that minimizes the sum of the edge
weights; this is the so-called minimal spanning tree for G. The marginal distribu-
tion of the U(e)’s has no effect on the distribution of the tree as long as it is free
from atoms, but it turns out to facilitate the analysis to take it to be uniform on
[0,1]. It is easy to see that an edge e ∈ E is included of the minimal spanning tree
if and only if U(e) < maxe∈C U(e′) for all cycles C containing e.

If instead G is infinite, this characterization can be taken as the definition, and
the resulting random subgraph of G is called the free minimal spanning forest, the
corresponding probability measure on {0,1}E being denoted FMSFG. An alterna-
tive extension to infinite G is to include e ∈ E if and only if U(e) < maxe∈C U(e′)
for all generalized cycles C containing e, where by a generalized cycle we mean a
cycle or a bi-infinite self-avoiding path. This gives rise to the so-called wired mini-
mal spanning forest, and a corresponding probability measure WMSFG on {0,1}E .
The study of FMSFG and WMSFG parallels the study of FSFG and WSFG in many
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ways, and I wish to draw the reader’s attention to the paper Minimal spanning
forests by Lyons, Peres and Schramm [55], where, in the words of the authors, “a
key theme [is] to describe striking analogies, and important differences, between
uniform and minimal spanning forests.”

As for uniform spanning forests, one of the central issues is to determine when
FMSFG = WMSFG. And as for uniform spanning forests, equality turns out to
hold on Z

d and more generally on amenable transitive graphs. But moving on to
the nonamenable case, the statements FMSFG = WMSFG and FSFG = WSFG are
no longer equivalent.

THEOREM 8.4 (Proposition 3.6 in [55]). On any G, we have FMSFG =
WMSFG if and only if for Lebesgue-a.e. p ∈ [0,1] it is the case that i.i.d. bond
percolation on G with parameter p produces a.s. at most one infinite cluster.

Hence we should expect to have FMSFG �= WMSFG for nonamenable quasi-
transitive G; this is equivalent to Conjecture 2.7. One example where we do
know that FMSFG �= WMSFG while FSFG = WSFG is when G is the Grimmett–
Newman graph Td × Z; cf. Theorem 8.1 and the comment following it.

Another consequence of having a nonuniqueness phase for i.i.d. bond percola-
tion on G is that uniqueness of the infinite cluster fails for WMSFG (this is Corol-
lary 3.7 in [12]). Determining the number of infinite clusters in WMSFG (or in
FMSFG) more generally is of course a central issue. On Z

d for d ≥ 2, the only
case that has been settled is d = 2, where Alexander [4] showed that the num-
ber of infinite clusters is 1. For higher dimensions, a dichotomy like Pemantle’s
(18) can be expected; Newman and Stein [62] conjectured that the switch from
uniqueness to infinitely many infinite clusters should happen at d = 8 or 9.

A general difference—but at the same time a parallel—between the uniform
spanning forest and the minimal spanning forest is that while the former has inti-
mate connections to SRW on G, the latter seems equally intimately connected to
i.i.d. bond percolation on G, such as in Theorem 8.4. [The key device for exposing
the connections between the minimal spanning forest and i.i.d. percolation is the
coupling in which we use the U(e)’s underlying FMSFG and WMSFG also for
generating i.i.d. bond percolation for any p: an edge e is declared open on level p

iff U(e) < p.] One striking instance of this parallel is the following. Morris [60]
showed for any G that a.s. any component C of the wired uniform spanning forest
has the property that SRW on it is recurrent, while Lyons, Peres and Schramm [55]
showed for any G that a.s. any component C of the wired minimal spanning forest
has pc,bond(C) = 1. Both results are sharp in the sense that in neither of them can
the set of possible C’s be narrowed further without making the statement false.

9. Postscript. The reader may have noticed that most of the work surveyed
here is from the mid-to-late 1990s, and ask why this is. Is it because Oded got bored
with percolation beyond Z

d? No, it is not, and no, he did not. The main reason
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is Oded’s discovery in [70] of SLE (Schramm–Loewner evolution, or stochastic
Loewner evolution as Oded himself preferred to call it). This led him to the far-
reaching and more urgent project, beginning with a now-famous series of papers
with Greg Lawler and Wendelin Werner [46–49], of understanding SLE and how
it arises as a scaling limit of various critical models in two dimensions. But that is
a different story.

Acknowledgment. I am grateful to Russ Lyons and Johan Tykesson for help-
ful comments on an earlier draft.
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