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Abstract. This work is concerned with the existence and regularity of solutions to the Neumann problem associated with a
Ornstein—Uhlenbeck operator on a bounded and smooth convex set K of a Hilbert space H. This problem is related to the re-
flection problem associated with a stochastic differential equation in K.

Résumé. Dans cet article nous étudions 1’existence et la régularité des solutions d’un probleme de Neumann associé a un opérateur
de Ornstein—Uhlenbeck défini sur un domaine convexe K, borné et régulier dans un espace de Hilbert H. Le probleme est 1ié a un
probleme de réflexion associé a une équation différentielle stochastique dans le domaine K.
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1. Introduction

We are given a non-degenerate Gaussian measure @ = N with mean 0 and covariance operator Q in a separable
Hilbert space H (with scalar product (-, -) and norm | - |). We fix « € [0, 1] and consider the following Neumann
problem on a regular convex subset K of H,

rMp—Lyp=f inkK,
{BW—O on X, (1.1)

=

where A > 0, ¥ is the boundary of K, f: H — R is a given function on H and L is the Ornstein—Uhlenbeck operator

T
— 5l 07 Dy). (12)

1 _
Ly := ETr[Ql O‘Dz(p]
We shall denote by A the self-adjoint operator A := Q~!. Since . is not degenerate, there exists § > 0 such that
(Ax, x) > 8|x|2, Vx € D(A) for some § > 0. Of course we have also that Tr A~} < oo.
Concerning K, we shall assume that
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Hypothesis 1.1. There exists a convex C®-function g: H — [0, 00) with g(0) =0, g'(0) = 0 and D?g positively
defined, i.e., (ng(x)h, h) > K|h|2, Vh e H,x € H, where k > 0, such that

K={xeH:gx) <1}, Y={xeH:gx)=1}.

Moreover, we also suppose that D*g is bounded on K and that g and all its derivatives grow at infinity at the most
polynomially.

We denote by ux the surface measure induced by n on X (see [5,11,12]) and by n(y) the inner normal to K at y,
that is

Dg(y)
n(y) = (1.3)
[Dg(y)l
By Hypothesis 1.1 it follows that
Lemma 1.2. K is convex, closed and bounded. Moreover there are y, p, § > 0 such that
(Dg(x), x)>yIx|* VxeH, |Dg(x)| <8 VxeKk, (1.4)
)= Ll vxeH, (15)
|Dgx)|=p VxeX. (1.6)

Proof. We have
Dg(x) = /01 ng(tx)x dt VxeH.
Therefore
<Dg(x),x> = /(;I(ng(tx)x,x)dt > K|x|2 Vx e H,

which implies the first estimate in (1.4) and also that Dg is bounded on K.
Similarly by

1
g(x) =/ <Dg(tx),x>dt Vxe H
0

and (1.4) it follows (1.5). This implies that K is bounded and 0 € K , Where K is the interior of K. Finally by (1.4) it
follows (1.6) otherwise there is {x,} C X' such that Dg(x,) — 0. Taking into account that 0 < g(x) < (Dg(x), x) and
that {x, } is bounded the latter implies that 1 = g(x,) — 0 which is of course absurd. [l

It is easy to see that p is the unique invariant measure of the Ornstein—Uhlenbeck process in H,

{dX(t) + $AYX (1) dt = ACTD/2AW (1), (1.7)

X0)=x€eH,
where W is a cylindrical Wiener process in a filtered probability space
(9, F,P, {rgzt}tz())

of the form

(W(n).2)=>_ Bu(t)(z.ex), t>0VzeH.
k=1
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Here {8k} is a sequence of mutually independent real Brownian motions on (£2,.%, {%};>0, P) (see, e.g., [9]) and
{ex} is an orthonormal basis in H which will be taken as a system of eigen-functions for A for simplicity, i.e.,

Aer =arer VkeN,

where obviously a; > §.
Let us describe the results of the paper. First we consider the symmetric Dirichlet form

a(<p,1ﬁ)=/(A(o‘_l)/zD(p,A(o‘_l)/sz)dU Vo, € CH(K), (1.8)
K

where v = w and show that a is closable (equivalently continuous) in the space Wlf, (K, v) (see Section 2).

1
n(K)
We notice that for « = 0 this space reduces to the Malliavin space D?(K, v). Here we use a recent result about an
integration by parts formula on K proved in [4].

Then we define a weak solution of the Neumann problem (1.1) in the usual way as a solution ¢ € W:"il (K,v) of

the equation
1
A/Hdean,w:/wadv Vi e W2 (K, v), (1.9)

where f € L2(K, v).

If we denote by N the Kolmogorov operator corresponding to the Dirichlet form (1.8) then (1.9) can be equivalently
written as Ap — N¢ = f. The second-order regularity of ¢ as well as the proof that it satisfies the Neumann boundary
condition on X in the sense of trace is one of the main results of this work (Theorem 3.5). In the previous work [4]
this result was proved in the case o = 1. It should be emphasized that, though the treatment closely follows [4], there
are, however, some notable differences which will be mentioned later on. The nice feature of problem (1.1) is that for
all o the corresponding Ornstein—Uhlenbeck operators (1.7) have the same invariant measure it = N and this allows
a unified treatment. Moreover, since the trace assumption on A~ is weaker than that on A~! we can treat into this
general functional setting reflection problem not treatable for « = 1.

We note that in specific situations A is a linear elliptic operator with suitable boundary conditions on a bounded
and open subset & of R4, (See Section 5 below.)

The second part of the paper is devoted to the construction of a process X (¢, x) such that the semigroup P; generated
by N is expressed as Prp(x) = E[p(X (¢, x))] where X is formally the solution to the following stochastic variational
inequality
{dX—F%A"‘th—}—A“‘lNK(X)dt 5 A=D/2qw,, (1.10)

X(0)=x,

where Nk is the normal cone to K, i.e.,

Ng(x) =2 ifx € K,
Ng(x) ={in(x),A >0} ifxeX.

When « = 1 this problem is known in literature as the stochastic reflection problem on convex set K and was
studied in finite-dimensional spaces H by [2,3,6,8]. If H is infinite-dimensional, however, no results concerning
existence and uniqueness of strong solutions with the notable exception of the 1992 work of Nualart and Pardoux [14]
which treats this problem in H = L?(0, 1) and for K = {ye L?(0, 1): y>0ae.in (0, 1)}.

The transition semigroup

(Prp)(x) =E[p(X(1,x))] VYo eCp(K),1>0 (1.11)

formally relates the Neumann problem (1.1) and Eq. (1.10) but no rigorous proof of this conjecture exists except the
cases mentioned above (see also [16]). However, in [1] this is proven for « = 1 via some sharp arguments involving
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theory of Langrangian flows. In particular, it is proven the existence and uniqueness of a martingale solution in sense
of Stroock and Varadhan.

When « € [0, 1) the operator A~ Ng is not monotone in H, so no existence results in the literature for Eq. (1.10)
seems to be available. The second part of the paper is concerned with representation of semigroup P; as a transition
Markov semigroup in the special case where K is a ball and Tr[A%~!] < oo for some 8 > 0. The proof of existence of
the process is constructive and relies on some sharp BV-estimates on solutions to approximating equation associated
with (1.10) and the Skorohod theorem.

2. Notations and preliminary results

Everywhere in the following D¢ is the derivative of a function ¢: H — R. By D?¢: H — L(H, H) we shall de-
note the second derivative of ¢. We shall denote also by C,(H) and Cf(H ), k € N, the spaces of all continuous and
bounded functions on H and, respectively, of k-times differentiable functions with continuous and bounded deriva-
tives. The space C k(K), k € N, is defined as the space of restrictions of functions of C ,’j (H) to the subset K. Also we
refer to [7,9] for notations and basic results on infinite-dimensional processes.

We denote by {ex} the orthonormal basis in H of eigenfunctions of Q, i.e.

Qe = Arex VkeN, 2.1)

where A = % with {ax, k € N} the eigenvalues of A, by Dj the derivative in the direction ey and set x; = (x, ex) for

all x € H, k € N. We denote by &(H) the linear span of all exponential functions {e‘*-¢") h e N}.
Then we recall a basic integration by parts formula in H.

1
/ Dipdp = —/ xepdp VkeN, ¢ e CL(H). (2.2)
H M JH
We denote by My: CL(H) C L>(H, ) — L*(H, p; H)
Myp:=A“"D2Dy,  geCh(H).
Here My is the Malliavin derivative [12]. It is well known (and easy to show thanks to (2.2)) that M, is closable. We

shall denote its closure by M, and also by A@~D/2p.
The domain of the closure of M, will be denoted by Wfl\’az_l (H, n). It is a Hilbert space with the inner product

<¢’W>W1’2 1(H 0 :/;1(pwdu+/;1<A(a—l)/2D¢7A(a—l)/sz)dM
Aa—110

o
=/ Wﬂdu—i-Z/ A¢ ™ Dro Dy dpa.
H k=1 H

Denote by L?(H, ) and L%(K, v) the space of w-square integrable functions (v-square integrable functions) on H
and K, respectively.
In a similar way we define the space Wif,, (H,v). The corresponding inner product is defined by (see [4,7,10])

@22 1= @12 1t /H TH[A%«D D2 D2y du

A

o0
l—ay 1—
= (gp,lﬂ)wl,z 1(H,/4)+ E ./[{kh a)‘k “D;zlyk(PD%’de,U«.
A% hk=1
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2.1. The integration by parts formula on K

The following result is proved in [4]. For reader’s convenience we recall it here, deferring to the Appendix for a proof
(Theorem A.2).

Lemma 2.1. Let K = {x € H : g(x) < 1} where g € C*(H) is convex and |Dg(x)|~" € LP(H, w) for all p > 1. Then
1
/ Dyo(x)p(dx) = —/ ny(Ye(y)us(dy)
K w(K) Js
1
+ A_/ xpp(x)u(dx) VheH,pe C,}(H), 2.3)
hJK

where ny(y) = (n(y), ep).

With the help of this result we can define the spaces W:‘f_l (K,v) and ij_l (K,v) asin [4].

Moreover, we can define the trace of a function ¢ € W/i;f, (K, v) thanks to the following result.

Proposition 2.2. Forany ¢ € C ,1 (H) we have
/,: 1020 |*0* ez (dy)
< c( /K @* () (dx) + fK | Ql/sz(X)|2u(dX)>. 2.4)

Proof. Let ¢ € C}(H) and h € N. Replacing in (2.3) ¢ with A, D g¢? and then Dy, with 24, D, g9 D@ + Ay D g,
yields

2/ AhDhnghwdqu/ anDjige® du
K K

1
= —/ )\hnh(y)DhngszJr/ xn Dpge? dut.
w(K) Js K

Summing up on & yields
2 /K (0Dg. Dg)pdys + [K [0 D%¢]¢? du

1
= ,Dg)p*d f ,Dg)p*du.
5 [lont). Delodns + [ (5, Dol du
But, taking into account (1.3), (1.6) we have
(On(y), Dg(»)) = |Dg(»]|(On(y), n(y))
> p(On(y),n(y)) VyeX.

Substituting in the previous identity yields

1
pu(K)

<2 [ 0Dy Depdi+ [ T[OD o’ dn.

/E (on(y),n())p?dus + /K (x, Dg)p*du
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Taking into account that K is bounded and that Dg, D? g are bounded on K, the conclusion follows. O
We can now define the trace of a function ¢ € wh l(K v). Let {g;} C Cb (K) be such that

lim, .00 @ = in L2(K,v),
lim,,_ 0o A~ 1>/2D<p =A@D2py inL*(K,v).

Then by (2.4) it follows that the sequence {| Ql/ 2n(y)|y0(go i)}, where y9(¢;) denotes the trace of ¢;, is convergent in
L*(X, ux) to a function ¥ € L2(X, uux). Then we define the trace yp(¢) of ¢ as

14

yo(p) = 00|

2.2. Trace of the normal derivative

Proposition 2.3. Assume that ¢ € w2 o 1(K v). Then the following estimate holds,
2 — 2
[ 10" 1A« 2Dy P sms )
_ 2 _ 2
§c<f |A@=D2 Do )| ,u(dx)—i—f Tr[ (A D?p(x)) ]u(dx)). (2.5)
K K

Proof. Let ¢ € W (K v) and let {g;} C C?(K) be convergent to ¢ in W (K v). For i € N we apply (2.3) to

l.(a D2 p Dip;. We have

/E 10200 *|a* " Dig; > s (dy)

sca§“1>/2< / |Digj (o) u(dx) + a2 / |A<“—“/2DDigo,~(x>|2u<dx)>.
K K

Summing up on i yields
2 - 2
/ 10" 2n(y)[*[A“TV2Dg;| (s dy)
z

sc(/ |A(“_l)/2Di<pj(x)|2,u(dx)+/ Tr[(A“_lDZgz)j(x))z]u(dx)).
K K

Now the conclusion follows letting j — oo. (]

3. The penalized problem
We are here concerned for any ¢ > 0 with the penalized equation

{ dXe () + [3AXe (0) + A B (X (1) ] di = AT/ W, 3.1

X (0) =x,

where

Be(x) = (x — Mk (x)) VxeH.
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Since B, is Lipschitz continuous, it is easily seen that Eq. (3.1) which can be equivalently be written as

X0 = |

t t
Aa—le—Aa(t—s)/ZlBs(Xg(s)) ds +/ e~ AN=9)/2 g@=D/2 gy
0 0

has a unique mild solution
Xe(-,x) € L*(£2, C([0, +00); H)).
Moreover, it is easy to see that there is a unique invariant probability measure v, for X, given by
Ve(dx) = Z; e dk @)/, (3.2)
where dg is the distance to K and
zo= [ GO ). (33)
H
The corresponding Kolmogorov operator reads as follows,

Neg =Lo — (A" 'B.(x), Dg), ¢ &(H) Ve >0, (3.4)

where L is the Ornstein—Uhlenbeck operator
1 a—1p2 1 a
Lo= ETr[A D*p] — 5(x, A*Dg) Vo e &(H).

One can easily check that v, (as defined in (3.2) and (3.3)) is an invariant measure for N, and that
1
/ Neoyrdv, = —3 / <A°‘_1D¢), Dlﬂ)dvg Yo,y € &(H). (3.5
H H

Moreover, since f; is Lipschitz continuous, the operator N is essentially m-dissipative in L?(H, v,) (we still denote
by N, its closure) and &' (H) is a core for N, see [7].

Section 3.1 below is devoted to several estimates for (A/ — Ny)~! f where f € L>(H, v,). Then these estimates
are used in Section 3.2 to prove that (Af — N¢)~! f converges to (\] — N)~! f as ¢ — 0, where N is the self-adjoint
operator corresponding to the Dirichlet form (1.8) (see (3.32) below), for any f € L%(K,v). Moreover, we shall end
up the section by proving a few sharp properties of the domain D(NN) of N.

3.1. Estimates for (\l — N)~' f
LetA>0,6>0,¢9pe€&(H). Weset

Jfe =2p — Neo. (3.6)

We are going to prove for later use a few estimates of the first and second derivatives of ¢. To this purpose, since S,
is not differentiable, we need a further approximation S ; of B.
More precisely, for any ¢ > 0, > 0 we consider the penalized equation

{ dXe (1) + (FAX e (1) + A% Be (X (1)) df = A179/2dW, (3.7)

Xs,n(o) =X,

where B , is the regularization of B, given by the infinite-dimensional mollifier

Bey(x) =e " /H Be(e™x +y)uy(dy), xeH,n>0. (3.8)
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Here py is the Gaussian measure on A with mean 0 and covariance operator

1
Q= EA’I(I —e 214,

Notice that 8 , is of class C* and its derivatives of all order are bounded. Moreover, S , is a monotone mapping
in H and

lim B, (x)=B:(x) inHVe>0,x¢H. (3.9)
n—>00

Since B, is Lipschitz, Eq. (3.7) has a unique mild solution X, ;(#, x). Moreover, it is easy to see that there is a unique
invariant probability measure v, ; for (3.7) given by

2
Ve (dx) = Zg e~ (3.10)

where
2
Zey= f e u(dy). (3.11)
H
%d%{’ , 1s the potential associated with B ;,, that is

1
ng%{’n(x) =Be,(x) VxeH, (3.12)

equivalently

1, !
%de”(x)Z/O (ﬂg,,,(tx),x>dt Vx e H.

The corresponding Kolmogorov operator reads as follows,
Newp =L —(A*"' ey (x). Dg). ¢ € E(H), e >0, (3.13)

where L is the Ornstein—Uhlenbeck operator introduced before. Then v ; is an invariant measure for N, ;, and
1 _
/ Ne g dve = _Ef (A“"'Dg, DY )dve,, Vo, ¥ € E(H). (3.14)
H H

Moreover, since B ; is Lipschitz continuous, the operator N , is essentially m-dissipative in L*(H, Ve ) and & (H)
is a core for N, (see [10]). We shall denote again by N, , the closure of N, ;, in LZ(H, Vg, ;). Moreover, we have

111%1)(8,,,0, x) = Xe(t,x)|=0 Vr>0,x € H, Pas. (3.15)
n—

Indeed by (3.1) and (3.7) we have for all t > 0,¢ > 0,71 > 0,

Xep(t,x) — Xe(t,x)
t
=— / Al e NI, (X (1, ) — Be(Xe(t, 1)) ds  P-as.
0

and this yields
t
| Xen(t, %) — Xe(t, )| < C/O |Ben(Xe,y (2, 1)) — Be (Xe (2, %)) | ds

t
+C/ |Xey(t,x) — Xe(t,x)|ds V2 >0,6,7>0P-as.,
0
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because

1

| Be,yllLip < g Vi > 0.

Since

r}ig})ﬁs,n(xg(t,x)) = B (X (2, X)),
we obtain by Gronwall’s lemma that (3.15) holds.
Lemma3.1. LetA>0,e>0,7>0, ¢ € &&(H) and set

Sen =290 — Nepo. (3.16)

Then the following estimates hold
/wzdvsn<i/ f2, dve ., (.17)
H D R
_ 2 2
/ |A(a 1)/2D<p| dvg < X/ fez.n dve . (3.18)
H H
1
,\/ |A@=D2Dg|* dv,, + 5/ Te[ (A% D%p)*] dve.
H H
1
+ 5/ |42 Dg|* dv,.,, 54/ 12, dve . (3.19)
H H
Proof. Multiplying both sides of (3.16) by ¢, taking into account (3.14) and integrating in v ; over H, yields

1 _ 2
x/ <p2dug,n+5f |A@=D2py| dumzf @fendve . (3.20)
H H H

Now (3.17) and (3.18) follow easily from the Holder inequality. To prove (3.19) we differentiate both sides of (3.16)
in the direction of e; and obtain that

1 o
ADip = Ne.yDro + SarDig + > (DiBenen- ex) Dhgp = Dy fe.
h=1

Next we multiply both sides of latter equation by ag_lew. Taking into account (3.14), integrating in v, , over H
and summing up over k, yields

1
A/H\A“**l)/zz)(pfdu&,,+5/HTr[(A"f*‘D%p)z]dv&,7
+%/ |Aa/2D¢|2dv€"’+/ <D:3€,UA(O[_1)/2D‘P,A(a_l)/2D‘/’>d‘)e,n
H K¢

:/ (A@=D2Dg, ACTD2DF, Vdv, . (3.21)
H
Noting finally that, again in view of (3.14),

/H(A<°‘—1>/2D<p,A<“—1>/2Df8,,7)du8,,,

:2/ ngdl)&,7 —ZA/ Sfeqedve 54/ fgz’n dve 5,
H H H
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the conclusion follows. (]
Taking into account (3.15) and that
r}gl}) Neyo(x) = Nep(x) Ve >0,
letting n — O we obtain the following result.
Corollary 3.2. Let A >0,e > 0,9 € &(H) and let

Je=2p — Neg. (3.22)

Then the following estimates hold

2 1 2
@ dve < — | fidvg, (3.23)
H 22 Jy
2
/ |A@=D2pgy|* dv, < X/ £2dv, (3.24)
H H
1
kf ‘A(‘x—l)/zDgﬁ‘zdvs + —/ Tr[(A“_lngo)z] dv,
H 2Ju
1
+ —/ |A%2 D dv, 54/ £2dv. (3.25)
2Ju H
Now we are able to prove.
Proposition 3.3. Let . > 0, f € L>(H, v,) and let ¢ be the solution of the equation

Ape = Nee = f. (3.26)

Then ¢, € Wif_l (H,ve), A"‘/2D(p€ e L%(H,v,) and the following estimates hold

2 4y, < - 2d 3.27
(pg vé‘ = )\2 Hf v{;" ( . )
H
2
/H A« 2Dg, | dv, < fH Frdv, (3.28)
1
A / A2 D, P dv, + / TH[(A%~' D?¢.)] dv
H 2Ju
1
+§f |A°‘/2D<p8|2dv£ 54/ 2 dv,. (3.29)
H H

Proof. Inequality (3.27) is obvious since by (3.5), N, is dissipative in L%(H, ve). Let us prove (3.28). Let A > 0,
fe LZ(H, v,) and let ¢, be the solution to Eq. (3.26). Since & (H) is a core for N, there exists a sequence {@s »}nen C
& (H) such that

lim @;n — @, nlglgo Ne@en = Nege in LZ(H, Ve).

n—o0

We set fen = A@en — Ne@e . Clearly, fe, — f in L2(H, v,) as n — co. We claim that Qs € Wj‘f,l (H, v) and that

lim A“"V2Dg, , — A®"D2Dy, in L*(H, ve; H),

n—oo
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which will imply (3.28).
Let m, n € N; then by (3.24) it follows that

_ _ 2 2
/ |A@D2pg, , — A@D2Dg, | de < / | fen — feml|* dve.
H H

Therefore the sequence {@¢ »}nen is Cauchy in W :‘;12, (H, v;) and the conclusion follows. The estimate (3.29) follows
similarly by (3.25). ]

We conclude this subsection with an integration by parts formula needed later. We set
V= {y e Cy(K): 10" n(y)| "y € Ch(K)}. (3.30)

Lemma 3.4. Let ¢ € D(N;) and v € V. Then the following identity holds.
1
/ Negy dv = _5/ (A@=D2Dy, AC=D2Dy)dy
K K
+ ;/ (A*"y (De). ()Y dps. (3.31)
w(K) Jx ’

Proof. We first notice that the last integral in (3.31) is meaningful since

2

‘ f; (A% 1y (D), n(»))Y dux

< a7 /; |AC=D2y (D) P[0V n(y) [P dux /E 20" n(y)| P dps < oo
by (2.5).

Now, taking in account that &(H) is a core for N, it is sufficient to prove (3.31) for ¢ € &(H). By the basic
integration by parts formula (2.2) we deduce, for any i € N and ¢ € V that

1
DipDjydv=— | D’pydv+ —— D; yd
/K ¢D;yr dv /K oy dvt o | v @) (n(), ¥ dus

1
+—/ x;i Dipyr dv.
Ai Jk
It follows that
af‘71/ D,-(pD,-l/de:—af“l/ D?oyr dv
K K
1
~1
maf‘ /EV(Difp)(n(y))iwduz+§a?/Kxiande-
Now, summing up on i yields
/(AW*‘)/ZD(p,A“’*‘)/ZDw)dv= —/ Tr[A™ D]y dv
K K
1
P / (A%~ (Dg), n(»)) duz +2 / (x, A% Do)y dv,
w(K) Jx K

which is precisely Eq. (3.31). ([
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3.2. Convergence of {¢:} as e — 0

Let N:D(N) C L3(K,v) — L?(K,v) be the operator defined by

(N@. V) 2.0y = —3alp. ) Yy e Wy, (K. v).¢ € DN), 63
2 . 2 ’
D(N)={p e W2 (K. v): |a(e. V)| < Clol 2k |V li2k .0 Y& €W, o (K. )]
The operator L is self-adjoint in L?(K,v) and the Neumann problem (1.1) (or equivalently (1.9)) reduces to
Ap—No=f. (3.33)

We are going to show that for each f € L*(K,v) and ¢ — 0, ¢, = (\] — Ny)~! f is convergent in L*>(K,v) to
¢ = (M — N)~! f and derive so, via the estimate proven in Proposition 3.3, high order regularity properties for the
solution ¢ to (3.33).

We first note that for f € C,(H) we have

o
e (x) =]E/ e_’\’f(Xg(t,x)) dt VxeH. (3.34)
0
Now, by a standard argument it follows that from (3.34) if f € C ,l (H) we have
1
sup|Do: (x)| < ~IIDf lc,rry Ve, 1> 0. (3.35)
xeH A

Theorem 3.5 below is the main result of this section.

Theorem 3.5. Let . > 0, f € L>(K,v) and let @, be the solution of Eq. (3.26). Then {¢.} is strongly convergent in
L*(K,v) to 9 = (A — N)~' f where N is defined by (3.32).
Moreover, the following statements hold.

() lime_g A D2Dp. = A@=D2Dy in L*(K,v; H),
(ii) ¢ € Wi2, (K., v) and |A%>Dg| € L*(K, v),
(iii) ¢ fulfills the Neumann condition

<Aa_ly(D(p(x)), n(x)) =0, uxaeonX, (3.36)
where y (D@(x)) is defined by Proposition 2.3.

In particular, since N is dissipative Theorem 3.5 amounts to say that for each f € L?(K, v) the equation Agp — N =
f has a unique solution ¢ satisfying (ii), (iii).

Proof of Theorem 3.5. Without danger of confusion we shall denote again by f the restriction f|x of f to K. In
facteach f € L%(K,v) can be extended by 0 outside K to a function in L%(H,v). By this convention, everywhere in
the sequel (A\] — N)~! f for f € L>(H, v) means (A — N)~! f|x.

Step 1. We have

lim e = (A —N)~'f in L2(K,v). (3.37)
e—>0
In fact by (3.28), (3.29) it follows that there exist a sequence {ex} — O and ¢ € W/if,l (K, v) such that

@e, — ¢, weakly in L*(K,v),
ACD2pg. — A@®"D2Dg  weakly in L*(K, v; H).
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Lety eC ,1 (H) and notice that by (3.5) and by (3.26) we have the identity

1

1 /( @2 Dy, AGD2 D) dy, = / (f = pe)¥ d.
2 )y H

Equivalently

%f< (a_l)/zD%,A("“l)/zDiﬂ)dva%/ (A€«=V2Dg,, AV Dy dv,
K c

Z/;I(f—ws)lﬂdvg- (3.38)

Since by (3.28) we have

2
5f |A(“_1)/2D<p5|2dv8/ |A@=D2 Dy | du,
H K¢

/(A(a_l)/zD(Ps,A(a_l)/ZDI//>dv8

2
< —/ fzdvgf |A@=D2Dy > dv, — 0,
2 Sy ke

as ¢ — 0, it follows by (3.38) that

1

Ef (AW—”/ZD(p,A<“—1>/21)1p)dv=f (f —rp)¥dv V¢ e CLK).
K K

Obviously, this identity extends to all ¥ € le’f_]
ase — 0.

Step 2. We have

(K, v), which implies that ¢ — (A\] — N)~! f weakly in L>(K, v)

lime—o@: = ¢ in L*(K, v),
im0 A~D2Dy, = A@D2Dy in L2(K,v; K).

We first assume that f € C g (H). Let us start from the identity
1
| Neggedn==3 [ [4«D2Dg v, e e D), (3:39)
H 2J/u
which follows from (3.5). By (3.26) and (3.39) we see that

1

S f |A€@=D2Dg, 2 dv, = - / Ovpe = f)ee dve, (3.40)
2/u H

which implies in virtue of (3.32), (3.33)

1
lim (—|A(°‘_l)/2D(pg|2 +k<p§) dv, =f fodv
e—0J g \ 2 K

=—<N<p,¢>>+xf p*dv
K

1
=f <§|A(“l)/2D(p|2+Mp2) dv. (3.41)
K

Here we have used the fact that

lim/ |A@=D2pg, |* dve =0

e—0
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which follows taking into account (3.35).
Therefore, there exists a sequence {ex} | 0 such that

Qe —> @ weakly in L2(K, v),
A@D2Dg, — A@D2Dy  weaklyin L2(K,v; H),

timg oo [y (2, + 3| A2 Dy v = [, (5 + 3| A«D2Dg ) v

This implies that ¢,, — ¢ strongly in L*(K,v) and A(“_l)/zDgosk — A@=D/2py strongly in L2(K, v; H).
We finally assume that f € L2(H,v). Since Cbl(K) is dense in L2(K, v), there exists a sequence { f,} C Cg (H)
strongly convergent in LZ(K, v)to f.Set @, = (Al — Ns)_lfn. By (3.28) we have

_ _ 2 2
/ |A@ D2 Dy, — A@D2Dg, |7 dv, < = / If — ful*dv,
H AJk

which implies
— — 2 2
[ 14«2 g - a2y, fav< [ 15~ fiP
© K

So, again A(“_l)/zDgogk — A@=D/2py strongly in L>(K, v; H) as claimed.
Step 3. We have ¢ € Wif_l (K,v) and A*?Dg € L*(K, v).
By estimate (3.29) we have that {¢,} is bounded in w22 (K, v). Therefore there is a subsequence, still denoted

Aa—l
{o<} which converges to ¢ in ij_, (K, v). In the same way we show that A%?Dg € L*(K, v).

Step 4. Checking the Neumann condition for ¢.
We recall that (see from (3.31))

1
/ Neger dv = —5/ (A@=D2Dg,, AC=D2Dy)dy
K K

1
- A"y (Dg,), dus. 3.42
+M<K>/2‘/’< y(Dge),n(y))dus (3.42)

Recalling that for ¢ — 0, Ne@e = Ags — f — A@ — f = Ng in L?>(K, v) and by Proposition 2.3 we have
|02 n(y) A%y (Dge). n(y)) — | @' *n(y) A%y (D@), n(y)),
in L2(X, ux), it follows by (3.42) that

/2 (A y(De), n(M)Ydus =0 Yy eV,

where V is defied by (3.30). Since V is dense in L%(X, ux) the conclusion follows.
This completes the proof of the theorem. ]

4. The process associated with the reflection problem
Throughout this section the following hypothesis will be assumed.

Hypothesis 4.1.

() a €[0, ] and there is § € (0, 1) such that Tr[A%~1] < cc.
(i) K=B0,1)={xeH: x| <1}
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We are going to construct a stochastic process X = X (¢, x) on a probability space (2, Z,P) associated with the
semigroup P; generated by N on L*>(K,v), i.e.,

(P ) =E[f(X(t,x)] YfeCp(H),xeH.

The main result, Theorem 4.10 below amounts to saying that there is a cadlag H -valued process X with this property.
To this aim we need first some sharp estimates on solution X, (¢, x) to approximating Eq. (3.1), that is

AXe + 3 A" KXo di + A Bo(Xe) dr = ACTD2AW,, 120, (@.1)
X.(0) = x. '
4.1. Estimates for X,
We set
[xX|a = ‘Aax’, (X, y)a = (Aax, A“y), Vx,y € D(Aa), O<a<l1
and
t
Wa(t) :/ e ANI=9)/2 ple=D)/2 dWg, t>0.
0
Lemma 4.2. The following estimates hold
E[ sup |WA(t)|§'"] <cTmtl/mtl oyt S0, 4.2)
1€[0,T]
E[ sup | Wa(t) — Walt — h)|2’”] < ChPT™H M+ T 5 0,Vh > 0, 43)
te[T—h,T]

wherem > 1 and 1 < p <m.
Here C is a positive constant independent of w, T and ¢.

Proof. Since the proof is identical with Theorem 2.9 in [7] we shall sketch it only for convenience. We have (see [7],
p. 25)

. t
Walt) = w/ e~ =942 _ v =1y (5)ds, (4.4)
Rl 0
where 0 <y < 1 and
t
Y(r) = / e A2 (1 5y A=D2 gy,
0

In the following we shall fix m > i and 0 <y < %
We have

t
/ e—(z—s)AO‘/Z(t — s)y_l f(s)ds
0

<Ctr VO£l 0w 4.5)
and therefore

T
sup |WA(I)|§m = Csz(yfl/(zm))/ IY(S)|§m ds.
tel0,T] 0
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On the other hand, under Hypothesis 4.1 we have
E(|Y)];") <Cs™ Vs>0

and this implies (4.2) as claimed.
As regards (4.3), we have by (4.4) that

Wa(t) = Wa(r —h)
; t—h
— Sln(T[)/) / e—(t—h—s)Aa/z[(t _ S))/—l _ (t —h— S)]/—le—hAa/Z]Y(s) ds
Rl 0
: t
+ sin(ry) / e T2 — )71y (5) ds.
T t—h

Then by (4.5) we have that

2
sup  |Wa(t) — Wat —h)|™"
telh,T—h]

T T T
SC(thy/ |Y(S)|2mds+f |(]—e_hAm/z)Y(S)|2mds+h2m—1/ |Y(S)|2mds>
0 0 0
r 2
< C(h*™ +h2’"‘1+h’")f Y ()|™" ds
0

because |(I — e_hAu/2)Y| < Chl/2|Y|a/2. Then we get as above that (4.3) holds. O

In the following we set y. = X, — W4 and notice that y, is the solution to equation

{ %(g)) + 3 A% () + A B (e () + Wa(®) =0, 120, p, ¢ (*46)
YelU) =x
Equivalently
—a dye
{ ;\ ](0) éx(t) + 5 AV () + B (oD + Wa (D) =0, 120, p ¢ “.7)

Denote by BV ([0, T]; H) the space of all H-valued functions with bounded variation on [0, T] and denote by
l¥llBv (0,71 H) the total variation of y € BV([0, T']; H). We set n = 1%"‘
Lemma 4.3 below is the main estimate.

Lemma 4.3. Assume that x € D(A"), then there exists a constant C > 0 independent of w € 2, T > 0 and ¢, h such
that

T T
/ |ye(} ,de + sup |ys(r>|§+/ |Be (v (1) + Wa(0)) | dr
0 t€[0,T] 0

1 2 _
gc(|x|§/2+— sup |WA(t)|5)(1—hP sup |[Wa(t) — Wa(s)|lt — 5|77
M te]0,T] s,t€[0,T]

-1
— b sup [Wa@)],) (4.8)
5€[0,T]
T T ) 172
Il vellBvo.71: 1) < C<|x|,7 +/0 |Be (ye (1) + Wa (1)) | dr + (/0 |}’a(f)|1/2df> T>’ 4.9)
where p = -
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Proof. We have
(ﬂa(ya + Wa), ye + Wa — 9)
—1(1 ! )+( + W +Ws—0) VYoeH
TEU e wa) T AT '
This yields
(Bs(ye + Wa), ye + Wy —6) >0 V60 € H such that 0] < 1.
In particular, the latter holds for

_ Be(ye + Wy)
[Be (ve + W)

and so we get, for any ¢ > O and ¢ € [0, T']
t t
[ 180+ Wl ds < [ 1B+ W,y Waas. (4.10)
On the other hand, by (4.7) we see that
! 1 2 SIRY 2 L
(Be (e + Wa), ye)ds + [y O], + [ [AYV2ye(o)|"ds = Slxly V1 =0
0 2 T Jo 27
and so (4.10) yields
t 1 2 t 12 5
A [Be e + Wa)|ds + 2 [ye @, + i A1 2ye ()| ds
< EIXI,, + | (Be(ye + Wa), Wa)ds. (4.11)
0

Now we consider W, = (1 + wA)~'W,4. We have

[Wu(t) = Wu(s)| < |Wat) — Wals)| Vi, s>0,
|Wu () = Wa()| < | A+ pA) "' Wa| < 1P| Wals, 4.12)

‘AWu(f)’ =< (1 + $>|WA(t)| V>0, u>0.
Then we have

t
/O(ﬁe(ngrWA),WA)ds
t t
5/0 (/38()’5+WA)’WA—WH)(1S+/O (Be(ye + Wa), Wy)ds
t
< sup |WA(S)—W,L(S)|/0 Iﬂa(yg+WA)|ds+/ (Bs(ve + Wa), Wy, )ds

t
s€(0,1) 0

t t
§M6 sup |WA(S)|5 |138(y8+WA)|dS+/ (lgs(ys+WA)qu)ds~
5€(0,1) 0 0
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On the other hand, we have

tiy1
/(ﬁs(ngrWA) W) ds = Z/ (Be (ve -+ W), Wyuls) — (1)) ds
i=0
N-1 Liti
- Zf (Be (e + Wa), Wy (1)) ds, (4.13)
i=0

where 0 =19 <t <--- <ty =t are chosen in such a way that max(#;+-1 — ;) < h. We have therefore by (4.12) that

tt+l

ﬁa(ya + Wa), Wyu(s) — Wu(l,‘))ds

t
<h” sup [\WA(s)—WA(§)||s—§|"’]/O |Be (e + Wa)| ds (4.14)

s5,5€[0,¢]
and by (4.6) it follows that

N—-1

tip1
> <Wu(ri),/ ﬁg(yg+WA)ds>
1

i=0

N-1

55

i=0

t
W), Ay (tie1) — A% ye () — = [ Aye(s)d
M(l)1 Ye(tiv1) Ye(ti) B Ye(s)ds
ti

N-1

= Z|Wu(ti)|n(|ys(ti+l)|n + |ys(ti)|,7)

i=0
N-1 lit1
+Z|Wu(ti)|1/2/ |y5(s)|l/2ds
i=0 f

1
§2N(1+;> sup |WA(S)| Sllp |ya(S)|

s€[0,7] s€[0,

1
+(1+—) sup | Was))| IyE(s)ll/2 (4.15)
M/ sef0,1]

because |W, |, < [AWa| < (1 + ﬁ)|WA|-
Then substituting into (4.13) yields

t 1 ! ) T 2
/O(ﬂg(yg+WA),W#)ds§ 4( sup |yg(s)| +/ |y8(s)|l/2ds)+C<l+ﬁ) sup |Wa(s)|

s€(0,1) s€(0,1)

and substituting into (4.11) we get by (4.13) that

! 1 2 ! 2
/0]ﬂg(y€+WA)\ds+Z(Ses%l,)t)be(s)],ﬁ/o }ye(s)|1/2ds>

2 T 2
ClIxl,+(1+— ) sup [Wa(s)|
123 s€(0,1)

t
+ (hP sup | Was) — Wa@)|ls — 577 + 1 sup |WA(s)|5)/ 1B (ve + Wa)| ds)
5,5€(0,1) s€(0,1) 0
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which implies (4.8) as claimed. By (4.6) we see that (recall that 0 < o < %),

1/2
/0 dt<C/ (|A‘¥y8|+|ﬂa(yg+WA)|)dt<C<</ |ys(t)|l/2 > T+/ |,35(ys+WA)|dt>

which clearly implies (4.9).
Now combining (4.8) and (4.9) yields

dye
dr

sup |ye(0)], + Iyellpvqo,ri;m)
tel0,7T]

(4.16)
2 T’ 2 P )
< C|Ixly+— sup [Wa@)|5 )(1 =hPH(T) — p* HI(T)),
K otefo,1]
where
H(T)= sup [|Wa(t) = Wa()|lt —sI77],
s,t€[0,T]
4.17)
Hi(T)= sup |Wa(1)
1€[0.T | |6 0O
An immediate corollary is Lemma 4.4 below.
Lemma 4.4. For each N > 0 and T > O there is 27,y C S2 such that
Cl
P(2rn)=1—-—= (4.18)
N
and
2
Iyellpvo,rimn + sup [ye], < CX(Ixl; + N'2T°) Vo e 27y, (4.19)
t€l0,T]
where Ci, i =1, 2, are independent of ¢, T, N and w.
Proof. By (4.2) and respectively (4.3) we have for all M >0 and m =2
C 3
IP( sup |WA(t)|8<M>>1——T (4.20)
1€[0.T] M*
and
1
IP’(h”H(T) < Z) >1—CT3h*" Vh>0, 4.21)
1
P<M5H1<T> < Z) >1-CTu®.
On the other hand, by (4.8), (4.9) and (4.16) we have
sup |yely + llyellgvao,rmy < 2C (Ixl; + M?)
te[0,T]
1 s 1
n o WPH(T)<=\n {a): sup [Wa(0)|, < M} w: )H(T) < =V, (4.22)
4 tel0,T] 4
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If we choose M = NY/4T3 h = (NT3)~%? and

QT,Nz{w: sup [Wa(n)|, <M]
t€[0,T]

1 5 1
N1{w: h”H(T)ﬁZ N w:qu(T)ﬁz
we obtain (4.18) and (4.19) as desired. O

The convergence in law
We denote by BV (0, oo; H) the space of H-valued functions u : [0, oc0) — H which have bounded variation on each
interval [0, T']. This is a locally convex space with the family of seminorms

lulr = lullpvqo, 71y YT > 0.

We shall construct below a space of cadlag trajectories which is a Polish space in an appropriate topology. To this
end we consider the family of spaces {2 }3_, defined by

2y = {u € BV(0,00; H)N L%.(0, 00; D(A")):
Julr + 2 oo 0.7 peany < 2C2 (1612 + NYV2TO) VT > 0}. (4.23)

(Here Cf is the constant arising in (4.19).)
Each Z is a closed and bounded subset of BV ([0, T']; H). We shall introduce on 2} the topology (infact a
pseudo-topology) defined by the convergence in measure, i.e., we say that u, = u in Z if foreach T > 0

T

T
lim [ f(t,u,(0))dr = / f(t,u())de (4.24)
0 0

n—00

for all bounded and continuous functions f € Cp ([0, 00) X H).
It turns out that this topology is just given by the metric

]

1 dr;(u,v)

d _
(. v) 27 T dr, 0,0

(4.25)

where {7} is an increasing sequence of times that goes to infinity and

i =30 L) = v an
/ =2+ IfOTj(f,f(t,u(t)) - fla, v(6)) di|

where, for each j, {fkj Joo; is a dense subset of C ([0, T;] x H).

Lemma 4.5. The space 2y endowed with the metric d is a compact complete metric space and the convergence
induced by this topology coincides with that induced by convergence in measure (4.24).

Proof. It is immediate that d is a metric on 2}y and that u,, = u if and only if lim,_, 5, d(,,, u) = 0. Moreover, by
the infinite-dimensional Helly theorem the set Z is compact in topology = (or equivalently that induced by the
distance d). This implies that the metric d is complete and the space 2 is compact and so also separable. ]

Now we shall define the space % C BV(0,00; H)N L (0, 00; D(A™)) by

loc

2= 2v. (4.26)
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In other words, u € e%o” if and only if u € 2y for some N € N. (Recall that n = I_T“.)

We shall denote by 2" the completion of 2 in the metric (topology) d. Clearly 2" is a separable complete metric
space.

For each u € 2~ we can associate its pseudo-path which is a probability law w, on [0, c0) x H. Then for each
f € Cp([0,00) x H) we have

/f(t,u(t))dt:/fduu Vf € Cy(10, 00) x H)

and so the convergence (4.24) (respectively the topology induced by it) reduces to the convergence in measure or
to the so-called pseudo-path topology (see [13]). Since the space D of cadlag H-valued functions is closed in this
topology and

4" C BV(0, 00; H) N L0, 00; D(A")) € D

we conclude that
Lemma 4.6. Any u € 2" is a cadlag H-valued function, i.e., u is right continuous with left limit.

Remark 4.7. Of course the previous analysis of cadlag function spaces refer to real valued functions but it extends
mutatis mutandis to H-valued functions considering first weakly cadlag functions u :[0,00) — H,i.e., t — (u(t), x)
is cadlag for each x € H and after to strong cadlag functions via compacity D(A") C H.

Now we consider the family of probability measures {J3.} C & (%) defined by

B.()=P(X,el'), I CZ Borelian. 4.27)
Lemma 4.8. The family {B}c~0 is tight.

Proof. Taking into account that X, = y. + Wy it suffices to prove that the family {‘I}g}, where ‘535 (ry="P@uy.el),
is tight. By the Prohorov theorem it suffices to show that for each & > 0 there is a compact subset K¢ C 2" such that

P(y; € Ke) > 1 —&. (4.28)
We take
Ke ={u € BV(0, 00; H) N L, (0, 00; D(A")):
jul7 + 13 0,7, panyy < 2C2(1x 12+ (Cle ™) PT) v1 > 0},

By Lemma 3.4 we see that (4.28) holds. On the other hand, since K, C Zn for N = Cié_l it follows that K, is
compact in 2" and therefore in 2" as well. This completes the proof of Lemma 4.8. (]

Then there is P8 € F(Z") such that on a subsequence ¢ — 0
P — P weakly in Z(XL).

Moreover, by the Skorohod theorem (see, e.g., [15]), we have

Proposition 4.9. There is a probability space (52, Z,P)and a sequence {X,} of 2 -valued processes on (§2, F, P)
and Z -valued stochastic process X such that

Pe (I =P(X; € 1), (4.29)
X, —> X P-as.inZ, (4.30)
P =P(Xel) 4.31)
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for all Borelian set I’ C 2.

By Lemma 4.6, X = X (¢, x) is a cadlag H -valued process.

Let N be the Kolmogorov operator associated with the Neumann problem and let P; the semigroup generated by

N. We have

Theorem 4.10. Let Hypothesis 4.1 holds. Let X = X (t) : [0, 00) — H be the process defined by Proposition 4.9. Then

(Pﬂp)(x)=/~¢(X(t,x))dﬁ”(a)) Vt >0,x € D(A%), ¢ € Cp(H).
2

Proof. We have by Proposition 4.9

(P:(Dp)(x) =E(p(X:(t, 1)) = /Q o(Xe(t, %)) dP(w) Vr>0,x € D(A%), ¢ € Ch(H),

lim (P (1)) () = /Q p(X (1. x)) dP(@).

On the other hand, we know by Theorem 3.5 that

e¢]

M —=N)"lp= m%(u — Ny g =1lim e MP,(Hpdr Va>0.
E—> 0

e—0

By (4.33), (4.34) we see that

/ e*“(P,w)(x)dzzf e*“dt/y(X(t,x))d]fD(w) Vi >0
0 0 2

which clearly implies (4.32) as claimed.

Proposition 4.11. We have

X(t,x)e K P-as.Vt>0.

Proof. By Lemma 4.4 we have that for each N,
T
/ |B:(Xe ()| dr < C(L+ N'2T®) Vo e 27,
0

1
where P(27.5) > 1 — 5.
This yields

T
/ |Xe(t) — Mg X ()| dt < Ce(1+N'2T%) Ve>0,we 27y
0
and therefore

T
/|X£(t)—HKXE(I)|dt§C8(1+N1/2T6) Ve>0,0€ 27y,
0

~ ~ ~ o~ 1
where @7y C 2, and B(2r x) > 1 - S

Letting ¢ tend to zero we obtain that | X () — [Tg X (¢)| =0, Vt > 0, P-a.s. as claimed.

(4.32)

(4.33)

(4.34)

(4.35)
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Remark 4.12. We recall that X is a martingale solution to (1.10), if
P(X()eK,Vt>0)=1, P(X0,x)=x)=1 (4.36)

and for any smooth function ¢ in a core D(Ng) of N,
1
p(X (1) —/0 No(X(s))ds —p(x) = M(t) (4.37)

is a martingale with respect to natural filtration j, =0(X(s),s <t),t>0.

It is easily seen by Theorem 4.10 and (3.5) that if N has a core D(Ny) then the process X constructed above is the
unique martingale solution to (1.1). However the existence of a core for N is still open.

5. An example

Consider the stochastic variational inequality (see (1.10))
dX(t) — AX(t)dt — ANk (X (1)) dt 3 Ay' dW, in (0, 00) x O,
X(@#)=0 on(0,00) x 30, 6D
X0)=x in0,

where ¢ is a bounded open subset of R? with smooth boundary 8¢ and
K= {x e L*(0): / j(x®)de < 1}, (5.2)
%

where j:R — R is a C*°-convex function such that 0 < ¢ < j”(r) <c1, Vr € R, j(0) = j/(0) =0 and Ag = —A,
D(Ap) = H}(0) N H*(0).
Formally, (5.1) reduces to the stochastic reflection problem

dX (1) — AX(t)dt = Ay'dW, in {xeLz(ﬁ):[j(x(E))d§<l},
7

dX (1) — AX (1) dr € (LA (X (1))}, _,dt + Agl dW; in {x e L*(0): / j(x(®)dé = 1}, (5.3)
7

X#) =0 on(0,00) x030,

X0)y=x in0.
The results of Sections 1-3 and in particular, Theorem 3.5 apply with o = %, H=L*0),A=A*, DA ={uc
H*(0)NH}(O), Au € H}(0), A%u € L?(0)} on K defined by (5.2). Then A/2 = Ag and TrA~"? <00 if 1 <
d <3 and § is small.

Then the corresponding Kolmogorov operator N defined by (3.32) satisfies the regularity properties in Theorem 3.5
and the Markov semigroup P; generated by N is given by

(Ppo)(x) = @(1,x) V1 =0,x € L2(O),
where ¢ is the solution to infinite-dimensional parabolic problem

d 1
d_/ @(t, )y (x)v(dx) — —/ (/ ASO(I,X(E))W(X(%))dé)V(dx) Vi >0,vy € C'(K),
t Jx 2 Jk\Jo

5.4
©(0,x) = @p(x).
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Moreover, if d =1 and j(r) = r? then Hypothesis 4.1 holds and so by Theorem 4.10 there is a cadlag process
X():[0,00) = L%(O) ina probability space (£2, .%#, P) such that

(Pzw)(x)zfégo(xa,x))dlﬁ(w) Vx € D(A%)

for § > 0.
As mentioned earlier we may view X as a martingale solution to problem (5.1).

Remark 5.1. This example illustrates the fact that considering the class of problems (1.7) with o € [0, 1] one might
study reflection problems of the form (5.1) which otherwise are untractable in more dimensions.

Appendix

We recall again the following well-known integration by parts formula for the measure u (see, e.g., [10]). For any
@, e W2(H, ) and z € H,

/H (Do, 0"z} dpu = — /H (DY, 0'*2)pdu+ /H Wy du, (A1)

where W, represents the white noise function,
o
W, (x) = Z L(x ex){z,ex) Vzand u-ae.x € H
Zz — \/E ’ )

We recall that W, is a Gaussian random variable in L?(H, ) with mean 0 and covariance |z|2. We notice that, thanks
to Hypothesis 1.1(ii) the surface measure u x is well defined (see [12]).

We want now to prove an integration by parts formula in a subdomain K of H which generalizes (A.1). K is
defined by a function g as stated in the Introduction. It is convenient to introduce a sequence of suitable measures
{ie}e=0 defined by

pe(dx) = pe(x)u(dx), x€H,
where

pe(x) = e~ @O=DY/eTgw=1
Notice that,

1 ifxek,

Jm e (x) = {0 ifx ¢ K.

So, we have
1in})u‘9 =u(K)v weakly in Z(H),
£—>
where v is the measure introduced previously. Moreover,
2
Dpe(x) = _Eps () Tg)=1Dg(x) (g(x) - l)a

so that p, € wl2(H, n).
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The integration by parts formula

Here we are going to derive from (A.1), an integration by parts formula for the measure .. Let ¢ € C g (H),z€ H,
then, since p, € wl2(H, ), we find from (A.1) that

[ 0.0"%40s = [ 0.0
H H

= —f ¢(Dlog p, Ql/ZZ)dus+/ W.pdu,.
H H
Since,

2
Dlog pe(x) = _gﬂ-g(x)zl Dg(x)(g(x) — 1),

we find the formula,

2
/H (D, 0'22) (dx) = - /H @) Lg(r)=1(g(x) — 1)(Dg(x), 0"*2)ue (dx)
+ /H W ()@ (x) e (dx). (A.2)
Lemma A.1. Let ¢ € Cll, (H), z € H. Then there exists the limit,

1
lim J3(p) = lim — fH @) Lg)=1(8(x) — 1){Dg(x), 0"*z)ue (dx)

1
=5 /E M), 0 z)us@dy), (A3)
where n(y) = @if(yy)) is the exterior normal to X at y and |y is the surface measure on X induced by i (see [12]).

Proof. First we notice that

(@) =+ f o) (5(x) — 1)(Dg(x), 0V/22)eED=DYe ).
€ J{g(x)>1}

By the co-area formula (see [12], p. 140)! we have

o0 1
dx) = d dr. A4
fou( ") /0 [/gzrf(y)ng(y)luz,(y)] r (A4

(By (1.4) we know that |[Dg(x)| > y|x| and so |Dg(x)|~' € LP(H, ) for all p > 1.) Notice that the surface measure
is defined for all » > 0 taking into account [12], Theorem 6.2, Chapter V, moreover, [12], Theorem 1.1, Corollary 6.3.2,
Chapter V, give the continuity property in Theorem 6.3.1 of Chapter V of [12]. Setting in (A.4)

£ =Tg=190(x)(g(x) — 1){Dg(x), Q"/2z)e~ ‘@D

we get

/ 1<p(x>(g<x) —1)(Dg(x), Q'/22)e®=1/¢ 1 (dx)
g>

U, (dy)] dr.

_ > —1 —(r—l)z/s|:/ D .0\
/1 (r — e gzrw(y)< g(». 0 Z)IDg(y)l

1Here, we have extended the validity of (A.4) to functions f, continuous and in L? (H, w) for any p > 1, by a density argument.
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Hence, setting r = 1 + /e, yields

. g Ds() 112 >
J = d —_— dy).
¢ @) ./0 * s/g:1+¢zs‘”(y)<|Dg<y)| O ()

So (A.3) follows. O

We are now in position to prove the announced integration by parts formula.

Theorem A.2. Let ¢ € Cé (H),z € H. Then for any z € H we have

[ (poto). 0 P2)uien) = [ o, 0 2Jusay) (A5)

+ [ W) (A6)

Proof. The conclusion of the theorem follows letting &€ — 0 in (A.2) and taking into account Lemma A.1. ]
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