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Abstract. This work is concerned with the existence and regularity of solutions to the Neumann problem associated with a
Ornstein–Uhlenbeck operator on a bounded and smooth convex set K of a Hilbert space H . This problem is related to the re-
flection problem associated with a stochastic differential equation in K .

Résumé. Dans cet article nous étudions l’existence et la régularité des solutions d’un problème de Neumann associé à un opérateur
de Ornstein–Uhlenbeck défini sur un domaine convexe K , borné et régulier dans un espace de Hilbert H . Le problème est lié à un
problème de réflexion associé à une équation différentielle stochastique dans le domaine K .
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1. Introduction

We are given a non-degenerate Gaussian measure μ = NQ with mean 0 and covariance operator Q in a separable
Hilbert space H (with scalar product 〈·, ·〉 and norm | · |). We fix α ∈ [0,1] and consider the following Neumann
problem on a regular convex subset K of H ,

{
λϕ − Lαϕ = f in K,
∂ϕ
∂n

= 0 on Σ,
(1.1)

where λ > 0, Σ is the boundary of K , f :H → R is a given function on H and L is the Ornstein–Uhlenbeck operator

Lαϕ := 1

2
Tr
[
Q1−αD2ϕ

]− 1

2

〈
x,Q−αDϕ

〉
. (1.2)

We shall denote by A the self-adjoint operator A := Q−1. Since μ is not degenerate, there exists δ > 0 such that
〈Ax,x〉 ≥ δ|x|2,∀x ∈ D(A) for some δ > 0. Of course we have also that TrA−1 < ∞.

Concerning K , we shall assume that
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Hypothesis 1.1. There exists a convex C∞-function g :H → [0,∞) with g(0) = 0, g′(0) = 0 and D2g positively
defined, i.e., 〈D2g(x)h,h〉 ≥ κ|h|2, ∀h ∈ H,x ∈ H, where κ > 0, such that

K = {
x ∈ H :g(x) ≤ 1

}
, Σ = {

x ∈ H :g(x) = 1
}
.

Moreover, we also suppose that D2g is bounded on Kand that g and all its derivatives grow at infinity at the most
polynomially.

We denote by μΣ the surface measure induced by μ on Σ (see [5,11,12]) and by n(y) the inner normal to K at y,
that is

n(y) = Dg(y)

|Dg(y)| ∀y ∈ Σ. (1.3)

By Hypothesis 1.1 it follows that

Lemma 1.2. K is convex, closed and bounded. Moreover there are γ , ρ, δ > 0 such that〈
Dg(x), x

〉≥ γ |x|2 ∀x ∈ H,
∣∣Dg(x)

∣∣≤ δ ∀x ∈ K, (1.4)

g(x) ≥ γ

2
|x|2 ∀x ∈ H, (1.5)∣∣Dg(x)

∣∣≥ ρ ∀x ∈ Σ. (1.6)

Proof. We have

Dg(x) =
∫ 1

0
D2g(tx)x dt ∀x ∈ H.

Therefore

〈
Dg(x), x

〉= ∫ 1

0

〈
D2g(tx)x, x

〉
dt ≥ κ|x|2 ∀x ∈ H,

which implies the first estimate in (1.4) and also that Dg is bounded on K .
Similarly by

g(x) =
∫ 1

0

〈
Dg(tx), x

〉
dt ∀x ∈ H

and (1.4) it follows (1.5). This implies that K is bounded and 0 ∈ ◦
K , where

◦
K is the interior of K . Finally by (1.4) it

follows (1.6) otherwise there is {xn} ⊂ Σ such that Dg(xn) → 0. Taking into account that 0 < g(x) ≤ 〈Dg(x), x〉 and
that {xn} is bounded the latter implies that 1 = g(xn) → 0 which is of course absurd. �

It is easy to see that μ is the unique invariant measure of the Ornstein–Uhlenbeck process in H ,{
dX(t) + 1

2AαX(t)dt = A(α−1)/2 dW(t),

X(0) = x ∈ H,
(1.7)

where W is a cylindrical Wiener process in a filtered probability space(
Ω,F ,P, {Ft }t≥0

)
of the form

〈
W(t), z

〉= ∞∑
k=1

βk(t)〈z, ek〉, t ≥ 0 ∀z ∈ H.
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Here {βk} is a sequence of mutually independent real Brownian motions on (Ω,F , {Ft }t≥0,P) (see, e.g., [9]) and
{ek} is an orthonormal basis in H which will be taken as a system of eigen-functions for A for simplicity, i.e.,

Aek = akek ∀k ∈ N,

where obviously ak ≥ δ.
Let us describe the results of the paper. First we consider the symmetric Dirichlet form

a(ϕ,ψ) =
∫

K

〈
A(α−1)/2Dϕ,A(α−1)/2Dψ

〉
dν ∀ϕ,ψ ∈ C1(K), (1.8)

where ν = 1
μ(K)

μ and show that a is closable (equivalently continuous) in the space W
1,2
Aα−1(K, ν) (see Section 2).

We notice that for α = 0 this space reduces to the Malliavin space D1,2(K, ν). Here we use a recent result about an
integration by parts formula on K proved in [4].

Then we define a weak solution of the Neumann problem (1.1) in the usual way as a solution ϕ ∈ W
1,2
Aα−1(K, ν) of

the equation

λ

∫
H

ϕψ dμ + 1

2
a(ϕ,ψ) =

∫
H

f ψ dν ∀ψ ∈ W
1,2
Aα−1(K, ν), (1.9)

where f ∈ L2(K, ν).
If we denote by N the Kolmogorov operator corresponding to the Dirichlet form (1.8) then (1.9) can be equivalently

written as λϕ − Nϕ = f . The second-order regularity of ϕ as well as the proof that it satisfies the Neumann boundary
condition on Σ in the sense of trace is one of the main results of this work (Theorem 3.5). In the previous work [4]
this result was proved in the case α = 1. It should be emphasized that, though the treatment closely follows [4], there
are, however, some notable differences which will be mentioned later on. The nice feature of problem (1.1) is that for
all α the corresponding Ornstein–Uhlenbeck operators (1.7) have the same invariant measure μ = NQ and this allows
a unified treatment. Moreover, since the trace assumption on A−α is weaker than that on A−1 we can treat into this
general functional setting reflection problem not treatable for α = 1.

We note that in specific situations A is a linear elliptic operator with suitable boundary conditions on a bounded
and open subset O of R

d . (See Section 5 below.)
The second part of the paper is devoted to the construction of a process X(t, x) such that the semigroup Pt generated

by N is expressed as Ptϕ(x) = E[ϕ(X(t, x))] where X is formally the solution to the following stochastic variational
inequality{

dX + 1
2AαX dt + Aα−1NK(X)dt 
 A(α−1)/2 dWt,

X(0) = x,
(1.10)

where NK is the normal cone to K , i.e.,{
NK(x) = ∅ if x ∈ ◦

K ,
NK(x) = {

λn(x), λ ≥ 0
}

if x ∈ Σ .

When α = 1 this problem is known in literature as the stochastic reflection problem on convex set K and was
studied in finite-dimensional spaces H by [2,3,6,8]. If H is infinite-dimensional, however, no results concerning
existence and uniqueness of strong solutions with the notable exception of the 1992 work of Nualart and Pardoux [14]
which treats this problem in H = L2(0,1) and for K = {y ∈ L2(0,1): y ≥ 0 a.e. in (0,1)}.

The transition semigroup

(Ptϕ)(x) = E
[
ϕ
(
X(t, x)

)] ∀ϕ ∈ Cb(K), t ≥ 0 (1.11)

formally relates the Neumann problem (1.1) and Eq. (1.10) but no rigorous proof of this conjecture exists except the
cases mentioned above (see also [16]). However, in [1] this is proven for α = 1 via some sharp arguments involving
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theory of Langrangian flows. In particular, it is proven the existence and uniqueness of a martingale solution in sense
of Stroock and Varadhan.

When α ∈ [0,1) the operator Aα−1NK is not monotone in H , so no existence results in the literature for Eq. (1.10)
seems to be available. The second part of the paper is concerned with representation of semigroup Pt as a transition
Markov semigroup in the special case where K is a ball and Tr[A2δ−1] < ∞ for some δ > 0. The proof of existence of
the process is constructive and relies on some sharp BV-estimates on solutions to approximating equation associated
with (1.10) and the Skorohod theorem.

2. Notations and preliminary results

Everywhere in the following Dϕ is the derivative of a function ϕ :H → R. By D2ϕ :H → L(H,H) we shall de-
note the second derivative of ϕ. We shall denote also by Cb(H) and Ck

b(H), k ∈ N, the spaces of all continuous and
bounded functions on H and, respectively, of k-times differentiable functions with continuous and bounded deriva-
tives. The space Ck(K), k ∈ N, is defined as the space of restrictions of functions of Ck

b(H) to the subset K . Also we
refer to [7,9] for notations and basic results on infinite-dimensional processes.

We denote by {ek} the orthonormal basis in H of eigenfunctions of Q, i.e.

Qek = λkek ∀k ∈ N, (2.1)

where λk = 1
ak

with {ak, k ∈ N} the eigenvalues of A, by Dk the derivative in the direction ek and set xk = 〈x, ek〉 for

all x ∈ H,k ∈ N. We denote by E (H) the linear span of all exponential functions {e〈x,eh〉, h ∈ N}.
Then we recall a basic integration by parts formula in H .

∫
H

Dkϕ dμ = 1

λk

∫
H

xkϕ dμ ∀k ∈ N, ϕ ∈ C1
b(H). (2.2)

We denote by Mα: C1
b(H) ⊂ L2(H,μ) → L2(H,μ;H)

Mαϕ := A(α−1)/2Dϕ, ϕ ∈ C1
b(H).

Here M0 is the Malliavin derivative [12]. It is well known (and easy to show thanks to (2.2)) that Mα is closable. We
shall denote its closure by Mα and also by A(α−1)/2D.

The domain of the closure of Mα will be denoted by W
1,2
Aα−1(H,μ). It is a Hilbert space with the inner product

〈ϕ,ψ〉
W

1,2
Aα−1 (H,μ)

=
∫

H

ϕψ dμ +
∫

H

〈
A(α−1)/2Dϕ,A(α−1)/2Dϕ

〉
dμ

=
∫

H

ϕψ dμ +
∞∑

k=1

∫
H

λα−1
k DkϕDkψ dμ.

Denote by L2(H,μ) and L2(K, ν) the space of μ-square integrable functions (ν-square integrable functions) on H

and K , respectively.
In a similar way we define the space W

2,2
Aα−1(H, ν). The corresponding inner product is defined by (see [4,7,10])

〈ϕ,ψ〉
W

2,2
Aα−1 (H,μ)

= 〈ϕ,ψ〉
W

1,2
Aα−1 (H,μ)

+
∫

H

Tr
[
A2(α−1)D2ϕD2ψ

]
dμ

= 〈ϕ,ψ〉
W

1,2
Aα−1 (H,μ)

+
∞∑

h,k=1

∫
H

λ1−α
h λ1−α

k D2
h,kϕD2

h,kψ dμ.
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2.1. The integration by parts formula on K

The following result is proved in [4]. For reader’s convenience we recall it here, deferring to the Appendix for a proof
(Theorem A.2).

Lemma 2.1. Let K = {x ∈ H : g(x) ≤ 1} where g ∈ C2(H) is convex and |Dg(x)|−1 ∈ Lp(H,μ) for all p ≥ 1. Then∫
K

Dhϕ(x)μ(dx) = 1

μ(K)

∫
Σ

nh(y)ϕ(y)μΣ(dy)

+ 1

λh

∫
K

xhϕ(x)μ(dx) ∀h ∈ H,ϕ ∈ C1
b(H), (2.3)

where nh(y) = 〈n(y), eh〉.

With the help of this result we can define the spaces W
1,2
Aα−1(K, ν) and W

2,2
Aα−1(K, ν) as in [4].

Moreover, we can define the trace of a function ϕ ∈ W
1,2
Aα−1(K, ν) thanks to the following result.

Proposition 2.2. For any ϕ ∈ C1
b(H) we have

∫
Σ

∣∣Q1/2n(y)
∣∣2ϕ2(y)μΣ(dy)

≤ C

(∫
K

ϕ2(x)μ(dx) +
∫

K

∣∣Q1/2Dϕ(x)
∣∣2μ(dx)

)
. (2.4)

Proof. Let ϕ ∈ C1
b(H) and h ∈ N. Replacing in (2.3) ϕ with λhDhgϕ2 and then Dhϕ with 2λhDhgϕDhϕ+λhD

2
hgϕ2,

yields

2
∫

K

λhDhgϕDhϕ dμ +
∫

K

λhD
2
hgϕ2 dμ

= 1

μ(K)

∫
Σ

λhnh(y)Dhgϕ2 dμΣ +
∫

K

xhDhgϕ2 dμ.

Summing up on h yields

2
∫

K

〈QDϕ,Dg〉ϕ dμ +
∫

K

Tr
[
QD2g

]
ϕ2 dμ

= 1

μ(K)

∫
Σ

〈
Qn(y),Dg

〉
ϕ2 dμΣ +

∫
K

〈x,Dg〉ϕ2 dμ.

But, taking into account (1.3), (1.6) we have〈
Qn(y),Dg(y)

〉 = ∣∣Dg(y)
∣∣〈Qn(y),n(y)

〉
≥ ρ

〈
Qn(y),n(y)

〉 ∀y ∈ Σ.

Substituting in the previous identity yields

1

ρμ(K)

∫
Σ

〈
Qn(y),n(y)

〉
ϕ2 dμΣ +

∫
K

〈x,Dg〉ϕ2 dμ

≤ 2
∫

K

〈QDϕ,Dg〉ϕ dμ +
∫

K

Tr
[
QD2g

]
ϕ2 dμ.



704 V. Barbu, G. Da Prato and L. Tubaro

Taking into account that K is bounded and that Dg, D2g are bounded on K , the conclusion follows. �

We can now define the trace of a function ϕ ∈ W
1,2
Aα−1(K, ν). Let {ϕj } ⊂ C1

b(K) be such that

{
limn→∞ ϕj = ϕ in L2(K, ν),

limn→∞ A(α−1)/2Dϕj = A(α−1)/2Dϕ in L2(K, ν).

Then by (2.4) it follows that the sequence {|Q1/2n(y)|γ0(ϕj )}, where γ0(ϕj ) denotes the trace of ϕj , is convergent in
L2(Σ,μΣ) to a function ψ ∈ L2(Σ,μΣ). Then we define the trace γ0(ϕ) of ϕ as

γ0(ϕ) = ψ

|Q1/2n(y)| .

2.2. Trace of the normal derivative

Proposition 2.3. Assume that ϕ ∈ W
2,2
Aα−1(K, ν). Then the following estimate holds,

∫
Σ

∣∣Q1/2n(y)
∣∣2∣∣A(α−1)/2Dϕ

∣∣2(y)μΣ(dy)

≤ C

(∫
K

∣∣A(α−1)/2Dϕ(x)
∣∣2μ(dx) +

∫
K

Tr
[(

Aα−1D2ϕ(x)
)2]

μ(dx)

)
. (2.5)

Proof. Let ϕ ∈ W
2,2
Aα−1

(K, ν) and let {ϕj } ⊂ C2(K) be convergent to ϕ in W
2,2
Aα−1

(K, ν). For i ∈ N we apply (2.3) to

a
(α−1)/2
i Diϕj . We have

∫
Σ

∣∣Q1/2n(y)
∣∣2∣∣a(α−1)/2

i Diϕj

∣∣2(y)μΣ(dy)

≤ Ca
(α−1)/2
i

(∫
K

∣∣Diϕj (x)
∣∣2μ(dx) + a

(α−1)/2
i

∫
K

∣∣A(α−1)/2DDiϕj (x)
∣∣2μ(dx)

)
.

Summing up on i yields∫
Σ

∣∣Q1/2n(y)
∣∣2∣∣A(α−1)/2Dϕj

∣∣2(y)μΣ(dy)

≤ C

(∫
K

∣∣A(α−1)/2Diϕj (x)
∣∣2μ(dx) +

∫
K

Tr
[(

Aα−1D2ϕj (x)
)2]

μ(dx)

)
.

Now the conclusion follows letting j → ∞. �

3. The penalized problem

We are here concerned for any ε > 0 with the penalized equation{
dXε(t) + [ 1

2AαXε(t) + Aα−1βε

(
Xε(t)

)]
dt = A(α−1)/2 dWt,

Xε(0) = x,
(3.1)

where

βε(x) = 1

ε

(
x − ΠK(x)

) ∀x ∈ H.
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Since βε is Lipschitz continuous, it is easily seen that Eq. (3.1) which can be equivalently be written as

Xε(t) = e−tAα/2x −
∫ t

0
Aα−1e−Aα(t−s)/2βε

(
Xε(s)

)
ds +

∫ t

0
e−Aα(t−s)/2A(α−1)/2 dWs

has a unique mild solution

Xε(·, x) ∈ L2(Ω,C
([0,+∞);H ))

.

Moreover, it is easy to see that there is a unique invariant probability measure νε for Xε given by

νε(dx) = Z−1
ε e−d2

K(x)/ε, (3.2)

where dK is the distance to K and

Zε =
∫

H

e−d2
K(y)/εμ(dy). (3.3)

The corresponding Kolmogorov operator reads as follows,

Nεϕ = Lϕ − 〈
Aα−1βε(x),Dϕ

〉
, ϕ ∈ E (H) ∀ε > 0, (3.4)

where L is the Ornstein–Uhlenbeck operator

Lϕ = 1

2
Tr
[
Aα−1D2ϕ

]− 1

2

〈
x,AαDϕ

〉 ∀ϕ ∈ E (H).

One can easily check that νε (as defined in (3.2) and (3.3)) is an invariant measure for Nε and that∫
H

Nεϕψ dνε = −1

2

∫
H

〈
Aα−1Dϕ,Dψ

〉
dνε ∀ϕ,ψ ∈ E (H). (3.5)

Moreover, since βε is Lipschitz continuous, the operator Nε is essentially m-dissipative in L2(H, νε) (we still denote
by Nε its closure) and E (H) is a core for Nε , see [7].

Section 3.1 below is devoted to several estimates for (λI − Nε)
−1f where f ∈ L2(H, νε). Then these estimates

are used in Section 3.2 to prove that (λI − Nε)
−1f converges to (λI − N)−1f as ε → 0, where N is the self-adjoint

operator corresponding to the Dirichlet form (1.8) (see (3.32) below), for any f ∈ L2(K, ν). Moreover, we shall end
up the section by proving a few sharp properties of the domain D(N) of N .

3.1. Estimates for (λI − Nε)
−1f

Let λ > 0, ε > 0, ϕ ∈ E (H). We set

fε = λϕ − Nεϕ. (3.6)

We are going to prove for later use a few estimates of the first and second derivatives of ϕ. To this purpose, since βε

is not differentiable, we need a further approximation βε,η of βε .
More precisely, for any ε > 0, η > 0 we consider the penalized equation{

dXε,η(t) + ( 1
2AαXε,η(t) + Aα−1βε,η

(
Xε,η(t)

))
dt = A−(1−α)/2 dWt,

Xε,η(0) = x,
(3.7)

where βε,η is the regularization of βε given by the infinite-dimensional mollifier

βε,η(x) = e−ηA

∫
H

βε

(
e−ηAx + y

)
μη(dy), x ∈ H,η > 0. (3.8)
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Here μη is the Gaussian measure on H with mean 0 and covariance operator

Qη := 1

2
A−1(1 − e−2ηA

)
.

Notice that βε,η is of class C∞ and its derivatives of all order are bounded. Moreover, βε,η is a monotone mapping
in H and

lim
η→∞βε,η(x) = βε(x) in H ∀ε > 0, x ∈ H. (3.9)

Since βε,η is Lipschitz, Eq. (3.7) has a unique mild solution Xε,η(t, x). Moreover, it is easy to see that there is a unique
invariant probability measure νε,η for (3.7) given by

νε,η(dx) = Z−1
ε,ηe−d2

K,η(x)/ε
, (3.10)

where

Zε,η =
∫

H

e−d2
K,η(y)/ε

μ(dy). (3.11)

1
2ε

d2
K,η is the potential associated with βε,η , that is

1

2ε
Dd2

K,η(x) = βε,η(x) ∀x ∈ H, (3.12)

equivalently

1

2ε
d2
K,η(x) =

∫ 1

0

〈
βε,η(tx), x

〉
dt ∀x ∈ H.

The corresponding Kolmogorov operator reads as follows,

Nε,ηϕ = Lϕ − 〈
Aα−1βε,η(x),Dϕ

〉
, ϕ ∈ E (H), ε > 0, (3.13)

where L is the Ornstein–Uhlenbeck operator introduced before. Then νε,η is an invariant measure for Nε,η and∫
H

Nε,ηϕψ dνε,η = −1

2

∫
H

〈
Aα−1Dϕ,Dψ

〉
dνε,η ∀ϕ,ψ ∈ E (H). (3.14)

Moreover, since βε,η is Lipschitz continuous, the operator Nε,η is essentially m-dissipative in L2(H, νε,η) and E (H)

is a core for Nε,η (see [10]). We shall denote again by Nε,η the closure of Nε,η in L2(H, νε,η). Moreover, we have

lim
η→0

∣∣Xε,η(t, x) − Xε(t, x)
∣∣= 0 ∀t ≥ 0, x ∈ H,P-a.s. (3.15)

Indeed by (3.1) and (3.7) we have for all t ≥ 0, ε > 0, η > 0,

Xε,η(t, x) − Xε(t, x)

= −
∫ t

0
A1−αe−Aα(t−s)/2(βε,η

(
Xε,η(t, x)

)− βε

(
Xε(t, x)

))
ds P-a.s.

and this yields

∣∣Xε,η(t, x) − Xε(t, x)
∣∣ ≤ C

∫ t

0

∣∣βε,η

(
Xε,η(t, x)

)− βε

(
Xε(t, x)

)∣∣ds

+ C

∫ t

0

∣∣Xε,η(t, x) − Xε(t, x)
∣∣ds ∀t ≥ 0, ε, η > 0 P-a.s.,
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because

‖βε,η‖Lip ≤ 1

ε
∀η > 0.

Since

lim
η→0

βε,η

(
Xε(t, x)

)= βε

(
Xε(t, x)

)
,

we obtain by Gronwall’s lemma that (3.15) holds.

Lemma 3.1. Let λ > 0, ε > 0, η > 0, ϕ ∈ E (H) and set

fε,η = λϕ − Nε,ηϕ. (3.16)

Then the following estimates hold∫
H

ϕ2 dνε,η ≤ 1

λ2

∫
H

f 2
ε,η dνε,η, (3.17)

∫
H

∣∣A(α−1)/2Dϕ
∣∣2 dνε,η ≤ 2

λ

∫
H

f 2
ε,η dνε,η, (3.18)

λ

∫
H

∣∣A(α−1)/2Dϕ
∣∣2 dνε,η + 1

2

∫
H

Tr
[(

Aα−1D2ϕ
)2]dνε,η

+ 1

2

∫
H

∣∣Aα/2Dϕ
∣∣2 dνε,η ≤ 4

∫
H

f 2
ε,η dνε,η. (3.19)

Proof. Multiplying both sides of (3.16) by ϕ, taking into account (3.14) and integrating in νε,η over H , yields

λ

∫
H

ϕ2 dνε,η + 1

2

∫
H

∣∣A(α−1)/2Dϕ
∣∣2 dνε,η =

∫
H

ϕfε,η dνε,η. (3.20)

Now (3.17) and (3.18) follow easily from the Hölder inequality. To prove (3.19) we differentiate both sides of (3.16)
in the direction of ek and obtain that

λDkϕ − Nε,ηDkϕ + 1

2
akDkϕ +

∞∑
h=1

〈Dkβε,ηeh, ek〉Dhϕ = Dkfε.

Next we multiply both sides of latter equation by aα−1
k Dkϕ. Taking into account (3.14), integrating in νε,η over H

and summing up over k, yields

λ

∫
H

∣∣A(α−1)/2Dϕ
∣∣2 dνε,η + 1

2

∫
H

Tr
[(

Aα−1D2ϕ
)2]dνε,η

+ 1

2

∫
H

∣∣Aα/2Dϕ
∣∣2 dνε,η +

∫
Kc

〈
Dβε,ηA

(α−1)/2Dϕ,A(α−1)/2Dϕ
〉
dνε,η

=
∫

H

〈
A(α−1)/2Dϕ,A(α−1)/2Dfε,η

〉
dνε,η. (3.21)

Noting finally that, again in view of (3.14),∫
H

〈
A(α−1)/2Dϕ,A(α−1)/2Dfε,η

〉
dνε,η

= 2
∫

H

f 2
ε dνε,η − 2λ

∫
H

fε,ηϕ dνε,η ≤ 4
∫

H

f 2
ε,η dνε,η,
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the conclusion follows. �

Taking into account (3.15) and that

lim
η→0

Nε,ηϕ(x) = Nεϕ(x) ∀ε > 0,

letting η → 0 we obtain the following result.

Corollary 3.2. Let λ > 0, ε > 0, ϕ ∈ E (H) and let

fε = λϕ − Nεϕ. (3.22)

Then the following estimates hold∫
H

ϕ2 dνε ≤ 1

λ2

∫
H

f 2
ε dνε, (3.23)

∫
H

∣∣A(α−1)/2Dϕ
∣∣2 dνε ≤ 2

λ

∫
H

f 2
ε dνε, (3.24)

λ

∫
H

∣∣A(α−1)/2Dϕ
∣∣2 dνε + 1

2

∫
H

Tr
[(

Aα−1D2ϕ
)2]dνε

+ 1

2

∫
H

∣∣Aα/2Dϕ
∣∣2 dνε ≤ 4

∫
H

f 2
ε dνε. (3.25)

Now we are able to prove.

Proposition 3.3. Let λ > 0, f ∈ L2(H, νε) and let ϕε be the solution of the equation

λϕε − Nεϕε = f. (3.26)

Then ϕε ∈ W
2,2
Aα−1(H, νε), Aα/2Dϕε ∈ L2(H, νε) and the following estimates hold

∫
H

ϕ2
ε dνε ≤ 1

λ2

∫
H

f 2 dνε, (3.27)

∫
H

∣∣A(α−1)/2Dϕε

∣∣2 dνε ≤ 2

λ

∫
H

f 2 dνε, (3.28)

λ

∫
H

∣∣A(α−1)/2Dϕε

∣∣2 dνε + 1

2

∫
H

Tr
[(

Aα−1D2ϕε

)2]
dνε

+ 1

2

∫
H

∣∣Aα/2Dϕε

∣∣2 dνε ≤ 4
∫

H

f 2 dνε. (3.29)

Proof. Inequality (3.27) is obvious since by (3.5), Nε is dissipative in L2(H, νε). Let us prove (3.28). Let λ > 0,
f ∈ L2(H, νε) and let ϕε, be the solution to Eq. (3.26). Since E (H) is a core for Nε there exists a sequence {ϕε,n}n∈N ⊂
E (H) such that

lim
n→∞ϕε,n → ϕε, lim

n→∞Nεϕε,n → Nεϕε in L2(H, νε).

We set fε,n = λϕε,n − Nεϕε,n. Clearly, fε,n → f in L2(H, νε) as n → ∞. We claim that ϕε ∈ W
1,2
Aα−1(H, νε) and that

lim
n→∞A(α−1)/2Dϕε,n → A(α−1)/2Dϕε in L2(H, νε;H),
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which will imply (3.28).
Let m,n ∈ N; then by (3.24) it follows that∫

H

∣∣A(α−1)/2Dϕε,n − A(α−1)/2Dϕε,m

∣∣2 dνε ≤ 2

λ

∫
H

|fε,n − fε,m|2 dνε.

Therefore the sequence {ϕε,n}n∈N is Cauchy in W
1,2
Aα−1(H, νε) and the conclusion follows. The estimate (3.29) follows

similarly by (3.25). �

We conclude this subsection with an integration by parts formula needed later. We set

V := {
ψ ∈ C1

b(K): |Q1/2n(y)|−1ψ ∈ Cb(K)
}
. (3.30)

Lemma 3.4. Let ϕ ∈ D(Nε) and ψ ∈ V . Then the following identity holds.∫
K

Nεϕψ dν = −1

2

∫
K

〈
A(α−1)/2Dϕ,A(α−1)/2Dψ

〉
dν

+ 1

μ(K)

∫
Σ

〈
Aα−1γ (Dϕ),n(y)

〉
ψ dμΣ. (3.31)

Proof. We first notice that the last integral in (3.31) is meaningful since

∣∣∣∣
∫

Σ

〈
Aα−1γ (Dϕ),n(y)

〉
ψ dμΣ

∣∣∣∣
2

≤ ∥∥Aα−1
∥∥∫

Σ

∣∣A(α−1)/2γ (Dϕ)
∣∣2∣∣Q1/2n(y)

∣∣2 dμΣ

∫
Σ

ψ2
∣∣Q1/2n(y)

∣∣−2 dμΣ < ∞

by (2.5).
Now, taking in account that E (H) is a core for Nε , it is sufficient to prove (3.31) for ϕ ∈ E (H). By the basic

integration by parts formula (2.2) we deduce, for any i ∈ N and ψ ∈ V that∫
K

DiϕDiψ dν = −
∫

K

D2
i ϕψ dν + 1

μ(K)

∫
Σ

γ (Diϕ)
(
n(y)

)
i
ψ dμΣ

+ 1

λi

∫
K

xiDiϕψ dν.

It follows that

aα−1
i

∫
K

DiϕDiψ dν = −aα−1
i

∫
K

D2
i ϕψ dν

+ 1

μ(K)
aα−1
i

∫
Σ

γ (Diϕ)
(
n(y)

)
i
ψ dμΣ + 1

2
aα
i

∫
K

xiDiϕψ dν.

Now, summing up on i yields∫
K

〈
A(α−1)/2Dϕ,A(α−1)/2Dψ

〉
dν = −

∫
K

Tr
[
Aα−1D2ϕ

]
ψ dν

+ 1

μ(K)

∫
Σ

〈
Aα−1γ (Dϕ),n(y)

〉
dμΣ + 2

∫
K

〈
x,AαDϕ

〉
ψ dν,

which is precisely Eq. (3.31). �
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3.2. Convergence of {ϕε} as ε → 0

Let N :D(N) ⊂ L2(K, ν) → L2(K, ν) be the operator defined by{
〈Nϕ,ψ〉L2(K,ν) = − 1

2a(ϕ,ψ) ∀ψ ∈ W
1,2
A(α−1)/2(K, ν),ϕ ∈ D(N),

D(N) = {
ϕ ∈ W

1,2
A(α−1)/2(K, ν):

∣∣a(ϕ,ψ)
∣∣≤ C|ϕ|L2(K,ν)|ψ |L2(K,ν), ∀ψ ∈ W

1,2
A(α−1)/2(K, ν)

}
.

(3.32)

The operator L is self-adjoint in L2(K, ν) and the Neumann problem (1.1) (or equivalently (1.9)) reduces to

λϕ − Nϕ = f. (3.33)

We are going to show that for each f ∈ L2(K, ν) and ε → 0, ϕε = (λI − Nε)
−1f is convergent in L2(K, ν) to

ϕ = (λI − N)−1f and derive so, via the estimate proven in Proposition 3.3, high order regularity properties for the
solution ϕ to (3.33).

We first note that for f ∈ Cb(H) we have

ϕε(x) = E

∫ ∞

0
e−λtf

(
Xε(t, x)

)
dt ∀x ∈ H. (3.34)

Now, by a standard argument it follows that from (3.34) if f ∈ C1
b(H) we have

sup
x∈H

∣∣Dϕε(x)
∣∣≤ 1

λ
‖Df ‖Cb(H) ∀ε,λ > 0. (3.35)

Theorem 3.5 below is the main result of this section.

Theorem 3.5. Let λ > 0, f ∈ L2(K, ν) and let ϕε be the solution of Eq. (3.26). Then {ϕε} is strongly convergent in
L2(K, ν) to ϕ = (λI − N)−1f where N is defined by (3.32).

Moreover, the following statements hold.

(i) limε→0 A(α−1)/2Dϕε = A(α−1)/2Dϕ in L2(K, ν;H),
(ii) ϕ ∈ W

2,2
Aα−1(K, ν) and |Aα/2Dϕ| ∈ L2(K, ν),

(iii) ϕ fulfills the Neumann condition〈
Aα−1γ

(
Dϕ(x)

)
,n(x)

〉= 0, μΣ a.e. on Σ, (3.36)

where γ (Dϕ(x)) is defined by Proposition 2.3.

In particular, since N is dissipative Theorem 3.5 amounts to say that for each f ∈ L2(K, ν) the equation λϕ−Nϕ =
f has a unique solution ϕ satisfying (ii), (iii).

Proof of Theorem 3.5. Without danger of confusion we shall denote again by f the restriction f |K of f to K . In
fact each f ∈ L2(K, ν) can be extended by 0 outside K to a function in L2(H, ν). By this convention, everywhere in
the sequel (λI − N)−1f for f ∈ L2(H, ν) means (λI − N)−1f |K .

Step 1. We have

lim
ε→0

ϕε = (λI − N)−1f in L2(K, ν). (3.37)

In fact by (3.28), (3.29) it follows that there exist a sequence {εk} → 0 and ϕ ∈ W
1,2
Aα−1(K, ν) such that

ϕεk
→ ϕ, weakly in L2(K, ν),

A(α−1)/2Dϕεk
→ A(α−1)/2Dϕ, weakly in L2(K, ν;H).
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Let ψ ∈ C1
b(H) and notice that by (3.5) and by (3.26) we have the identity

1

2

∫
H

〈
A(α−1)/2Dϕε,A

(α−1)/2Dψ
〉
dνε =

∫
H

(f − λϕε)ψ dνε.

Equivalently

1

2

∫
K

〈
A(α−1)/2Dϕε,A

(α−1)/2Dψ
〉
dν + 1

2

∫
Kc

〈
A(α−1)/2Dϕε,A

(α−1)/2Dψ
〉
dνε

=
∫

H

(f − λϕε)ψ dνε. (3.38)

Since by (3.28) we have

∣∣∣∣
∫

Kc

〈
A(α−1)/2Dϕε,A

(α−1)/2Dψ
〉
dνε

∣∣∣∣
2

≤
∫

H

∣∣A(α−1)/2Dϕε

∣∣2 dνε

∫
Kc

∣∣A(α−1)/2Dψ
∣∣2 dνε

≤ 2

λ

∫
H

f 2 dνε

∫
Kc

∣∣A(α−1)/2Dψ
∣∣2 dνε → 0,

as ε → 0, it follows by (3.38) that

1

2

∫
K

〈
A(α−1)/2Dϕ,A(α−1)/2Dψ

〉
dν =

∫
K

(f − λϕ)ψ dν ∀ψ ∈ C1
b(K).

Obviously, this identity extends to all ψ ∈ W
1,2
Aα−1(K, ν), which implies that ϕε → (λI − N)−1f weakly in L2(K, ν)

as ε → 0 .
Step 2. We have{

limε→0 ϕε = ϕ in L2(K, ν),

limε→0 A(α−1)/2Dϕε = A(α−1)/2Dϕ in L2(K, ν;K).

We first assume that f ∈ C1
b(H). Let us start from the identity∫

H

Nεϕεϕε dνε = −1

2

∫
H

∣∣A(α−1)/2Dϕε

∣∣2 dνε ∀ϕ ∈ D(Nε), (3.39)

which follows from (3.5). By (3.26) and (3.39) we see that

1

2

∫
H

∣∣A(α−1)/2Dϕε

∣∣2 dνε = −
∫

H

(λϕε − f )ϕε dνε, (3.40)

which implies in virtue of (3.32), (3.33)

lim
ε→0

∫
K

(
1

2

∣∣A(α−1)/2Dϕε

∣∣2 + λϕ2
ε

)
dνε =

∫
K

f ϕ dν

= −〈Nϕ,ϕ〉 + λ

∫
K

ϕ2 dν

=
∫

K

(
1

2

∣∣A(α−1)/2Dϕ
∣∣2 + λϕ2

)
dν. (3.41)

Here we have used the fact that

lim
ε→0

∫
Kc

∣∣A(α−1)/2Dϕε

∣∣2 dνε = 0
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which follows taking into account (3.35).
Therefore, there exists a sequence {εk} ↓ 0 such that

⎧⎨
⎩

ϕεk
→ ϕ weakly in L2(K, ν),

A(α−1)/2Dϕεk
→ A(α−1)/2Dϕ weakly in L2(K, ν;H),

limk→∞
∫
K

(
λϕ2

εk
+ 1

2

∣∣A(α−1)/2Dϕεk

∣∣2)dν = ∫
K

(
λϕ2 + 1

2

∣∣A(α−1)/2Dϕ
∣∣2)dν.

This implies that ϕεk
→ ϕ strongly in L2(K, ν) and A(α−1)/2Dϕεk

→ A(α−1)/2Dϕ strongly in L2(K, ν;H).
We finally assume that f ∈ L2(H, ν). Since C1

b(K) is dense in L2(K, ν), there exists a sequence {fn} ⊂ C1
b(H)

strongly convergent in L2(K, ν) to f . Set ϕn,ε = (λI − Nε)
−1fn. By (3.28) we have∫

H

∣∣A(α−1)/2Dϕε − A(α−1)/2Dϕn,ε

∣∣2 dνε ≤ 2

λ

∫
K

|f − fn|2 dν,

which implies∫
K

∣∣A(α−1)/2Dϕε − A(α−1)/2Dϕn,ε

∣∣2 dν ≤ 2

λ

∫
K

|f − fn|2 dν.

So, again A(α−1)/2Dϕεk
→ A(α−1)/2Dϕ strongly in L2(K, ν;H) as claimed.

Step 3. We have ϕ ∈ W
2,2
Aα−1(K, ν) and Aα/2Dϕ ∈ L2(K, ν).

By estimate (3.29) we have that {ϕε} is bounded in W
2,2
Aα−1(K, ν). Therefore there is a subsequence, still denoted

{ϕε} which converges to ϕ in W
2,2
Aα−1(K, ν). In the same way we show that Aα/2Dϕ ∈ L2(K, ν).

Step 4. Checking the Neumann condition for ϕ.
We recall that (see from (3.31))∫

K

Nεϕεψ dν = −1

2

∫
K

〈
A(α−1)/2Dϕε,A

(α−1)/2Dψ
〉
dν

+ 1

μ(K)

∫
Σ

ψ
〈
Aα−1γ (Dϕε),n(y)

〉
dμΣ. (3.42)

Recalling that for ε → 0, Nεϕε = λϕε − f → λϕ − f = Nϕ in L2(K, ν) and by Proposition 2.3 we have∣∣Q1/2n(y)
∣∣〈Aα−1γ (Dϕε),n(y)

〉→ ∣∣Q1/2n(y)
∣∣〈Aα−1γ (Dϕ),n(y)

〉
,

in L2(Σ,μΣ), it follows by (3.42) that∫
Σ

〈
Aα−1γ (Dϕ),n(y)

〉
ψ dμΣ = 0 ∀ψ ∈ V,

where V is defied by (3.30). Since V is dense in L2(Σ,μΣ) the conclusion follows.
This completes the proof of the theorem. �

4. The process associated with the reflection problem

Throughout this section the following hypothesis will be assumed.

Hypothesis 4.1.

(i) α ∈ [0, 1
2 ] and there is δ ∈ (0,1) such that Tr[A2δ−1] < ∞.

(ii) K = B(0,1) = {x ∈ H : |x| ≤ 1}.
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We are going to construct a stochastic process X = X(t, x) on a probability space (Ω̃, F̃ , P̃) associated with the
semigroup Pt generated by N on L2(K, ν), i.e.,

(Ptf )(x) = Ẽ
[
f
(
X(t, x)

)] ∀f ∈ Cb(H), x ∈ H.

The main result, Theorem 4.10 below amounts to saying that there is a cadlag H -valued process X with this property.
To this aim we need first some sharp estimates on solution Xε(t, x) to approximating Eq. (3.1), that is{

dXε + 1
2AαXε dt + Aα−1βε(Xε)dt = A(α−1)/2 dWt, t ≥ 0,

Xε(0) = x.
(4.1)

4.1. Estimates for Xε

We set

|x|a = ∣∣Aax
∣∣, 〈x, y〉a = 〈

Aax,Aay
〉
, ∀x, y ∈ D

(
Aa

)
,0 < a < 1

and

WA(t) =
∫ t

0
e−Aα(t−s)/2A(α−1)/2 dWs, t ≥ 0.

Lemma 4.2. The following estimates hold

E

[
sup

t∈[0,T ]
∣∣WA(t)

∣∣2m

δ

]
≤ CT m+1/m+1 ∀T > 0, (4.2)

E

[
sup

t∈[T −h,T ]
∣∣WA(t) − WA(t − h)

∣∣2m
]

≤ ChρT m+1/m+1 ∀T > 0,∀h > 0, (4.3)

where m > 1 and 1 < ρ < m.
Here C is a positive constant independent of ω, T and ε.

Proof. Since the proof is identical with Theorem 2.9 in [7] we shall sketch it only for convenience. We have (see [7],
p. 25)

WA(t) = sin(πγ )

π

∫ t

0
e−(t−s)Aα/2(t − s)γ−1Y(s)ds, (4.4)

where 0 < γ < 1 and

Y(t) =
∫ t

0
e−(t−s)Aα/2(t − s)−γ A(α−1)/2 dWs.

In the following we shall fix m > 1
2γ

and 0 < γ < 1
2 .

We have∣∣∣∣
∫ t

0
e−(t−s)Aα/2(t − s)γ−1f (s)ds

∣∣∣∣≤ Ctγ−1/(2m)|f |L2(0,T ;H) (4.5)

and therefore

sup
t∈[0,T ]

∣∣WA(t)
∣∣2m

δ
≤ CT 2m(γ−1/(2m))

∫ T

0

∣∣Y(s)
∣∣2m

δ
ds.
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On the other hand, under Hypothesis 4.1 we have

E
(∣∣Y(s)

∣∣2m

δ

)≤ Csm ∀s > 0

and this implies (4.2) as claimed.
As regards (4.3), we have by (4.4) that

WA(t) − WA(t − h)

= sin(πγ )

π

∫ t−h

0
e−(t−h−s)Aα/2[(t − s)γ−1 − (t − h − s)γ−1e−hAα/2]Y(s)ds

+ sin(πγ )

π

∫ t

t−h

e−(t−s)Aα/2(t − s)γ−1Y(s)ds.

Then by (4.5) we have that

sup
t∈[h,T −h]

∣∣WA(t) − WA(t − h)
∣∣2m

≤ C

(
h2mγ

∫ T

0

∣∣Y(s)
∣∣2m ds +

∫ T

0

∣∣(I − e−hAα/2)Y(s)
∣∣2m ds + h2m−1

∫ T

0

∣∣Y(s)
∣∣2m ds

)

≤ C
(
h2mγ + h2m−1 + hm

)∫ T

0

∣∣Y(s)
∣∣2m ds

because |(I − e−hAα/2)Y | ≤ Ch1/2|Y |α/2. Then we get as above that (4.3) holds. �

In the following we set yε = Xε − WA and notice that yε is the solution to equation{
dyε

dt
(t) + 1

2Aαyε(t) + Aα−1βε

(
yε(t) + WA(t)

)= 0, t ≥ 0,

yε(0) = x
P-a.s. (4.6)

Equivalently{
A1−α dyε

dt
(t) + 1

2Ayε(t) + βε

(
yε(t) + WA(t)

)= 0, t ≥ 0,

yε(0) = x
P-a.s. (4.7)

Denote by BV([0, T ];H) the space of all H -valued functions with bounded variation on [0, T ] and denote by
‖y‖BV([0,T ];H) the total variation of y ∈ BV([0, T ];H). We set η = 1−α

2 .
Lemma 4.3 below is the main estimate.

Lemma 4.3. Assume that x ∈ D(Aη), then there exists a constant C > 0 independent of ω ∈ Ω , T > 0 and ε, h such
that ∫ T

0

∣∣yε(t)
∣∣2
1/2 dt + sup

t∈[0,T ]

∣∣yε(t)
∣∣2
η
+
∫ T

0

∣∣βε

(
yε(t) + WA(t)

)∣∣dt

≤ C

(
|x|2δ/2 + 1

μ
sup

t∈[0,T ]

∣∣WA(t)
∣∣2
δ

)(
1 − hp sup

s,t∈[0,T ]

∣∣WA(t) − WA(s)
∣∣|t − s|−p

− μδ sup
s∈[0,T ]

∣∣WA(s)
∣∣
δ

)−1
, (4.8)

‖yε‖BV([0,T ];H) ≤ C

(
|x|η +

∫ T

0

∣∣βε

(
yε(t) + WA(t)

)∣∣dt +
(∫ T

0

∣∣yε(t)
∣∣2
1/2 dt

)1/2

T

)
, (4.9)

where p = ρ
2m

.
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Proof. We have

〈
βε(yε + WA),yε + WA − θ

〉
= 1

ε

(
1 − 1

|yε + WA|
)+

〈yε + WA,yε + WA − θ〉 ∀θ ∈ H.

This yields

〈
βε(yε + WA),yε + WA − θ

〉≥ 0 ∀θ ∈ H such that |θ | ≤ 1.

In particular, the latter holds for

θ = βε(yε + WA)

|βε(yε + WA)|
and so we get, for any ε > 0 and t ∈ [0, T ]

∫ t

0

∣∣βε(yε + WA)
∣∣ds ≤

∫ t

0

〈
βε(yε + WA),yε + WA

〉
ds. (4.10)

On the other hand, by (4.7) we see that

∫ t

0

〈
βε(yε + WA),yε

〉
ds + 1

2

∣∣yε(t)
∣∣2
η
+
∫ t

0

∣∣A1/2yε(s)
∣∣2 ds = 1

2
|x|2η ∀t ≥ 0

and so (4.10) yields

∫ t

0

∣∣βε(yε + WA)
∣∣ds + 1

2

∣∣yε(t)
∣∣2
η
+
∫ t

0

∣∣A1/2yε(s)
∣∣2 ds

≤ 1

2
|x|2η +

∫ t

0

〈
βε(yε + WA),WA

〉
ds. (4.11)

Now we consider Wμ = (1 + μA)−1WA. We have∣∣Wμ(t) − Wμ(s)
∣∣≤ ∣∣WA(t) − WA(s)

∣∣ ∀t, s > 0,∣∣Wμ(t) − WA(t)
∣∣≤ μ

∣∣A(1 + μA)−1WA

∣∣≤ μδ|WA|δ, (4.12)

∣∣AWμ(t)
∣∣≤ (

1 + 1

μ

)∣∣WA(t)
∣∣ ∀t ≥ 0,μ > 0.

Then we have∫ t

0

〈
βε(yε + WA),WA

〉
ds

≤
∫ t

0

〈
βε(yε + WA),WA − Wμ

〉
ds +

∫ t

0

〈
βε(yε + WA),Wμ

〉
ds

≤ sup
s∈(0,t)

∣∣WA(s) − Wμ(s)
∣∣ ∫ t

0

∣∣βε(yε + WA)
∣∣ds +

∫ t

0

〈
βε(yε + WA),Wμ

〉
ds

≤ μδ sup
s∈(0,t)

∣∣WA(s)
∣∣
δ

∫ t

0

∣∣βε(yε + WA)
∣∣ds +

∫ t

0

〈
βε(yε + WA),Wμ

〉
ds.
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On the other hand, we have

∫ t

0

〈
βε(yε + WA),Wμ

〉
ds =

N−1∑
i=0

∫ ti+1

ti

〈
βε(yε + WA),Wμ(s) − Wμ(ti)

〉
ds

+
N−1∑
i=0

∫ ti+1

ti

〈
βε(yε + WA),Wμ(ti)

〉
ds, (4.13)

where 0 = t0 ≤ t1 ≤ · · · ≤ tN = t are chosen in such a way that max(ti+1 − ti ) ≤ h. We have therefore by (4.12) that∣∣∣∣∣
N−1∑
i=0

∫ ti+1

ti

〈
βε(yε + WA),Wμ(s) − Wμ(ti)

〉
ds

∣∣∣∣∣
≤ hp sup

s,s̃∈[0,t]
[∣∣WA(s) − WA(s̃)

∣∣|s − s̃|−p
] ∫ t

0

∣∣βε(yε + WA)
∣∣ds (4.14)

and by (4.6) it follows that∣∣∣∣∣
N−1∑
i=0

〈
Wμ(ti),

∫ ti+1

ti

βε(yε + WA)ds

〉∣∣∣∣∣
≤

N−1∑
i=0

∣∣∣∣
〈
Wμ(ti),A

2ηyε(ti+1) − A2ηyε(ti) − 1

2

∫ ti+1

ti

Ayε(s)ds

〉∣∣∣∣
≤

N−1∑
i=0

∣∣Wμ(ti)
∣∣
η

(∣∣yε(ti+1)
∣∣
η
+ ∣∣yε(ti)

∣∣
η

)

+
N−1∑
i=0

∣∣Wμ(ti)
∣∣
1/2

∫ ti+1

ti

∣∣yε(s)
∣∣
1/2 ds

≤ 2N

(
1 + 1

μ

)
sup

s∈[0,t]
∣∣WA(s)

∣∣ sup
s∈[0,t]

∣∣yε(s)
∣∣
η

+
(

1 + 1

μ

)
sup

s∈[0,t]
∣∣WA(s)

∣∣ ∫ t

0

∣∣yε(s)
∣∣
1/2 ds, (4.15)

because |Wμ|η ≤ |AWA| ≤ (1 + 1
μ
)|WA|.

Then substituting into (4.13) yields∫ t

0

〈
βε(yε + WA),Wμ

〉
ds ≤ 1

4

(
sup

s∈(0,t)

∣∣yε(s)
∣∣2
η
+
∫ t

0

∣∣yε(s)
∣∣2
1/2 ds

)
+ C

(
1 + T

μ2

)
sup

s∈(0,t)

∣∣WA(s)
∣∣2

and substituting into (4.11) we get by (4.13) that∫ t

0

∣∣βε(yε + WA)
∣∣ds + 1

4

(
sup

s∈(0,t)

∣∣yε(s)
∣∣2
η
+
∫ t

0

∣∣yε(s)
∣∣2
1/2 ds

)

≤ C

(
|x|2η +

(
1 + T

μ2

)
sup

s∈(0,t)

∣∣WA(s)
∣∣2

+
(
hp sup

s,s̄∈(0,t)

∣∣WA(s) − WA(s̄)
∣∣|s − s̄|−p + μδ sup

s∈(0,t)

∣∣WA(s)
∣∣
δ

)∫ t

0

∣∣βε(yε + WA)
∣∣ds

)
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which implies (4.8) as claimed. By (4.6) we see that (recall that 0 ≤ α ≤ 1
2 ),

∫ T

0

∣∣∣∣dyε

dt

∣∣∣∣dt ≤ C

∫ T

0

(∣∣Aαyε

∣∣+ ∣∣βε(yε + WA)
∣∣)dt ≤ C

((∫ T

0

∣∣yε(t)
∣∣2
1/2 dt

)1/2

T +
∫ T

0

∣∣βε(yε + WA)
∣∣dt

)

which clearly implies (4.9).
Now combining (4.8) and (4.9) yields

sup
t∈[0,T ]

∣∣yε(t)
∣∣
η
+ ‖yε‖BV([0,T ];H)

(4.16)

≤ C

(
|x|2η + T 2

μ
sup

t∈[0,T ]
∣∣WA(t)

∣∣2
δ

)(
1 − hpH(T ) − μδH1(T )

)
,

where

H(T ) = sup
s,t∈[0,T ]

[∣∣WA(t) − WA(s)
∣∣|t − s|−p

]
,

(4.17)
H1(T ) = sup

t∈[0,T ]

∣∣WA(t)
∣∣
δ
. �

An immediate corollary is Lemma 4.4 below.

Lemma 4.4. For each N > 0 and T > 0 there is ΩT,N ⊂ Ω such that

P(ΩT,N) ≥ 1 − C1∗
N

(4.18)

and

‖yε‖BV([0,T ];H) + sup
t∈[0,T ]

∣∣yε(t)
∣∣2
η

≤ C2∗
(|x|2η + N1/2T 6) ∀ω ∈ ΩT,N , (4.19)

where Ci∗, i = 1,2, are independent of ε, T , N and ω.

Proof. By (4.2) and respectively (4.3) we have for all M > 0 and m = 2

P

(
sup

t∈[0,T ]
∣∣WA(t)

∣∣
δ
≤ M

)
≥ 1 − C

M4
T 3 (4.20)

and

P

(
hpH(T ) ≤ 1

4

)
≥ 1 − CT 3h2p ∀h > 0, (4.21)

P

(
μδH1(T ) ≤ 1

4

)
≥ 1 − CT 3μ4δ.

On the other hand, by (4.8), (4.9) and (4.16) we have

sup
t∈[0,T ]

|yε|2η + ‖yε‖BV([0,T ];H) ≤ 2C
(|x|2η + M2)

in

{
ω: hpH(T ) ≤ 1

4

}
∩
{
ω: sup

t∈[0,T ]
∣∣WA(t)

∣∣
η

≤ M
}

∩
{
ω: μδH1(T ) ≤ 1

4

}
. (4.22)
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If we choose M = N1/4T 3, h = (NT 3)−2/p and

ΩT,N =
{
ω: sup

t∈[0,T ]
∣∣WA(t)

∣∣
η

≤ M
}

∩
{
ω: hpH(T ) ≤ 1

4

}
∩
{
ω: μδH1(T ) ≤ 1

4

}

we obtain (4.18) and (4.19) as desired. �

The convergence in law
We denote by BV(0,∞;H) the space of H -valued functions u : [0,∞) → H which have bounded variation on each
interval [0, T ]. This is a locally convex space with the family of seminorms

|u|T = ‖u‖BV([0,T ];H) ∀T > 0.

We shall construct below a space of cadlag trajectories which is a Polish space in an appropriate topology. To this
end we consider the family of spaces {XN }∞N=1 defined by

XN = {
u ∈ BV(0,∞;H) ∩ L∞

loc

(
0,∞;D(

Aη
))

:

|u|T + |u|2L∞(0,T ;D(Aη)) ≤ 2C2∗
(|x|2η + N1/2T 6) ∀T > 0

}
. (4.23)

(Here C2∗ is the constant arising in (4.19).)
Each XN is a closed and bounded subset of BV([0, T ];H). We shall introduce on XN the topology (infact a

pseudo-topology) defined by the convergence in measure, i.e., we say that un �⇒ u in XN if for each T > 0

lim
n→∞

∫ T

0
f
(
t, un(t)

)
dt =

∫ T

0
f
(
t, u(t)

)
dt (4.24)

for all bounded and continuous functions f ∈ Cb([0,∞) × H).
It turns out that this topology is just given by the metric

d(u, v) =
∞∑

j=1

1

2j

dTj
(u, v)

1 + dTj
(u, v)

, (4.25)

where {Tj } is an increasing sequence of times that goes to infinity and

dTj
(u, v) =

∞∑
k=1

1

2k

| ∫ Tj

0 (f
j
k (t, u(t)) − f

j
k (t, v(t)))dt |

1 + | ∫ Tj

0 (f
j
k (t, u(t)) − f

j
k (t, v(t)))dt |

,

where, for each j , {f j
k }∞k=1 is a dense subset of C([0, Tj ] × H).

Lemma 4.5. The space XN endowed with the metric d is a compact complete metric space and the convergence
induced by this topology coincides with that induced by convergence in measure (4.24).

Proof. It is immediate that d is a metric on XN and that un �⇒ u if and only if limn→∞ d(un,u) = 0. Moreover, by
the infinite-dimensional Helly theorem the set XN is compact in topology �⇒ (or equivalently that induced by the
distance d). This implies that the metric d is complete and the space XN is compact and so also separable. �

Now we shall define the space
◦

X ⊂ BV(0,∞;H) ∩ L∞
loc(0,∞;D(Aη)) by

◦
X =

∞⋃
N=1

XN. (4.26)



Stochastic reflection problem 719

In other words, u ∈ ◦
X if and only if u ∈ XN for some N ∈ N. (Recall that η = 1−α

2 .)

We shall denote by X the completion of
◦

X in the metric (topology) d . Clearly X is a separable complete metric
space.

For each u ∈ X we can associate its pseudo-path which is a probability law μu on [0,∞) × H . Then for each
f ∈ Cb([0,∞) × H) we have∫

f
(
t, u(t)

)
dt =

∫
f dμu ∀f ∈ Cb

([0,∞) × H
)

and so the convergence (4.24) (respectively the topology induced by it) reduces to the convergence in measure or
to the so-called pseudo-path topology (see [13]). Since the space D of cadlag H -valued functions is closed in this
topology and

◦
X ⊂ BV(0,∞;H) ∩ L∞

loc

(
0,∞;D(

Aη
))⊂ D

we conclude that

Lemma 4.6. Any u ∈ X is a cadlag H-valued function, i.e., u is right continuous with left limit.

Remark 4.7. Of course the previous analysis of cadlag function spaces refer to real valued functions but it extends
mutatis mutandis to H -valued functions considering first weakly cadlag functions u : [0,∞) → H , i.e., t → 〈u(t), x〉
is cadlag for each x ∈ H and after to strong cadlag functions via compacity D(Aη) ⊂ H .

Now we consider the family of probability measures {Pε} ⊂ P(X ) defined by

Pε(Γ ) = P(Xε ∈ Γ ), Γ ⊂ X Borelian. (4.27)

Lemma 4.8. The family {Pε}ε>0 is tight.

Proof. Taking into account that Xε = yε + WA it suffices to prove that the family {P̃ε}, where P̃ε(Γ ) = P(yε ∈ Γ ),
is tight. By the Prohorov theorem it suffices to show that for each ξ > 0 there is a compact subset Kξ ⊂ X such that

P(yε ∈ Kξ) ≥ 1 − ξ. (4.28)

We take

Kξ = {
u ∈ BV(0,∞;H) ∩ L∞

loc

(
0,∞;D(

Aη
))

:

|u|T + |u|2L∞(0,T ;D(Aη)) ≤ 2C2∗
(|x|2η + (

C1∗ξ−1)1/2
T 6) ∀T > 0

}
.

By Lemma 3.4 we see that (4.28) holds. On the other hand, since Kη ⊂ XN for N = C1∗ξ−1 it follows that Kη is

compact in
◦

X and therefore in X as well. This completes the proof of Lemma 4.8. �

Then there is P ∈ P(X ) such that on a subsequence ε → 0

Pε → P weakly in P(X ).

Moreover, by the Skorohod theorem (see, e.g., [15]), we have

Proposition 4.9. There is a probability space (Ω̃, F̃ , P̃) and a sequence {X̃ε} of X -valued processes on (Ω̃, F̃ , P̃)

and X -valued stochastic process X such that

Pε(Γ ) = P(X̃ε ∈ Γ ), (4.29)

X̃ε → X P̃-a.s. in X , (4.30)

P(Γ ) = P(X ∈ Γ ) (4.31)
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for all Borelian set Γ ⊂ X .

By Lemma 4.6, X = X(t, x) is a cadlag H -valued process.
Let N be the Kolmogorov operator associated with the Neumann problem and let Pt the semigroup generated by

N . We have

Theorem 4.10. Let Hypothesis 4.1 holds. Let X = X(t) : [0,∞) → H be the process defined by Proposition 4.9. Then

(Ptϕ)(x) =
∫

Ω̃

ϕ
(
X(t, x)

)
dP̃(ω) ∀t ≥ 0, x ∈ D

(
Aδ

)
, ϕ ∈ Cb(H). (4.32)

Proof. We have by Proposition 4.9

(
Pε(t)ϕ

)
(x) = Ẽ

(
ϕ
(
X̃ε(t, x)

))=
∫

Ω̃

ϕ
(
X̃ε(t, x)

)
dP̃(ω) ∀t ≥ 0, x ∈ D

(
Aδ

)
, ϕ ∈ Cb(H),

(4.33)

lim
ε→0

(
Pε(t)ϕ

)
(x) =

∫
Ω̃

ϕ
(
X(t, x)

)
dP̃(ω).

On the other hand, we know by Theorem 3.5 that

(λI − N)−1ϕ = lim
ε→0

(λI − Nε)
−1ϕ = lim

ε→0

∫ ∞

0
e−λtPε(t)ϕ dt ∀λ > 0. (4.34)

By (4.33), (4.34) we see that∫ ∞

0
e−λt (Ptϕ)(x)dt =

∫ ∞

0
e−λt dt

∫
Ω̃

ϕ
(
X(t, x)

)
dP̃(ω) ∀λ > 0

which clearly implies (4.32) as claimed. �

Proposition 4.11. We have

X(t, x) ∈ K P̃-a.s. ∀t > 0. (4.35)

Proof. By Lemma 4.4 we have that for each N ,

∫ T

0

∣∣βε

(
Xε(t)

)∣∣dt ≤ C
(
1 + N1/2T 6) ∀ω ∈ ΩT,N ,

where P(ΩT,N) ≥ 1 − C1∗
N

.
This yields

∫ T

0

∣∣Xε(t) − ΠKXε(t)
∣∣dt ≤ Cε

(
1 + N1/2T 6) ∀ε > 0,ω ∈ ΩT,N

and therefore∫ T

0

∣∣X̃ε(t) − ΠKX̃ε(t)
∣∣dt ≤ Cε

(
1 + N1/2T 6) ∀ε > 0,ω ∈ Ω̃T ,N ,

where Ω̃T ,N ⊂ Ω̃ , and P̃(Ω̃T ,N ) ≥ 1 − C1∗
N

.

Letting ε tend to zero we obtain that |X(t) − ΠKX(t)| = 0, ∀t ≥ 0, P̃-a.s. as claimed. �
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Remark 4.12. We recall that X is a martingale solution to (1.10), if

P̃
(
X(t) ∈ K,∀t ≥ 0

)= 1, P̃
(
X(0, x) = x

)= 1 (4.36)

and for any smooth function ϕ in a core D(N0) of N ,

ϕ
(
X(t)

)−
∫ t

0
Nϕ

(
X(s)

)
ds − ϕ(x) =: M̃(t) (4.37)

is a martingale with respect to natural filtration F̃t = σ(X(s), s ≤ t), t ≥ 0.

It is easily seen by Theorem 4.10 and (3.5) that if N has a core D(N0) then the process X constructed above is the
unique martingale solution to (1.1). However the existence of a core for N is still open.

5. An example

Consider the stochastic variational inequality (see (1.10))

dX(t) − �X(t)dt − �NK

(
X(t)

)
dt 
 A−1

0 dWt in (0,∞) × O,

X(t) = 0 on (0,∞) × ∂O, (5.1)

X(0) = x in O,

where O is a bounded open subset of R
d with smooth boundary ∂O and

K =
{
x ∈ L2(O):

∫
O

j
(
x(ξ)

)
dξ ≤ 1

}
, (5.2)

where j : R → R is a C∞-convex function such that 0 < c ≤ j ′′(r) ≤ c1, ∀r ∈ R, j (0) = j ′(0) = 0 and A0 = −�,
D(A0) = H 1

0 (O) ∩ H 2(O).
Formally, (5.1) reduces to the stochastic reflection problem

dX(t) − �X(t)dt = A−1
0 dWt in

{
x ∈ L2(O):

∫
O

j
(
x(ξ)

)
dξ < 1

}
,

dX(t) − �X(t)dt ∈ {
λ�j ′(X(t)

)}
λ>0 dt + A−1

0 dWt in

{
x ∈ L2(O):

∫
O

j
(
x(ξ)

)
dξ = 1

}
, (5.3)

X(t) = 0 on (0,∞) × ∂O,

X(0) = x in O.

The results of Sections 1–3 and in particular, Theorem 3.5 apply with α = 1
2 , H = L2(O), A = �2, D(A) = {u ∈

H 2(O) ∩ H 1
0 (O),�u ∈ H 1

0 (O),�2u ∈ L2(O)} on K defined by (5.2). Then A1/2 = A0 and TrA−1+2δ < ∞ if 1 ≤
d ≤ 3 and δ is small.

Then the corresponding Kolmogorov operator N defined by (3.32) satisfies the regularity properties in Theorem 3.5
and the Markov semigroup Pt generated by N is given by

(Ptϕ0)(x) = ϕ(t, x) ∀t ≥ 0, x ∈ L2(O),

where ϕ is the solution to infinite-dimensional parabolic problem

d

dt

∫
K

ϕ(t, x)ψ(x)ν(dx) − 1

2

∫
K

(∫
O

�ϕ
(
t,X(ξ)

)
ψ
(
X(ξ)

)
dξ

)
ν(dx) ∀t ≥ 0,∀ψ ∈ C1(K),

(5.4)
ϕ(0, x) = ϕ0(x).
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Moreover, if d = 1 and j (r) = r2 then Hypothesis 4.1 holds and so by Theorem 4.10 there is a cadlag process
X(t) : [0,∞) → L2(O) in a probability space (Ω̃, F̃ , P̃) such that

(Ptϕ)(x) =
∫

Ω̃

ϕ
(
X(t, x)

)
dP̃(ω) ∀x ∈ D

(
Aδ

)
for δ > 0.

As mentioned earlier we may view X as a martingale solution to problem (5.1).

Remark 5.1. This example illustrates the fact that considering the class of problems (1.7) with α ∈ [0,1] one might
study reflection problems of the form (5.1) which otherwise are untractable in more dimensions.

Appendix

We recall again the following well-known integration by parts formula for the measure μ (see, e.g., [10]). For any
ϕ,ψ ∈ W 1,2(H,μ) and z ∈ H ,∫

H

〈
Dϕ,Q1/2z

〉
ψ dμ = −

∫
H

〈
Dψ,Q1/2z

〉
ϕ dμ +

∫
H

Wzϕψ dμ, (A.1)

where Wz represents the white noise function,

Wz(x) =
∞∑

k=1

1√
λk

〈x, ek〉〈z, ek〉 ∀z and μ-a.e. x ∈ H.

We recall that Wz is a Gaussian random variable in L2(H,μ) with mean 0 and covariance |z|2. We notice that, thanks
to Hypothesis 1.1(ii) the surface measure μΣ is well defined (see [12]).

We want now to prove an integration by parts formula in a subdomain K of H which generalizes (A.1). K is
defined by a function g as stated in the Introduction. It is convenient to introduce a sequence of suitable measures
{με}ε>0 defined by

με(dx) = ρε(x)μ(dx), x ∈ H,

where

ρε(x) = e−(g(x)−1)2/ε1g(x)≥1 .

Notice that,

lim
ε→0

ρε(x) =
{

1 if x ∈ K,

0 if x /∈ K.

So, we have

lim
ε→0

με = μ(K)ν weakly in P(H),

where ν is the measure introduced previously. Moreover,

Dρε(x) = −2

ε
ρε(x)1g(x)≥1Dg(x)

(
g(x) − 1

)
,

so that ρε ∈ W 1,2(H,μ).
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The integration by parts formula

Here we are going to derive from (A.1), an integration by parts formula for the measure με . Let ϕ ∈ C1
b(H), z ∈ H ,

then, since ρε ∈ W 1,2(H,μ), we find from (A.1) that∫
H

〈
Dϕ,Q1/2z

〉
dμε =

∫
H

〈
Dϕ,Q1/2z

〉
ρε dμ

= −
∫

H

ϕ
〈
D logρε,Q

1/2z
〉
dμε +

∫
H

Wzϕ dμε.

Since,

D logρε(x) = −2

ε
1g(x)≥1Dg(x)

(
g(x) − 1

)
,

we find the formula,∫
H

〈
Dϕ,Q1/2z

〉
με(dx) = 2

ε

∫
H

ϕ(x)1g(x)≥1
(
g(x) − 1

)〈
Dg(x),Q1/2z

〉
με(dx)

+
∫

H

Wz(x)ϕ(x)με(dx). (A.2)

Lemma A.1. Let ϕ ∈ C1
b(H), z ∈ H . Then there exists the limit,

lim
ε→0

J z
ε (ϕ) := lim

ε→0

1

ε

∫
H

ϕ(x)1g(x)≥1
(
g(x) − 1

)〈
Dg(x),Q1/2z

〉
με(dx)

= 1

2

∫
Σ

ϕ(y)
〈
n(y),Q1/2z

〉
μΣ(dy), (A.3)

where n(y) = Dg(y)
|Dg(y)

is the exterior normal to Σ at y and μΣ is the surface measure on Σ induced by μ (see [12]).

Proof. First we notice that

J z
ε (ϕ) = 1

ε

∫
{g(x)>1}

ϕ(x)
(
g(x) − 1

)〈
Dg(x),Q1/2z

〉
e−(g(x)−1)2/εμ(dx).

By the co-area formula (see [12], p. 140)1 we have∫
H

f μ(dx) =
∫ ∞

0

[∫
g=r

f (y)
1

|Dg(y)|μΣr (dy)

]
dr. (A.4)

(By (1.4) we know that |Dg(x)| ≥ γ |x| and so |Dg(x)|−1 ∈ Lp(H,μ) for all p ≥ 1.) Notice that the surface measure
is defined for all r ≥ 0 taking into account [12], Theorem 6.2, Chapter V, moreover, [12], Theorem 1.1, Corollary 6.3.2,
Chapter V, give the continuity property in Theorem 6.3.1 of Chapter V of [12]. Setting in (A.4)

f = 1g≥1ϕ(x)
(
g(x) − 1

)〈
Dg(x),Q1/2z

〉
e−(g(x)−1)2/ε

we get∫
g≥1

ϕ(x)
(
g(x) − 1

)〈
Dg(x),Q1/2z

〉
e−(g(x)−1)2/εμ(dx)

=
∫ ∞

1
(r − 1)e−(r−1)2/ε

[∫
g=r

ϕ(y)
〈
Dg(y),Q1/2z

〉 1

|Dg(y)|μΣr (dy)

]
dr.

1Here, we have extended the validity of (A.4) to functions f , continuous and in Lp(H,μ) for any p ≥ 1, by a density argument.



724 V. Barbu, G. Da Prato and L. Tubaro

Hence, setting r = 1 + √
εs, yields

J z
ε (ϕ) =

∫ ∞

0
se−s2

ds

∫
g=1+√

εs

ϕ(y)

〈
Dg(y)

|Dg(y)| ,Q
1/2z

〉
μΣg=1+√

εs
(dy).

So (A.3) follows. �

We are now in position to prove the announced integration by parts formula.

Theorem A.2. Let ϕ ∈ C1
b(H), z ∈ H . Then for any z ∈ H we have∫

K

〈
Dϕ(x),Q1/2z

〉
μ(dx) =

∫
Σ

ϕ(y)
〈
n(y),Q1/2z

〉
μΣ(dy) (A.5)

+
∫

K

Wz(x)ϕ(x)μ(dx). (A.6)

Proof. The conclusion of the theorem follows letting ε → 0 in (A.2) and taking into account Lemma A.1. �
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