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BAYESIAN NONPARAMETRIC MODELS FOR PEAK
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We present a novel nonparametric Bayesian approach based on Lévy
Adaptive Regression Kernels (LARK) to model spectral data arising from
MALDI-TOF (Matrix Assisted Laser Desorption Ionization Time-of-Flight)
mass spectrometry. This model-based approach provides identification and
quantification of proteins through model parameters that are directly inter-
pretable as the number of proteins, mass and abundance of proteins and
peak resolution, while having the ability to adapt to unknown smoothness
as in wavelet based methods. Informative prior distributions on resolution
are key to distinguishing true peaks from background noise and resolving
broad peaks into individual peaks for multiple protein species. Posterior dis-
tributions are obtained using a reversible jump Markov chain Monte Carlo
algorithm and provide inference about the number of peaks (proteins), their
masses and abundance. We show through simulation studies that the proce-
dure has desirable true-positive and false-discovery rates. Finally, we illus-
trate the method on five example spectra: a blank spectrum, a spectrum with
only the matrix of a low-molecular-weight substance used to embed target
proteins, a spectrum with known proteins, and a single spectrum and average
of ten spectra from an individual lung cancer patient.

1. Introduction. Recent innovations in protein separation methods, ioniza-
tion procedures and detection algorithms have led mass spectrometry (MS) to play
a vital role in the explosive growth of proteomics [Dass (2001), page xxi]. Despite
technological advances in data collection, it remains challenging to extract bio-
logically relevant information (such as biomarkers) from MS spectral data [Dass
(2001), Chapters 3 and 5; Coombes et al. (2005a); Baggerly, Morris and Coombes
(2004, 2006); Clyde, House and Wolpert (2006); Morris et al. (2006)].

Identifying peak locations (which represent proteins) and quantifying protein
abundance in spectra is often preceded by a multi-stage analysis involving cal-
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ibration, normalization, baseline subtraction and filtering of noise [Morris et al.
(2005); Tibshirani et al. (2004); Yasui et al. (2003)]. A problem with such an ap-
proach is that each individual step may introduce errors, artifacts or biases that
may interfere with later stages of the analyses such as classification of subjects
or identification of biomarkers. Methods that model background, noise and fea-
tures simultaneously may lead to improved classification or inferences [Coombes
et al. (2005b)]. Nonparametric methods such as wavelet regression have proved
successful in simultaneously modeling background and denoising, allowing one to
extract features or regions of spectra that differentiate groups [Yasui et al. (2003);
Coombes et al. (2005b); Wang, Ray and Mallick (2007); Morris et al. (2008)].
While wavelets are well suited for modeling local features like spectral peaks, nei-
ther the scales and locations that index basis functions nor coefficients used in
the wavelet representation of expected intensity have any inherent biological in-
terpretation for the typical wavelets used in practice, such as Daubechies’ “least
asymmetric” 1a8 wavelet family. As an alternative to nonparametric regression
for modeling intensities, Guindani et al. (2006) and Miiller et al. (2010) developed
a Bayesian mixture model based on beta distributions to estimate a density func-
tion for time-of-flight. The parameters of this model are more interpretable than
the wavelet regression methods, but the approach does not incorporate informa-
tion about peak resolution, which we will show allows one to resolve broad peaks
into multiple peaks.

In this paper we propose a novel nonparametric method employing Lévy Adap-
tive Kernel Regression (LARK) models [Wolpert, Clyde and Tu (2011); Clyde
and Wolpert (2007)], which retains the adaptivity and flexibility that make wavelet
and other nonparametric methods appealing but, in contrast to these other meth-
ods, uses model parameters with direct biological interpretations. This offers the
opportunity to elicit meaningful expert opinion to guide the selection of prior dis-
tributions, and a posteriori to provide posterior distributions on model parameters
that are meaningful to the expert. The model presented in this article is intended
for use with a “single” spectrum, although an entire set of exchangeable spectra
may be analyzed by applying the method to the mean spectrum, similar to the
mean-spectrum undecimated wavelet thresholding (MUDWT) method of Morris
et al. (2005).

The paper is arranged as follows. We begin in Section 2 with a brief overview
of MALDI-TOF mass spectrometry. In Section 3 we develop a statistical model
for protein abundance as a function of time-of-flight based on the recently devel-
oped nonparametric LARK models. Prior distributions for the model parameters
are developed in Section 4 from elicited expert knowledge about the MALDI-TOF
procedure and from exploratory analysis of MALDI-TOF data from related exper-
iments. Inference about parameters of clinical interest are obtained from posterior
distributions and are described in Section 5. We then illustrate the methodology in
Section 6 using a series of experiments with real data. We use laboratory data from
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three experiments with known sources: blank spectra, which help to character-
ize noise in MALDI-TOF experiments; matrix spectra, which help to characterize
background; and a known protein mixture, which illustrates the model’s ability to
resolve masses. The LARK model is also applied to single and mean spectra from
a recent lung cancer study conducted at the Duke University Medical Center. In
Section 7 we the compare the LARK model to the wavelet method of Morris et al.
(2005) using mean spectra from the TOF simulator of Coombes et al. (2005b). We
conclude with a discussion and suggestions for future work in Section 8.

2. MALDI-TOF data. In Matrix Assisted Laser Desorption Time-of-Flight
Mass Spectrometry, or MALDI-TOF MS, inference about the molecular composi-
tion of a sample is based on indirect measurement of molecular masses. Molecules
are initially embedded in a matrix of low molecular weight substance, such as
sinapinic acid, and placed on a metal plate. The molecules are then simultaneously
dislodged (by vaporizing the substrate) and ionized (by removing one or more elec-
trons from molecules) by a series of laser pulses. The now-charged molecules are
accelerated by a strong electric field toward a detector. In the Applied Biosystems
Voyager DE Biospectrometry Workstation [Applied Biosystems (2001)], a linear
detector measures ion abundance over time, then sends a signal at regular time
intervals (clock ticks) to a digitizer for conversion to measured intensities; for the
examples considered below, samples are taken at regular 4 ns or 16 ns intervals.
The reported intensity in each time interval is typically the aggregate sum over sev-
eral repeated laser “shots,” leading to what we will refer to as a single spectrum,
with response ion intensity at corresponding time-of-flights (TOFs).

Figure 1 illustrates serum protein spectra from a single individual with lung
cancer from a study conducted at the Duke Medical Center Radiology Department
[Wang et al. (2003)]. Each serum sample was separated into 20 fractions along a
pH gradient prior to the MALDI-TOF analysis to reduce saturation of the signal.
Ten replicated spectra were obtained for each fraction, each with ten laser shots,
using Voyager with a sinapinic acid matrix. For our analyses we randomly selected
one fraction from one subject; Figure 1 shows the single spectrum from the chosen
subject-fraction (a), and the mean spectrum obtained by averaging the intensities
of all ten replicates (b) from the same fraction. Morris et al. (2005) suggest using
the mean spectrum as a way to reduce noise from various sources as discussed
below.

Distance traveled under constant acceleration is a quadratic function of time,
leading to a simple but nonlinear relationship between TOF and the molecules’
masses and ionic charge (the latter two enter only through their quotient, the mass
to charge ratio m/z [Coombes et al. (2005a)]). Under ideal conditions the TOF
spectrum would show a spike at the TOF corresponding to each molecular species
present. In actual MALDI-TOF spectra (Figure 1) we observe irregular peaks
rather than one-dimensional spikes because molecules of equal size and charge
do not all reach the detector at the same time. The most important of the many
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FIG. 1. Single spectrum (a) and mean of ten spectra (b) from a lung cancer patient.

causes of TOF dispersion is variability in the amount of ionizing laser energy re-
ceived by molecules of varying location within the matrix; those further from the
matrix surface or from the center of the laser pulse may receive less kinetic energy
and thus have lower initial velocities than similarly-sized molecules located closer
to the center, delaying their arrival at the detector. Molecules may exchange energy
in collisions, and may lose or gain mass through fragmentation and agglomeration,
respectively. All these lead to TOF variation for each molecular species [Coombes
et al. (2005a); Zhigilei and Garrison (1998); Franzen (1997)]. Furthermore, while
the abundance of a protein in the sample ideally corresponds to the area under
the TOF distribution curve, factors such as ion suppression, multiple charged ions,
adducts (the addition of other molecules to the protein), protein—protein interac-
tions and isotope distributions may result in a protein being represented by more
than one peak in the spectrum.
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The interpretation and analysis of MALDI-TOF data are complicated by sev-
eral other sources of variation described by Morris et al. (2005) and Coombes
et al. (2005a). In addition to measurement error which may mask or distort pro-
tein peaks, at least three other sources complicate the comparison or synthesis of
multiple spectra: calibration (uncertainty in the conversion of TOF to m/z, includ-
ing variable latency that affects time registration); background (a constant or even
time-varying trend in the overall level); and scale (caused by many things including
variability of laser intensity). One way to accommodate this is to construct models
for peak identification and quantification that incorporate these recognized sources
of variability, as in the wavelet approach of Coombes et al. (2005b), Morris et al.
(2005) developed for calibrated spectra. Our approach, based on kernel models, has
the added advantage that model parameters have direct physical interpretations.

3. A model for MALDI-TOF. To reduce the variability attributable to differ-
ing numbers of laser shots and differing baselines, we first standardize the spec-
trum and model

Y — min(Y®P)

3.1) Y, = z

for a raw spectrum Y = {Y,°b} for To <t < T1, where Ty and 7} correspond to
the range of TOFs of scientific interest and / is the number of laser shots sum-
marized by Y°P. The initial molecular velocities are expected to be approximately
Gaussian in distribution [Dass (2001), page 75]. This and the dynamics of the
MALDI-TOF process [Coombes et al. (2005a)] suggest that TOFs for a single iso-
topic peak will also have symmetric bell-shaped distributions in the time domain,
leading us [and others—see Morris et al. (2005); Malyarenko et al. (2005)] to pre-
fer time of flight (TOF, in ws) rather than mass-to-charge ratios (m/z, in Da/e) for
spectral modeling (although we follow convention in reporting and plotting results
results in m/z). Because ions from the matrix may saturate the detector at initial
TOFs [Malyarenko et al. (2005)] and masses less than 2 kDa were not of scientific
interest to our collaborators, 7o will correspond to the TOF of a mass of 2 kDa
throughout, unless otherwise noted. While the nonparametric model that we pro-
pose can accommodate an arbitrary lower bound (even Ty = 0), modeling these
extra initial peaks will increase the running time of the algorithm, with little or no
improvement in peak identification or model fit for the rest of the spectrum.

3.1. Peak shape. The shape of a symmetric isotopic peak may be represented
by a probability density function for TOF ¢ with parameters governing the protein
peak’s location t and width w. Examples include the Gaussian

(3.2) k(t;t,w) =

1 2 2
exp(—|t — t|°/2w")
Jane SRl Tl
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and Cauchy (sometimes called Lorentzian in the MS literature)
w
T+t —1)|?)’
as in Dass (2001), page 75, Kempka et al. (2004), and Applied Biosystems (2001),
pages 6-30.
A protein signature associated with J peaks may now be represented as a sum

3.3) k(t;T,w) =

J
(3.4) fO =Y k@t;tj,w)n;,
j=1

where {7}, {®;} and {n;} represent the unknown location (TOF), peak width and
abundance of the jth protein (or molecule), respectively. This is a special case of
the Lévy Adaptive Regression Kernel (LARK) models of Wolpert, Clyde and Tu
(2011), Clyde and Wolpert (2007), which generalize classical kernel regression
[Wand and Jones (1995)] by allowing the number of kernels and the “smoothing
parameters” (w) of the kernel k to adapt to the unknown degree of smoothness
in the data, as in wavelet models [Morris et al. (2005)]. While both methods lead
to excellent function reconstructions, the parameters in the kernels (7;, w;) and
kernel coefficients n; of the LARK model have direct biological interpretations
which aide in prior specification (detailed below) and posterior interpretation.

3.2. Peak width and resolution. Protein peaks tend to be broader for late-
arriving molecules than for earlier ones, with width nearly proportional to arrival
time [Siuzdak (2003), page 44]; for this reason it is conventional in mass spec-
trometry to quantify the precision (narrowness) of a kernel k(-; T, w) not by the
scale w, but by the resolution

(3.5) p=T1/ATt,

where Art, the so-called full width at half mass or FWHM, is the width of the
kernel k(-; T, w) at half its height [Dass (2001), page 120]. For a symmetric kernel,
At is the solution of the equation

k(t £ %A‘L’; T, ) = %k(r; T, ).

For the Gaussian and Cauchy kernels we have At = 2w./log4 and At = 2w,
respectively, leading to w = w (7, p) with

(3.6) w(T, p) = and (1, p) = —,

T
2p+/log4 2p

for the Gaussian and Cauchy kernels, respectively. Prior knowledge about res-
olution can be used to resolve the ambiguity illustrated in Figure 2, where the
observed spectrum may arise from either a single wide peak or a pair of nearby
narrower peaks. As depicted later in Figure 6(d)—(f), we illustrate how the model
is able to “deconvolve” a wide peak into several individual protein peaks in real
data.
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FIG. 2. The (nearly indistinguishable) lines represent simulated protein signals from a sample with
either one wide peak (solid) centered at 120 s or a mixture (dashed) of two narrow peaks centered
at bold ticks.

3.3. Background noise sources. Even in the absence of any protein molecules
[i.e., with f(r) = 0], the MALDI-TOF spectrum does not vanish. Figure 4(a)
shows the nearly-constant level of thermal noise from a run with an empty plate,
while Figure 4(b) illustrates the rapidly-decreasing signal with only the sinapinic
acid matrix, showing the early arrival at the detector of ionized matrix molecules
(far lighter than typical proteins under study). Since the signal from matrix ions
dominates the thermal noise or detector “ringing,” together these sources con-
tribute a background that falls off nearly exponentially to a nonzero asymptote.

Exploratory analysis suggests that the matrix molecular signal By(¢) can be
modeled adequately as a constant (see below) plus an exponential function,

1o
(3.7) Bo(t) = ko(t; wo)no = o0 exp{—t/wo}1{>0},
with a characteristic decay time of wg > 0 and intensity ng > 0.

3.4. Expected spectral intensity. To reflect all of these features, we model the
expected spectral intensity as

(3.8) p@) =¢{(1 = 8)+ S[f @)+ po()]}

for an overall scale ¢, a dimensionless signal-to-background ratio S € [0, 1], the
protein signal f(¢) from equation (3.4), and the matrix molecular signature By (¢)
from equation (3.7). The term S represents the proportion of observed intensity
produced by molecular signal (both matrix and protein), rather than by thermal
noise.

3.5. Likelihood. Both gamma and log-normal distributions are commonly
used to model positive data like the standardized responses Y;. The variance is
proportional to the mean for gamma distributions and to the square of the mean
for log-normals. Exploratory data analysis (from both a Box—Cox approach and a
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FI1G. 3. Linear (solid) and quadratic (dashed) fits of variance versus mean intensity of intensity for
200 ws blocks of observations from a single spectrum from a lung cancer patient.

robust regression illustrated in Figure 3) suggests that the conditional variance of
standardized MS data Y;, given the mean, is nearly proportional to the first power
of the mean, supporting the gamma model

(3.9) Yo l(), @ X Galpu(), ).

with mean w () and relative precision parameter ¢ (similar relationships hold for
the other data sets, although the slopes vary). This leads to a measurement-error
model with likelihood function

(3.10) L£O:;Y) =[] Ga(;; ou(t), ¢)

i=1

for the parameter vector # comprising the conditional mean function w(-) [or,
equivalently from equation (3.8), all of ¢, J, {tj,w;,nj}i<j<s, S, wo, and no]
and ¢. Here Y = {Y (#;)}1<i<n represents the vector of standardized intensities
from (3.1), and Ga(y; a, 8) = %y“‘le_ﬂy 1{y-0) is the probability density func-
tion at y € R for the gamma Ga(«, 8) distribution.

Typically the likelihood function of equation (3.10) has many modes because it
is difficult to distinguish wide peaks from clusters of narrow ones, or small peaks
from noise, from the data alone. Estimating  (and in particular J, the number of
protein peaks) by direct maximization of the likelihood leads to over-fitting the
data and to over-estimating J. This can be overcome by regularization or by a
Bayesian approach, in which prior distributions effectively penalize overly com-
plex models.
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4. Prior distributions for MALDI-TOF. We now address the problem of
constructing a joint prior distribution for all the unknown parameters of the model
of Section 3,

Yol (), 0 ™ Galou(r), @),

p(r) = {1 = 8) + S[f () + Po (D]},
(4.1)

J
f@) =Ykt tj, 0)n;,

Jj=1
no

Bo(t) = —exp{—(t — To)/wo}l 1>T1)-
@

We discuss the approach we used to construct the distributions, employing public
knowledge where possible or default procedures otherwise. Parameter values used
for the different data sets are summarized in Table 1.

4.1. Measurement error ¢ and overall level {. The exploratory data analysis
of experimental spectra (see Section 3.5) suggests that sample variances of {Y;}
are nearly proportional to the mean. We chose a gamma prior distribution ¢ ~
Ga(ay, by) for the mean-to-variance ratio ¢, centered at a data-based value but
supporting a wide range of prior uncertainty. We binned the observations {Y;} of

TABLE 1
Prior hyperparameters for each of the real and simulated data sets

. Data set
Prior
hyper- Single Mean Simulation
parameters Blank Matrix Known lung lung study
Wy 20 20 20 100 100 150
0.03 0.03 0.03 0.11 0.11 0.65
0.79 0.79 0.79 0.21 0.21 0.03
To 5.58 5.58 5.58 0.03 0.03 13.47
T 217.14 217.14 217.14 278.04 278.04 82.78
ag 0.1225 0.1225 0.1225 0.1225 0.1225 0.1225
Mo 200 200 200 200 200 300
crg 0.49 0.49 0.49 0.49 0.49 0.49
ay 0.25 0.25 0.25 0.25 0.25 -
by 0.02 0.11 2591 1.14 0.17 -
as 1.36 8.33 8.71 9.46 7.29 6.33
bg 1 1 1 1 1 1
AQ 0.0009 0.0005 0.0012 0.0006 0.0004 0.0124
g 171.68 290.14 127.30 210.96 268.52 11.22

03)0 0.25 0.25 0.25 0.25 0.25 0.25
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each data set in 50 us-wide blocks and calculated their block-specific means and
variances. The prior mean a,, /b, was set to the slope of a regression of the block
means on block variances, with a, = 0.25 to attain a coefficient of variation of 2.
The parameter { may be interpreted as the mean level or scale for Y;, since
E[f(t)] ~ 1 (see Section 4.2). Since experimental levels depend on a wide range
of exogenous variables and vary widely among trials, it is difficult to elicit a sub-
jective prior distribution for this quantity. We instead employed a data-dependent
rescaling and set ¢ = Y, the overall mean intensity. This is comparable to rescaling
the raw data by the average or total intensity. Sensitivity analysis showed that this
gave results very similar to those under a tight data-dependent prior distribution.

4.2. Prior distribution for protein signature f(-). We specify a prior distribu-
tion for the protein signature

J
f)y =) kit 0
j=1
by first specifying a distribution for J and then, conditional on J, taking
{tj,wj,n;} to be i.i.d. from a specified joint distribution [as in the infinitely di-
visible construction of the LARK models of Wolpert, Clyde and Tu (2011)]. To
reflect uncertainty in the possible number of peaks, Wolpert, Clyde and Tu used a
negative binomial distribution NB(«y, it y) for J with mean and shape parameters
wy and ay. To simplify elicitation while providing robust inference over a range
of spectra, we set &y = 1 throughout, leading to a geometric distribution:

. 1 nr \! .
PlJ =jlus]l= )\ ) jefo,1,..)

with mean p ; representing the expected number of peaks for a given experiment.
Campa et al. (2003) found approximately fifty proteins for fractionated samples
similar to the single and mean spectra described in Section 6.4, leading to perhaps
seventy or so peaks due to adducts, multiply charged ions, etc. On this basis we
chose ©y = 100 with a median of J & 70 peaks with symmetric 50%, 90% and
99% ranges of approximately 30 < J <140, 5 < J <300, and 0.50 < J <5325,
respectively. For the blank, matrix and known protein spectra, we set uj = 20.
There is little reason to give higher prior probability to one range of TOFs than
another without prior knowledge of the collection of proteins present in the sam-

ples. Thus, we take {r]}1<]<1 i “Un(Ty, T1) (independently of J and {A}1<j<y),
for some interval of length T = T1 — Tp, large enough to include the TOF for all
molecules of interest. To eliminate saturation by matrix molecules at the low end,
and to include as wide as possible a range of the biologically relevant molecules,
we chose a TOF interval corresponding to the range [2 kDa/e < m/z <75 kDa/e]
for all experimental data. Differing sampling rates and calibration levels for dif-
ferent experiments lead the TOF ranges [7p, 71] to vary across experiments (see
Table 1).
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We use expert opinion to construct an informed prior distribution on the resolu-
tions {p;}1<j<s (see Section 3.2), which induces a distribution on the peak widths
{wj}1<j<s. It has been suggested [Siuzdak (2003), page 44] that individual peak
resolutions p; should be nearly constant across the entire TOF range, but in prac-
tice they are observed to vary [see pages 6-32 of Applied Biosystems (2001)].
To reflect this variation, we construct a hierarchical prior distribution for the res-
olution parameters {0;}1<;<y as follows. Independently of the number of peaks,
TOFs and abundance, we take the resolutions to have log-normal distributions,

log(@)|1tg, 04 ~ N(log(i), 0,),

ii.d.
log(pj)le. o "= N(log(e). 02),

centered at an overall “experiment” resolution ¢ (which may be machine- or
condition-specific). We use the manufacturer’s reported resolution ranges [Applied
Biosystems (2001), Table 6-2 and Table H-6] for the Voyager workstation and set
Mo =200 and set 05 =0.49, so a priori the distribution covers the range 50-800
with 95% probability, and 32-928 with 99% probability. The standard deviation
for the individual resolutions was set to o, = 0.35, seventy percent of the popula-
tion standard deviation for resolution. For a population resolution of u, = 50, this
leads to a prior 99% interval for individual resolutions of (20, 120), while at the
upper extreme with a population resolution of 1, = 800, the prior 99% interval
covers the range (325, 1,710). Finally, the relationship between width, TOF and
resolution given by equation (3.6) induces a log-normal prior distribution on the
width parameters,
log(@))I7j, pj " N(log(zj/co;),02),  j=1,..., 7,

with ¢ = 2 for the Cauchy kernel and ¢ = 2,/log4 for the Gaussian.

For protein abundances {n;} we use the left-truncated gamma distribution
Ga(0, X, &) with parameters « = 0 and A, & (chosen below), whose density func-
tion is given in general by

A’Qf

. _ —1 -2
(4.2) Ga(n,a,k,s)zmn“ e Myyse)s

where I'(a, x) = [° 7%~ le~%dz denotes the complimentary incomplete gamma

function [Abramowitz and Stegun (1964), Section 6.5.3]. For o, A > O this is the
conditional density for a gamma-distributed Ga(c, A) random variable, given that
it exceeds ¢ > 0; for strictly positive & > 0, the distribution is well-defined for all
a € R including the limiting case o = 0 [Wolpert, Clyde and Tu (2011)], which
we adopt. The mean is

Bl = 5 e Gy
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where E;(z) denotes the exponential integral function [Abramowitz and Stegun
(1964), page 228]. The parameter ¢ may be interpreted as the minimum detectable
abundance. In the limit &€ — 0, this distribution permits an increasing number of
isotopes with small abundance, while reflecting that only a few isotopes are ex-
pected to have large abundance.

Discussions with spectrometrists suggest that the smallest peak that can possi-
bly be distinguished from noise is about 5-10% of the average signal. Using the
midpoint of this interval, we take ¢ /E[n] = ree* Ej(re) = 0.075. For t well away
from the boundary of [Ty, T1], f%)l k(t;tj,wj)dtj ~ 1 (the kernels are density
functions), and

(4.3) ELF ()]~ —t

Tre*Ej(Le)’

Because f(¢) is the normalized signal, we take E[ f(#)] = 1 a priori, leading to
the solution ¢ = 0.0757 /v ;. Inverting the function ree* Eq(re) = 0.075, we ob-
tain Ae = 0.0227, which determines A for any specified . Values for the different
experiments are provided in Table 1.

Ty <t L Ty.

4.3. Prior distribution for matrix background. As with other peaks, we use a
log-normal distribution for the initial peak width wg and a left-truncated gamma
model for the abundance 7. Because the exponential decay varies greatly from ex-
periment to experiment, we utilize modestly informative priors based on the data.
To construct these, we first fit a linear regression with mean function log(Bo(¢))
from equation (3.7) to the log intensities in an initial segment of the spectrum
(2 kDa/e < m/z < 3.5 kDa/e). We use the slope and intercept from this fit to con-
struct point estimates &g and 7y to center the prior distributions

log(ao) ~ N(log(@). o)
with o2 = 0.25 and
no ~ Ga(0, Ao, &),

where 7 is the solution to (ge*™E; (exg)) ! = fip.
Finally, for the signal fraction S we use a beta prior distribution

S ~ Be(as, bs),

with data-based mean ag/(as + bs) =1 — YV /Y and bg = 1 (here YV is the
observed mean intensity in a “noise” region of the spectrum with low intensity
and no apparent peaks, while Y is the overall mean intensity). With this choice
the mode of the prior density for S is one whenever ¥ > 2Y", suggesting that the
signal dominates, and zero when the mean in the noise region exceeds half the
overall mean, favoring the thermal noise component over the nonparametric signal
model.
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5. Posterior analysis. To support inference about protein location and abun-
dance, and about other model parameters, we construct an ergodic Markov chain
on the space ® of possible parameter vectors 8 = {¢, J, {tj, w;, nj}i<j<s, S, (wo,
no), Aj, p} with the posterior distribution as its stationary distribution. At each
Markov chain step we select one of the components of @ and either update it
via a Gibbs step (replace the current value with a draw from its complete con-
ditional posterior distribution given the other components) or, if this is not feasi-
ble, a random-walk Metropolis—Hastings (M—H) step by proposing a small change
in that component which is then accepted or rejected according to the Hastings
probabilities. Note that each proposed change in J (which we always take to be a
random-walk step of size one) changes the dimension of 6 (by three). Such dimen-
sion changing M—H algorithms, introduced in Green (1995), are called reversible
jump MCMC (RJ-MCMC) algorithms. Our approach is modeled after that of
Wolpert and Ickstadt (2004), where a general RJ-MCMC procedure for Lévy ran-
dom field models is presented. For updating the varying dimensional parameters
{tj,wj,nj}1<j<y we consider the possible moves of three basic types: peak birth
[incrementing J by one and introducing a new triplet (z4, w«, nx)]; peak death
[decrementing J by one and removing a randomly-chosen triplet (z;, w;, n;)]; and

peak update [moving a randomly-chosen triplet (7, w;, n;) within R3]. We also
incorporate two additional move types, peak splitting, in which a single peak is re-
placed by a pair of smaller ones, and the reverse move, peak merging, in which two
nearby peaks are replaced with a single larger one. These lead to a vast improve-
ment in algorithmic efficiency over RI-MCMC algorithms using only birth/death
and update steps.

For sufficiently large spectra or complex protein mixtures, convergence to the
posterior distribution from random starting values may require upward of a mil-
lion iterations. To reduce computation time, we begin the Markov chain close to
a mode, located using an EM algorithm [Dempster, Laird and Rubin (1977)] for a
simple Gaussian approximation to our LARK model; see House (2006) for details
of this and the RI-MCMC algorithm.

5.1. Peak identification. Features of the configuration {(7;, w;,n;)}1<j<s are
updated at each iteration of the RI-MCMC sampler, with the number of peaks J
and associated parameters changing. While the posterior mean of J, JPM, and the
posterior mean function E[u(¢)|Y] [see equation (4.1)] are well-defined quanti-
ties that may be used to summarize the RI-MCMC output, the well known label
switching problem complicates peak identification. We have two ways of identi-
fying peaks in an RJ-MCMC run. The first is to use the JHP peak locations {‘L'jHP}
in the single RC-MCMC iteration with highest posterior (HP) density, which is
proportional to the product of the likelihood function and prior density evaluated
at the parameter vector for that iteration. Alternatively, we may use model averag-
ing to identity local maxima in the denoised signal by identifying the JV down-
crossings of the derivative (d/dt)E[u(¢)|Y] = E[u/(¢)|Y]; these local modes {t,-v}
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are the collection of JV solutions of

d d
5.1 —E[u(=)|Y]>0> —E[u(+)|Y].
(5.1 7 [u(@—)Y] > >0 [ (tH)|Y]

Because derivatives of densities may be used to construct wavelets, the implied
LARK model for the derivative process actually uses a continuous wavelet dic-
tionary based on the “Mexican Hat” (or Marr’s) family [Vidakovic (1999), pages
48-49]. This method is closely related to the recent paper of Nguyen et al. (2010)
who use zero-crossings of the derivatives of Gaussian wavelets. Typically JV is
smaller than either J™™ or JHP [one reason is that some pairs of peaks with small
inter-peak distance |7; — 7| will combine to generate a single local maximum of
w(t), but all the major peaks will be represented among the {rjv}].

6. Examples. In this section we illustrate our method using five data sets: a
blank spectrum, a matrix spectrum, a “spiked” spectrum from a sample of known
protein composition, and two spectra (one single and one mean) for a serum sam-
ple from a patient diagnosed with lung cancer. All data were generated using the
Voyager DE spectrometer [Applied Biosystems (2001)] at Duke University. Prior
hyperparameters were chosen as described in Section 4 and are given in Table 1 for
the five data sets. All examples in this section use the Cauchy kernel, selected be-
cause of its better fit to similar data in a preliminary investigation. All RI-MCMC
were run for 500,000 iterations to ensure convergence (burn-in), with an additional
500,000 iterations used for posterior inference.

6.1. Blank spectrum. Figure 4(a) shows the recorded spectrum from the av-
erage of ten blank-plate spectra each based on 32 laser shots, with the posterior
mean E[(7)|Y] shown as a solid curve. The two rows of tick marks on the hor-
izontal axis represent peak locations identified using the highest posterior real-
ization { TJHP} (top row) and local maxima under model averaging { rjv} (bottom).
The highest-posterior realization included JH? = 38 peaks, the local modes under
model averaging included JV = 22 peaks, while the posterior mean (and stan-
dard deviation) were JPM = E[J|Y] = 46.92 (4.22). With no solution or matrix
on the metal plate, there can be no protein signature, but nevertheless the spec-
trum shows numerous low-resolution peaks. The posterior expected resolution in
the blank spectrum was E[p|Y] = 16.76 (2.92), lower than the informative prior
mean and significantly lower than the typical resolutions for protein peaks in the
other examples (see Table 2). These apparent peaks may reflect laser fluctuations
or resonances in the detector. The number of periods and intensities may vary un-
predictably across spectroscopic samples, so rather than use a harmonic function
as in Harezlak et al. (2008), we instead allow the adaptive LARK model to identify
and fit these low-resolution peaks as part of f(-). They may be discriminated from
protein peaks in post-processing by their lower resolution.
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FIG. 4. The mean spectra based on ten replicates for (a) an empty plate illustrating thermal noise
and (b) the sinapinic acid matrix with no proteins. The posterior means from LARK are shown as
solid curves with identified peak locations indicated as two rows of tick marks: highest posterior
realization (top, gray) and local modes under model averaging (bottom, black). Note the difference
in scale of Y axes.

6.2. Matrix spectrum. Figure 4(b) shows the average of ten spectra, each
based on 32 laser shots from a sinapinic matrix solution containing no protein
serum sample. The posterior mean under the LARK model shows the character-
istic near-exponential spectral fall-off arising from the very low-molecular-weight
sinapinic acid matrix ions, as well as several low-resolution peaks [posterior mean
for o =15.03 (1.70)] comparable to those in the blank spectrum.

6.3. Known protein spectrum. Figure 5 shows the average of ten spectra (each
with 32 shots) from a preparation of five proteins with known masses provided
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TABLE 2
Posterior means and (standard deviations) for model parameters for the five experimental data sets

Data set S @ ) no o JPM JHP gV

Blank 0.5660 7.385 16.76 38.59 233.70 46.92 38 22
(0.0537) (0.126) (2.92) (11.14) (150.80) 4.22)

Matrix 0.9569 6.770 15.03 163.70 17.41 12.27 11 7
(0.0063) 0.121) (1.70) (2.63) 0.21) 0.45)

Known 0.9016 2.609 96.43 78.26 22.80 42.24 42 28
0.0021)  (0.093)  (5.54) (2.87) 0.95)  (0.96)

Single 0.9996 0.310 49.46 182.30 16.76 52.68 45 45
(0.0004)  (0.005)  (3.56) (1.77) (0.15)  (2.65)

Mean 0.9846 3.952 69.35 188.40 15.77 76.91 74 54
(0.0031) (0.066) (3.55) 0.97) 0.07) (1.47)

by Professor M. Fitzgerald in the Department of Chemistry at Duke. The five
known masses of singly-charged molecules are indicated by solid triangles and
the five peaks for doubly-charged molecules are indicated by open triangles; each
open triangle for a doubly-charged peak lies at one-half the m/z value of the
singly-charged peak for the same molecule. Finally, one triply-charged peak at
22.1 kDa/e (one-third the singly-charged value) is indicated by an inverted trian-
gle. Peaks identified by our procedure are indicated by vertical tick marks; these
include all eleven “true” peaks, plus several additional peaks. These may reflect
contaminants, differential isotopic compositions or thermal noise. Several of these
identified peaks have resolutions in the range of the median resolution for the blank
spectrum (Table 2), suggesting that the model is capturing the thermal noise com-
ponent. The peak at 3.903 kDa (just below the smallest “true” peak) has higher res-
olution than typical thermal peaks, and also higher abundance. It is clearly present
in all ten replicates, suggesting a potential contaminant in the mixture. Features
of the LARK model, such as the resolution and abundance parameters, may aid
in reducing false positives and prioritizing masses for further study, beyond using
estimated mass alone.

6.4. Lung cancer protein spectrum. Figure 6 displays posterior reconstruc-
tions from LARK for different segments of the single and mean spectra for the
complete data depicted in Figure 1. The noise reduction from averaging several
spectra results in higher estimated precision ¢, just as one would expect (Table 2),
approximately ten times higher than that for a single spectrum. The resolution is
also higher in the mean spectrum, leading to the identification of a larger number
of peaks. Posterior means for other fixed dimensional summaries are comparable
for the single and mean spectra. Figure 6(d)—(f) illustrates the ability of the LARK
model to deconvolve a single large peak into several peaks. While there is a local
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F1G. 5. LARK posterior mean (solid line) and data from a mixture of five known proteins (a)
and associated posterior distribution of resolution (b). Solid triangles represent singly-charged
molecules, open triangles represent doubly-charged molecules and the inverted triangle represents a
triply-charged protein. The rows of tick marks represent identified peak locations using the highest
posterior draw (top, gray) and local modes under model averaging (bottom, black). The horizontal
line in (b) corresponds to the median resolution from the blank spectrum analysis.

mode at 33.5 kDa, corresponding to the doubly charged peak for albumin (mass
67 kDa), the relationship between resolution and mass suggests that there are other
molecules present that lead to the wider than expected peak and its asymmetric
shape. The highest posterior realization from LARK provides a way to estimate
these masses (in contrast, local modes of the estimated signal would suggest just
a single protein, while methods that identify peaks by regions where the estimated
signal is greater than some specified threshold would report almost the entire range
between 31-39 kDa).
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FI1G. 6.  Peak reconstruction using the LARK posterior mean (solid line) for the lung cancer patient
using the single spectrum (left) and mean spectrum (right) for segments of the respective spectra.
The two rows of tick marks on the horizontal axis correspond to identified peak locations using the
local maxima from highest probability draw (top, gray) and model averaging (bottom, black).

7. Simulation study. Coombes et al. (2005a) construct a mathematical model
for MALDI-TOF mass spectrometry based on the physics of the process, provid-
ing a virtual mass spectrometer. Morris et al. (2005) use this simulator to generate
spectra to explore operating characteristics of their mean-spectrum undecimated
wavelet threshold (MUDWT) peak detection method. They generated 100 data
sets, each comprised of 100 simulated spectra generated with 150 true peaks and
additive i.i.d. Gaussian errors (sd o = 66) [for details, see Section 4.3 of Morris
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et al. (2005); raw data and code are available on the Cromwell (2004) website]. Al-
though in theory the simulated spectra should not need alignment before calculat-
ing mean spectra, our exploratory analysis revealed boundary effects in the initial
segment (below approximately 3 kDa) due to averaging, and visual peaks outside
of the true peak mass +0.3% tolerance window used by Morris et al. (2005) to
classify matches of identified peaks to true peaks.” Thus, for this analysis we use
mean spectra from each of the 100 data sets for all masses greater than 3 kDa. In
addition to the MUDWT approach of Morris et al. and LARK, we identified peaks
using the R package PROcess [Li (2005)], which provides automatic baseline
subtraction and peak identification.

Because the simulated data were generated using Gaussian errors with constant
variance, we replaced the gamma likelihood of the LARK model with a Gaus-
sian likelihood, with mean 4 (¢) and constant precision ¢ = 1/0%. Otherwise, all
model parameters have the same interpretation as before. Preliminary investigation
for a region of the spectra with a single known peak indicated that the Gaussian
kernel provided a better fit than the Cauchy kernel we used for the experimental
data. This also suggested that the simulated spectra featured higher resolution than
those of the Voyager machine, leading us to select 1, = 300, keeping o, = 0.49
as before. Following Morris et al., we use a robust estimate of o from the wavelet
decomposition as an alternative to the data-based prior described in Section 4 for
the nonconstant variance model. For all remaining parameters, we used the de-
fault methods described in Section 4 to specify hyperparameters (see Table 1). We
ran the RJ-MCMC algorithm for one million iterations, half for burn-in and half
for posterior inference. Peaks were identified using the local mode under model
averaging and the highest posterior realization.

For all methods, true peaks were classified as a true positive or true discov-
ery if the mass of any identified peak was within £0.3% of a true mass [as in
Morris et al. (2005)]. Identified peaks outside of the £0.3% tolerance window of
true peaks were regarded as false positives. The True Positive Rate (TPR), the
proportion of true discoveries, and False Discovery Rate (FDR), the proportion
of false positives out of all identified peaks, were calculated for each of the 100
simulated mean spectra and are summarized in Table 3. Overall, PROcess has
the lowest average FDR of all methods—however, its TPR is much worse than ei-
ther of the LARK or MUDWT methods, which estimate the baseline and denoise
simultaneously. Peak identification using down-crossings under model averaging
(LARK-MA) has the better FDR of the two LARK methods, but has a lower TPR
because local modes may miss overlapping peaks. Peak identification using the
LARK HP realization and the wavelet method provide comparable TPR and FDR
performance, with the MUDWT method having a slightly better TPR, while the
LARK-HP method has a slightly improved FDR. The absolute differences of TPR

5Jeffrey S. Morris (M. D. Anderson), personal communication.
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TABLE 3
Summaries of true positive rates (TPR) and false discovery rates (FDR) for 100
simulated mean spectra using the mean-spectrum undecimated wavelet transform
(MUDWT) [Morris et al. (2005)], LARK with highest posterior realization
(LARK-HP), LARK with local modes under model averaging
(LARK-MA) and PROcess [Li (2005)]

Summary Method Average 95% range
TPR MUDWT 0.83 0.77-0.89
LARK-HP 0.82 0.75-0.89
LARK-MA 0.73 0.61-0.81
PROcess 0.31 0.10-0.43
FDR MUDWT 0.06 0.003-0.208
LARK-HP 0.05 0.000-0.132
LARK-MA 0.01 0.000-0.050
PROcess 0.0033 0.000-0.032

and FDR rates for the two methods are both about 0.01, “statistically significant”
using a paired ¢-test but not practically significant, leading to the discovery of an
extra 1-2 proteins by MUDWT (on average) at the cost of a comparable num-
ber of additional false positives. A further breakdown of the TPR for LARK by
prevalence and abundance [as in Morris et al. (2005), Table 4] is provided in the
supplemental materials [House, Clyde and Wolpert (2011)], with LARK-HP hav-
ing substantially higher TPR than MUDWT for peaks in the higher prevalence
groups across all abundance categories, but poorer performance than MUDWT for
the two lowest prevalence groups.

8. Discussion. The Gaussian LARK model leads to true positive rates and
false discovery rates comparable to adaptive nonparametric wavelet methods for
simulated Gaussian intensities data, while the gamma LARK model is able to
capture the mean/variance relationship that is observed in experimental data. Ex-
ploratory data analysis may be used to decide which model is more appropriate
by examining the mean/variance relationship or residual analysis, with other error
models easily substituted to define alternative likelihood functions given the mean
function.

A key feature of the LARK methodology is the ability to deconvolve large peaks
into mixtures of protein signatures. The model is able to identify all masses for the
laboratory experiment with known protein mixture, even though many of the dou-
bly charged proteins have low abundance. To capture the multiply charged nature
of proteins in MALDI-TOF even more effectively, LARK models may be con-
structed using a kernel tailored to this purpose as a mixture of two peaks centered
at the singly and doubly charged masses, with a mixing weight to control the rel-
ative abundance of the two charges. This constraint reduces the number of free
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parameters and may lead to a more efficient algorithm. The method described in
this paper is intended for use with either a single spectrum or a mean spectrum.
Hierarchical versions of the LARK model for MALDI-TOF data are under de-
velopment for modeling multiple spectra, which provide automatic calibration of
multiple spectra and permit classification of subjects into groups.

The LARK models are implemented in an R [R Development Core Team
(2010)] package, with a shared library written in C and FORTRAN for the RJ-
MCMC algorithm. Although the LARK model for peak identification is more com-
putationally intensive than the wavelet method of Morris et al. (2005), with 10,000
iterations taking 10 minutes on a dual 3 GHz Quad Core Xeon Mac Pro for the
simulation study (running on a single processor), its running times increase only
linearly with the number of peaks and volume of data, since no matrix inversion is
required. Despite the computational overhead of RI-MCMC, Clyde and Wolpert
(2007) and Wolpert, Clyde and Tu (2011) have demonstrated that LARK mod-
els can provide significant reductions in mean squared error in comparison with
some of the best wavelet methods such as the nondecimated wavelet approach of
Johnstone and Silverman (2005) and the continuous wavelets of Chu, Clyde and
Liang (2009). Future work will incorporate advances in adaptive MCMC meth-
ods which may accelerate convergence for random-walk update steps or lead to
improved proposal distributions for peak birth based on residuals or peak death
utilizing abundance. The software is available from the first author’s website.
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SUPPLEMENTARY MATERIAL

Additional results for the simulation study (DOI: 10.1214/10-
AOAS450SUPP; .pdf). True positive rates for LARK estimates from the simula-
tion study broken down by peak prevalence and average intensity of peaks across
samples.

REFERENCES

ABRAMOWITZ, M. and STEGUN, 1. A., eds. (1964). Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathemat-
ics Series 55. For sale by the Superintendent of Documents, U.S. Government Printing Office,
Washington, DC. MR0167642

APPLIED BIOSYSTEMS (2001). Voyager Biospectrometry Workstation with Delayed Extraction
Technology User Guide Version 5.1. Applied Biosystems, Foster City, CA.


http://dx.doi.org/10.1214/10-AOAS450SUPP
http://www.ams.org/mathscinet-getitem?mr=0167642
http://dx.doi.org/10.1214/10-AOAS450SUPP

LARK MODELS FOR PEAK IDENTIFICATION 1509

BAGGERLY, K. A., COOMBES, K. R. and MORRIS, J. S. (2006). An introduction to high-throughput
bioinformatics data. In Bayesian Inference for Gene Expression and Proteomics (K.-A. Do,
P. Miiller and M. Vannucci, eds.) Chapter 1, 1-39. Cambridge Univ. Press, Cambridge.

BAGGERLY, K. A., MORRIS, J. S. and COOMBES, K. R. (2004). Reproducibility of SELDI-TOF
protein patterns in serum: Comparing datasets from different experiments. Bioinformatics 20
777-785.

CAMPA, M. J., WANG, M. Z., HOWARD, B. A., FITZGERALD, M. C. and PATZ, E. F. Jr. (2003).
Protein expression profiling identifies MIF and Cyclophilin A as potential molecular targets in
non-small cell lung cancer. Cancer Research 63 1652—1656.

CHU, J.-H., CLYDE, M. A. and LIANG, F. (2009). Bayesian function estimation using continuous
wavelet dictionaries. Statist. Sinica 19 1419-1438. MR2589190

CLYDE, M. A., HOUSE, L. L. and WOLPERT, R. L. (2006). Nonparametric models for proteomic
peak identification and quantification. In Bayesian Inference for Gene Expression and Proteomics
(K.-A. Do, P. Miiller and M. Vannucci, eds.) Chapter 15, 293-308. Cambridge Univ. Press, Cam-
bridge.

CLYDE, M. A. and WOLPERT, R. L. (2007). Nonparametric function estimation using over-
complete dictionaries. In Bayesian Statistics 8 (J. M. Bernardo, M. J. Bayarri, J. O. Berger,
A. P. Dawid, D. Heckerman, A. F. M. Smith and M. West, eds.) 91-114. Oxford Univ. Press,
Oxford. MR2433190

COOMBES, K. R., KOOMEN, J. M., BAGGERLY, K. A., MORRIS, J. S. and KOBAYASHI, R.
(2005a). Understanding the characteristics of mass spectrometry data through the use of simu-
lation. Cancer Informatics 1 41-52.

CoOMBES, K. R., TSAVACHIDIS, S., MORRIS, J. S., BAGGERLY, K. A., HUNG, M. C. and
KUERER, H. M. (2005b). Improved peak detection and quantification of mass spectrometry data
acquired from surface-enhanced laser desorption and ionization by denoising spectra with the
undecimated discrete wavelet transform. Proteomics 5 4107-4117.

CROMWELL (2004). Cromwell MatLab package. M. D. Anderson Cancer Center, Houston, TX.
Available at http://bioinformatics.mdanderson.org/cromwell.html.

DAss, C. (2001). Principles and Practice of Biological Mass Spectrometry. Wiley, New York.
DEMPSTER, A. P., LAIRD, N. M. and RUBIN, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1-38. With discussion. MR0501537
FRANZEN, J. (1997). Improved resolution for MALDI-TOF mass spectrometers: A mathematical

study. International Journal of Mass Spectrometry and lon Processes 164 19-34.

GREEN, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika 82 711-732. MR1380810

GUINDANI, M., Do, K. A., MULLER, P. and MORRIS, J. S. (2006). Bayesian mixture models for
gene expression and protein profiles. (K.-A. Do, P. Miiller and M. Vannucci, eds.) Chapter 12,
238-253. Cambridge Univ. Press, Cambridge.

HAREZLAK, J., WU, M., WANG, M., SCHWARTZMAN, A., CHRISTIAN, D. and LIN, X. (2008).
Biomarker discovery for Arsenic exposure using functional data analysis and feature learning of
mass spectrometry proteomic data. Journal of Proteome Research T 217-224.

HOUSE, L. L. (2006). Nonparametric Bayesian models in expression proteomic applications. Ph.D.
dissertation. Dept. Statist. Sci., Duke Univ., Durham, NC.

HoUSE, L. L., CLYDE, M. A. and WOLPERT, R. L. (2011). Supplement to “Bayesian nonpara-
metric models for peak identification in MALDI-TOF mass spectroscopy.” DOI:10.1214/10-
AOAS450SUPP.

JOHNSTONE, I. M. and SILVERMAN, B. W. (2005). Empirical Bayes selection of wavelet thresh-
olds. Ann. Statist. 33 1700-1752. MR2166560


http://www.ams.org/mathscinet-getitem?mr=2589190
http://www.ams.org/mathscinet-getitem?mr=2433190
http://bioinformatics.mdanderson.org/cromwell.html
http://www.ams.org/mathscinet-getitem?mr=0501537
http://www.ams.org/mathscinet-getitem?mr=1380810
http://dx.doi.org/10.1214/10-AOAS450SUPP
http://www.ams.org/mathscinet-getitem?mr=2166560
http://dx.doi.org/10.1214/10-AOAS450SUPP

1510 L.L. HOUSE, M. A. CLYDE AND R. L. WOLPERT

KEMPKA, M., SODAHL, J., BIORK, A. and ROERAADE, J. (2004). Improved method for peak
picking in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid
Communications in Mass Spectrometry 18 1208-1212.

L1, X. (2005). PROcess: Ciphergen SELDI-TOF Processing. R Package Version 1.24.0. Available at
http://www.bioconductor.org/help/bioc-views/2.6/bioc/html/PROcess.html.

MALYARENKO, D. I., COOKE, W. E., ADAM, B.-L., MALIK, G., CHEN, H., TRACY, E. R.,
TROSSET, M. W., SASINOWSKI, M., SEMMES, O. J. and MANOS, D. M. (2005). Enhance-
ment of sensitivity and resolution of surface-enhanced laser desorption/ionization time-of-flight
mass spectrometric records for serum peptides using time-series analysis techniques. Clin. Chem.
51 65-74.

MORRIS, J. S., COOMBES, K. R., KOOMEN, J., BAGGERLY, K. A. and KOBAYASHI, R. (2005).
Feature extraction and quantification for mass spectrometry in biomedical applications using the
mean spectrum. Bioinformatics 21 1764-1775.

MORRIS, J. S., BROWN, P. J., BAGGERLY, K. A. and COOMBES, K. R. (2006). Analysis of mass
spectrometry data using Bayesian wavelet-based functional mixed models. In Bayesian Inference
for Gene Expression and Proteomics (K.-A. Do, P. Miiller and M. Vannucci, eds.) Chapter 14,
269-292. Cambridge Univ. Press, Cambridge.

MORRIS, J. S., BROWN, P. J., HERRICK, R. C., BAGGERLY, K. A. and COOMBES, K. R. (2008).
Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed
models. Biometrics 64 479-489, 667. MR2432418

MULLER, P., BAGGERLY, K. A., DO, K.-A. and BANDYOPADHYAY, R. (2010). A Bayesian mixture
model for protein biomarker discovery. In Bayesian Modeling in Bioinformatics (D. K. Dey,
S. Ghosh and B. K. Mallick, eds.). Chapman & Hall/CRC Press, Boca Raton, FL.

NGUYEN, N., HUANG, H., ORAINTARA, S. and VO, A. (2010). Mass spectrometry data processing
using zero-crossing lines in multi-scale of Gaussian derivative wavelet. Bioinformatics 26 i659—
1665.

R DEVELOPMENT CORE TEAM (2010). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna.

S1IUZDAK, G. (2003). The Expanding Role of Mass Spectrometry in Biotechnology. MCC Press, San
Diego, CA.

TIBSHIRANI, R., HASTIE, T., NARASIMHAN, B., SOLTYS, S., SHI, G., KOONG, A. and LE, Q.-T.
(2004). Sample classification from protein mass spectrometry, by ’peak probability contrasts’.
Bioinformatics 20 3034-3044.

VIDAKOVIC, B. (1999). Statistical Modeling by Wavelets. Wiley, New York. MR1681904

WAND, M. P. and JONES, M. C. (1995). Kernel Smoothing. Monographs on Statistics and Applied
Probability 60. Chapman & Hall, London. MR1319818

WANG, X., RAY, S. and MALLICK, B. K. (2007). Bayesian curve classification using wavelets.
J. Amer. Statist. Assoc. 102 962-973. MR2354408

WANG, M. Z., HOWARD, B. A., CAMPA, M. J., PATZ, E. F. JR. and FITZGERALD, M. C. (2003).
Analysis of human serum proteins by liquid phase iso-electric focusing and matrix-assisted laser
desorption/ionization mass spectrometry. Proteomics 3 1661-1666.

WOLPERT, R. L., CLYDE, M. A. and Tu, C. (2011). Stochastic expansions using continuous dic-
tionaries: Lévy adaptive regression kernels. Ann. Statist. To appear.

WOLPERT, R. L. and ICKSTADT, K. (2004). Reflecting uncertainty in inverse problems: A Bayesian
solution using Lévy processes. Inverse Problems 20 1759-1771. MR2107235

YASUI, Y., MCLERRAN, D., ADAM, B.-L., WINGET, M., THORNQUIST, M. and FENG, Z. (2003).
An automated peak identification/calibration procedure for high-dimensional protein measures
from mass spectrometers. J. Biomed. Biotechnol. 2003 242-2438.


http://www.bioconductor.org/help/bioc-views/2.6/bioc/html/PROcess.html
http://www.ams.org/mathscinet-getitem?mr=2432418
http://www.ams.org/mathscinet-getitem?mr=1681904
http://www.ams.org/mathscinet-getitem?mr=1319818
http://www.ams.org/mathscinet-getitem?mr=2354408
http://www.ams.org/mathscinet-getitem?mr=2107235

LARK MODELS FOR PEAK IDENTIFICATION 1511

ZHIGILEIL, L. V. and GARRISON, B. J. (1998). Velocity distributions of analyte molecules in matrix

assisted laser desorption from computer simulations. Rapid Communications in Mass Spectrom-
etry 12 1273-1277.

L. L. HOUSE M. A. CLYDE

DEPARTMENT OF STATISTICS R. L. WOLPERT

VIRGINIA TECH DEPARTMENT OF STATISTICAL SCIENCE
BLACKSBURG, VIRGINIA 24061-0439 DUKE UNIVERSITY

USA DURHAM, NORTH CAROLINA 27708-0251
E-MAIL: lhouse @vt.edu USA

E-MAIL: clyde @stat.duke.edu
rlw @stat.duke.edu


mailto:lhouse@vt.edu
mailto:clyde@stat.duke.edu
mailto:rlw@stat.duke.edu

	Introduction
	MALDI-TOF data
	A model for MALDI-TOF
	Peak shape
	Peak width and resolution
	Background noise sources
	Expected spectral intensity
	Likelihood

	Prior distributions for MALDI-TOF
	Measurement error phi and overall level zeta
	Prior distribution for protein signature f(·)
	Prior distribution for matrix background

	Posterior analysis
	Peak identification

	Examples
	Blank spectrum
	Matrix spectrum
	Known protein spectrum
	Lung cancer protein spectrum

	Simulation study
	Discussion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

