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DETECTION OF RADIOACTIVE MATERIAL ENTERING
NATIONAL PORTS: A BAYESIAN APPROACH

TO RADIATION PORTAL DATA1

BY SIDDHARTHA R. DALAL AND BING HAN

RAND Corporation

Given the potential for illicit nuclear material being used for terrorism,
most ports now inspect a large number of goods entering national borders
for radioactive cargo. The U.S. Department of Homeland Security is moving
toward one hundred percent inspection of all containers entering the U.S. at
various ports of entry for nuclear material. We propose a Bayesian classifica-
tion approach for the real-time data collected by the inline Polyvinyl Toluene
radiation portal monitors. We study the computational and asymptotic prop-
erties of the proposed method and demonstrate its efficacy in simulations.
Given data available to the authorities, it should be feasible to implement this
approach in practice.

1. Introduction. With increased terrorism around the world and instability in
some nuclear-capable nations, there is a growing national safety concern about ter-
rorists bringing illicit nuclear materials into the U.S. Substantial efforts have gone
into devising strategies for inspecting containers and intercepting various types of
illicit nuclear material. In the U.S. there are 307 ports of entry representing 621 of-
ficial air, sea and land border crossing sites, through which approximately 57,000
containers enter the borders every day. For effective inspection without increas-
ing traffic congestion, the U.S. Department of Homeland Security has adopted
a multilayered approach to inspection, which consists of an analysis of customs
documents, followed by an inline automatic inspection of the containers, and an
offline stringent manual inspection for suspicious containers. For more details of
the process and the corresponding risk analysis, we refer to Wein et al. (2006) and
Martonosi, Oritz and Willis (2006).

One objective of the inline preliminary inspection procedure is to identify ra-
dioactive cargo that is being shipped in a container. The inline preliminary inspec-
tion procedure consists of scanning containers in a radiation portal monitor (RPM)
via a gamma ray Polyvinyl Toluene (PVT) scanner. Currently, 98% of incoming
containers go through this radiation scanning situated at most ports of entry. Based
on the data collected during scanning, the inline inspection procedure makes a
quick automatic decision to let a container pass or to scrutinize it further with the
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offline process. In addition, a few containers are randomly selected for offline in-
spection. For example, the Los Angeles Times (11/26/2004) reported that at the
Los Angeles port in 2004, around 12,000 containers arrived daily and, on average,
43 were inspected by hand.

The design of the RPM consists of a drive-through portal with passive PVT
sensors that detect gamma rays emitting from a source. At an inspection point, the
container is driven through the portal at low speed (4–5 mph), taking around 20
seconds. The portal captures the radiation counts at every 0.1-second interval in
a number of energy channels ranging from low to high. For example, the portals
manufactured by SAIC in certain configurations have 256 channels. The next gen-
eration of portals based on Sodium Iodide Scintillators will have 1024 channels.
The collected data consist of the radiation count in each of the channels at every
0.1-second interval, accumulated over 1 second. In practice, the data are further ag-
gregated over multiple channels in a number of nonoverlapping coarser windows.
Typical configurations involve 2–8 nonoverlapping exhaustive windows from very
low energy to very high energy. In our paper we focus on nonoverlapping energy
windows, referred to as windows in the rest of this paper. For an excellent expo-
sition of the details related to energy windowing, we refer to Ely et al. (2004) and
Ely et al. (2006).

Given that the distance from the source changes as a container is driven through
the portal, radiation counts will also change. The upper frame of Figure 1 shows
an example of radiation count data as a container is rolling through a radiation por-
tal (courtesy of Pacific Northwest National Laboratory). The figure depicts read-
ings of a container passing through a 2-window system corresponding to the high-
and low- energy windows. The upper frame of the figure superposes the readings
of the two windows with the different scales on the left- and right-hand axes, while
the lower frame plots the ratio of low- to high-energy readings. Currently, only the
total count corresponding to the distance which yields the maximal total count
is used for detection purposes. When the total count exceeds a preset threshold,
a container is classified as potentially dangerous. However, this crude method may
fail to detect dangerous man-made sources in small quantities when mixed with
naturally occurring radioactive materials. In Section 5 we show a numerical exam-
ple where all containers have approximately the same mean total count, which the
current inspection cannot differentiate.

In this paper we propose a decision theoretic approach based on Bayesian meth-
ods for identifying suspicious containers using the data collected during the inline
inspection. This paper is organized as follows. In Section 2 we introduce the avail-
able RPM data collected by the inline inspection system, and describe a statistical
model for the RPM data based on a Poisson process. In Section 3 we introduce the
machinery needed for a Bayesian approach and propose a naive Bayesian classi-
fier. In Section 4 we show that the proposed procedure is asymptotically accurate
in the sense that the probability of misclassification goes to zero as the mean radi-
ation counts become large. In Section 5 we explore the efficacy of our procedure
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FIG. 1. Gamma counts as a container of NORM passes a 2-window PVT. The container passes
through the portal for around 23 seconds. The upper frame shows the superposition of the low- and
high-energy windows with different scales. The lower frame gives the ratio of counts between the two
windows.

by numerical examples based on real energy spectra for exact classification. We
also propose an algorithm to simplify the classifier when the objective is limited to
discriminating between dangerous and nondangerous materials. Finally, this paper
concludes with a discussion of some of the implementation challenges and future
extensions.

2. The Poisson model for radiation emission data. A container may include
man-made radioactive material of high concern, including Highly Enriched Ura-
nium (HEU) or Weapons Grade Plutonium (WGPu), as well as other common
classes of cargo that have been officially declared in filings with Customs. Some
common classes are naturally occurring radioactive materials (NORM) and are
often misclassified based on the currently deployed methodologies during inline
inspection. Some common NORM classes include fertilizer, kitty litter and re-
fractory material. The radioactivity in NORM is caused by some ingredients with
natural radioactivity, for instance, clay from some regions in Mexico.

For the remainder of this paper, we tackle the objective of classifying a con-
tainer into one of K classes. Initially we consider each class to be either a NORM
or a man-made nuclear material. Later on we shall discuss the situation involv-
ing mixtures of materials. We first introduce the notation for the radiation data.
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Let Y denote the class variable, Y = k if the container being inspected is in the kth
class. Let Z denote all of the radiation count data obtained at a RPM with B win-
dows corresponding to a particular container. Let Rd = (R1,d , . . . ,RB,d)

′ denote
the vector of counts at a distance d = d(t) away from the detectors. Time t is used
as the surrogate of d in Figure 1. Z is a B × T matrix

Z = (
Rd(1),Rd(2), . . . ,Rd(T )

) =

⎛
⎜⎜⎝

R1,d(1) R1,d(2) . . . R1,d(T )

R2,d(1) R1,d(2) . . . R2,d(T )

. . . . . . . . . . . .

RB,d(1) RB,d(2) . . . RB,d(T )

⎞
⎟⎟⎠ ,(1)

where T is the total number of sampling times, t = 1, . . . , T . Finally, let Nd denote
the total counts at distance d , Nd = ∑

b Rb,d = 1′Rd .
Poisson models have been frequently used in modeling radiation counts and

other types of emission counts [Karlin and Taylor, 1998]. We use the following
Poisson process model (2) for the RPM count data, which will be subsequently
used to build a naive Bayesian classifier in the next section. Let M be the quantity
of material in a container, and let λb,k be the emission rate for a unit quantity of
class k in window b at the distance d = 0. Given that a container has M quantity
of the kth material class and is at distance d from the detector,

Rb,d |(Y = k, d,M) ∼ Poisson(g(d,M)λb,k)(2)

b = 1, . . . ,B, d = d(1), . . . , d(T ),

where all Rb,d are independent, and g(d,M) is an unknown function. One would
expect g(d,M) to be decreasing in distance d and increasing in quantity M , with
g(0,1) = 1. The specific form of g depends on the physical mechanism of sensors,
signal processing and various environmental factors.

Ely et al. (2004) and Ely et al. (2006) delve into a substantive discussion of
g(d,M) through the amount of information available in Nd , which they find is
very unreliable. Moreover, the function g is associated not only with distance d

and amount of material M , but also with various environmental conditions (e.g.,
weather and background noise), vehicle shielding (which varies from container to
container), and a container’s angular placement relative to the detectors (which
changes as the vehicle traverses through the portal), and sensitivity of sensors.
Thus, g is a function of many more variables than just the quantity and distance.
Modeling g would be very difficult since many factors are unknown or not col-
lected. We will not pursue this parametric line of inquiry here because of the in-
herent difficulties mentioned above and the lack of publicly available data.

Given the difficulties in modeling g, we consider g as a nuisance parameter and
remove it for inference by appropriate conditioning. To realize this, note that Nd

follows independent Poisson distributions with mean g(d,M)
∑

b λb,k . By con-
struction, the conditional distribution is

P(Rd |Nd,Y = k, d,M) ∝ P(R1,d , . . . ,RB,d,Nd |Y = k, d,M)

= P(R1,d , . . . ,RB,d |Y = k, d,M).
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We then have

P(R1,d , . . . ,RB,d |Y = k, d,M,Nd)

∝ ∏
b

[g(d,M)λb,k]Rb,d /(Rb,d !)(3)

∝ Nd !
R1,d ! · · ·RB,d !

(
λb,k

λk

)Rb,d

× [g(d,M)λk]Nd

Nd ! ,

where λk = ∑
b λb,k . The marginal distribution of Nd is easily shown to be

Poisson(g(d,M)λk). It follows that the conditional distribution is

Rd |(Y = k, d,M,Nd) ∼ multinomial(Nd;p1,k, . . . , pB,k),(4)

where pb,k = λb,k/λk, b = 1, . . . ,B . Note that 0 ≤ pb,k ≤ 1 and
∑

b pb,k = 1.
Hence, given Nd , Rd follows a multinomial distribution with the probability pa-
rameters p1,k, . . . , pB,k independent of d . In addition, by model (2), Rd(t), t =
1, . . . , T , at different distances are all independent. It follows that, if we were to
base our inference conditioned on Nd , that is, the total radiation count at time d

for all windows, we would not require any specific functional model for g(d,M)

and Nd . The lower frame of Figure 1 corresponds to a real data example that val-
idates this assumption. It can be seen that the ratio in counts between the two
windows is approximately constant during the actual scan lasting around 23 sec-
onds.

Let pk = (p1,k, . . . , pB,k)
′ be named as the energy spectrum of the kth class

in the rest of this paper. The energy spectrum is unique for a material class and
invariant to g(d,M). By the above derivation, we can simply focus on the energy
spectrum pk . This is more pertinent and stable than the total radiation count Nd ,
which depends on the unknown g(d,M). The disadvantage of using the condition-
ing likelihood is that it would not be possible to distinguish between two mater-
ial classes that have an identical energy spectrum. We also remark that Ely et al.
(2006) suggested that an energy windowing method should be used in conjunction
with a gross counting threshold set at a relatively insensitive level.

The proposed conditional multinomial model has additional advantages as
well. First, we can aggregate or disaggregate windows while keeping the new
counts multinomial. Further, since our multinomial distribution depends on d only
through Nd , we can pool the information from the counts obtained at many dis-
tances. We do not have to depend upon the radiation data at the maximum of Nd

as the current approach does. Finally, conditioning on Nd allows us to implement
a classification approach parallel to the naive Bayes classifier. We describe the
development of the Bayesian classifier in the next two sections.

3. Bayesian classifier. For an introduction to the naive Bayes classification,
we refer to Ye (2003) and Klosgen and Zytkow (2002). Here we construct a corre-
sponding generative naive Bayesian classifier. We start with two distinct material



A BAYESIAN APPROACH TO RADIATION PORTAL DATA 1261

classes k and k′. By the Bayes theorem,

P(Y = k|Z)

P (Y = k′|Z)
= P(Y = k)P (Z|Y = k)

P (Y = k′)P (Z|Y = k′)
,(5)

where P(Y = k) and P(Y = k′) are the prior probability. Apparently, a container
is classified as class k if (5) is larger than 1. Generalizing this to K classes, we
have the following classifier:

Y = arg max
1≤k≤K

[P(Y = k)P (Z|Y = k)].(6)

It is easily shown [Ferguson (1967)] that this rule is optimal in terms of Bayes risk
as long as the cost of misclassification is the same across the categories.

The naive Bayesian classifier (6) has a convenient form for computation. Further
conditioning on all Nd(t), t = 1, . . . , T , by (4), we have

P
(
Z|Y = k,Nd(1), . . . ,Nd(T )

) ∝ ∏
b

p
∑

d Rb,d

b,c .(7)

Equivalently, the classifier can be represented by the log likelihood

Y = arg max
1≤k≤K

[∑
b,d

Rb,d logpb,k + logP(Y = k)

]

(8)
= arg max

1≤k≤K
[1′Z′(log pk) + logP(Y = k)].

This form of the naive Bayesian classifier is straightforward to compute, especially
in the software packages optimized for matrix operations such as Matlab and R.

The naive Bayesian classifier (6) can be easily extended to accommodate differ-
ential losses to misclassification errors. Let Wk′,k denote the cost of misclassifying
a container to class k′ when it actually belongs to class k. Let Wk′,k = 0 when
k′ = k. The expected loss of a classification is L(Y = k′|Z) = ∑K

k=1 Wk′,kP (Y =
k|Z). The optimal Bayesian decision rule is then Yw = arg mink′ L(Y = k′|Z). Note
that (6) is a special instance using 0–1 loss of the decision rule Yw .

The Bayesian classifier in this section assumes that the energy spectra pk is
known for a variety of material classes. In the remainder of this section we discuss
the Bayesian learning to reduce the uncertainty in estimating pk for both lab and
field practices. Given Y = k, that is, the material class is known either by experi-
mental set up or by an offline detailed inspection, we consider the conjugate prior
for pk , that is, the Dirichlet(θ1,k, . . . , θB,k) distribution. Then, training our classi-
fier on the data obtained from past containers with known classes, we estimate pk

by

p̂b,k =
(∑

i,d

Ri
b,d + θb,k

)/(∑
i,b,d

Ri
b,d + ∑

b

θb,k

)
,(9)

where Ri
b,d is the radiation count for the ith container in the kth class. The sum-

mations over i are over the containers with class k contents in the training data.
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For determining the parameters of the conjugate priors, one would typically
use expert judgment. However, given the number of containers passing through
U.S. ports, a prior is unlikely to have any significant effect on the ultimate deci-
sion except when the class is very rare. Typically, conjugate priors are somewhat
restrictive in terms of the beliefs they can represent. Dalal and Hall (1983) and
Diaconis and Ylvisaker (1985) show that an appropriate mixture of natural conju-
gate priors can approximate any arbitrary belief when the underlying distributions
belong to an exponential family. Further, the corresponding posteriors converge
almost surely to the true posterior. Given these results, it is possible to extend this
development to mixtures of Dirichlet as priors for multinomial parameters. Using
the results shown in those papers, it can be shown that the resulting estimates are
the re-weighted mixtures of the estimates in (9).

4. Asymptotic properties. We have so far shown that the proposed procedure
is an optimal Bayesian classifier. In this section we study the properties of our pro-
cedure for a fixed but arbitrary K , by the asymptotic means assuming the Poisson
model (2) and the multinomial model (4), respectively.

We first consider the proposed classifier with K classes with energy spec-
tra pk, k = 1, . . . ,K , under the multinomial model (4) by conditioning on N =∑

d Nd . For the development below, we consider the nontrivial case where all en-
ergy spectra are positive and distinct corresponding to each of the material class.
Let pk′ be the true energy spectrum. The optimal Bayes classifier is Y = k′ if and
only if (6) holds for Y = k′, namely,

k′ = arg max
k

P (Y = k)P (Z|Y = k).

Taking log of ratio of the terms corresponding to k′ and k, this is true if and only if

log
P(Z|Y = k′)P (Y = k′)
P (Z|Y = k)P (Y = k)

≥ 0 for all k.(10)

Let Lb = ∑
d Rb,d and N = ∑

d Nd . Since (L1, . . . ,LB)|N follows a multinomial
distribution with parameters (N;pk′), by substituting the likelihood of P(Z|Y) for
Y = k and k′, we have (10) if and only if

1

N

[∑
b

Lb log
pb,k′

pb,k

+ log
P(Y = k′)
P (Y = k)

]
≥ 0.(11)

Since Lb follows binomial(N,pb,k′), we have |Lb/N − pb,k′ | = op(1). Further,
the second term in (11) is O(N−1). Thus, the left-hand side of (11) is

∑
b

[
pb,k′ log

pb,k′

pb,k

+ op(1) + O(N−1)

]
= η(pk′,pk) + op(1)(12)

as N → ∞,
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where η(pk′,pk) = ∑
b pb,k′ log

pb,k′
pb,k

is the Kullback–Leibler divergence be-
tween the two multinomial distributions with parameters (1;pk′), and (1;pk).
By the properties of the Kullback–Leibler divergence and the Gibbs’ inequality,
η(pk′,pk) ≥ infs,s 	=k′ η(pk′,ps) > 0 for all k 	= k′. Thus, k′ will be selected with
probability approaching 1.

Now we generalize the above result, which says that our classifier is consis-
tent for the multinomial case to the general Poisson case without conditioning
on N . For the Poisson case, we have the total mean counts across d as λk′ =∑

b,d g(d,M)λb,k′ . Suppressing the subscript k′, as λ → ∞, N/λ = 1+op(1), and
thus, dividing the left-hand side of equation (10) by λ again gives equation (12).
Thus, again, k′ will be selected with probability approaching 1. Summarizing this,
we have the following theorem.

THEOREM 1. Under the multinomial model (4) and the Poisson model (2) and
the assumption that all energy spectra p1, . . . ,pK are distinguishable, as λ → ∞,

for a given true class k′ in 1, . . . ,K , P(Y = k′|Z)
p→ 1.

According to this result, irrespective of K , as long as all energy spectra are
distinct, as the counts become large, the classifier proposed here will converge
to the true underlying material. Further, it follows from the proof that for given
counts, the probability of misclassification is higher for materials closer in the
Kullback–Leibler divergence sense.

We now consider robustness of our procedure to changes in the true underlying
energy distribution. By an argument that is an extension of the one used in proving
the above theorem, the following theorem can be shown similarly.

THEOREM 2. Under the multinomial model (4) and the Poisson model (2),
and an arbitrary energy spectrum, p∗ = (p∗

1, . . . , p∗
B) not in p1, . . . ,pK . Let k′ =

arg min1≤k≤K η(p∗,pk). Then as λ → ∞, P(Y = k′|Z)
p→ 1.

This result shows that even if the true distribution is not in the classification
scheme, the ones closest to it will be selected. In this sense we have robustness
with respect to variations in the underlying distribution.

REMARK. Robustness with respect to correlated data. In the development
above, we assumed that Rb,d are all independent over d . One would expect by
the underlying physics that radiation counts are independent in different time in-
tervals. Given that our development parallels the naive Bayes models, it follows
that the classifier (6) is robust to this violation. For further discussion of this we
refer to Domingos and Pazzani (1997) and Zhang (2004) who show robustness of
the models with violations to independence.
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In summary, the results indicate that our procedure is robust with respect to
variations in the underlying distribution and will scale up to large numbers of cat-
egories as long as the counts are large. The counts increase if either M increases,
the speed of driving through the portal decreases or the number of d’s increase.
Thus, from a policy perspective, for improving the detection probability, the most
attractive option is to pool across d’s. It can also be shown by the Gibbs inequality
that as the number of windows increases by further refinement, the corresponding
Kullback–Leibler divergence between any two distributions also increases. Thus,
for the next attractive option, one needs to carry out a cost–benefit analysis be-
tween reducing the speed and increasing the number of windows.

5. Numerical studies.

5.1. Classification of all classes. To explore and illustrate the sensitivity and
specificity of our method, we consider a number of simulated examples and sce-
narios. The first example is based on energy spectra emitted by the following 7
classes of material: WGPu, HEU, fertilizer, tiles (refractory material), kitty lit-
ter, road salt and background (i.e., a container’s radiation is undetectable from the
background). The energy spectra were synthesized from a few sources, including
Ely et al. (2004) and Ely et al. (2006), presentations from Pacific Northwest Na-
tional Laboratory (PNNL) and consultation with PNNL scientists. For these data,
the reported energy spectra only consisted of 3 windows. Table 1 lists the energy
spectra of mean counts for 1 unit of the 6 pure material classes and background at
the distance defined as d = 0. The man-made nuclear material classes were chosen
based on their importance for detection in ports, while the NORM classes were se-
lected based on their probability of misclassification indicated in Table 2 (courtesy
of PNNL). Radiation from the NORM classes is primarily from potassium-40,
which naturally exists in many common materials. For reference, false positive
probabilities for some typical NORM materials are shown in Table 2 (compiled

TABLE 1
The energy spectra for the 6 pure material classes and background. Numbers in parentheses

are λb,k

Class Window 1 Window 2 Window 3

HEU 0.954 (1.77 × 104) 0.033 (616) 0.013 (247)
Fertilizer 0.635 (2.72 × 103) 0.243 (1.0 × 103) 0.122 (519)
Tile 0.658 (2.22 × 103) 0.242 (818) 0.100 (338)
WGPu 0.934 (6.09 × 104) 0.061 (3.9 × 103) 0.005 (285)
Kitty litter 0.631 (1.7 × 103) 0.292 (790) 0.077 (208)
Road salt 0.662 (2.1 × 103) 0.273 (873) 0.065 (208)
Background 0.651 (1.4 × 103) 0.249 (519) 0.100 (207)
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TABLE 2
Some frequently misclassified NORM classes by the currently deployed methodology. Numbers are

proportions of false positive for detecting radiation risk

Source class Port A Port B Port C

Kitty litter 0.34 0.25 –
Abrasive pads 0.14 0.05 –
Mica 0.05 – –
Fertilizer 0.05 0.13 –
Ceramics/tile 0.04 0.09 0.28
Granite 0.04 – 0.10
Salt – 0.05 –
Trucks/cars 0.02 – –
Aluminum – 0.15 –
Other metal – 0.03 –

from personal communications with PNNL), per the currently deployed method
and publicly available data. The units of quantity are different for different classes.
Ely et al. (2004) and Ely et al. (2006) considered 1 unit WGPu as 99.4 g in a pow-
dered oxide form and doubly contained in schedule-80 stainless steel closed pipes
that provide shielding. Even with shielding, 1 unit WGPu is still highly radioac-
tive. 1 unit HEU was considered as 123 g of 93.1% enriched uranium consisting
of a number of stacked foils, which is a moderately strong radiation source. For all
NORM material classes, 1 unit is 5 kg. We also consider another man-made class
as a mixture of 0.5 unit HEU and 0.5 unit of WGPu.

To numerically simulate the radiation data, we set up g(d,M) = (1 − d)M

and 20 distances (0.9,0.8, . . . ,0.1,0,0,0.1, . . . ,0.9), corresponding to the portal
passing-through time for a container. As discussed previously, the specific form of
g(d,M) does not affect the Bayesian classifier, but is only needed for generating
data. This simulation scenario is set up to have the total counts

∑
d Nd comparable

to the actual scanning process shown in Figure 1. In the first simulation study, we
generated 10,000 samples of Poisson variables at each d for a variety of mater-
ial classes. We assign a prior probability 10−9 to each man-made source, and use
equal prior probability for each NORM class. Table 3 reports the misclassification
probabilities. The Bayesian classifier has excellent performance in this scenario.
It was able to classify all materials correctly except for minor confusion between
tiles and background, both not dangerous. In particular, there is no misclassifica-
tion between man-made source and NORM in 10,000 simulations.

REMARK. At this scale of total counts, the classifier is relatively insensitive to
the choice of prior P(Y = k). From (8), it can be seen that as long as log(P (Y =
k)) = op(1′Z), the prior should have no practical impact on the classifier. Recall
that the actual counts are large (see Figure 1). Hence, the prior probability for man-
made source is unlikely to influence the classification remarkably. Since the total
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TABLE 3
Summary of classification simulations with 8 classes. Classes A to H are WGPu (A), HEU (B),

mixture of 0.5 unit. WGPu and 0.5 unit HEU (C), fertilizer (D), tile (E), kitty litter (F), salt (G) and
background (H)

Classified

True class A B C D E F G H

A 1 0 0 0 0 0 0 0
B 0 1 0 0 0 0 0 0
C 0 0 1 0 0 0 0 0
D 0 0 0 1 0 0 0 0
E 0 0 0 0 0.937 0 0 0.063
F 0 0 0 0 0 1 0 0
G 0 0 0 0 0 0 1 0
H 0 0 0 0 0.111 0 0 0.889

counts in simulations are also large (comparable to Figure 1), there is not a single
change in misclassifying a man-made source to NORM, or vice versa, if we use
the equal prior probability on all classes, or change the prior probability of each
man-made source to 10−9.

We now study a more complex situation by considering a more devious terrorist
strategy of mixing materials. The man-made source possessed by terrorists, such
as WGPu or HEU, may be mixed with a NORM material class. Moreover, the total
count may be made small enough to pass the current inline inspection. Hence, to
challenge the classifier, the main sensitive material classes should allow mixtures
of man-made and NORM classes. For hard to detect situations, the mixture should
have a small quantity of a man-made source and a relatively large quantity of
NORM. In the next numerical study, we consider this possibility by using a list of
mixtures of the known classes except for background. Each mixture class mixes
WGPu or HEU with one of the 4 NORM classes. Assuming that the mixture is
noninterfering, the energy spectrum for the mixture of two classes k and k′ with
quantities M and M ′ will be given by

[(1 − d)Mλb,k + (1 − d)M ′λb,k′ ]∑
b[(1 − d)Mλb,k + (1 − d)M ′λb,k′)] , b = 1, . . . ,B.(13)

We considered 3 small quantities for each man-made source class to simulate
the different diluting effects. The quantity of HEU was 0.025, 0.05 or 0.1 unit,
and the quantity of WGPu was 0.005, 0.01 or 0.025 unit. The quantity of HEU is
slightly larger than WGPu due to the relatively weaker radioactivity by the defini-
tion of 1 unit HEU. All of the classes being inspected except for background have
the same mean count in the first window. Since the first window has much larger
counts than the other two windows, a real container of all these classes will have
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approximately the same total counts. We set the mean count at distance d = 0 in
the first window, Mλ1,k + M ′λ1,k′ at 3000 for all mixture classes. The quantity of
all NORM classes is solved from the preceding restriction. For example, the mix-
ture class “0.025HEU + Fertilizer” has 0.025 unit HEU and 0.941 unit fertilizer.
The mean value 3000 was set to be close to 1 unit of NORM and far less than 1 unit
of a man-made source, representing a scenario that could be encountered at port
inspection. It is likely that the currently deployed method will not detect most of
the containers with small quantities of HEU or WGPu, since it is based on maximal
gross counts. We also considered the 4 pure NORM classes and the background.
Except for background, the quantities of the 4 NORM classes were set accord-
ing to Mλ1,k = 3000. For instance, the pure kitty litter class under this constraint
has 1.759 units. This gave a total of 29 material classes to be classified. We call
the mixture classes with man-made source as dangerous classes, and the NORM
classes and background as nondangerous classes. Since the material classes have
energy spectra consisting of 3 windows, we can plot the corresponding proportion
of spectra in two energy windows, which is shown in Figure 2. As can be seen,
some dangerous and nondangerous classes are intermingled.

The Bayesian classifier again has very good performance in this scenario. For
all dangerous classes, the misclassification probability is below 0.005 (including
misclassified as other dangerous classes). Most of the misclassification probabil-
ities for NORM classes are below 0.01, except for the misclassifications between
tile and background (0.06 for misclassifying tile as background, and 0.11 for mis-
classifying background as tile). This indicates that the Bayesian classifier scales
well and is hard to defeat by the simple strategy of mixing a man-made nuclear
material with a NORM.

FIG. 2. Illustrations of classes. The left frame has all 29 classes as benchmark and the right frame
has 10 automatic selected benchmarks. Circle: dangerous nonbenchmark; cross: dangerous bench-
mark; ×: nondangerous benchmark; triangle: nondangerous nonbenchmark.
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5.2. Classification into dangerous versus nondangerous classes. In the previ-
ous section we examined the problem of exact classification of all materials, and,
consequently, we used all material classes to build the classifier. Here we consider
a more limited objective for preliminary screening, namely, classify a given ma-
terial as dangerous or nondangerous from a given large list of K dangerous (ma-
terial involving man-made nuclear sources including mixtures) and nondangerous
materials. After classifying in these categories, one can use a scheme akin to the
previous section to identify the specific dangerous material at the next stage.

Given this limited objective, and that there may not be any natural differenti-
ation (e.g., hyperplane in some transformed space) in the spectra profile of dan-
gerous and nondangerous materials, this problem cannot be solved by the standard
binary classification methods. Instead, we consider the following scheme, whereby
we build the classifier based on a subset of materials (called benchmark classes)
from the list. A material is classified as dangerous if the corresponding selected
benchmark material is dangerous; otherwise it is nondangerous.

For this setting, the simplest scheme would be to use all materials as benchmark
classes. The question we address is the following: can one be more parsimonious
in the number of benchmark materials to build the classifier? Having a smaller
number of benchmark classes of materials should help in scaling up the solution.
Below we first investigate this question in the context of 29 materials considered in
the last subsection and compare this “all classes” solution with an algorithmically
derived solution.

The algorithm to select benchmark classes is iterative and does not require
specific structure of the materials. It is motivated by the support vector machine
method and forward selection method [Hastie, Tibshirani and Friedman (2009)].
However, unlike the support vector machine method, which finds the separating
hyperplane with the biggest margin, we identify high leverage points that are diffi-
cult to distinguish and use them as benchmark classes and we iterate on the scheme
by forward selection. Given that the total counts are large in our applications, for
identifying a high leverage point, we revert to Theorem 2, which states that if a
class is not in the classifier, the class nearest in the Kullback–Leibler sense will be
selected by the classifier. For describing the algorithm, the following notation is
in order. Suppose that of the K major distinct classes, K1 classes are dangerous,
and K2 classes are nondangerous, all with distinct energy spectra. Let D and ND

be the corresponding sets of material. At the ith iteration, the algorithm produces
a list of dangerous and nondangerous material to be used as the benchmark class
for the next stage, and let us denote those subclasses as Di and NDi . Finally, let
η(p,A) = inf{η(p,pk), k ∈ A}, where η(p,pk) is the Kullback–Leibler divergence
defined in Section 4. The algorithm for selecting benchmark classes is as follows.

ALGORITHM.
(a) For i = 1, initiate by taking D1 and ND1 to be any pair of dangerous and

nondangerous material which are nearest in η∗, the symmetrized version of η [i.e.,
η∗(p,q) = η(p,q) + η(q,p)].
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(b) At the stage i+1, let ADi+1 = {k :k ∈ D−Di, η(pk,Di)−η(pk,NDi) >

0} and ANDi+1 = {k :k ∈ ND − NDi,η(pk,NDi) − η(pk,Di) > 0}. Note that
if the total counts are large, ADi will be misclassified with high probability as
nondangerous and vice versa.

(c) If ADi+1 and ANDi+1 are empty, then stop. Otherwise Di+1 = Di ∪ k∗,
where

k∗ = arg min
k∈ADi+1

η(pk,NDi).

Similarly construct NDi+1.
(d) Repeat this process till ADi+1 and ANDi+1 are empty. Note that when we

stop, we have asymptotically probability 1 of correct classification of materials in
dangerous and nondangerous classes.

In our previous example with 29 classes, the above algorithm leads to only 10
benchmark classes. Table 4 gives the corresponding probabilities of misclassifica-
tion. All solutions have exceptional performance and are indistinguishable. Based
on this comparison, if the binary classification is the main objective, it would be
always preferable to use the algorithmic approach, since it reduces the complexity
without penalizing performance. Further, it does not require any specific structure
of the materials.

Next, we examine the performance of the algorithm in a large study with 100
classes, consisting of 75 dangerous and 25 nondangerous. The dangerous classes

TABLE 4
Summary of simulations with 29 classes: numbers are the probability of detecting dangerous

radioactive materials. The two columns under each class correspond to all 29 classes as benchmark
and the automatic selected benchmark. The selected benchmark classes are marked with a star

0.025HEU + Fertilizer 1 1 0.005WGPu + Fertilizer* 1 1
0.05HEU + Fertilizer 1 1 0.01WGPu + Fertilizer 1 1
0.1HEU + Fertilizer 1 1 0.025WGPu + Fertilizer 1 1
0.025HEU + Tile 1 1 0.005WGPu + Tile* 1 1
0.05HEU + Tile 1 1 0.01WGPu + Tile 1 1
0.1HEU + Tile 1 1 0.025WGPu + Tile 1 1
0.025HEU + Kitty litter* 0.997 0.997 0.005WGPu + Kitty litter* 0.999 1
0.05HEU + Kitty litter 1 1 0.01WGPu + Kitty litter* 0.999 1
0.1HEU + Kitty litter 1 1 0.025WGPu + Kitty litter 1 1
0.025HEU + Salt 1 1 0.005WGPu + Salt* 1 1
0.05HEU + Salt 1 1 0.01WGPu + Salt 1 1
0.1HEU + Salt 1 1 0.025WGPu + Salt 1 1
Fertilizer* 0 0 Tile* 0 0
Kitty litter* 0 0 Salt* 0.011 0.012
Background 0 0
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were mixtures of a man-made source with 4 NORM classes. The quantity of man-
made source was either 0.025 unit HEU or 0.005 WGPu, and the quantities of
4 NORM classes were generated from a Dirichlet distribution with parameters
(0.25,0.25,0.25,0.25). The nondangerous classes were mixtures of 4 NORM
classes, and the quantities were generated independently from U(0,0.25). This
scenario is more stringent than the previous scenarios, since this scenario uses
the smallest quantities of man-made sources used in the previous scenarios. We
generated 50 sets of classes. The mean number of benchmark classes chosen by
the algorithm is 6.9 and the standard deviation (sd) is 5.7. The median number of
benchmark classes is 5 and the median absolute deviation (mad) is 6. For each of
the 50 sets of generated classes, we ran 1000 simulations to evaluate the perfor-
mance. The mean probability of misclassifying a dangerous class as nondangerous
is 0.001 (median = 0.000, sd = 0.009, mad = 0.000), and the mean probability
of misclassifying a nondangerous class as dangerous is 0.008 (median = 0.000,
sd = 0.037, mad = 0.000).

In summary, the numerical examples in this section show that the parsimonious
benchmark classes chosen by the proposed algorithm retain the capability of de-
tecting illicit nuclear material and are more efficient in computation.

6. Discussion. We have proposed a Bayesian approach for modeling the en-
ergy distribution as well as the total energy emitted by an unknown material class.
We have also proposed a Bayesian decision rule for classifying a new container
into one of the known classes. Our approach uses all available data compared to the
currently deployed method, which only uses the maximal counts. We have exam-
ined its robustness properties by simulations and asymptotic arguments and have
shown that the proposed approach is scalable. For binary classification between
dangerous and nondangerous materials, we have proposed a scalable algorithm for
selecting a small number of benchmark classes motivated by the support vector
machine and forward selection methods. The results in this paper are encourag-
ing compared to the false positives reported by the currently deployed method in
Table 2.

Since our approach is based on classification, two questions naturally emerge
for our and other classification approaches, namely, (1) to what extent is the proce-
dure robust with respect to variation in the underlying distribution? and (2) to what
extent can one entertain the possibility of none of the above classes? Theorem 2
and ensuing discussion show that our approach is robust in the sense that even if
the true distribution is not in the classifier, the benchmark class closest to it will
be selected. While our and all other classification approaches do not allow a di-
rect answer to the second question, it should be feasible to perform a Chi-squared
goodness of fit test for the selected class. If such a test rejects the hypothesis, then
one possibility is to screen such a container. Clearly, the efficacy of such a simul-
taneous procedure needs to be further investigated. Also, since our approach does
not depend upon the number of windows and the time to pass-through the portal, it
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is likely to be easily extendable to newer portals, more windows, material classes
and changes in design.
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