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HARMONIC FUNCTIONS, h-TRANSFORM AND LARGE
DEVIATIONS FOR RANDOM WALKS IN RANDOM

ENVIRONMENTS IN DIMENSIONS FOUR AND HIGHER

BY ATILLA YILMAZ

University of California, Berkeley

We consider large deviations for nearest-neighbor random walk in a uni-
formly elliptic i.i.d. environment on Zd . There exist variational formulae for
the quenched and averaged rate functions Iq and Ia , obtained by Rosenbluth
and Varadhan, respectively. Iq and Ia are not identically equal. However,
when d ≥ 4 and the walk satisfies the so-called (T) condition of Sznitman,
they have been previously shown to be equal on an open set Aeq.

For every ξ ∈ Aeq, we prove the existence of a positive solution to a
Laplace-like equation involving ξ and the original transition kernel of the
walk. We then use this solution to define a new transition kernel via the
h-transform technique of Doob. This new kernel corresponds to the unique
minimizer of Varadhan’s variational formula at ξ . It also corresponds to the
unique minimizer of Rosenbluth’s variational formula, provided that the latter
is slightly modified.

1. Introduction.

1.1. The model. Let (ei)
d
i=1 be the canonical basis for the d-dimensional in-

teger lattice Zd with d ≥ 1. Consider a discrete-time Markov chain on Zd with
nearest-neighbor steps, that is, with steps in U := {±ei}di=1. For every x ∈ Zd and
z ∈ U , denote the transition probability from x to x + z by π(x, x + z) and refer
to the transition vector ωx := (π(x, x + z))z∈U as the environment at x. If the en-
vironment ω := (ωx)x∈Zd is sampled from a probability space (�, B,P), then this
process is called random walk in a random environment (RWRE). Here, B is the
Borel σ -algebra corresponding to the product topology.

The environment is said to be uniformly elliptic if

there exists a δ > 0 such that π(0, z) ≥ δ for every ω ∈ � and z ∈ U .(1.1)

For every y ∈ Zd , define the shift Ty on � by (Tyω)x := ωx+y . Throughout
this paper, we will assume that P is stationary and ergodic under (Tz)z∈U . This
condition is clearly satisfied when

ω = (ωx)x∈Zd is an i.i.d. collection.(1.2)
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For every x ∈ Zd and ω ∈ �, the Markov chain with environment ω induces a
probability measure P ω

x on the space of paths starting at x. Statements about P ω
x

that hold for P-a.e. ω are referred to as quenched. Statements about the semidirect
product Px := P ⊗ P ω

x are referred to as averaged (or annealed). Expectations
under P,P ω

x and Px are denoted by E,Eω
x and Ex , respectively.

See [28] for a survey of results on RWRE.
Because of the extra layer of randomness in the model, the standard questions

of recurrence versus transience, the law of large numbers (LLN), the central limit
theorem (CLT) and the large deviation principle (LDP)—which have well-known
answers for classical random walk—become hard. However, it is possible, by tak-
ing the point of view of the particle, to treat the two layers of randomness as one: if
we denote the random path of the particle by X := (Xn)n≥0, then (TXnω)n≥0 is a
Markov chain (referred to as the environment Markov chain) on � with transition
kernel π given by

π(ω,ω′) := ∑
z : Tzω=ω′

π(0, z).

This is a standard approach in the study of random media; see, for example, [9, 11]
or [12].

Instead of viewing the environment Markov chain as an auxiliary construction,
one can introduce it first and then deduce the particle dynamics from it.

DEFINITION 1.1. A function π̂ :� × U → R+ is said to be an “environment
kernel” if π̂ (·, z) is B-measurable for each z ∈ U and

∑
z∈U π̂(·, z) = 1. It can be

viewed as a transition kernel on � via the following identification:

π(ω,ω′) := ∑
z : Tzω=ω′

π̂(ω, z).

Given x ∈ Zd , ω ∈ � and any environment kernel π̂ , the quenched probability
measure P π̂,ω

x on the space of particle paths (Xn)n≥0 starting at x in environment
ω is defined by setting P π̂,ω

x (Xo = x) = 1 and

P π̂,ω
x (Xn+1 = y + z|Xn = y) = π̂(Tyω, z)

for all n ≥ 0, y ∈ Zd and z ∈ U . The semidirect product P π̂
x := P⊗P π̂,ω

x is referred
to as the averaged measure and expectations under P π̂,ω

x and P π̂
x are denoted by

Eπ̂,ω
x and Eπ̂

x , respectively.

1.2. Summary of results. In this paper, we will focus on the large deviation
properties of multidimensional RWRE. Section 2 is a detailed survey of the previ-
ous results on this topic that are relevant to our purposes. The precise statements
of our results are postponed to Section 3 because they rely heavily on the notation
and theorems given in Section 2.
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In this subsection, we will provide a short and less technical description of the
key theorems in Section 2. References will be omitted for the sake of brevity. We
will then highlight our main results.

1.2.1. Summary of previous results. In the case of quenched RWRE, the LDP
holds for the mean velocity Xn/n of the particle. Rosenbluth gives a variational
formula for the corresponding rate function Iq . For any ξ ∈ Rd , Iq(ξ) is equal
to the infimum of H(π̂,Q), where H(·) is a relative entropy and (π̂ ,Q) varies
over all pairs such that: (i) π̂ is an environment kernel; (ii) Q is a π̂ -invariant
probability measure on �; (iii) Q � P on B; (iv) the asymptotic mean velocity of
the walk induced by (π̂,Q) is equal to ξ .

For averaged walks in i.i.d. environments, Varadhan proves the LDP for Xn/n

and gives yet another variational formula for the corresponding rate function Ia .
For any ξ �= 0, Ia(ξ) is the infimum of Ia(α), where Ia(·) is a relative entropy [not
equal to H(·)] and α varies over all Zd -valued transient processes with stationary
and ergodic increments in U such that the mean drift of α is equal to ξ .

It is easily shown that (i) Ia ≤ Iq and (ii) Iq , Ia are not identically equal. When
d ≥ 4 and the walk satisfies the so-called (T) condition of Sznitman, Iq and Ia

are known to be strictly convex, analytic and equal on an open set Aeq. At every
ξ ∈ Aeq, Varadhan’s variational formula for Ia(ξ) has a unique minimizer.

1.2.2. Summary of our results. We will assume that the environment is i.i.d.,
d ≥ 4 and the (T) condition of Sznitman holds. For every ξ ∈ Aeq, we will prove
the existence of an h(θ, ·) ∈ L2(P) that solves a certain equation involving θ :=
∇Ia(ξ) and the original kernel π of the walk; see (3.2). Since (3.2) resembles the
Laplace equation, we will refer to h(θ, ·) as harmonic. We will then use h(θ, ·)
to define a new environment kernel π̂ θ via the h-transform technique of Doob;
see (3.3).

For every ξ ∈ Aeq, we will prove the existence of a probability measure Qξ

on � that is π̂ θ -invariant. The pair (π̂θ ,Qξ ) corresponds to a stationary Markov
chain with values in �. This Markov chain induces a Zd -valued transient process
μ∞

ξ with stationary and ergodic increments in U . We will show that μ∞
ξ is the

unique minimizer of Varadhan’s variational formula for Ia(ξ).
The pair (π̂θ ,Qξ ) is a natural minimizer candidate for Rosenbluth’s variational

formula for Iq(ξ). However, it is not known whether Qξ � P on B. We will resolve
this issue by slightly modifying Rosenbluth’s formula so that the infimum of H(·)
will be taken over a larger class of pairs. Finally, we will show that (π̂θ ,Qξ ) is the
unique minimizer of this new formula.

2. Previous results on large deviations for RWRE.

2.1. The quenched LDP. Recall that a sequence (Qn)n≥1 of probability mea-
sures on a topological space X satisfies the large deviation principle (LDP) with
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rate function I : X → [0,∞] if I is lower semicontinuous and, for any measurable
set G,

− inf
x∈Go

I (x) ≤ lim inf
n→∞

1

n
logQn(G) ≤ lim sup

n→∞
1

n
logQn(G) ≤ − inf

x∈G
I (x).

Here, Go is the interior of G and G its closure. See [6] for general background
regarding large deviations.

In this paper, the following theorem will be referred to as the quenched (level-1)
LDP.

THEOREM 2.1 (Quenched LDP). Assume (1.1). For P-a.e. ω, (P ω
o (Xn

n
∈

·))n≥1 satisfies the LDP with a deterministic and convex rate function Iq . (The
subscript stands for “quenched.”)

Greven and den Hollander [7] prove Theorem 2.1 for walks on Z in i.i.d. envi-
ronments. They provide a formula for Iq and show that its graph typically has flat
pieces. Comets, Gantert and Zeitouni [5] generalize the results in [7] to stationary
and ergodic environments.

For d ≥ 1, the first result on quenched large deviations is given by Zerner [29].
He uses a subadditivity argument for certain passage times to prove Theorem 2.1
in the case of nestling walks in i.i.d. environments.

DEFINITION 2.2. RWRE is said to be nonnestling relative to a unit vector
û ∈ S d−1 if

ess inf
P

∑
z∈U

π(0, z)〈z, û〉 > 0.(2.1)

It is said to be nestling if it is not nonnestling relative to any unit vector. In the
latter case, the convex hull of the support of the law of

∑
z π(0, z)z contains the

origin.

By a more direct use of the subadditive ergodic theorem, Varadhan [22] drops
the nestling assumption and generalizes Zerner’s result to stationary and ergodic
environments. The drawback of these approaches is that they do not lead to any
formula for the rate function.

Kosygina, Rezakhanlou and Varadhan [10] consider diffusions on Rd (with
d ≥ 1) in stationary and ergodic environments. They prove the analog of The-
orem 2.1 via a minimax argument and provide a variational formula for the
quenched rate function. Rosenbluth [18] adapts their work to the context of RWRE.
[See (2.7) below for Rosenbluth’s variational formula for Iq .]
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2.2. The quenched level-2 LDP and Rosenbluth’s variational formula. The
minimax argument of Kosygina et al. [10] can be generalized to establish a
quenched LDP for the so-called pair empirical measure of the environment
Markov chain. Below, we introduce some notation in order to give the precise
statement of this theorem.

For any measurable space (Y, F ), write M1(Y, F ) [or simply M1(Y ) whenever
no confusion occurs] for the space of probability measures on (Y, F ). Consider
the random walk X = (Xn)n≥0 on Zd in a stationary and ergodic environment, let
Zn = Xn − Xn−1 and focus on

νn,X := 1

n

n−1∑
k=0

1TXk
ω,Zk+1,

which is a random element of M1(� × U). The map (ω, z) �→ (ω,Tzω) embeds
M1(� × U) into M1(� × �) and we therefore refer to νn,X as the pair empirical
measure of the environment Markov chain. For any μ ∈ M1(� × U), define the
probability measures (μ)1 and (μ)2 on � by

d(μ)1(ω) := ∑
z∈U

dμ(ω, z) and d(μ)2(ω) := ∑
z∈U

dμ(T−zω, z),(2.2)

respectively, which are the marginals of μ when μ is seen as an element of M1(�×
�). With this notation, let

M ′
1(� × U) :=

{
μ ∈ M1(� × U) : (μ)1 = (μ)2 � P,

dμ(·, z)
d(μ)1(·) > 0 for every z ∈ U

}
.

THEOREM 2.3 (Quenched level-2 LDP, Yilmaz [25]). Assume (1.1). For P-
a.e. ω, (P ω

o (νn,X ∈ ·))n≥1 satisfies the LDP with the rate function I∗∗
q , the double

convex conjugate of Iq :M1(� × U) → R given by

Iq(μ) =
⎧⎪⎨
⎪⎩

∫
�

∑
z∈U

dμ(ω, z) log
dμ(ω, z)

d(μ)1(ω)π(0, z)
, if μ ∈ M ′

1(� × U),

∞, otherwise.

(2.3)

Rosenbluth’s quenched LDP result is a corollary of Theorem 2.3. Indeed, for
any μ ∈ M1(� × U), set

ξμ :=
∫ ∑

z∈U

dμ(ω, z)z.(2.4)

For any ξ ∈ Rd , define

Aξ := {μ ∈ M1(� × U) : ξμ = ξ}.(2.5)
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With this notation,

Iq(ξ) = inf
μ∈Aξ

I∗∗
q (μ)(2.6)

= inf
μ∈Aξ

Iq(μ).(2.7)

Here, (2.6) follows from Theorem 2.3 via the so-called contraction principle
(see [6]). Note that, even though Iq is convex, it may not be lower semicontin-
uous (see Appendix A of [25] for an example). Therefore, I∗∗

q is not equal to Iq

in general. Nevertheless, (2.7) is valid (see [25]) and it is precisely equal to the
variational formula obtained by Rosenbluth in [18].

2.3. The quenched level-3 LDP. Theorem 2.3 can be generalized to establish
a quenched LDP for the empirical process

ν∞
n,X := 1

n

n−1∑
k=0

1TXk
ω,Z∞

k+1
,

which is a random element of M1(� × UN). Here, Z∞
k+1 is shorthand notation for

(Zk+i)i≥1.

THEOREM 2.4 (Quenched level-3 LDP, Rassoul-Agha and Seppäläinen [17]).
Assume (1.1). For P-a.e. ω, (P ω

o (ν∞
n,X ∈ ·))n≥1 satisfies the LDP with a determin-

istic and convex rate function Iq,3 :M1(� × UN) → R.

Rassoul-Agha and Seppäläinen actually obtain this result in greater general-
ity, namely for bounded step size walks satisfying a weak ellipticity condition
(see [17]). Also, they show that, just as in Theorem 2.3, the rate function Iq,3 is the
lower semicontinuous regularization of a relative entropy. We choose not to state
the precise formula of Iq,3 here, partly in order to keep the notation simple and
partly because we will not need it in what follows.

2.4. The averaged LDP and Varadhan’s variational formula. In this paper, the
following theorem will be referred to as the averaged (level-1) LDP.

THEOREM 2.5 (Averaged LDP). Assume (1.1) and (1.2). (Po(
Xn

n
∈ ·))n≥1 sat-

isfies the LDP with a convex rate function Ia (the subscript stands for “averaged”).

Comets et al. [5] prove Theorem 2.5 for d = 1 and obtain the following varia-
tional formula for Ia :

Ia(ξ) = inf
Q

{IQ
q (ξ) + |ξ |hs(Q|P)}.(2.8)
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Here, the infimum is over all stationary and ergodic probability measures on �,
I

Q
q (·) denotes the rate function for the quenched LDP when the environment mea-

sure is Q and hs(·|·) is specific relative entropy. Similarly to the quenched picture,
the graph of Ia is shown typically to have flat pieces.

Varadhan [22] proves Theorem 2.5 for any d ≥ 1. He gives yet another varia-
tional formula for Ia . Below, we introduce some notation in order to write down
this formula.

An infinite path (xi)i≤0 with nearest-neighbor steps xi+1 − xi is said to be in
W tr∞ if xo = 0 and limi→−∞ |xi | = ∞. For any w ∈ W tr∞, let no be the number of
times w visits the origin, excluding the last visit. By the transience assumption,
no is finite. For any z ∈ U , let no,z be the number of times w jumps to z after a
visit to the origin. Clearly,

∑
z∈U no,z = no. If the averaged walk starts from time

−∞ and its path (Xi)i≤0 up to the present is conditioned to be equal to w, then
the probability of the next step being equal to z is

q(w, z) := E[π(0, z)
∏

z′∈U π(0, z′)no,z′ ]
E[∏z′∈U π(0, z′)no,z′ ] ,(2.9)

by Bayes’ rule.
Consider the map T ∗ :W tr∞ → W tr∞ that takes (xi)i≤0 to (xi − x−1)i≤−1. Let I

be the set of probability measures on W tr∞ that are invariant under T ∗ and E be the
set of extremal points of I . Each α ∈ I (resp., α ∈ E ) corresponds to a transient
process with stationary (resp., stationary and ergodic) increments and induces a
probability measure Qα on particle paths (Xi)i∈Z. The associated mean drift is
m(α) := ∫

(xo − x−1) dα = Qα(X1 − Xo). Define

Qw
α (·) := Qα

(·|σ(Xi : i ≤ 0)
)
(w) and qα(w, z) := Qw

α (X1 = z)(2.10)

for α-a.e. w and z ∈ U .
With this notation,

Ia(ξ) = inf
α∈E :

m(α)=ξ

Ia(α)(2.11)

for every ξ �= 0, where

Ia(α) :=
∫
W tr∞

[∑
z∈U

qα(w, z) log
qα(w, z)

q(w, z)

]
dα(w).(2.12)

Rassoul-Agha [16] generalizes Varadhan’s result to a class of mixing environ-
ments and also to some other models of random walk on Zd .

In Section 2.6, we will summarize the known qualitative properties of Ia . In
particular, we will state some regularity results which are valid under a certain
transience condition of Sznitman. The next subsection is devoted to introducing
this condition, which involves what are called regeneration times.
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2.5. Regeneration times and Sznitman’s condition. Take a unit vector û ∈
S d−1. Define a sequence (τm)m≥0 = (τm(û))m≥0 of random times, which are re-
ferred to as regeneration times (relative to û), by τo := 0 and

τm := inf{j > τm−1 : 〈Xi, û〉 < 〈Xj, û〉 ≤ 〈Xk, û〉
(2.13)

for all i, k with i < j < k}
for every m ≥ 1. (Regeneration times first appeared in the work of Kesten [8] on
one-dimensional RWRE. They were adapted to the multidimensional setting by
Sznitman and Zerner; see [21].) If the walk is directionally transient relative to û,
that is, if

Po

(
lim

n→∞〈Xn, û〉 = ∞
)

= 1,(2.14)

then Po(τm < ∞) = 1 for every m ≥ 1. As shown in [21], the significance of
(τm)m≥1 is due to the fact that

(Xτm+1 − Xτm,Xτm+2 − Xτm, . . . ,Xτm+1 − Xτm, τm+1 − τm)m≥1

is an i.i.d. sequence under Po when ω = (ωx)x∈Zd is an i.i.d. collection.
The walk is said to satisfy Sznitman’s transience condition (T, û) if (2.14) holds

and

Eo

[
sup

1≤i≤τ1(û)

exp{c|Xi |}
]
< ∞ for some c > 0.(2.15)

Define the first backtracking time of the walk to be

β = β(û) := inf{i ≥ 0 : 〈Xi, û〉 < 〈Xo, û〉}.(2.16)

The following lemmas list some important facts regarding regenerations.

LEMMA 2.6 (Sznitman [20]). Assume d ≥ 2, (1.1), (1.2) and that (T, û) holds
for some û ∈ S d−1. Then:

(a) Po(β(û) = ∞) > 0 and τ1(û) has finite Po-moments of arbitrary order;
(b) the LLN holds with a limiting velocity ξo such that 〈ξo, û〉 > 0;
(c) (T, v̂) is satisfied for every v̂ ∈ S d−1 such that 〈ξo, v̂〉 > 0.

LEMMA 2.7. Assume (1.1) and (1.2). If the walk is nonnestling (see Defini-
tion 2.2) relative to some û ∈ S d−1, then

Eo[exp{cτ1(û)}] < ∞(2.17)

for some c > 0. In particular, (T, û) is satisfied. On the other hand, if the walk is
nestling, then (2.17) fails to hold for every û ∈ S d−1 and c > 0.

PROOF. The first statement is proved in [19]. The second statement follows
immediately from the fact that Ia(0) = 0 when the walk is nestling (see [22]). �
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LEMMA 2.8. Assume (1.1) and (1.2). If the walk is nonnestling and some
v̂ ∈ S d−1 satisfies 〈ξo, v̂〉 > 0, then

Eo[exp{cτ1(v̂)}] < ∞
for some c > 0.

PROOF. This is Lemma 8 of [26]. �

COROLLARY 2.9. Assume d ≥ 2, (1.1), (1.2) and that (T, û) holds for some
û ∈ S d−1. Since ξo �= 0, there exists a z ∈ U such that 〈ξo, z〉 > 0. Then:

(a) Po(β(z) = ∞) > 0 and τ1(z) has finite Po-moments of arbitrary order;
(b) if the walk is nonnestling, then there exists a c1 > 0 such that

Eo[exp{2c1τ1(z)}] < ∞;
(c) if the walk is nestling, then there exists a c1 > 0 such that

Eo

[
sup

1≤i≤τ1(z)

exp{c1|Xi |}
]
< ∞.

2.6. Qualitative properties of the quenched and the averaged rate functions.
Denote the zero-sets of Iq and Ia by Nq := {ξ ∈ Rd : Iq(ξ) = 0} and Na :=
{ξ ∈ Rd : Ia(ξ) = 0}, respectively. The following theorem summarizes some of the
known qualitative properties of the quenched and the averaged rate functions when
d ≥ 2. The rest of the known properties are given in Section 2.7.

THEOREM 2.10. Assume d ≥ 2, (1.1) and (1.2). Then:

(a) Iq and Ia are convex, Iq(0) = Ia(0) and Nq = Na (see [22]);
(b) if the walk is nonnestling, then:

(i) Na consists of the true velocity ξo (see [22]);
(ii) Ia is strictly convex and analytic on an open set Aa containing ξo (see

[13, 23]);
(c) if the walk is nestling, then Na is a line segment containing the origin that can

extend in one or both directions (see [22]); it cannot extend in both directions
when d = 2 (see [30]) or when d ≥ 5 (see [1]);

(d) if the walk is nestling, but (T, û) is satisfied for some û ∈ S d−1, then:
(i) the origin is an endpoint of Na (see [20]);

(ii) Ia is strictly convex and analytic on an open set Aa (see [23]);
(iii) there exists a (d − 1)-dimensional smooth surface patch Ab

a such that
ξo ∈ Ab

a ⊂ ∂Aa (see [23]);
(iv) the unit vector ηo normal to Ab

a (and pointing in Aa) at ξo satisfies
〈ηo, ξo〉 > 0 (see [23]);

(v) Ia(tξ) = tIa(ξ) for every ξ ∈ Ab
a and t ∈ [0,1] (see [13]).
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2.7. Comparing the quenched and the averaged rate functions. Assume (1.1)
and (1.2). It is clear that

D := {(ξ1, . . . , ξd) ∈ Rd : |ξ1| + · · · + |ξd | ≤ 1} = {ξ ∈ Rd : Ia(ξ) < ∞}
= {ξ ∈ Rd : Iq(ξ) ≤ − log δ}.

For any ξ ∈ Rd , Ia(ξ) ≤ Iq(ξ) by Jensen’s inequality and Fatou’s lemma. More-
over, when the support of P is not a singleton, Ia < Iq at some interior points of D
(see Proposition 4 of [26]).

The following theorem considers ballistic walks in dimensions four and higher,
and says that the quenched and the averaged rate functions are identically equal on
a set whose interior contains Na \ {0}.

THEOREM 2.11 (Yilmaz [26]). Assume d ≥ 4, (1.1), (1.2) and that (T, û)
holds for some û ∈ S d−1. Then:

(a) if the walk is nonnestling, Iq = Ia on an open set Aeq containing ξo;
(b) if the walk is nestling:

(i) Iq = Ia on an open set Aeq;
(ii) there exists a (d − 1)-dimensional smooth surface patch Ab

eq such that

ξo ∈ Ab
eq ⊂ ∂Aeq;

(iii) the unit vector ηo normal to Ab
eq (and pointing in Aeq) at ξo satisfies

〈ηo, ξo〉 > 0;
(iv) Iq(tξ) = tIq(ξ) = tIa(ξ) = Ia(tξ) for every ξ ∈ Ab

eq and t ∈ [0,1].

Assuming d = 1, (1.1) and (1.2), Comets et al. [5] use (2.8) to show that Iq(ξ) =
Ia(ξ) if and only if ξ = 0 or Ia(ξ) = 0. In particular, Theorem 2.11 cannot be
generalized to d ≥ 1. It turns out that it cannot be generalized to d ≥ 2 or 3, either.
Indeed, for d = 2,3, Yilmaz and Zeitouni [27] provide examples of nonnestling
walks in uniformly elliptic i.i.d. environments for which the quenched and the
averaged rate functions are not identically equal on any open set containing the
true velocity ξo.

2.8. Dual results for the logarithmic moment generating functions. For every
θ ∈ Rd , consider the logarithmic moment generating functions

�q(θ) := lim
n→∞

1

n
logEω

o [exp{〈θ,Xn〉}] and
(2.18)

�a(θ) := lim
n→∞

1

n
logEo[exp{〈θ,Xn〉}].

By Varadhan’s lemma (see [6]), �q(θ) = supξ∈Rd {〈θ, ξ〉 − Iq(ξ)} = I ∗
q (θ), the

convex conjugate of Iq at θ . Similarly, �a(θ) = I ∗
a (θ).
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For every c > 0, define

C(c) :=
{ {θ ∈ Rd : |θ | < c}, if the walk is nonnestling,

{θ ∈ Rd : |θ | < c,�a(θ) > 0}, if the walk is nestling.
(2.19)

In the latter case, Ia(0) = 0; see Theorem 2.10. It follows from convex duality that

0 = Ia(0) = sup
θ∈Rd

{〈θ,0〉 − �a(θ)} = − inf
θ∈Rd

�a(θ).

In other words, �a(θ) ≥ 0 for every θ ∈ Rd . The zero-level set {θ ∈ Rd :�a(θ) =
0} of the convex function �a is convex and C(c) is an open ball minus this convex
set.

The following theorems state some of the known qualitative properties of �q

and �a .

THEOREM 2.12 (Peterson and Zeitouni [13], Yilmaz [23]). Assume d ≥ 2,
(1.1) and (1.2). Recall (2.19). If (T, û) holds for some û ∈ S d−1, then �a is analytic
on Ca := C(c1), where c1 is as in Corollary 2.9. Moreover, the Hessian Ha of �a

is positive definite on Ca .

THEOREM 2.13 (Yilmaz [26]). Assume d ≥ 4, (1.1) and (1.2). Recall (2.19).
If (T, û) holds for some û ∈ S d−1, then there exists a c2 ∈ (0, c1) such that �q =
�a on Ceq := C(c2).

In fact, the regularity properties of Ia that are stated in Theorem 2.10 are
obtained from Theorem 2.12 via convex duality (see [13, 23]) and Aa =
{∇�a(θ) : θ ∈ Ca}. Similarly, note that Theorem 2.11 is a corollary of Theo-
rem 2.13 and Aeq = {∇�a(θ) : θ ∈ Ceq}.

3. Our results. In this paper, we will obtain new results concerning the large
deviation properties of RWRE on Zd under the conditions of Theorems 2.11
and 2.13. In other words, we will assume that

d ≥ 4, the environment is uniformly elliptic and i.i.d. [see (1.1) and (1.2)]
and (T, e1) holds.

(3.1)

Here, we have chosen e1 for convenience. However, there is no loss of generality,
that is, we could have chosen any û ∈ S d−1; see Lemma 2.6.

3.1. Existence of harmonic functions: h-transform. Given any θ ∈ Rd , define
πθ :� × U → R by setting

πθ(ω, z) := π(0, z) exp{〈θ, z〉 − �a(θ)}
for every ω ∈ � and z ∈ U . Our first result concerns the existence of positive
harmonic functions for πθ . (Here, we use the term harmonic in analogy with the
continuum case where πθ is replaced by a second order elliptic operator.)
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THEOREM 3.1. Assume (3.1). Recall Theorem 2.13. For every θ ∈ Ceq, there
exists an h(θ, ·) ∈ L2(P) such that P(h(θ, ·) > 0) = 1 and

h(θ,ω) = ∑
z∈U

π(0, z) exp{〈θ, z〉 − �a(θ)}h(θ, Tzω) for P-a.e. ω.(3.2)

Note that πθ would correspond to a Markov chain on � if
∑

z∈U πθ(ω, z) = 1
were true for P-a.e. ω. However, as we will see, the latter condition is not satisfied
unless θ = 0. Nevertheless, (3.2) enables us to define an environment kernel (as
in Definition 1.1) related to πθ via the so-called h-transform technique of Doob;
see [14].

DEFINITION 3.2. Assume (3.1). For every θ ∈ Ceq, define a new environment
kernel π̂ θ :� × U → R+ by setting

π̂ θ (ω, z) := π(0, z) exp{〈θ, z〉 − �a(θ)}h(θ, Tzω)

h(θ,ω)
(3.3)

for every ω ∈ � and z ∈ U . This technique is called h-transform.

3.2. The unique minimizer of Varadhan’s variational formula. Recall the sets
Aa and Aeq which were introduced in Theorems 2.10 and 2.11, respectively.
Whenever ξ ∈ Aa , it is shown in [23] that there is a unique minimizer of Varad-
han’s variational formula (2.11) for Ia(ξ). Our second result reveals the hidden
Markovian structure of this minimizer when (3.1) holds and ξ ∈ Aeq.

Before stating this theorem, we need to introduce a family of sub-σ -algebras of
B: for any v̂ ∈ S d−1 and n ≥ 0, let

B+
n (v̂) := σ(ωx : 〈x, v̂〉 ≥ −n).(3.4)

THEOREM 3.3. Assume (3.1). Recall Theorem 2.11 and Definition 3.2. For
every ξ ∈ Aeq, there exists a unique θ ∈ Ceq such that ξ = ∇�a(θ). [By convex
duality, θ = ∇Ia(ξ).]

(a) There exists a unique Qξ ∈ M1(�, B) that satisfies the following:
(i) Qξ is π̂ θ -invariant, that is,

∑
z∈U dQξ (T−zω)π̂θ (T−zω, z) = dQξ (ω);

(ii) Qξ � P on B+
n (e1) for every n ≥ 0; see (3.4).

The pair (π̂θ ,Qξ ) corresponds to a stationary Markov chain (with values in
�) which can be identified with a μ̂∞

ξ ∈ M1(� × UN). The marginal on � of

μ̂∞
ξ is Qξ and π̂ θ is the conditional of z1 given ω.

(b) μ̂∞
ξ induces a Zd -valued transient process with stationary increments in U via

the map

(ω, z1, z2, z3, . . .) �→ (z1, z1 + z2, z1 + z2 + z3, . . .).

Extend this process to a probability measure on doubly infinite paths (xi)i∈Z

and refer to its restriction to W tr∞ as μ∞
ξ . With this notation, μ∞

ξ is the unique
minimizer of Varadhan’s variational formula (2.11).
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In words, when a particle under Po is conditioned to have asymptotic mean
velocity equal to any given ξ ∈ Aeq, the environment Markov chain chooses to
switch from its original kernel π to the tilted kernel π̂ θ given in (3.3), where θ =
∇Ia(ξ) ∈ Ceq. The most economical tilt in terms of averaged large deviations is
realized by an h-transform.

REMARK 3.4. There is an alternative characterization of μ̂∞
ξ [see (5.2)] which

involves regeneration times. That formula (or, rather, its analog for the marginal on
UN of μ̂∞

ξ ) has already appeared in Definition 9 of [23]. If one takes (5.2) as the
definition of μ̂∞

ξ , then part (b) of Theorem 3.3 becomes essentially a restatement
of Theorem 10 of [23] (see Theorem 5.2 of the current paper for details). In other
words, the novelty of Theorem 3.3 lies in part (a).

3.3. Equality of the quenched and the averaged minimizers. The quenched
level-3 LDP stated in Theorem 2.4 implies the quenched (level-1) LDP (i.e., The-
orem 2.1) via the contraction principle. Indeed, for any ξ ∈ Rd , define

A∞
ξ :=

{
α̂ ∈ M1(� × UN) :

∫ ∑
(zi )i≥1∈UN

dα̂(ω, (zi)i≥1)z1 = ξ

}
.(3.5)

With this notation,

Iq(ξ) = inf
α̂∈A∞

ξ

Iq,3(α̂).(3.6)

Our third result is as follows.

THEOREM 3.5. Assume (3.1). For every ξ ∈ Aeq, the measure μ̂∞
ξ (which is

obtained in Theorem 3.3) is the unique minimizer of (3.6).

We already know from Theorem 2.11 that the quenched and the averaged rate
functions Iq and Ia are equal on Aeq. The natural interpretation of Theorem 3.5
is that, for P-a.e. ω, when a particle under P ω

o is conditioned to have asymptotic
mean velocity equal to any given ξ ∈ Aeq, the environment Markov chain chooses
to switch from its original kernel π to the tilted kernel π̂ θ . Compare this with the
last paragraph of the previous subsection.

Since the contraction from level-3 to level-1 may be done in two steps (instead
of one), the following is an immediate consequence of Theorem 3.5.

COROLLARY 3.6. Assume (3.1). For every ξ ∈ Aeq, let μ̂ξ ∈ M1(� × U) be
the marginal of μ̂∞

ξ ∈ M1(�×UN). With this notation, μ̂ξ is the unique minimizer
of the variational formula

Iq(ξ) = inf
μ∈Aξ

I∗∗
q (μ)

given in (2.6).
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3.4. Modifying Rosenbluth’s variational formula. Recall Rosenbluth’s varia-
tional formula

Iq(ξ) = inf
μ∈Aξ

Iq(μ)

given in (2.7). Its advantage over (2.6) is that Iq has a simple formula, whereas I∗∗
q

does not. Corollary 3.6 identifies the unique minimizer of (2.6) when (3.1) holds
and ξ ∈ Aeq. We would like to obtain an analogous result for (2.7). However, as
we illustrate below, there is a problem.

We express Rosenbluth’s formula in the following way:

Iq(ξ) = inf{H(μ) :μ ∈ Aξ ∩ M ′
1(� × U)},(3.7)

where

H(μ) :=
∫
�

∑
z∈U

dμ(ω, z) log
dμ(ω, z)

d(μ)1(ω)π(0, z)
(3.8)

denotes relative entropy and

M ′
1(� × U) :=

{
μ ∈ M1(� × U) : (μ)1 = (μ)2 � P,

dμ(·, z)
d(μ)1(·) > 0 for every z ∈ U

}
.

In light of Corollary 3.6, a natural minimizer candidate for (3.7) is μ̂ξ . Note that μ̂ξ

is an element of M ′
1(�×U) if and only if its marginal Qξ is absolutely continuous

relative to P on B. However, all we know is that Qξ � P on B+
n (e1) for every

n ≥ 0; see Theorem 3.3.
Instead of trying to show that μ̂ξ is an element of M ′

1(� × U), we will replace
M ′

1(� × U) by a larger set that contains μ̂ξ .

DEFINITION 3.7. A measure μ ∈ M1(� × U) is said to be in M ′′
1 (� × U) if

it satisfies the following conditions:

(a) (μ)1 = (μ)2; see (2.2);
(b) π̂(·, z) := dμ(·,z)

d(μ)1(·) > 0 for every z ∈ U ;

(c) there exists a v̂ ∈ S d−1 such that P π̂
o (limn→∞〈Xn, v̂〉 = ∞) = 1; see Defini-

tion 1.1;
(d) (μ)1 � P on B+

n (v̂) for every n ≥ 0; see (3.4).

THEOREM 3.8. Assume (1.1). Recall (3.8) and Definition 3.7. For every
ξ �= 0,

Iq(ξ) = inf{H(μ) :μ ∈ Aξ ∩ M ′′
1 (� × U)}.(3.9)
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Our last result is the following theorem.

THEOREM 3.9. Assume (3.1). For every ξ ∈ Aeq, μ̂ξ is the unique minimizer
of (3.9).

Note that (3.9) does not involve any complex conjugation and, therefore, is sim-
pler (i.e., more explicit) than (2.6). Because of this, we believe that Theorem 3.9
is more useful than Corollary 3.6.

3.5. Some questions and comments.

1. When (3.1) holds and ξ ∈ Aeq, Theorem 3.3 states that Qξ � P on B+
n (e1) for

every n ≥ 0. On the other hand, it is not known if Qξ � P on B. Is the latter
statement true? Note that, when ξ = ξo, this question is of great interest (in its
own right) because Qξo is the invariant measure from the point of view of the
particle.

Bolthausen and Sznitman [3] prove that Qξ � P on B when ξ = ξo and the
disorder in the environment is low. One expects their argument to work when
|ξ −ξo| is small. However, their technique does not generalize to the case where
the disorder is not low.

2. The limitation of our results is that they are valid when (3.1) holds and ξ ∈ Aeq,
and their proofs break down if any of these assumptions are weakened. There-
fore, it is natural to ask the following question: in the context of multidimen-
sional RWRE, does the connection between h-transform and large deviations
exist under more general conditions? Note that such a connection has been
established (i) for walks with bounded jumps on Z in stationary and ergodic
environments (see [25]), and (ii) for space–time walks in dimensions 3 + 1 and
higher (see [24]).

The rest of this paper is devoted to the proofs of our results. Most of our efforts
are focused on Theorems 3.1 and 3.3, which are established in Sections 4 and 5,
respectively. The remaining results (i.e., Theorems 3.5, 3.8 and 3.9) are obtained
in Section 6.

4. Proof of the existence of harmonic functions.

4.1. An L2 estimate. Assume (3.1). Recall (2.16) and (2.18). For every n ≥ 1,
θ ∈ Rd and ω ∈ �, define

gn(θ,ω) := Eω
o [exp{〈θ,XHn〉 − �a(θ)Hn},Hn = τk

(4.1)
for some k ≥ 1, β = ∞]

and

hn(θ,ω) := Eω
o [exp{〈θ,XHn〉 − �a(θ)Hn},Hn = τk for some k ≥ 1],(4.2)
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where

Hn := inf{i ≥ 0 : 〈Xi, e1〉 ≥ n}.
LEMMA 4.1 (Yilmaz [26]). Assume (3.1). There exists a c2 ∈ (0, c1) such that

lim inf
n→∞ E{gn(θ, ·)} > 0(4.3)

and

sup
n≥1

E{gn(θ, ·)2} < ∞(4.4)

for every θ ∈ Ceq := C(c2); see (2.19).

PROOF. This constitutes the core of the proof of Theorem 2.13. For the conve-
nience of the reader, we will give a sketch of the argument. See Lemmas 11 and 12
of [26] for the complete proof.

It is shown in Lemma 12 of [23] that for every θ ∈ Ca := C(c1),

Eo[exp{〈θ,Xτ1〉 − �a(θ)τ1}|β = ∞] = 1.(4.5)

[Note that Theorem 2.12 follows from (4.5) by the implicit function theorem.] For
every y ∈ Zd , let

qθ (y) := Eo[exp{〈θ,Xτ1〉 − �a(θ)τ1},Xτ1 = y|β = ∞].
Since

∑
y∈Zd qθ (y) = 1 by (4.5), (qθ (y))y∈Zd defines a random walk (Yk)k≥0

on Zd . For every n ≥ 1, E{gn(θ, ·)}/Po(β = ∞) is equal to the probability of the
event {〈Yk, e1〉 = n for some k ≥ 1}. By renewal theory, this probability is easily
shown to converge to a nonzero limit. In particular, (4.3) follows.

For every x, x̃ ∈ Zd , consider two independent walks X = X(x) := (Xi)i≥0 and
X̃ = X̃(x̃) := (X̃j )j≥0, starting at x and x̃, respectively, in the same environment.
Denote their joint quenched law and joint averaged law by P ω

x,x̃
:= P ω

x ⊗ P ω
x̃

and
Px,x̃(·) := E{P ω

x,x̃
(·)}, respectively. As usual, Eω

x,x̃
and Ex,x̃ refer to expectations

under P ω
x,x̃

and Px,x̃ , respectively.
Clearly, Px,x̃ �= Px ⊗ Px̃ . On the other hand, the two walks do not know that

they are in the same environment unless their paths intersect. In particular, for any
event A involving X and X̃,

Px,x̃(A ∩ {γ1 = ∞}) = Px ⊗ Px̃(A ∩ {γ1 = ∞}),(4.6)

if x �= x̃, where

γ1 := inf{m ∈ Z :Xi = X̃j for some i ≥ 0, j ≥ 0, and 〈Xi, e1〉 = m}.(4.7)

Similar to the random times (Hn)n≥0 and β for X, define (H̃n)n≥0 and β̃ for X̃.
The proof of (4.4) makes use of the joint regeneration levels of X and X̃, which
are elements of

L := {n ≥ 0 : 〈Xi, e1〉 ≥ n and 〈X̃j , e1〉 ≥ n for every i ≥ Hn and j ≥ H̃n}.
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Note that if the starting points x and x̃ are both in Vd := {z ∈ Zd : 〈z, e1〉 = 0}, then

0 ∈ L ⇐⇒ β = β̃ = ∞ ⇐⇒ l1 := inf L = 0.

For every n ≥ 1 and θ ∈ Ca , define

f (θ, n,X, X̃) := exp{〈θ,XHn〉 − �a(θ)Hn} exp{〈θ, X̃
H̃n

〉 − �a(θ)H̃n}.
With this notation,

E{gn(θ, ·)2} = Eo,o[f (θ, n,X, X̃), n ∈ L, l1 = 0].(4.8)

By Lemma 4.2 (stated below), the random paths X and X̃ intersect finitely many
times and the probability that they intersect far away from the origin is exponen-
tially small. Conditioned on the first joint regeneration level after the last intersec-
tion, the right-hand side of (4.8) can be written as a product of two terms. The first
term is shown to be finite, by renewal theory, when θ ∈ C(c2) with a small enough
c2 ∈ (0, c1), and the second term is bounded from above by E{gn(θ, ·)}2 ≤ 1 since
the walks can be thought of as taking place in independent environments. �

As mentioned in the sketch above, the following lemma is central to the proof
of (4.4).

LEMMA 4.2. Assume (3.1). Recall (4.7) and let V′
d := Vd \ {0}. Then

inf
z∈V′

d

Po,z(l1 = 0) ≥ inf
z∈V′

d

Po,z(γ1 = ∞, l1 = 0) > 0.(4.9)

PROOF. Assume (3.1). We saw in part (a) of Corollary 2.9 that τ1 has finite
moments of arbitrary order. Therefore, the second inequality follows from Propo-
sition 3.1 (for d ≥ 5) and Proposition 3.4 (for d = 4) of the recent work of Berger
and Zeitouni [2]. (The proofs of these propositions are based on certain Green’s
function estimates which fail to hold unless d ≥ 4.) Since the first inequality is
clear, we are done. �

REMARK 4.3. It is easy to see that the first infimum in (4.9) is positive when
d = 2,3 as well. However, we will not need this fact in what follows.

LEMMA 4.4. Assume (3.1). Recall (4.2). For every θ ∈ Ceq,

lim inf
n→∞ E{hn(θ, ·)} > 0(4.10)

and

sup
n≥1

E{hn(θ, ·)2} < ∞.(4.11)
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PROOF. Recall the notation in the sketch of the proof of Lemma 4.1. By de-
finition, hn(θ,ω) ≥ gn(θ,ω) for every n ≥ 1, θ ∈ Ceq and ω ∈ �. Hence, (4.10)
follows immediately from (4.3).

For every n ≥ 1 and θ ∈ Ceq,

E{hn(θ, ·)2} = Eo,o[f (θ, n,X, X̃), n ∈ L]

=
n∑

k=0

∑
z∈Vd

Eo,o[f (θ, n,X, X̃), l1 = k, X̃
H̃k

− XHk
= z,n ∈ L]

=
n∑

k=0

∑
z∈Vd

Eo,o[f (θ, k,X, X̃), l1 = k, X̃
H̃k

− XHk
= z](4.12)

× e−〈θ,z〉Eo,z[f (θ, n − k,X, X̃), n − k ∈ L|l1 = 0]
≤ Eo,o[f (θ, l1,X, X̃)]

(
inf

z∈Vd

Po,z(l1 = 0)
)−1

(4.13)
× sup

0≤k≤n

z∈Vd

E{gn−k(θ, ·)gn−k(θ, Tz·)}

≤ Eo,o[f (θ, l1,X, X̃)]
(

inf
z∈Vd

Po,z(l1 = 0)
)−1

(4.14)
× sup

m≥1
E{gm(θ, ·)2}.

Indeed, we have (4.12) by the independence structure which is still valid for com-
mon regeneration blocks. (4.13) follows by noting that

e−〈θ,z〉Eo,z[f (θ, n − k,X, X̃), n − k ∈ L|l1 = 0]
= (

Po,z(l1 = 0)
)−1

E{gn−k(θ, ·)gn−k(θ, Tz·)}
≤

(
inf

z∈Vd

Po,z(l1 = 0)
)−1

sup
0≤k≤n

z∈Vd

E{gn−k(θ, ·)gn−k(θ, Tz·)}.

The third term in (4.14) is obtained using the Schwarz inequality and it is finite by
Lemma 4.1. Similarly, the second term in (4.14) is finite by Lemma 4.2. Therefore,
to prove (4.11), it suffices to show that the first term in (4.14) is also finite.

By Hölder’s inequality,

Eo,o[f (θ, l1,X, X̃)]

=
∞∑

k=0

Eo,o[exp{〈θ,XHk
〉 − �a(θ)Hk}

× exp{〈θ, X̃
H̃k

〉 − �a(θ)H̃k}, l1 = k]
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≤
∞∑

k=0

Eo,o[exp{4〈θ,XHk
〉 − 4�a(θ)Hk}]1/4

× Eo,o[exp{4〈θ, X̃
H̃k

〉 − 4�a(θ)H̃k}]1/4Po,o(l1 = k)1/2

=
∞∑

k=0

Eo[exp{4〈θ,XHk
〉 − 4�a(θ)Hk}]1/2Po,o(l1 = k)1/2.(4.15)

For any k ≥ 1,

Eo[exp{4〈θ,XHk
〉 − 4�a(θ)Hk}]

= Eo[exp{4〈θ,XHk
〉 − 4�a(θ)Hk},Hk ≤ τ1]

+ Eo[exp{4〈θ,XHk
〉 − 4�a(θ)Hk}, τ1 < Hk]

= Eo[exp{4〈θ,XHk
〉 − 4�a(θ)Hk},Hk ≤ τ1]

+
k−1∑
j=1

Eo[exp{4〈θ,XHk
〉 − 4�a(θ)Hk}, τ1 = Hj ]

= Eo[exp{4〈θ,XHk
〉 − 4�a(θ)Hk},Hk ≤ τ1]

+
k−1∑
j=1

Eo[exp{4〈θ,Xτ1〉 − 4�a(θ)τ1}, τ1 = Hj ]

× Eo[exp{4〈θ,XHk−j
〉 − 4�a(θ)Hk−j }|β = ∞]

≤ Eo

[
sup

1≤n≤τ1

exp
{
4|θ ||Xn| − 4

(
0 ∧ �a(θ)

)
τ1

}]

×
(
1 + sup

1≤i<k

Eo[exp{4〈θ,XHi
〉 − 4�a(θ)Hi}|β = ∞]

)

≤ Eo

[
sup

1≤n≤τ1

exp
{
4|θ ||Xn| − 4

(
0 ∧ �a(θ)

)
τ1

}](
1 + sup

1≤i<k

iea1|θ |i)(4.16)

≤ K1
(
1 + kea1|θ |k).(4.17)

Indeed, if the walk is nonnestling, we have 4|θ ||Xn| − 4(0 ∧ �a(θ))τ1 ≤ 8|θ |τ1
for every n ≤ τ1. On the other hand, if the walk is nestling, then 4|θ ||Xn| − 4(0 ∧
�a(θ))τ1 = 4|θ ||Xn| since �a(θ) ≥ 0. Therefore, in both cases, the first term in
(4.16) is finite (provided that 4|θ | < c1) and it is denoted by K1 in (4.17). The
second term in (4.16) is obtained using Lemma 28 of [26], where a1 > 0 is a
constant.

It is shown in (the proof of) Lemma 30 of [26] that Eo,o[ea3l1] < ∞ for some
a3 > 0. For any k ≥ 1,

Po,o(l1 = k) ≤ Eo,o[ea3l1]e−a3k =: K2e
−a3k.(4.18)
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Putting (4.15), (4.17) and (4.18) together, we conclude that

Eo,o[f (θ, l1,X, X̃)] ≤
∞∑

k=0

K
1/2
1

(
1 + kea1|θ |k)1/2

K
1/2
2 e−a3k/2

≤ 2(K1K2)
1/2

∞∑
k=0

k1/2e(a1|θ |−a3)k/2

< ∞,

provided that |θ | < a3/a1.
The constant c2 is chosen in [26] such that it satisfies c2 < min(c1/4, a3/a1),

along with a few other conditions. Thus, (4.11) holds for every θ ∈ Ceq = C(c2).
�

4.2. Proof of Theorem 3.1. For every n ≥ 2, θ ∈ Ceq and ω ∈ �,

hn(θ,ω) = Eω
o [exp{〈θ,XHn〉 − �a(θ)Hn},Hn = τk for some k ≥ 1]

= ∑
z∈U

Eω
o [exp{〈θ,XHn〉 − �a(θ)Hn},

X1 = z,Hn = τk for some k ≥ 1]
= ∑

z∈U

π(0, z) exp{−�a(θ)}

× Eω
z [exp{〈θ,XHn〉 − �a(θ)Hn},Hn = τk for some k ≥ 1]

= ∑
z∈U

π(0, z) exp{〈θ, z〉 − �a(θ)}hn−〈z,e1〉(θ, Tzω).(4.19)

Here, (4.19) is obtained by shifting the environment by z.
Define a new function h̄n(θ, ·) :� → R by

h̄n(θ,ω) := 1

n − 1

n∑
i=2

hi(θ,ω).(4.20)

Since (h̄n(θ, ·))n≥1 is bounded in L2(P) by (4.11), it has a subsequence (h̄nk
(θ,

·))k≥1 that converges weakly to some h(θ, ·) ∈ L2(P).
It follows immediately from (4.19) that

h̄n(θ,ω) = ∑
z∈U

π(0, z) exp{〈θ, z〉 − �a(θ)}h̄n(θ, Tzω)

+ 1

n − 1

(
h1(θ, Te1ω) − h2(θ, T−e1ω)(4.21)

− hn(θ, Te1ω) + hn+1(θ, T−e1ω)
)
.
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Set n = nk and take the weak limit of both sides of (4.21) as k → ∞. Since the
term on the second line converges (strongly and, hence, weakly) to zero in L2(P),
we conclude that

h(θ,ω) = ∑
z∈U

π(0, z) exp{〈θ, z〉 − �a(θ)}h(θ, Tzω) for P-a.e. ω.(4.22)

Note that h(θ,ω) ≥ 0 for P-a.e. ω. Equation (4.22) [in combination with
(1.1)] implies that the set {ω ∈ � :h(θ,ω) = 0} is invariant under (Tz)z∈U . Since
(1.2) ensures that the environment is ergodic under these shifts, P(h(θ, ·) =
0) ∈ {0,1}. However, E{h(θ, ·)} > 0 by (4.10). Therefore, we conclude that
P(h(θ, ·) > 0) = 1. We have thus proven Theorem 3.1.

4.3. A useful representation. Define a function ϕ : Ceq × � × Zd → R+ by
setting

ϕ(θ,ω, x) := Eω
o [exp{〈θ,Xτ1〉 − �a(θ)τ1},Xτ1 = x]

P
Txω
o (β = ∞)

(4.23)

for every θ ∈ Ceq, ω ∈ � and x ∈ Zd . Note that ϕ(θ,ω, x) = 0 unless 〈x, e1〉 ≥ 1.
The following lemma will be useful in the next section.

LEMMA 4.5. For every θ ∈ Ceq, there exists a B+
o (e1)-measurable g(θ, ·) ∈

L2(P) such that

h(θ,ω) = ∑
x∈Zd

ϕ(θ,ω, x)g(θ, Txω) for P-a.e. ω.(4.24)

PROOF. Recall (4.1) and (4.2). For every n ≥ 2 and θ ∈ Ceq, define ḡn(θ, ·) ∈
L2(P) analogously to (4.20). Since (ḡn(θ, ·))n≥1 is bounded in L2(P) by (4.4), it
has a subsequence (ḡnk

(θ, ·))k≥1 that converges weakly to some g(θ, ·) ∈ L2(P).
[Choose (nk)k≥1 to be a further subsequence of the subsequence in the proof of
Theorem 3.1 so that (h̄nk

(θ, ·))k≥1 converges weakly to h(θ, ·) ∈ L2(P).] Note that
gn(θ, ·) is B+

o (e1)-measurable for every n ≥ 1 since the event {β = ∞} is part of
the definition of gn(θ, ·). Hence, g(θ, ·) is B+

o (e1)-measurable.
For every N ≥ 1, n ≥ N , θ ∈ Ceq and ω ∈ �,

hn(θ,ω) = Eω
o [exp{〈θ,XHn〉 − �a(θ)Hn},Hn = τk for some k ≥ 1]

= Eω
o [exp{〈θ,XHn〉 − �a(θ)Hn},

|Xτ1 | ≥ N,Hn = τk for some k ≥ 1](4.25)

+ ∑
|x|<N

Eω
o [exp{〈θ,XHn〉 − �a(θ)Hn},

Xτ1 = x,Hn = τk for some k ≥ 1].
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Denote the first term in (4.25) by RN,n(θ,ω). It follows immediately from (4.5),
the renewal structure and the monotone convergence theorem that

lim
N→∞ sup

n≥N

E{RN,n(θ, ·)}
(4.26)

≤ lim
N→∞Eo[exp{〈θ,Xτ1〉 − �a(θ)τ1}, |Xτ1 | ≥ N ] = 0.

Recall (4.23) and observe that, for every n ≥ N ,

hn(θ,ω) = RN,n(θ,ω)

+ ∑
|x|<N

Eω
o [exp{〈θ,XHn〉 − �a(θ)Hn},

Xτ1 = x,Hn = τk for some k ≥ 1]
= RN,n(θ,ω)

+ ∑
|x|<N

Eω
o [exp{〈θ,Xτ1〉 − �a(θ)τ1},Xτ1 = x]

× e−〈θ,x〉Eω
x [exp{〈θ,XHn〉 − �a(θ)Hn},

Hn = τk for some k ≥ 1|β = ∞]
= RN,n(θ,ω) + ∑

|x|<N

ϕ(θ,ω, x)gn−〈x,e1〉(θ, Txω).

Therefore, whenever nk ≥ N ,

1

nk

nk∑
i=N

hi(θ,ω) = 1

nk

nk∑
i=N

RN,i(θ,ω)

(4.27)

+ ∑
|x|<N

ϕ(θ,ω, x)
1

nk

nk∑
i=N

gi−〈x,e1〉(θ, Txω).

Multiplying both sides of (4.27) by any indicator function χ ∈ L∞(P), integrating
against P and letting k tend to infinity, we arrive at the following inequality:∣∣∣∣
∫

h(θ,ω)χ(ω)dP −
∫ ∑

|x|<N

ϕ(θ,ω, x)g(θ, Txω)χ(ω)dP

∣∣∣∣ ≤ sup
n≥N

E{RN,n(θ, ·)}.

Finally, let N tend to infinity. The monotone convergence theorem and (4.26) im-
ply the desired result. �

5. Proof of our results on averaged large deviations. We will start this sec-
tion by stating two results concerning the unique minimizer of Varadhan’s varia-
tional formula (2.11). We will then give a series of lemmas. Finally, we will com-
bine everything and prove Theorem 3.3.



LARGE DEVIATIONS FOR RWRE 493

5.1. The unique minimizer of Varadhan’s variational formula. Assume (3.1).
Take any ξ ∈ Aa . Since the Hessian Ha of �a is positive definite on Ca by The-
orem 2.12, there exists a unique θ ∈ Ca satisfying ξ = ∇�a(θ). In the next para-
graph, we define a probability measure μ̂∞

ξ ∈ M1(� × UN) by specifying the in-
tegrals of certain test functions against this measure.

For every N,M,K ≥ 0, take any bounded function f :� × UN → R such that
f (·, (zi)i≥1) is independent of (zi)i>K and is measurable with respect to

BM
N (e1) = BM

N := σ(ωx :−N ≤ 〈x, e1〉 ≤ M).(5.1)

Define μ̂∞
ξ ∈ M1(� × UN) by setting

∫
f dμ̂∞

ξ :=
∞∑

j=0

Eo[τN ≤ j < τN+1,

f (TXj
ω,Z∞

j+1) exp{〈θ,XτJ
〉 − �a(θ)τJ }|β = ∞](5.2)

× (
Eo[τ1 exp{〈θ,Xτ1〉 − �a(θ)τ1}|β = ∞])−1

,

where J := N + M + K + 1 and Z∞
j+1 = (Zj+i)i≥1 := (Xi − Xi−1)i≥1. (The

measure μ̂∞
ξ is well defined. See the proof of Theorem 5.1.)

The following theorem states that the empirical process

ν∞
n,X := 1

n

n−1∑
k=0

1TXk
ω,Z∞

k+1

of the walk under Po converges to μ̂∞
ξ when the particle is conditioned to have

mean velocity ξ .

THEOREM 5.1. Assume (3.1). For every ξ ∈ Aa , ε > 0, N,M,K ≥ 0 and
f :� × UN → R bounded such that f (·, (zi)i≥1) is independent of (zi)i>K and is
BM

N -measurable, the following holds:

lim sup
δ′→0

lim sup
n→∞

1

n
logPo

(∣∣∣∣
∫

f dν∞
n,X −

∫
f dμ̂∞

ξ

∣∣∣∣ > ε
∣∣∣

(5.3) ∣∣∣∣Xn

n
− ξ

∣∣∣∣ ≤ δ′
)

< 0.

PROOF. Definition 9 of [23] introduces a probability measure μ̄∞
ξ ∈ M1(U

N)

by the formula in (5.2), except that the test functions do not depend on ω in that
case. Proposition 16 of [23] shows that μ̄∞

ξ is well defined, and Theorem 17 of
[23] establishes the analog of (5.3) for μ̄∞

ξ . The proofs of these results generalize
to our setting without any nontrivial change. Therefore, we omit the proof of The-
orem 5.1. Also, note that Theorem 5.1 is proved in [24] for the related model of
space–time RWRE. �
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In the first paragraph of Section 3.2, we mentioned an existence and uniqueness
result for the minimizer of Varadhan’s variational formula (2.11) for the averaged
rate function Ia . The following is the precise statement.

THEOREM 5.2. Assume (3.1). For every ξ ∈ Aa , μ̂∞
ξ induces a Zd -valued

transient process with stationary and ergodic increments in U via the map

(ω, z1, z2, z3, . . .) �→ (z1, z1 + z2, z1 + z2 + z3, . . .).

Extend this process to a probability measure on doubly infinite paths (xi)i∈Z and
refer to its restriction to W tr∞ as μ∞

ξ . With this notation, μ∞
ξ is the unique mini-

mizer of Varadhan’s variational formula (2.11).

PROOF. This is Theorem 10 of [23], with the following difference: that result
is concerned with μ̄∞

ξ (which was mentioned in the proof of Theorem 5.1) and it
uses the map

(z1, z2, z3, . . .) �→ (z1, z1 + z2, z1 + z2 + z3, . . .)

to induce a Zd -valued transient process with stationary and ergodic increments
in U . However, since μ̄∞

ξ is the marginal of μ̂∞
ξ on UN, the Zd -valued process

induced by μ̄∞
ξ is nothing but μ∞

ξ . �

5.2. The Markovian structure of the minimizer. Assume (3.1). Take any ξ ∈
Aeq. Let θ ∈ Ceq denote the unique solution of ξ = ∇�a(θ). Recall the environ-
ment kernel π̂ θ defined in (3.3) via h-transform. For any x ∈ Zd and ω ∈ �, abbre-
viate the notation introduced in Definition 1.1 by writing P θ,ω

x and Eθ,ω
x instead

of P π̂θ ,ω
x and Eπ̂θ ,ω

x , respectively.
For every n ≥ 1, define μ̂∞

n,ξ ∈ M1(� × UN) as follows:

μ̂∞
n,ξ (·) := E{h(θ,ω)P θ,ω

o ((TXnω,Z∞
n+1) ∈ ·)}

E{h(θ,ω)} .(5.4)

LEMMA 5.3. For every N,M,K ≥ 0 and f :�×UN → R bounded such that
f (·, (zi)i≥1) is independent of (zi)i>K and is BM

N -measurable,

∫
f dμ̂∞

n,ξ = Eo[f (TXnω,Z∞
n+1) exp{〈θ,XτL

〉 − �a(θ)τL}]
Eo[exp{〈θ,Xτ1〉 − �a(θ)τ1}](5.5)

for every L ≥ n + M + K + 1.

PROOF. For every N,M,K ≥ 0, take a bounded function f :� × UN → R

such that f (·, (zi)i≥1) is independent of (zi)i>K and is BM
N -measurable; see (5.1).
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For every L ≥ n + M + K + 1,

E{h(θ,ω)}
∫

f dμ̂∞
n,ξ

= E{h(θ,ω)Eθ,ω
o [f (TXnω,Z∞

n+1)]}

= E

{
h(θ,ω)Eω

o

[
f (TXnω,Z∞

n+1)

(5.6)

× exp{〈θ,Xn+K〉 − �a(θ)(n + K)}h(θ, TXn+K
ω)

h(θ,ω)

]}

= Eo[f (TXnω,Z∞
n+1) exp{〈θ,Xn+K〉 − �a(θ)(n + K)}h(θ, TXn+K

ω)]
= Eo[f (TXnω,Z∞

n+1) exp{〈θ,XHL
〉 − �a(θ)HL}h(θ, TXHL

ω)](5.7)

= ∑
〈x,e1〉≥1

Eo[f (TXnω,Z∞
n+1) exp{〈θ,XHL

〉 − �a(θ)HL}
(5.8)

× ϕ(θ, TXHL
ω,x)g(θ, TXHL

+xω)].

Explanation: (5.6) follows from the definition of π̂ θ by noting that f (TXnω,Z∞
n+1)

depends only on the first n + K steps of the walk. (5.7) holds because HL is a
stopping time and HL ≥ n + K . The representation of h(θ, ·) in (4.24) gives (5.8).

For any x ∈ Zd such that 〈x, e1〉 ≥ 1,

Eo[f (TXnω,Z∞
n+1)

× exp{〈θ,XHL
〉 − �a(θ)HL}ϕ(θ, TXHL

ω,x)g(θ, TXHL
+xω)]

= ∑
〈y,e1〉=L

E
{
Eω

o [f (TXnω,Z∞
n+1) exp{〈θ, y〉 − �a(θ)HL}

× ϕ(θ, Tyω,x),XHL
= y](5.9)

× g(θ, Ty+xω)
}

= ∑
〈y,e1〉=L

Eo[f (TXnω,Z∞
n+1) exp{〈θ, y〉 − �a(θ)HL}

(5.10)
× ϕ(θ, Tyω,x),XHL

= y]E{g(θ,ω)}
= Eo[f (TXnω,Z∞

n+1) exp{〈θ,XHL
〉 − �a(θ)HL}ϕ(θ, TXHL

ω,x)]
(5.11)

× E{g(θ,ω)}.
Explanation: for any y ∈ Zd such that 〈y, e1〉 = L, the random quantities
Eω

o [. . . ,XHL
= y] and g(θ, Ty+xω) appearing in (5.9) are independent because

the former is measurable with respect to σ(ωx′ : 〈x′ − x, e1〉 < L), whereas the
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latter is B+
L+〈x,e1〉(e1)-measurable; see Lemma 4.5. This independence (in combi-

nation with the stationarity of P) gives (5.10).
By plugging (5.11) into (5.8), we see that

E{h(θ, ·)}
E{g(θ, ·)}

∫
f dμ̂∞

n,ξ

= ∑
〈x,e1〉≥1

L+1∑
k=1

E
{
Eω

o [f (TXnω,Z∞
n+1) exp{〈θ,Xτk

〉 − �a(θ)τk},

τk−1 ≤ HL < τk,Xτk
= x](5.12)

× (
P Txω

o (β = ∞)
)−1}

= 1

Po(β = ∞)

× ∑
〈x,e1〉≥1

L+1∑
k=1

Eo[f (TXnω,Z∞
n+1) exp{〈θ,Xτk

〉 − �a(θ)τk},(5.13)

τk−1 ≤ HL < τk,Xτk
= x]

= 1

Po(β = ∞)
Eo[f (TXnω,Z∞

n+1) exp{〈θ,XτL
〉 − �a(θ)τL}].(5.14)

Explanation: (5.12) follows from the definition of ϕ(θ, ·, ·) given in (4.23). For
every x ∈ Zd such that 〈x, e1〉 ≥ 1, the random quantity P

Txω
o (β = ∞) is indepen-

dent of the ratio
Eω

o [...,Xτk
=x]

P
Txω
o (β=∞)

appearing in (5.12) since the latter is easily seen to be

equal to an expectation involving the stopping time H〈x,e1〉 (and nothing beyond
that). This independence implies (5.13). Using (4.5), the τk in the exponential can
be replaced first by τL+1 and then by τL. This gives (5.14).

Finally, observe that (5.14) agrees with (5.5), except that the normalization con-
stant has to be simplified. However, it is clear that the constant in (5.5) is correct
[take f ≡ 1 and apply (4.5)]. �

LEMMA 5.4. For every f :� × UN → R bounded such that f (·, (zi)i≥1) is
B-measurable, the following convergence takes place:

lim
n→∞

∫
f dμ̂∞

n,ξ =
∫

f dμ̂∞
ξ .

In particular, (μ̂∞
n,ξ )n≥1 converges weakly to μ̂∞

ξ .

PROOF. For any N,M,K ≥ 0, take a bounded function f :�×UN → R such
that f (·, (zi)i≥1) is independent of (zi)i>K and BM

N -measurable. Let J := N +
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M + K + 1.

Eo[exp{〈θ,Xτ1〉 − �a(θ)τ1}] lim
n→∞

∫
f dμ̂∞

n,ξ(5.15)

= lim
n→∞Eo[n < τN,f (TXnω,Z∞

n+1) exp{〈θ,XτJ
〉 − �a(θ)τJ }](5.16)

+ lim
n→∞

∞∑
i=0

Eo[τN+i ≤ n < τN+i+1,

f (TXnω,Z∞
n+1) exp{〈θ,XτJ+i

〉 − �a(θ)τJ+i}]

= lim
n→∞

n∑
j=0

( ∞∑
i=0

Eo[τi = n − j, exp{〈θ,Xτi
〉 − �a(θ)τi}]

)
(5.17)

× Eo[τN ≤ j < τN+1,

f (TXj
ω,Z∞

j+1) exp{〈θ,XτJ
〉 − �a(θ)τJ }|β = ∞]

= S(θ)

∞∑
j=0

Eo[τN ≤ j < τN+1,

f (TXj
ω,Z∞

j+1) exp{〈θ,XτJ
〉 − �a(θ)τJ }|β = ∞]

= S(θ)Eo[τ1 exp{〈θ,Xτ1〉 − �a(θ)τ1}|β = ∞]
∫

f dμ̂∞
ξ .(5.18)

Explanation: (5.16) follows from (5.5). The first term in (5.16) goes to zero as
n → ∞ by the dominated convergence theorem. The renewal theorem for aperi-
odic sequences (see [4], Theorem 10.8) implies that the sum (

∑∞
i=0 Eo[· · ·]) in

(5.17) converges to some constant S(θ) as n → ∞. Observe that the constants in
(5.15) and (5.18) have to agree because μ̂∞

n,ξ and μ̂∞
ξ are known to be probability

measures.
Thus far, we have shown that limn→∞

∫
f dμ̂∞

n,ξ = ∫
f dμ̂∞

ξ for a separating
class of test functions. However, this is sufficient to conclude that (μ̂∞

n,ξ )n≥1 con-

verges weakly to μ̂∞
ξ since M1(� × UN) is compact. �

Let Qξ ∈ M1(�) be the marginal of μ̂∞
ξ ∈ M1(� × UN).

LEMMA 5.5. Qξ is π̂ θ -invariant, that is,∑
z∈U

dQξ (T−zω)π̂θ (T−zω, z) = dQξ (ω).

PROOF. For any f ∈ L∞(P), define π̂ θf :� → R in the usual way:

(π̂θf )(ω) := ∑
z∈U

π̂θ (ω, z)f (Tzω).
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Recall (5.4). For every n ≥ 1,∫
(π̂θf ) dμ̂∞

n,ξ = E{h(θ,ω)Eθ,ω
o [(π̂θf )(TXnω)]}

E{h(θ,ω)}

= E{h(θ,ω)Eθ,ω
o [f (TXn+1ω)]}

E{h(θ,ω)}
=

∫
f dμ̂∞

n+1,ξ ,

by the Markov property. Let n tend to infinity, use Lemma 5.4 and conclude that∫
(π̂θf ) dQξ =

∫
(π̂θf ) dμ̂∞

ξ =
∫

f dμ̂∞
ξ =

∫
f dQξ .

This is equivalent to the desired result. �

LEMMA 5.6. μ̂∞
ξ induces, via the map

(ω, z1, z2, z3, . . .) �→ (ω,Tz1ω,Tz1+z2ω,Tz1+z2+z3ω, . . .),

an �-valued stationary Markov process with marginal Qξ and transition kernel

πθ(ω,ω′) := ∑
z : Tzω=ω′

π̂ θ (ω, z).

PROOF. For any n ≥ 1, K ≥ 0 and any two bounded measurable functions
f :�K+1 → R and g :�N → R, it follows from (5.4) and the Markov property
that

E{h(θ,ω)}
∫

f (ω,Tz1ω, . . . , Tz1+···+zK
ω)

× g(Tz1+···+zK
ω,Tz1+···+zK+1ω, . . .) dμ̂∞

n,ξ

= E{h(θ,ω)Eθ,ω
o [f (TXnω, . . . , TXn+K

ω)g(TXn+K
ω,TXn+K+1ω, . . .)]}

= E
{
h(θ,ω)Eθ,ω

o

[
f (TXnω, . . . , TXn+K

ω)

× Eθ,ω
o [g(TXn+K

ω,TXn+K+1ω, . . .)|Xn+K ]]}
= E{h(θ,ω)}

×
∫

f (ω,Tz1ω, . . . , Tz1+···+zK
ω)

× E
θ,Tz1+···+zK

ω
o [g(Tz1+···+zK

ω,Tz1+···+zK+X1ω, . . .)]dμ̂∞
n,ξ .

Let n tend to infinity, use Lemma 5.4 and conclude that μ̂∞
ξ indeed induces an �-

valued Markov process with marginal Qξ and transition kernel πθ . Finally, note
that the stationarity of this process follows from a straightforward generalization
of Lemma 5.5. �
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LEMMA 5.7. Qξ � P on B+
N(e1) for every N ≥ 0; see (3.4).

PROOF. For any N ≥ 0, take an f ∈ L∞(P) such that f is nonnegative and
BM

N -measurable for some M ≥ 0. Let J := N + M + 1. It follows from (5.2) and
the Schwarz inequality that

Eo[τ1 exp{〈θ,Xτ1〉 − �a(θ)τ1}, β = ∞]
∫

f dQξ

= Eo

[(τN+1−1∑
j=τN

f (TXj
ω)

)
exp{〈θ,XτJ

〉 − �a(θ)τJ }, β = ∞
]

≤
∞∑

k=1

Eo

[
τN+1 = k,

( ∑
|x|≤k

f (Txω)

)
exp{〈θ,XτJ

〉 − �a(θ)τJ }, β = ∞
]

=
∞∑

k=1

k∑
l=1

E

{( ∑
|x|≤k

f (Txω)

)

× Eω
o [τN+1 = k = Hl, exp{〈θ,XτJ

〉 − �a(θ)τJ }, β = ∞]
}

≤
∞∑

k=1

k∑
l=1

(2k + 1)d‖f ‖L2(P)(5.19)

× E
{
Eω

o [τN+1 = k = Hl,

exp{〈θ,XτJ
〉 − �a(θ)τJ }, β = ∞]2}1/2

.

There exist constants C′
N < ∞ and a4 > 0 such that, for every k ≥ 1 and l ∈

{1, . . . , k},
E

{
Eω

o [τN+1 = k = Hl, exp{〈θ,XτJ
〉 − �a(θ)τJ }, β = ∞]2}

≤ E
{
Eω

o [τN+1 = k = Hl, exp{〈θ,XτN+1〉 − �a(θ)τN+1}, β = ∞]2}
(5.20)

×
(

inf
z∈Vd

Po,z(l1 = 0)
)−1

× E
{
Eω

o [exp{〈θ,XτM
〉 − �a(θ)τM}, β = ∞]2}

≤ C′
Ne−a4k.(5.21)

Explanation: the first term in (5.20) is bounded from above by CNe−a4k for some
CN < ∞ and a4 > 0. The second term in (5.20) is finite by Lemma 4.2. Using the
technique in the proof of Lemma 4.1, the third term in (5.20) can be shown to be
bounded from above by a constant that is independent of M . We leave the details
to the reader.
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Plugging (5.21) into (5.19), we see that∫
f dQξ ≤ C′′

N‖f ‖L2(P)

for some finite constant C′′
N that is independent of M . Since the functions we have

considered are dense in L2(�, B+
N(e1),P), it follows from the Riesz representation

theorem that
dQξ

dP

∣∣∣∣
B+

N(e1)

∈ L2(P).(5.22)
�

Combining all of the results in this section, we get the following proof.

PROOF OF THEOREM 3.3. Recall that Qξ ∈ M1(�) denotes the marginal of
μ̂∞

ξ ∈ M1(� × UN) which, in turn, is defined in (5.2). We have seen that:

(i) Qξ is π̂ θ -invariant (see Lemma 5.5);
(ii) Qξ � P on B+

n (e1) for every n ≥ 0; see Lemma 5.7.

It follows from Lemma 5.8 (stated below) that Qξ is the unique element of M1(�)

that satisfies these two properties. We have also proven that μ̂∞
ξ induces an �-

valued stationary Markov process with marginal Qξ and transition kernel πθ ; see
Lemma 5.6. These results imply part (a) of Theorem 3.3.

Note that part (b) of Theorem 3.3 is a special case of Theorem 5.2 since Aeq ⊂
Aa . �

In the proof above, we used the following generalization of a classical homog-
enization result which is originally due to Kozlov [11].

LEMMA 5.8 (Rassoul-Agha [15]). Given any Q ∈ M1(�) and any environ-
ment kernel π̂ , define a measure μ ∈ M1(� × U) by setting

dμ(·, z) := dQ(·)π̂(·, z)
for each z ∈ U . Recall Definition 3.7. If μ ∈ M ′′

1 (�×U), then the following hold:

(a) the measures P and Q are, in fact, mutually absolutely continuous on B+
n (v̂)

for every n ≥ 0;
(b) the environment Markov chain with kernel π̂ and initial distribution Q is sta-

tionary and ergodic;
(c) Q is the unique π̂ -invariant probability measure on � that satisfies Q � P on

B+
n (v̂) for every n ≥ 0;

(d) the following LLN is satisfied: P π̂
o (limn→∞ Xn

n
= ∫ ∑

z∈U π̂(ω, z)z dQ) = 1.

6. Proof of our results on quenched large deviations.

6.1. Equality of the quenched and the averaged minimizers. We start this sec-
tion by stating the quenched version of Theorem 5.1.
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THEOREM 6.1. Assume (3.1). For every ξ ∈ Aeq, ε > 0, N,M,K ≥ 0 and
f :� × UN → R bounded such that f (·, (zi)i≥1) is independent of (zi)i>K and is
BM

N -measurable, the following holds:

lim sup
δ′→0

lim sup
n→∞

1

n
logP ω

o

(∣∣∣∣
∫

f dν∞
n,X −

∫
f dμ̂∞

ξ

∣∣∣∣ > ε
∣∣∣

∣∣∣∣Xn

n
− ξ

∣∣∣∣ ≤ δ′
)

< 0(6.1)

for P-a.e. ω.

PROOF. This is Theorem 3 of [24], except that [24] is concerned with space–
time RWRE. However, the result is obtained directly from Theorem 5.1 by a stan-
dard application of the Borel–Cantelli lemma and Chebyshev’s inequality. In other
words, the proof in [24] makes no use of the space–time assumption. [The only
notational difference is that, in the space–time case, �a(θ) is equal to logφ(θ) for
some explicit function φ(·), but this does not play any role in the proof.] �

Now, we are ready to give the following proof.

PROOF OF THEOREM 3.5. Take any ξ ∈ Aeq. Recall (3.5). If an α̂ ∈ A∞
ξ is

not equal to μ̂∞
ξ , then ∣∣∣∣

∫
f dα̂ −

∫
f dμ̂∞

ξ

∣∣∣∣ > ε

for some ε > 0, N,M,K ≥ 0 and f :�×UN → R bounded such that f (·, (zi)i≥1)

is independent of (zi)i>K and BM
N -measurable.

For every δ′ > 0 and P-a.e. ω, (the lower bound of) the quenched level-3 LDP
(i.e., Theorem 2.4) implies that

−Iq,3(α̂) ≤ lim inf
n→∞

1

n
logP ω

o

(∣∣∣∣
∫

f dν∞
n,X −

∫
f dμ̂∞

ξ

∣∣∣∣ > ε,

∣∣∣∣Xn

n
− ξ

∣∣∣∣ < δ′
)
.

On the other hand,

lim
δ′→0

lim
n→∞

1

n
logP ω

o

(∣∣∣∣Xn

n
− ξ

∣∣∣∣ ≤ δ′
)

= −Iq(ξ),

by the quenched level-1 LDP (i.e., Theorem 2.1). Therefore,

−Iq,3(α̂) + Iq(ξ)

≤ lim sup
δ′→0

lim sup
n→∞

1

n
logP ω

o

(∣∣∣∣
∫

f dν∞
n,X −

∫
f dμ̂∞

ξ

∣∣∣∣ > ε
∣∣∣∣∣∣∣Xn

n
− ξ

∣∣∣∣ ≤ δ′
)

< 0,

by (6.1). In words, α̂ is not a minimizer of (3.6). However, since Iq,3 is lower
semicontinuous and A∞

ξ is compact, there is a minimizer. We conclude that μ̂∞
ξ is

the unique minimizer of (3.6). �
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6.2. Modifying Rosenbluth’s variational formula.

LEMMA 6.2. Assume (1.1). Recall (3.8) and Definition 3.7. For every μ ∈
M ′′

1 (� × U),

I∗∗
q (μ) ≤ H(μ).(6.2)

PROOF. Fix a sequence of test functions, denoted by (fi)i≥1, that separate
M1(�×U). For every i ≥ 1 and z ∈ U , assume that fi(·, z) :� → R is measurable
with respect to σ(ωx : |x| ≤ i). Take any μ ∈ M ′′

1 (� × U). For every N ≥ 1,

Gμ,N :=
{
ν ∈ M1(� × U) :

∣∣∣∣
∫

fi dν −
∫

fi dμ

∣∣∣∣ <
1

N
∀i ∈ {1, . . . ,N}

}

is an open set. Recall v̂ ∈ S d−1 and the environment kernel π̂ corresponding to μ;
see Definition 3.7. Let Q := (μ)1 so that dμ(·, z) = dQ(·)π̂(·, z) for each z ∈ U .
For every n ≥ 1, introduce a new measure Rπ̂,ω

o,n by setting

dRπ̂,ω
o,n := 1νn,X∈Gμ,N ,β>n

P
π̂,ω
o (νn,X ∈ Gμ,N,β > n)

dP π̂,ω
o ,

where β = β(v̂) := inf{i ≥ 0 : 〈Xi, v̂〉 < 〈Xo, v̂〉}. With this notation, for Q-a.e. ω,

logP ω
o (νn,X ∈ Gμ,N,β > n)

= logEπ̂,ω
o

[
νn,X ∈ Gμ,N,β > n,

dP ω
o

dP
π̂,ω
o

]

= logP π̂,ω
o (νn,X ∈ Gμ,N,β > n) + log

∫
dP ω

o

dP
π̂,ω
o

dRπ̂,ω
o,n

≥ logP π̂,ω
o (νn,X ∈ Gμ,N,β > n) −

∫
log

dP π̂,ω
o

dP ω
o

dRπ̂,ω
o,n

= logP π̂,ω
o (νn,X ∈ Gμ,N,β > n)(6.3)

− 1

P
π̂,ω
o (νn,X ∈ Gμ,N,β > n)

× Eπ̂,ω
o

[
νn,X ∈ Gμ,N,β > n, log

dP π̂,ω
o

dP ω
o

]
,

by a change of measure and Jensen’s inequality.
It follows from Lemma 5.8 and the ergodic theorem that

Q ⊗ P π̂,ω
o (νn,X ∈ Gμ,N for sufficiently large n) = 1
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and

Q ⊗ P π̂,ω
o

(
lim

n→∞
1

n
log

dP π̂,ω
o

dP ω
o

(X1, . . . ,Xn) = H(μ)

)
= 1.

Hence, for Q-a.e. ω,

limn→∞ P π̂,ω
o (νn,X ∈ Gμ,N,β > n) = P π̂,ω

o (β = ∞)(6.4)

and

lim sup
n→∞

Eπ̂,ω
o

[
νn,X ∈ Gμ,N,β > n,

1

n
log

dP π̂,ω
o

dP ω
o

]
(6.5)

≤ P π̂,ω
o (β = ∞)H(μ).

Here, (6.5) follows from Fatou’s lemma since

1

n
log

dP π̂,ω
o

dP ω
o

(X1, . . . ,Xn) = 1

n

n−1∑
i=0

log
π̂(TXi

ω,Zi+1)

π(Xi,Xi+1)
≤ − log δ,

by uniform ellipticity; see (1.1).
It follows from parts (b) and (c) of Definition 3.7 that P π̂,ω

o (β = ∞) > 0 for P-
a.e. ω. Since P π̂,ω

o (β = ∞) is B+
o (v̂)-measurable, part (d) of Definition 3.7 implies

that

P π̂,ω
o (β = ∞) > 0 for Q-a.e. ω.(6.6)

Combining (6.3), (6.4), (6.5) and (6.6), we see that

lim inf
n→∞

1

n
logP ω

o (νn,X ∈ Gμ,N,β > n) ≥ −H(μ)(6.7)

for Q-a.e. ω. However, since P ω
o (νn,X ∈ Gμ,N,β > n) is B+

N(v̂)-measurable for
every n ≥ 1, Lemma 5.8 implies that (6.7) holds for P-a.e. ω as well. Therefore,

lim inf
n→∞

1

n
logP ω

o (νn,X ∈ Gμ,N) ≥ −H(μ) for P-a.e. ω.

For every N ≥ 1 and P-a.e. ω,

lim sup
n→∞

1

n
logP ω

o (νn,X ∈ Gμ,N) ≤ − inf
ν∈Gμ,N

I∗∗
q (ν)

by the quenched level-2 LDP, that is, Theorem 2.3. Hence,

inf
ν∈Gμ,N

I∗∗
q (ν) ≤ H(μ).

Sending N to infinity implies (6.2) since I∗∗
q (·) is lower semicontinuous and

(fi)i≥1 separates M1(� × U). �
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PROOF OF THEOREM 3.8. Fix ξ �= 0. For any μ ∈ Aξ ∩ M ′
1(� × U), let π̂ be

the environment kernel given by π̂(·, z) := dμ(·,z)
d(μ)1(·) for each z ∈ U . It is shown in

[11] that

P π̂
o

(
lim

n→∞
Xn

n
= ξ

)
= 1.

Hence, μ ∈ M ′′
1 (� × U). [For part (c) of Definition 3.7, take any v̂ ∈ Sd−1 such

that 〈ξ, v̂〉 > 0.] In other words,

Aξ ∩ M ′
1(� × U) ⊂ Aξ ∩ M ′′

1 (� × U).(6.8)

It follows from (2.6), (6.2), (6.8) and (3.7) that

Iq(ξ) = inf
μ∈Aξ

I∗∗
q (μ) ≤ inf{I∗∗

q (μ) :μ ∈ Aξ ∩ M ′′
1 (� × U)}

≤ inf{H(μ) :μ ∈ Aξ ∩ M ′′
1 (� × U)}

≤ inf{H(μ) :μ ∈ Aξ ∩ M ′
1(� × U)}

= Iq(ξ).

In particular, Iq(ξ) = inf{H(μ) :μ ∈ Aξ ∩ M ′′
1 (� × U)}. �

PROOF OF THEOREM 3.9. Fix ξ ∈ Aeq. Then, ξ �= 0. Indeed, by differentiat-
ing both sides of (4.5) with respect to θ at θ = ∇Ia(ξ), we see that

〈ξ, e1〉 = 〈∇�a(θ), e1〉 = Eo[〈Xτ1, e1〉 exp{〈θ,Xτ1〉 − �a(θ)τ1}|β = ∞]
Eo[τ1 exp{〈θ,Xτ1〉 − �a(θ)τ1}|β = ∞] > 0.

Recall that μ̂ξ ∈ M1(� × U) is the marginal of μ̂∞
ξ ∈ M1(� × UN) and

dμ̂ξ (·, z) = dQξ (·)π̂θ (·, z) for each z ∈ U . It is clear from Theorem 3.3 that
μ̂ξ ∈ Aξ ∩ M ′′

1 (� × U). Observe that

H(μ̂ξ ) =
∫ ∑

z∈U

π̂θ (ω, z) log
π̂ θ (ω, z)

π(0, z)
dQξ (ω)(6.9)

=
∫ ∑

z∈U

π̂θ (ω, z)

(
〈θ, z〉 − �a(θ) + log

h(θ, Tzω)

h(θ,ω)

)
dQξ (ω)(6.10)

= 〈θ, ξ〉 − �a(θ) +
∫ ∑

z∈U

π̂θ (ω, z) log
h(θ, Tzω)

h(θ,ω)
dQξ (ω)(6.11)

= 〈θ, ξ〉 − �a(θ)(6.12)

= Iq(ξ).(6.13)

Explanation: (6.9), (6.10) and (6.11) follow from (3.8), (3.3) and (2.4), respec-
tively. Since Qξ is π̂ θ -invariant by Lemma 5.5, it is easy to see that the inte-
gral in (6.11) is zero. Finally, (6.12) is equal to (6.13) because ξ = ∇�a(θ) and
Iq(ξ) = Ia(ξ).
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Thus far, we have shown that H(μ̂ξ ) = Iq(ξ). Now, take any ν ∈ Aξ ∩M ′′
1 (�×

U). If ν �= μ̂ξ , then

Iq(ξ) < I∗∗
q (ν) ≤ H(ν),

by Corollary 3.6 and (6.2). We conclude that μ̂ξ is the unique minimizer of (3.9).
�
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