
The Annals of Applied Statistics
2010, Vol. 4, No. 4, 1774–1796
DOI: 10.1214/10-AOAS353
© Institute of Mathematical Statistics, 2010
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Despite its shortcomings, cross-level or ecological inference remains a
necessary part of some areas of quantitative inference, including in United
States voting rights litigation. Ecological inference suffers from a lack of
identification that, most agree, is best addressed by incorporating individual-
level data into the model. In this paper we test the limits of such an incor-
poration by attempting it in the context of drawing inferences about racial
voting patterns using a combination of an exit poll and precinct-level eco-
logical data; accurate information about racial voting patterns is needed to
assess triggers in voting rights laws that can determine the composition of
United States legislative bodies. Specifically, we extend and study a hybrid
model that addresses two-way tables of arbitrary dimension. We apply the
hybrid model to an exit poll we administered in the City of Boston in 2008.
Using the resulting data as well as simulation, we compare the performance
of a pure ecological estimator, pure survey estimators using various sampling
schemes and our hybrid. We conclude that the hybrid estimator offers sub-
stantial benefits by enabling substantive inferences about voting patterns not
practicably available without its use.

Cross-level or ecological inference is the attempt to draw conclusions about sta-
tistical relationships at one level from data aggregated to a higher level. Frequently,
ecological inference is conceptualized as the attempt to infer individual-level rela-
tionships from a set of contingency tables when only the row and column totals are
observed. One important application of ecological inference is in United States re-
districting litigation, in which a critical issue is whether the voting patterns of racial
groups differ. Because the secret ballot prevents direct observation of voter races
and voter choices, redistricting litigants and their experts are ordinarily required to
attempt to infer racial voting patterns by examining election returns (reported at the
precinct or perhaps the “vote tabulation district” level) as married to demographic
information from the Decennial Census. In this paper we explore issues associated
with incorporating individual level information, in the form of responses to an exit
poll we administered in the City of Boston, into an R × C ecological model.

Speaking broadly, the lack of identification in ecological models was famously
discussed in Robinson (1950). Since then, most to consider the question have
agreed that, if ecological inference is to be attempted, the best way to proceed
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is to incorporate additional, preferably individual-level (from a survey), informa-
tion into the model. In the sampling literature, combining survey results with
population-level information has a long and rich history, dating back at least to
Deming and Stephan (1940). Bishop, Fienberg and Holland (1975) (see pages 97–
102) discuss what they call the “classical” use of iterative proportional fitting, also
called “raking” to known marginal totals or “incomplete post-stratification” [see
Deville, Sarndal and Sautory (1993)]. Additional examples include Belin et al.
(1993), Little (1993) and Zaslavsky (1993). As relevant to this paper, the idea is
that two categorical measurements are made on each of K in-sample units so that
estimated counts are generated for each of the cells of an R × C two-way contin-
gency table. These estimated internal cell counts are adjusted so as to conform to
row and column sums known from another source. The quirk in ecological data is
that there are many such contingency tables (precincts, in our application) and, as
to some of those, one row category so dominates the table count as to make bound-
ing information [see Duncan and Davis (1953)] informative, rendering sampling
in the precincts that correspond to these tables a waste of resources. (Were the
column sums known in advance, the same principle might apply, but in our appli-
cation the column sums are vote totals that are unknown in advance.) We explore
such issues of sample allocation in this paper.

Meanwhile, on the social science side, the past decade or so has seen several
papers [Steel, Tranmer and Holt (2003), Raghunathan, Diehr and Cheadle (2003),
Glynn et al. (2008), Haneuse and Wakefield (2008), Glynn et al. (2009)] address-
ing how best to combine ecological data with limited individual-level information.
As is true in ecological inference more generally, most papers addressing incor-
poration of additional information into ecological data have focused on sets of
2 × 2 contingency tables, which (after conditioning on the row and column totals)
involve one missing quantity per table.

In this paper we address the R × C case,1 building on earlier work of our own
[Greiner and Quinn (2009)], which in turn built on Brown and Payne (1986) and
Wakefield (2004). We do so because of the importance of R × C ecological in-
ference to many fields of inquiry; a particular interest of ours is in United States
voting rights litigation. Sections 2 and 5 of the Voting Rights Act prevent dilution
and retrogression of the voting strength of racial (“racial” means racial or ethnic)
minorities via gerrymandering of districts. In both settings, proof that members of
different racial groups vote similarly within-group and differently between-group
constitutes part of what is called “racially polarized” or “racial bloc” voting, which
is the “keystone” to litigation [11th Cir. (1984)] and the “undisputed and unchal-
lenged center” [Issacharoff (1992)] to the area of law. This law can in turn decide
the composition of Congress as well as of local legislative bodies [Lublin (1995)].

1Software to implement the methods we propose, including those used in this paper, is available
via the R package “RxCEcolInf”; access CRAN from http://www.r-project.org/.

http://www.r-project.org/
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Thus, the need for accurate information regarding the voting preferences of differ-
ent racial groups is acute. As mentioned above, because the secret ballot prevents
direct observation of voter decisions, proof of racial bloc voting is most frequently
made via R × C ecological inference methods, as follows. The Census provides
voting-age-population figures for each racial group, which are arranged along the
rows of contingency tables. Table columns are official vote counts for each candi-
date (Democrat, Republican, etc.), along with an additional “Abstain” column to
account for persons declining to exercise the franchise. There is one such contin-
gency table for each voting precinct, and the goal of the inference is to calculate,
say, the percentage of Hispanic voters who voted for the Democrat (see below for
more technical definitions). That requires filling in the missing internal cell counts
of the contingency tables, subject to the constraints imposed by the row and col-
umn totals.

The need for better and more accurate techniques in this area has grown in recent
years. As the number of relevant racial and ethnic groups in the United States polity
increases (from, say, black versus white to include Hispanics and Asians), infer-
ence becomes more complicated. Additional races represent additional rows in the
contingency tables, requiring more parameters in a model and imposing greater
challenges at the model-fitting stage [Greiner (2007)]. Incorporating individual-
level information from a survey into the R × C ecological inference model repre-
sents one promising avenue in this area.

We accordingly subject the task of combining individual-level and R × C eco-
logical data to a stress test in the form of an effort to draw inferences about the
voting behavior of R racial groups using data aggregated to the level of the precinct
together with an exit poll in which not all precincts were in-sample. Specifically,
we discuss the challenges, choices and results of a 400-pollster, 11-university, 39-
polling-place exit poll we administered in the City of Boston on the November 4,
2008 election. Combining ecological data with an exit poll constitutes a stress
test for a hybrid model because (i) the nature of exit polling prevents us from
implementing optimal subsampling techniques recently explored in the literature,
(ii) survey nonresponse is ever-present, and (iii) the fact that several precincts may
be combined within a single voting location requires additional assumptions re-
garding the aggregation process, as we explain below. In our view, our hybrid
model passes this stress test by supporting substantive conclusions, particularly
regarding voting behavior of hard-to-estimate groups such as Asian- and Hispanic-
Americans, that could not be reached without its use (all of this assuming the rea-
sonableness of the model).

We organize this paper as follows: we clarify notation before presenting a brief
taxonomy of R × C ecological techniques that focuses on the advantages and dis-
advantages of fraction versus count models. We articulate the details of our hybrid
ecological/survey proposal and use simulation to study its behavior, focusing in
particular on its performance in the presence of aggregation bias, defined immedi-
ately below. On the basis of these simulations, we offer guidance for practitioners
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confronted with a choice of three classes of estimators: an ecological model alone,
a survey sample alone, and a hybrid. We demonstrate that (i) the hybrid is always
preferable to the ecological model; (ii) in the absence of severe aggregation bias,
the hybrid dominates the survey sample estimator; (iii) in the presence of severe
aggregation bias, the hybrid is still probably preferable, although the researcher’s
choice of estimator depends on, among other things, whether the contingency ta-
bles tend to be dominated by one row (in voting applications, this corresponds to a
high level of housing segregation), and whether interest lies primarily in the point
estimate or valid intervals.

We then present the process leading to and the results of our City of Boston
exit poll, focusing on voting behavior by race in a Massachusetts ballot initiative
regarding marijuana (other results from this exit poll are available from the authors
on request). We demonstrate that our hybrid estimator allows inferences unavail-
able from either the exit poll or the ecological inference model alone. Without the
hybrid estimator, for example, little can be said regarding Asian-American voting
preferences in Boston, nor can one easily distinguish between Hispanic and white
preferences. We also find little evidence of aggregation bias in the Boston data.

Regarding the definition of aggregation bias, the critical assumption of most
ecological inference techniques is the absence of contextual effects. Contextual
effects can occur when the distribution of the internal cell counts varies with the
distribution of the allocation of the counts by row. In voting parlance, if white
voting behavior varies with the fraction of whites in the precinct, this contextual
effect will cause the aggregation process to induce bias in almost any ecological
estimator, unless a covariate/predictor can be included in the model to remove this
effect.

Regarding notation, any quantity with the subscript rci refers to that quantity
in the ith contingency table’s (precinct’s) rth row, cth column. In our application,
r can be b for black, w for white, h for Hispanic or a for Asian; c can be D for
Democrat, R for Republican or A for Abstain (meaning choosing not to vote). N’s,
M’s and K’s refer to counts, as follows: N’s are the unobserved, true internal cell
counts; K’s are the counts as observed in the survey; and Mrci = Nrci − Krci . We
italicize unobserved counts but leave observed quantities in ordinary typescript.
Table 1 clarifies our representations for the case of 3 × 3 precinct tables involving
African-American, Caucasian and Hispanic groups in a Democrat versus Republi-
can contest.

We further suppose that a survey or exit poll is implemented in a subset S of
the I precincts in the jurisdiction and contest of interest. In precinct i ∈ S, Ki is
a random matrix of dimension Ji × (R × C), where Ji is the number of individ-
uals surveyed in this precinct. Each row of Ki is a vector of 0’s except for a 1
corresponding to the cell of the precinct contingency table in which the surveyed
individual belongs, where the cells are vectorized row major. In the Table 1 exam-
ple, a vector (0,0,0,0,0,1,0,0,0) would indicate a white person who abstained
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TABLE 1
3 × 3 table of voting by race

Dem Rep Abstain

Black NbDi NbRi NbAi Nbi
White NwDi NwRi NwAi Nwi

Hispanic NhDi NhRi NhAi Nhi

NDi NRi NAi Ni

from voting. Let K represent a matrix of all of the Ki’s (organized in any coherent
manner).

Let ∼Nrowi (∼Ncoli ) represent the vector of observed row (column) totals in the ith
precinct, with Nrow (Ncol) a matrix of all ∼Nrowi’s (∼Ncoli ’s), and Nobs = [Nrow Ncol].
Let Ncompi

equal the (unobserved) full set of internal cell counts in the ith precinct.
Finally, let Nmissi denote any set of (R−1) × (C−1) counts for the ith precinct
which, had they been observed in conjunction with ∼Nrowi and ∼Ncoli , would have
been sufficient to determine all table counts. In Table 1, for example, Nmissi could

equal
[ NbDi NbRi
NwDi NwRi

]
. Note that Ncompi

and Nmissi are used in the missing data sense

[e.g., Little and Rubin (2002)].
Finally, because our interest is primarily in ecological inference as opposed to

survey methods, we do not investigate potential biases in surveys or exit polls,
except to compare the predictions of our City of Boston exit poll to the observed
results. That comparison suggests an encouraging absence of systematic biases,
including the absence of a “Bradley” effect for Obama versus McCain, a result in
accord with recent findings [Hopkins (2008)]. Moreover, while we acknowledge
the potential for a variety of sources of bias in ecological studies [see Salway and
Wakefield (2005) for a review], we focus our attention on aggregation bias, which
we believe to be potentially most problematic in this area [Rivers (1998)].

1. Fraction versus count models. We discuss briefly some advantages and
disadvantages of modeling unobserved internal cell counts as opposed to the frac-
tions produced when a researcher divides these unobserved counts by their corre-
sponding row totals.

Apart from the approach we advocate, a variety of R×C ecological models have
been proposed: for example, the unconstrained [see Achen and Shively (1995)] or
constrained [Gelman et al. (2001)] linear model, the truncated multivariate normal
proposal in King (1997), the Dirichlet-based method in Rosen et al. (2001), and
the information theoretic proposal in Judge, Miller and Cho (2004). These other
proposals all share the feature that they model (at various levels) not the internal
cell counts themselves, but rather the fractions produced when the unobserved
internal cell counts are divided by their row totals. In contrast, we model internal
cell counts. There are strengths and weaknesses to each approach.
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Formally, let β’s refer to the (unobserved) internal cell fractions so βbDi = NbDi
Nbi

,

and
∼
β i refer to the vector of the β’s in the ith precinct. If modeling fractions and

proceeding in a Bayesian fashion, a researcher might put a prior on the
∼
β i’s with

parameter
∼
ζ , in which case one representation of this class of models is as follows:

p(
∼
ζ |Ncol,Nrow) ∝ p(

∼
ζ )

I∏
i=1

[∫
p(∼Ncoli |∼β i, ∼Nrowi) × p(

∼
β i|∼ζ ) d

∼
β i

]
.(1)

For example, in the simplest version of the linear model, p(
∼
β i|∼ζ ) can be concep-

tualized as a multivariate normal with mean vector
∼
β and null variance. In Rosen

et al. (2001), p(
∼
ζ ) is a set of mutually independent univariate gamma distributions,

p(
∼
β i|∼ζ ) a product Dirichlet, and p(∼Ncoli |∼β i, ∼Nrowi) a multinomial parameterized

by a mixture of β’s and the fractions produced when ∼Nrowi is divided by its sum.
Particularly important is the fact that in proportionality (1), because there is no
distribution posited for the unobserved internal cell counts, there is no summation
needed to eliminate them. [Note that throughout this paper, including in propor-
tionality (1), we have written the models we fit in terms of posterior distributions
for the hyperparameters. We have done so because, as we will explain, interest
sometimes centers on these population-level hyperparameters. As a practical mat-
ter, the Markov chain Monte Carlo (MCMC) algorithms used to fit these models
typically work on the full joint posterior of all model parameters. For more detail
on model fitting, see Appendix A.2 of Greiner and Quinn (2009).]

In contrast, consider a class of techniques that models the unobserved inter-
nal cell counts. A researcher proceeding in a manner analogous to proportional-
ity (1) might specify a distribution for each precinct’s internal cell counts given
some precinct-level intermediate parameters (call these intermediate parameters

∼ϒi
), might specify a prior on the ∼ϒi

’s (call the parameters in this prior ∼�), and
might sum out the unobserved internal cell counts. Thus, the proportionality cor-
responding to (1), above, is

p(∼�|Ncol,Nrow) ∝ p(∼�)

I∏
i=1

[∫ ∑
Nmissi

p(∼Ncoli |Ncompi
)

(2)

× p(Ncompi
|∼ϒ i, ∼Nrowi) × p(∼ϒ i|�)d ∼ϒ i

]
.

p(∼Ncoli |Ncompi
) appears to make the relationship between the left- and right-

hand sides of the ∝ symbol more transparent; in fact, N compi
determines ∼Ncoli ,

rendering p(∼Ncoli |Ncompi
) degenerate. Note in this formulation there is an explicit

model for the internal cell counts [p(Ncompi
|ϒi, ∼Nrowi)], which in turn requires a

summation over Nmissi to produce the observed-data likelihood. But the distribu-
tion of Nmissi is complicated; the permissible support of each element of Nmissi
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depends on the value of the other elements. Further, in voting applications, the
number of voters involved is typically large enough to render infeasible full com-
putation of the posterior probabilities associated with every permissible count.

Thus, proportionalities (1) and (2) make explicit the benefits of each approach.
By avoiding the need for a summation over a complicated discrete distribution,
proportionality (1) makes fitting easier. This benefit should not be understated. As
we will discuss below, the lack of information in ecological data can make model
fitting, even via MCMC, slow and cumbersome. The model we advocate requires
drawing from two multivariate distributions (one for the internal cell counts, one
for ϒi) for each precinct for each of a minimum of several hundred thousand iter-
ations of an overall Gibbs sampler. In contrast, the proposal in Rosen et al. (2001),
for example, requires only one draw per precinct from a more standard distribution,
resulting in substantially less time to analyze a data set.

The speed gain has trade-offs. For the purposes of this paper, the primary
down side is the lack of an easily conceptualized way of incorporating individual-
level information into the model due to the lack of an explicit distribution
p(Ncompi

|∼ϒ i, ∼Nrowi). In contrast to proportionality (1), proportionality (2) can be
modified in a simple way to incorporate data from a sample, as follows:

p(∼�|K,Ncol,Nrow) ∝ p(�)

I∏
i=1

[∫ ∑
Nmissi

p(Ki|Ncompi
)(i∈S)

× p(∼Ncoli |Ncompi
) × p(N compi

|∼ϒ i, ∼Nrowi)(3)

× p(∼ϒ i|∼�)d ∼ϒ i

]
.

Additional costs, discussed in Greiner and Quinn (2009), to the approach in pro-
portionality (1) are the difficulty in articulating an individual-level (voter) concep-
tualization of the underlying data-generating process [assuming one is desirable,
see King (1997) for a different view] and the fact that most such models weight
contingency tables equally regardless of size.

Proportionality (3) further demonstrates that this formulation allows for any
within-contingency-table sampling scheme to be implemented, so long as one can
write down p(Ki|Ncompi

). Note, however, that the exchangeability assumption (re-
flected in the product over i) prevents incorporation of contingency-table-level
sample weights into the likelihood. In other words, proportionality (3) does not
take into account whether the contingency tables in S are selected via simple ran-
dom sampling, sampling in proportion to size, etc. As we explain below, this fact
can be a strength or a weakness, but whichever it is, it does not mean that all
contingency-table sampling schemes are equally beneficial.

Finally, proportionality (3) demonstrates that a variety of choices of likelihoods,
priors and hyperpriors for count models are available. We next discuss our choices.
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2. Our proposal. In the line of proportionality (3), our proposal consists of
the following. For Ncompi

|∼ϒ i, ∼Nrowi , we assume that the counts in each contin-
gency table row follow an (independent) multinomial distribution with count pa-
rameter Nri and probability parameter ∼θ ri . We choose the multinomial because it
corresponds to an individual-level account of voting behavior (each potential voter
of race r in precinct i independently behaves according to the same vector ∼θ ri ) and
because once one conditions on the row totals (as is customary in voting applica-
tions), few other tractable multivariate count distributions are available.

For ∼ϒi
|∼�, we apply a multidimensional additive logistic transformation

[Aitchison (2003)] to each row’s ∼θ ri , resulting in R vectors of dimension (C-1),
which we stack to form a single vector ∼ωi of dimension R × (C−1) for each

precinct. We then assume ∼ωi
i.i.d.∼ N(∼μ,�). We prefer the multidimensional addi-

tive logistic to, say, a Dirichlet or a different transformation because of the additive
logistic’s greater flexibility relative to the Dirichlet [Aitchison (2003)] and because
of the intuitive choice of a “reference category” in voting applications, namely, the
Abstain column. The stacking of the transformed ∼θ ri ’s into a single vector allows
for exploration of within- and between-row relationships; as we demonstrate in
our application (see Figure 4), capacity to model between-row relationships can
be important to inference.

For the hyperprior [p(∼�)], we use semi-conjugate multivariate normal and in-
verse Wishart forms, specifically

∼
μ ∼ N(

∼
μ0,κ0) and � ∼ Inv–Wishν0(�0). We

do so both for computational convenience and because, after extensive simula-
tions, we have found these distributions rich enough to express most reasonable
prior beliefs regarding the content of the contingency tables.

For p(Ki|Ncompi
), we assume a simple random sample, out of necessity. Several

recent papers [e.g., Glynn et al. (2008), Haneuse and Wakefield (2008) and Glynn
et al. (2009)] have discussed optimal within-contingency-table sampling designs,
with the optimal scheme varying according to the process assumed to generate the
data and to whether one of the rows or columns corresponds to a relatively rare
event (often true in epidemiology applications). All of these schemes depend on
the assumption that the researcher can observe some characteristic of an individual
unit before deciding whether to include it in the sample. This is not always possible
in exit polls because voters exit polling locations rapidly and, for this reason, exit
polls are often interval samples, with the assumption that the interval produces a
random sample made plausible by keeping the interval at reasonable length.

If the exit poll constitutes a simple random sample in each i ∈ S, we can work
with the R×C-dimension vector ∼Ki formed by summing Ki’s columns; this results
in a vector of counts of the number of sampled potential voters in each contingency
table cell, with the contingency table vectorized row major. Denote the elements of

∼Ki as Krci , Ki = ∑
r,c Krci and for each i ∈ S, recall Mrci = Nrci −Krci . Accordingly,
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the probability of observing a particular vector ∼Ki is the familiar

∏
r,c(

Mrci +Krci
Krci

)

(Ni
Ki
)

[see

McCullagh and Nelder (1989)].
Upon discarding terms for i ∈ S that do not involve unobserved quantities, com-

bining terms, canceling and including the Jacobian of the transformation from θ to
ω space, our proposal has the following observed-data posterior:

p(∼
μ,�|K,Ncol,Nrow))

∝ N(
∼
μ|

∼
μ0,κ0) × Inv–Wishν0(�|�0)

(4)

× ∏
i

[∫ ( ∑
Mmissi

(∏
r,c

θ
Mrci
rci

Mrci !
))i∈S( ∑

Nmissi

(∏
r,c

θ
Nrci
rci

Nrci !
))i/∈S

×
(
|	|−1/2 exp

{
−1

2
(∼ωi − ∼

μ)T 	−1(∼ωi − ∼
μ)

})
d∼θ i

]
.

Proportionality (4) can be understood as follows: the first line represents the hy-
perprior. The second and third lines correspond to the multinomial assumptions
for the internal cell counts, with the second line demonstrating one of the con-
tributions that the survey makes to the information in the posterior. As Krci gets
large, Mrci = Nrci − Krci decreases, reducing the uncertainty in the exponent of

the numerator of
θ

Mrci +Krci −1
rci

Mrci ! and driving the denominator to 1. If Ki = Ni (mean-

ing that all voters in precinct i were sampled), then this portion of the posterior
corresponds to the nonconstant portion of the likelihood of the probability vec-
tor of a multinomial distribution. The fourth line is the multivariate normal. Note
that a fair amount of structure is contained within the summations over Mmissi and
Nmissi as well as the integral over ∼θ i. In each precinct i, the missing internal cell
counts must sum to their row and column totals, and each contingency table row’s
θ ’s must stay within a simplex. A more complex version of proportionality (4),
which demonstrates more explicitly the constraints involved, appears in Greiner
and Quinn (2010).

In many voting applications, particularly in redistricting, quantities represented
above by Greek letters are of limited interest. Instead, interest lies in functions
of the counts produced upon summation of the contingency tables over i. These

functions include 
rc =
∑

i Nrci∑
i(Nri−NrAi )

, �r =
∑

i(Nri−NrAi )∑
i(Ni−NAi )

, and TOrc =
∑

i(Nri−NrAi )∑
i Nri

representing, respectively, the fraction of actual (as opposed to potential) voters of
race r supporting candidate c, the fraction of actual voters who are of race r, and
the turnout of race r’s potential voters. The interest in these (and other) functions of
the internal cell counts leads us to fit our proposal via a three-part Gibbs sampler;
details appear in Greiner and Quinn (2010).

Speed is a serious concern here. Greiner and Quinn (2010) have some details,
but depending on the constraints imposed by the bounds, ecological data can have
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little information in them, resulting in slow mixing. At present, after experimenting
with several choices of proposal distributions [see Metropolis et al. (1953) and
Tanner and Wong (1987)] and fitting algorithms, our software run on a reasonable
laptop can ordinarily analyze a data set of the approximate size of a typical United
States congressional district in a few hours. As of now, then, analyzing multiple
data sets in a short period of time, a feature of some modern United States voting
rights litigation, may require special computational tools. We continue to work to
address this situation.

3. A comparison of estimators. We present the results of simulation studies
primarily addressing two broad questions. First, in the R × C context, what is the
relative performance of an ecological model alone, a survey estimator alone and
our hybrid technique? In particular, we are interested in the relative performance
of these three classes of estimators: (i) in the presence or absence of aggregation
bias, and (ii) when contingency tables have relatively even distribution of counts
among rows versus a moderate tendency for counts to be concentrated in one or
another row. Note that if counts in contingency tables tend to be distributed rel-
atively evenly among the rows, the bounds [Duncan and Davis (1953)] constrain
the posterior less. In voting parlance, segregated housing patterns tend to lead to
better performance of an ecological model.

Our second question of interest is whether the method of selecting the con-
tingency tables (precincts) for inclusion in the sample S affects estimation. The
advantages of probability weighting according to some observed criteria, such as
size, are well understood in the survey literature. In the context of ecological data,
however, we are interested in whether any benefits accrue to weighting contin-
gency tables according to whether their bounds were likely to constrain, that is,
whether a particular table’s counts were mostly in one row. In voting parlance, is
there an advantage to weighting racially uniform precincts differently from racially
mixed precincts?

3.1. Simulation methods. We simulated blocks of 100 voting jurisdictions,
producing data sets that generally resembled a United States congressional district
in which a court might look for racial bloc voting. We assumed three racial groups
(black, white, Hispanic) and two candidates (Democrat, Republican), producing
precinct-level tables as per Table 1. For each jurisdiction, we applied seven esti-
mation techniques: an ecological model alone; three two-stage sampling estimators
in which sampled precincts were selected using different weighting schemes, after
which a simple random sample was taken of potential voters within each precinct;
and three hybrid estimators, in which the ecological model was combined with the
data from each of the two-stage samples. With respect to the three survey samples,
the first (“Sampling Scheme 1”) assigned much heavier weights to racially inte-
grated precincts, the second (“Sampling Scheme 2”) applied moderately greater
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weights to racially integrated precincts, and the third (“Sampling Scheme 3”) ap-
plied much heavier weights to racially uniform precincts. Population fractions,
turnout levels and party preferences of blacks, whites and Hispanics were set at
levels approximating behavior we have observed in United States congressional
districts.

We present the results for six simulated blocks of jurisdictions: integrated (less
integrated) without aggregation bias; integrated (less integrated) with aggregation
bias; and integrated (less integrated) with severe aggregation bias. To induce aggre-
gation bias, we turned the top-level (normal distribution) location parameters for

whites (μwD and μwR) into linear functions of the fraction Hispanic, Xhi = Nhi
Ni

.
After speaking to a few persons knowledgeable in the field of voting rights and
racial bloc voting regarding what might be realistic, we chose figures for aggre-
gation bias that, in expectation, would induce white voters in an 20% Hispanic
precinct to vote approximately 70% for the Republican, while white voters in an
80% Hispanic precinct would vote 55% for the Republican. The corresponding fig-
ures for the severe aggregation bias (an approximately 90% to 30% swing in white
Republican support) were designed to be unrealistically harsh and to test the outer
limits of the method. We present here the results for the quantity 
hD because, in
voting applications, it is often difficult to estimate and particulary vulnerable to
aggregation bias, with both of these factors due to Hispanics’ lower turnout rates
and greater tendency (relative to blacks) to vote in nonuniform patterns.

When comparing estimators, we proceed on several of the usual fronts, exam-
ining coverage of 95% intervals, 95% interval length and root mean squared error
(“RMSE”). In addition, because we apply the same seven estimation techniques
to each simulated data set, we examine how often estimators outperform one an-
other in each simulation block in terms of squared error by calculating a binomial
p-value under a null hypothesis of that the two estimators compared are the same.
When we report a p-value, we mean this value unless we state otherwise.

Additional details of our simulations appear in Greiner and Quinn (2010).

3.2. Simulation results. Basic results are summarized in Figure 1. We draw the
following conclusions. First, hybrid estimators trounce the pure ecological infer-
ence estimator under all circumstances. While we do not find this result surprising
in the abstract, the magnitude of the improvement is worthy of note. In the ab-
sence of aggregation bias, the hybrid estimators offer greater precision, producing
posterior intervals that are narrower but that still provide stochastically nominal
coverage. The best-performing hybrid (Sampling Scheme 1) results in a reduction
of posterior interval length of approximately 30–50%, depending on the level of
integration in housing patterns. With aggregation bias, the hybrid raises the cover-
age of the 95% intervals from poor (roughly 0.68) to a level that, while less than
nominal, might approach tolerability (roughly 0.85). Meanwhile, the RMSE re-
ductions are on the order of 30–60%. With severe aggregation bias, any estimator
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FIG. 1. Summary of results from simulations. The left panels display RMSE, while the right pan-
els display the coverage of nominal 95% credible intervals. Sampling Scheme 1 heavily overweights
racially mixed precincts, Sampling Scheme 2 mildly overweights racially mixed precincts, and Sam-
pling Scheme 3 heavily overweights racially uniform precincts. Note that “Integrated” data sets have
less information in the bounds. The results show that the hybrid estimator generally outperforms the
pure survey and pure ecological inference estimators, and offers substantial RMSE reductions in
many circumstances. In the absence of severe aggregation bias, the hybrid estimator’s coverage is
typically less than but comparable to that of the pure survey estimator.

that uses the ecological data fails to achieve nominal coverage. Nevertheless, all
hybrids substantially outperform the ecological estimator alone. The reduction in
RMSE, on the order of 55%, is substantial, with this result stemming from both
a noticeable decrease in bias and a noticeable increase in precision. In comparing
any hybrid to the ecological inference estimator, all p-values from our simulations
are 0. From this, we provide the following recommendation: always include the
survey.

Second, comparing hybrids to one another, there are advantages to avoiding a
sampling scheme that oversamples contingency tables in which one row domi-
nates, that is, racially homogenous precincts. Without aggregation bias, the differ-
ence between the hybrid that oversamples racially homogenous precincts (Sam-
pling Scheme 3) versus the other two (Sampling Schemes 1 and 2, which over-
weight racially mixed precincts) is noticeable but modest; the latter offer 10–20%



1786 D. J. GREINER AND K. M. QUINN

reductions in 95% interval length (all p-values less than 0.01). With aggregation
bias or severe aggregation bias, the improvement is larger. The lack of nominal
coverage makes 95% interval length less informative. But regarding RMSE, Sam-
pling Scheme 1, which oversamples racially mixed precincts, achieves 20–30%
reduction as compared to Sampling Scheme 3, which oversamples racially uni-
form precincts (all p-values are 0).

The most difficult comparison is the hybrid estimators versus the pure survey
estimators. In the absence of aggregation bias, the conclusion is simple, with any
hybrid estimator constituting an enormous improvement. The greater precision of
the hybrid estimators is reflected in both the length of the 95% intervals, which
can be as much as 70% narrower, as well as RMSE comparisons. Any hybrid
outperforms any pure survey estimator (all p-values are 0).

With aggregation bias, we again recommend the hybrid over the pure survey
estimator, but we do so more cautiously. Although the pure survey estimators’
intervals come closer than the hybrids to achieving nominal coverage, the coverage
gains are modest (around 7%). Meanwhile, the RMSE gains from the hybrids, on
the order of 35–60%, are substantial. On average, the bias of the hybrid estimates
is modest, roughly two or three percentage points (i.e., a point estimate of 0.53
when the truth is 0.51). Thus, even in the presence of aggregation bias, the hybrids
offer substantial benefits over the pure survey estimators.

In the presence of severe aggregation bias, the results are mixed. With integrated
housing patterns and in the presence of severe aggregation bias, the combination of
bias and lack of bounding information renders the pure survey estimators superior,
with hybrid RMSEs approximately 10–20% larger than their pure survey coun-
terparts. With severe aggregation bias and with less integrated housing patterns,
interval coverage for both types of estimators was less than nominal (and worse
for the hybrids). With respect to RMSE, however, on average, the hybrids usually
outperform their specific pure survey counterparts, and the reductions are on the
order of 10% to as high as 25%. Average does not mean always, however. And on a
simulation-by-simulation basis, the comparison of some pure survey estimators to
the hybrids results in p-values near 0 in favor of the pure survey estimators (recall
that our p-values represent which method prevails simulation-by-simulation, a 0–1
outcome). The reason for this is that the higher variances associated with the pure
survey estimators mean that when these estimators miss the target, they can miss
badly, raising the RMSE, which as a function of an average is sensitive to large
misses. In the presence of contextual effects, the lower-variance hybrid estimators
reduce the risk of a point estimate that is badly wide of the mark, at the cost of
some bias.

3.3. Simulation conclusions. Thus, as between hybrid versus survey estima-
tors, which estimator should a researcher prefer? In our view, the answer depends
primarily on three factors: the extent to which contingency tables tend to be dom-
inated by one row (i.e., the extent of racial segregation in housing patterns), the
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magnitude of aggregation bias in the data, and whether the ultimate user cares more
about an accurate point estimate or a valid interval. The first factor is observable.
The second is not observable, and it may or may not be that, in some instances,
a researcher or expert witness will have some information about aggregation bias
from external sources. Regarding the third, some users pay attention primarily to
point estimates. Courts, for example, who in voting rights litigation may examine
results from dozens of elections, typically do not incorporate uncertainty estimates
into their opinions, despite exhortations from social scientists to the contrary. Other
users make what we suspect for statisticians is the more traditional choice. In gen-
eral, however, our recommendation is that unless the researcher has reason to fear
extremely strong (“severe” really means “brutal”) aggregation bias, the hybrid es-
timator is preferable.

4. Boston area colleges exit poll. Did Asian-American voters in the City of
Boston support a Massachusetts ballot initiative repealing criminal penalties for
possession of small amounts of marijuana? Were support rates for the marijuana
initiative different between Caucasian versus Hispanic voters? To test the methods
we propose, we conducted an exit poll in the City of Boston on November 4, 2008.
Because our interest is in both the operational feasibility as well as the comparative
technical advantages or disadvantages of hybrid estimators, we briefly describe the
running of the poll and the necessary preprocessing of the data before articulating
required assumptions and providing results. We demonstrate that the two questions
articulated above are difficult to answer with either the exit poll or the ecological
estimator standing alone, but that the hybrid permits reasonable inferences as to
both.

4.1. Mechanics and initial results. We recruited law, graduate and undergrad-
uate students from 11 Boston area colleges and universities to participate in an exit
poll. Our recruiting efforts yielded over 400 pollsters, which we organized into
teams captained by a law or graduate student. There were two election day shifts
lasting seven hours each, which covered the whole of the election day. Captains
attended one of several 90-minute training sessions, while training for noncaptain
pollsters lasted an hour. All sessions were live and covered essential survey/exit
polling techniques. For example, pollsters were instructed to step away from vot-
ers after making a successful approach and to request that voters themselves place
completed questionnaires in a visibly closed box [see Bishop and Fisher (1995)].
Five specially trained, two-person roving quality control teams circulated in cars,
visiting each polling location multiple times throughout election day and monitor-
ing compliance with the required techniques. We attempted to deploy multilingual
pollsters to locations in which a comparatively high percentage of voters spoke
languages other than English.

Pollsters approached every eighth voter but alternated between a “voter choices”
questionnaire, which generated the data used in this paper, and a “voter experi-
ence” form, which was used for other purposes. Effectively, this meant a targeted
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1
16 sampling interval for the race-and-voter-choices exit poll. Prior coordination
with the City of Boston Election Department, together with the absence of a law in
Massachusetts regulating exit polls, enabled pollsters to stand immediately outside
the exits to the buildings in which voting occurred, and teams were large enough
to cover all exits.

The poll covered 39 of Boston’s 160-odd polling locations. 26 of the 39 loca-
tions were selected in a nonrandom manner due to the research design associated
with the voter experience questionnaire; the other 13 were randomly selected using
inverted Herfindahl index weights that resulted in a higher probability of selecting
polling locations in which several racial groups were represented [see Greiner and
Quinn (2010) for details].

Overall, Boston Area Colleges Exit Poll pollsters approached approximately
4300 voters with voter choice questionnaires and achieved approximately a 57%
response rate. Voter choice data were collected for United States president and for
three Massachusetts ballot initiatives, one repealing the state income tax, one elim-
inating criminal penalties for possession of small amounts of marijuana, and one
banning gambling on dog racing. After multiply imputing for nonresponse (see
below), we applied a stratified (to reflect the separate deterministic versus random
precinct-selection schemes), two-stage (cluster followed by simple random sam-
ple) estimator to the results to check our predictions against the known truth. As
Figure 2 demonstrates, we found that our projections closely approximated the
overall true two-party vote fractions, where “two-party” means the percentage of
Obama supporters out of those who voted for either Obama or McCain, or the per-
centage of Yes votes out of those who voted Yes or No on the ballot initiatives.
We did find, however, a curious [see Silver, Anderson and Abramson (1986)] ten-
dency among poll respondents to overreport nonvoting behavior, and the prior in

FIG. 2. Results of Boston Area Colleges Exit Poll (pure survey estimators). “Two-Party” refers to
the percentage of actual voters voting for Obama (Presidential) or Yes (income tax, marijuana and
dog racing ballot initiatives), while “Voted” refers to the percentage of persons entering the ballot
who cast ballots in the relevant contest. True values are represented by solid dots, 95% confidence
intervals are represented by the dark lines. Two-party point estimates are generally accurate, but
nonvoting behavior is overestimated.
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our multiple imputation algorithm may have exaggerated this aspect of the data.
For these reasons, we compare estimators for the marijuana initiative, where our
two-party projection was accurate, where nonvoting overreport was comparatively
low, and where the two-party vote was reasonably close. Results for the dog racing
ballot initiative, which share these characteristics, were similar, and are available
from the authors.

4.2. Data processing and critical assumptions. We detail in this section the
critical assumptions underlying our various estimators. First, to account for nonre-
sponse, we created 10 completed data sets via multiple imputation. The imputation
model was a loglinear model for categorical data as implemented in Joe Shafer’s
cat package.2 Computational challenges arose because of the fairly large number
of variables to impute and our desire to allow for more complicated associations
than would be possible under a multivariate normal model or a 2-way loglinear
model. To overcome these challenges, we made use of a parametric bootstrap ap-
proach [Honaker and King (2009)] along with a factorization of the full data dis-
tribution that allowed us to work with the data in moderately-sized chunks.

Our procedure was the following. First, we created 10 bootstrap data sets by
sampling rows with replacement from the observed data matrix. We partitioned
the variables in each of these bootstrap data sets into three sets—pollster-specific
attributes, voter demographics and voter choice variables. Then, for each of the
bootstrap data sets, we imputed pollster-specific attributes, voter demographics
given the imputed pollster attributes, and finally voter choice data given the im-
puted voter demographics and a subset of the imputed pollster characteristics.

Each imputation step worked as follows. Given a particular bootstrap data set,
we calculated the posterior mode of the cell probabilities using the ECM algorithm.
We then sampled the missing data from the appropriate multinomial distribution
with probabilities given by the maximum a posteriori estimates. For the pollster-
specific data (which had very little missingness) and the voter demographic data
we employed a loglinear model with all 3-way interactions and a Dirichlet prior
for the cell probabilities with parameters all equal to 1.0001. For the voter choice
data (which had more missingness) we used a loglinear model with all 2-way in-
teractions and a Dirichlet prior on the cell probabilities with parameters equal to
1.001.

The assumptions underlying the multiple imputations are the primary ones
needed to render the pure survey estimators discussed below valid. Another as-
sumption is that the interval sample produced a simple random sample of voters
in the in-sample precincts. We deem this assumption plausible in light of the 1

16
target interval. Overall, in assessing these assumptions, for the two electoral con-
tests presented in this paper, we are encouraged by the exit poll’s ability to project

2http://cran.r-project.org/web/packages/cat/index.html.

http://cran.r-project.org/web/packages/cat/index.html
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closely the two-party vote and to approximate the amount of nonvoting observed
in the ballot initiatives.

For the hybrid and pure ecological estimators, the most important assumption is
lack of contextual effects. With respect to this data set, however, the no-contextual-
effect assumption is slightly stronger for the data as used by the hybrid estimator
than for the data as used by the pure ecological counterpart because the hybrid
operates on more aggregated data, as follows. Exit polls survey voters by polling
location, not by precinct, and in the City of Boston, many polling locations host
voters of more than one precinct such that pollsters standing outside of a polling lo-
cation’s building are unable to distinguish voters from the various precincts housed
there. Thus, the data used by the hybrid estimator had to consist of figures at the
level of the polling location (for in-sample polling locations), that is, further aggre-
gated. The ecological estimator could operate at the level of the individual precinct.
Note that for the data used by the hybrid, for out-of-sample polling locations, we
used precinct-level (as opposed to polling-location-level) figures. Note also that,
at least in Boston, precincts are never split into two or more polling locations; that
is, each precinct is contained wholly within one polling location.

According to figures based on Census 2000 and provided by the Boston Rede-
velopment Authority, the City of Boston’s voting age percentages by race are as
follows: 55% white, 20% black, 12% Hispanic, 9% Asian, and the rest of “other”
race.3 We investigated whether the various estimators under consideration could
say anything useful about Boston’s four most populous racial groups.

4.3. Results of various estimators: Voting preferences by race. Our results are
encapsulated in Figure 3. We draw the following conclusions. First, there is little
evidence to contradict the critical no-aggregation-bias assumption needed for the
ecological and hybrid estimators. The point estimates from the survey estimator
generally align with those from the other two. This fact does not provide total
security, given the high variance of the survey estimator, but total security is rarely
available when analyzing ecological data.

Second, even after accounting for nonresponse via multiple imputation, which
necessarily involves higher variances than would be present for a survey without
nonresponse, the hybrid estimator provides substantial variance reduction in a way
that makes a substantive difference. For example, in the marijuana ballot initiative,
the 95% interval for the Asian support rate was (0.03, 0.99) for the pure ecological
inference estimator and was (0.34, 0.68) for the pure survey, but the hybrid interval
was (0.54, 0.73). Thus, only via the hybrid estimator would a researcher or an ex-
pert witness be able to conclude that Asian voters in the City of Boston supported

3Recalling that Census 2000 allowed respondents to mark more than one race box, these categories
are in fact shorthand for the following: “Hispanic” means Hispanic (regardless of any other race box
checked), “Asian” means non-Hispanic any part Asian, “black” means non-Asian non-Hispanic any
part black, and “white” means anyone left who was not in the other race category.



EXIT POLLING AND RACIAL BLOC VOTING 1791

FIG. 3. Estimated fractions of support for the marijuana decriminalization ballot initiative among
the four most numerous racial groups in the City of Boston. Filled circles represent point estimates
and dark lines represent 95% credible intervals. “EI” refers to ecological inference estimator alone,
“Survey” is the exit poll alone, and “Hybrid” is the hybrid estimator. Survey and Hybrid estimates
come from multiple imputation. Only the hybrid estimator offers enough precision in the Asian cate-
gory to allow substantive inference. The hybrid estimator also best differentiates Hispanic from white
preferences.

the marijuana initiative. The same phenomenon occurs in the Asian vote on the ini-
tiative to ban gambling on greyhound racing (results not shown). Further, the pure
survey and the pure ecological estimators are less able to distinguish Hispanic ver-
sus white preferences regarding the marijuana initiative. For the hybrid estimator,
in contrast, these 95% confidence intervals intersect by only a hair’s breadth.

These results are substantively interesting in their own right, but we are en-
couraged by the fact that the hybrid estimator appears to help where help is most
needed. The variance reduction available for the estimates of Asian and Hispanic
voting behavior is substantial. As the two racial groups with the lowest VAP and
lowest turnout, Hispanics and Asians represent the most difficult challenge to in-
ference about voting behavior by race, and the performance of the hybrid estimator
here is encouraging.

A question arises: how could this happen? How could the combination of in-
formation from a survey and from ecological data, neither of which alone pro-
vides useful results, reduce variance enough to allow for meaningful substan-
tive inference? We offer the hypothesis that the answer lies in the better es-
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FIG. 4. Comparison of posterior distributions from ecological inference, with and without exit poll,
of between-contingency-table-row correlations governing the relationship of black, white and His-
panic voters to Asian voters. (The with-exit-poll figures are averages of ten multiple imputations.)
The narrower posterior intervals, and the greater density above zero, in the with-exit-poll correla-
tions suggest that the with-exit-poll model is taking advantage of a tendency of various racial groups
to vote similarly within a precinct to provide better estimates of Asian voting behavior. The with-
out-exit-poll model is unable to take advantage of this tendency.

timation of parameters governing between-contingency-table-row (as opposed
to within-contingency-table-row) relationships. An example to clarify this dis-
tinction: a within-contingency-table-row relationship would be a tendency for
precincts that have high counts of Asians voting Democrat to also have high counts
of Asians who abstain from voting. A between-contingency-table-row relationship
would be a tendency for precincts that have high counts of Asians voting Democrat
to also have high counts of blacks who vote Democrat.

Several commentators [e.g., King (1997)] have noted the difficulty in esti-
mating model parameters that govern behavior between (as opposed to within)
contingency table rows. We explored the relative paucity of information about
between-row relationships in Greiner and Quinn (2009). It appears, however, that
individual-level data can stabilize estimates of between-row parameters in an im-
portant way. Recall that in our model, we stack the logistic-transformed probability
vectors from each contingency table’s row multinomial to form a single vector of
dimension R × (C−1), which we then assume follows a multivariate normal. Ac-
cordingly, the covariance matrix of this normal (�) can be decomposed into block
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diagonal elements, which govern within-contingency-table-row relationships, and
block off-diagonal elements, which govern between-contingency-table-row rela-
tionships. As applied to the City of Boston, with black, white, Hispanic and Asian
racial groups, the matrix is as follows:

� =

⎡
⎢⎢⎣

�b �bw �bh �ba
�bw �w �wh �wa
�bh �wh �h �ha
�ba �wa �ha �a

⎤
⎥⎥⎦ .

Note that each of �ba, �wa and �ha is of dimension 2 × 2, and because each is
off the main diagonal, each has four correlations within it.

It appears that the introduction of individual-level information allows estimation
of Asian voting behavior to borrow strength from estimates of white, black and
Hispanic voting behavior by way of better and more precise estimation of the cor-
relations in �ba, �wa and �ha. Figure 4 compares the posterior intervals of these
correlations in the marijuana ballot initiative in the pure EI model versus the hy-
brid. The narrower intervals of the correlations from the hybrid, together with the
fact that most of the distributions from the hybrid have most of their mass above 0,
appear to enable better modeling of between-contingency-table-row relationships.
In other words, the correlations represented suggest that within a precinct, Asian
voting behavior is similar to that of other racial groups, particularly that of whites.
We hypothesize that this similarity, together with the substantial information about
white voting behavior (from the bounds), in turn allows non-Asian voting behav-
ior to inform estimation of Asian preferences. If we are right, this fact highlights
the importance of using a model flexible enough to allow estimation of between-
contingency-table-row relationships, something few other R × C models do.

5. Conclusion. In this paper we have proposed a hybrid count ecological in-
ference model capable of handling data sets with contingency tables of any size
and shape. We have briefly explored the benefits of count versus fraction models
in the R×C context as well as the implications of different contingency-table-level
sampling schemes. We have met the challenge of operationalizing the use of our
hybrid to voting data by conducting an exit poll in the City of Boston, and in doing
so have confronted a difficult scenario for a hybrid estimator because of (i) the
impossibility of using optimal within-table sampling schemes, (ii) the problem of
nonresponse, (iii) the additional level of aggregation occurring when more than
one precinct share the same polling location, and (iv) the desire to estimate be-
havior of groups with low VAP and turnout. Our operationalization demonstrates
that the hybrid model offers benefits to those who seek inferences regarding racial
voting patterns.
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Exit polling and racial bloc voting:
Combining individual-level and R × C ecological data” (DOI: 10.1214/10-
AOAS353SUPPA; .gz). This supplement describes the algorithms used to fit the
models described in “Exit polling and racial bloc voting: Combining individual-
level and R×C ecological data.”

Supplement B: Replication materials for “Exit polling and racial bloc Vot-
ing: Combining individual-level and R × C ecological data” (DOI: 10.1214/10-
AOAS353SUPPB; .gz). This supplement provides data and computer code that can
be used to replicate the results in “Exit polling and racial bloc voting: Combining
individual-level and R × C ecological data.”
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