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MAJORITY DYNAMICS ON TREES AND THE DYNAMIC CAVITY
METHOD1

BY YASHODHAN KANORIA2 AND ANDREA MONTANARI

Stanford University

A voter sits on each vertex of an infinite tree of degree k, and has to de-
cide between two alternative opinions. At each time step, each voter switches
to the opinion of the majority of her neighbors. We analyze this majority pro-
cess when opinions are initialized to independent and identically distributed
random variables.

In particular, we bound the threshold value of the initial bias such that
the process converges to consensus. In order to prove an upper bound, we
characterize the process of a single node in the large k-limit. This approach
is inspired by the theory of mean field spin-glass and can potentially be gen-
eralized to a wider class of models. We also derive a lower bound that is
nontrivial for small, odd values of k.

1. Introduction.

1.1. The majority process. Consider a graph G with vertex set V , and edge
set E . In the following, we shall denote by ∂i the set of neighbors of i ∈ V , and as-
sume |∂i| < ∞ (i.e., G is locally finite). To each vertex i ∈ V , we assign an initial
spin σi(0) ∈ {−1,+1}. The vector of all initial spins is denoted by σ (0). Con-
figuration σ (t) = {σi(t) : i ∈ V} at subsequent times t = 1,2, . . . are determined
according to the following majority update rule. If ∂i is the set of neighbors of
node i ∈ V , we let

σi(t + 1) = sign
(∑

j∈∂i

σj (t)

)
,(1)

when
∑

j∈∂i σj (t) �= 0. If
∑

j∈∂i σj (t) = 0, then we let

σi(t + 1) =
{

σi(t), with probability 1/2,
−σi(t), with probability 1/2.

(2)
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In order to construct this process, we associate to each vertex i ∈ V , a sequence
of i.i.d. Bernoulli(1/2) random variables ωi = {ωi,0,ωi,1,ωi,2, . . .}, whereby ωi,t

is used to break the (eventual) tie at time t . A realization of the process is then
determined by the triple (G,ω, σ (0)), with ω = {ωi}.

In this work, we will study the asymptotic dynamic of this process when G is
an infinite regular tree of degree k ≥ 2. Let Pθ be the law of the majority process
where, in the initial configuration, the spins σi(0) are i.i.d. with Pθ {σi(0) = +1} =
(1 + θ)/2. We define the consensus threshold as the smallest bias in the initial
condition such that the dynamics converges to the all +1 configuration

θ∗(k) = inf
{
θ : Pθ

(
lim

t→∞σ (t) = +1
)

= 1
}
.(3)

Here convergence to the all-(+1) configuration is understood to be point-wise. We
shall call θ∗(k) the consensus threshold of the k-regular tree.

Two simple observations will be useful in stating our results.
Monotonicity. Denote by � the natural partial ordering between configurations

(i.e., σ � σ ′ if and only if σi ≥ σ ′
i for all i ∈ V ). Then the majority dynamics

preserves this partial ordering. More precisely, given two copies of the process with
initial conditions σ (0) � σ ′(0), there exists a coupling between the two processes
such that σ (t) � σ ′(t) for all t ≥ 0.

Symmetry. Let −σ denote the configuration obtained by inverting all the spin
values in σ . Then two copies of the process with initial conditions σ ′(0) = −σ (0)

can be coupled in such a way that σ ′(t) = −σ (t) for all t ≥ 0.
It immediately follows from these properties that

0 ≤ θ∗(k) ≤ 1.

In this work, we prove upper and lower bounds on θ∗. The upper bound follows
from an analysis of the majority process using a new technique that we call the
dynamic cavity method. This technique provides a precise characterization of the
spin trajectory, that is, of the process {σi(t)}t≥0 for a given vertex i. In particular,
in the limit of large degree k, this becomes a function of a well-defined Gaussian
process. Among other things, this characterization will be used to prove that

θ∗(k) = O(1/kM) for any M > 0.

Thus, θ∗(k) rapidly approaches 0 with increasing degree k. This result is stated
below as Theorem 2.3.

We also prove lower bounds on θ∗(k) based on the formation of stable structures
of −1 spins at time T . Such structures, once formed, persist for all future times, and
hence prevent convergence to σ (1). These lower bounds θlb(k, T ) are nontrivial,
that is, strictly positive for small odd values of k (cf. Table 1 in Section 2.4). This
result is stated below as Theorem 2.9.

A significant part of this paper is devoted to the rigorous development of the dy-
namic cavity method. We consider this a key contribution of this work. The cavity
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method has been successful in analysis of probabilistic models having locally tree
structured graphs [14, 30, 33]. The basic idea of this method is to remove a node
from the graph thus forming a “cavity.” One then assumes that the behavior of the
other nodes (surrounding the cavity) is known. The removed node is then put back
in to derive a dynamic-programming type recursion.

Here, we show how to extend this method to the study of a stochastic process
on a tree-like graph, specifically the majority process. In this setting, the cavity
recursion can be interpreted as an inductive procedure with respect to time t . We
“fix” the behavior of a selected vertex i up to time t , obtain a consistent charac-
terization of its “environment” up to the same time t . From this, we can compute
the probability distribution of the trajectory {σi(t

′)}0≤t ′≤t+1 up to time t + 1. The
cavity recursion determines completely the distribution of the the spin trajectory
at an arbitrary node, although in implicit form.

In order to analyze the cavity recursion, we consider the large k regime. How-
ever, since we want to study the decay of θ∗(k) with k, we cannot rely on generic
tools and need to carry out an accurate probability calculation. In order to achieve
this goal, we establish a convenient form of the local central limit theorem for
binary random vectors. We use this central limit theorem to “solve” the cavity re-
cursion for large k. The solution is given by a “cavity process” that can be defined
explicitly in terms of an appropriate Gaussian process.

1.2. Preliminary remarks. It is not too difficult to show that θ∗(k) < 1 for all k.
The majority process is related to the simpler process of bootstrap percolation
[3, 17]. The next lemma formalizes this connection, yielding a nontrivial upper
bound on θ∗(k).

LEMMA 1.1. For all k ≥ 3, denote by ρc(k) the threshold density for the ap-
pearance of an infinite cluster of occupied vertices in bootstrap percolation with
threshold �(k + 1)/2�. Then

θ∗(k) ≤ θu(k) ≡ 1 − 2ρc(k) < 1.(4)

This result follows from the fact that if the initial −1’s cannot form an infinite
structure under bootstrap percolation, then they eventually all disappear under the
majority dynamics. We defer a full proof of this lemma to the Appendix A.

A numerical evaluation of this upper bound [17] yields θu(5) ≈ 0.670, θu(6) ≈
0.774, θu(7) ≈ 0.600. It is possible to show that θu(k) = O(

√
(log k)/k). It turns

out that this is far from being the correct k-dependence. We will prove a much
tighter bound in Theorem 2.3.

The next lemma simplifies the task of proving upper bounds on θ∗(k) for large k,
by showing that it is sufficient to prove Eθ {σi(t)} > 1 − δ∗/k for some constant δ∗
to conclude σ (t) → +1.
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LEMMA 1.2. Assume G to be the regular tree of degree k. There exists k∗, δ∗ >

0 such that for k ≥ k∗, if Eθ {σi(t)} > 1 − (δ∗/k), then θ∗(k) ≤ θ .

We use a standard expansion argument to show that such convergence occurs
for typical random graphs in the configuration model, and then extend the result to
the infinite tree. Again the proof can be found in Appendix A.

1.3. Organization of the paper. We state our main results in Section 2. Sec-
tion 3 surveys related work. We develop the cavity method and the resulting upper
bound in Section 4.2. Our lower bound is proved in Section 5.

2. Results. We can now state our main results. They consist of the following:

(i) The exact cavity recursion (Lemma 2.1 in Section 2.1).
(ii) Convergence to the cavity process (Theorems 2.7 and 2.8 in Section 2.2).

(iii) Upper bound on θ∗ (Theorem 2.3 in Section 2.2) as a consequence of con-
vergence to the cavity process.

(iv) Lower bound on θ∗ (Theorem 2.9 in Section 2.3) due to formation of block-
ing structures of −1’s.

Section 2.4 contains numerical illustration of some of our results.

2.1. The exact cavity recursion. First, we state an exact recursive characteriza-
tion of spin trajectories at nodes. This is the key tool we use in our development of
the cavity process. Moreover, our lower bound is based on a very similar recursive
analysis.

Let Gø = (Vø, Eø) be the tree rooted at vertex ø with degree k − 1 at the root
and k at all the other vertices, and let u = {u(0), u(1), u(2), . . .} be an arbitrary
sequence of real numbers. We define a modified Markov chain over spins {σi}i∈Vø

as follows. For i �= ø, σi(t) is updated according to the rules (1) and (2). For the
root spin we have instead

σø(t + 1) = sign

(
k−1∑
i=1

σi(t) + u(t)

)
,(5)

where 1, . . . , k − 1 denote the neighbors of the root. In the case
∑k−1

i=1 σi(t) +
u(t) = 0, σø(t + 1) is drawn as in (2), that is, uniformly at random. We will call
this the “dynamics under external field.”

We will call the sequence u = {u(0), u(1), u(2), . . .} “external field applied
at the root.” We define the notation uT ≡ (u(0), u(1), . . . , u(T )) and similarly
σT

i ≡ (σi(0), σi(1), . . . , σi(T )). We denote by P(σT
ø ‖uT ) the probability of ob-

serving a trajectory σT
ø for the root spin under the above dynamics. Let us stress

two elementary facts: (i) P(σT
ø ‖uT ) is not a conditional probability; (ii) as implied
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by the notation, the distribution of σT
ø does not depend on u(t), t > T [and indeed

does not depend on u(T ) either, but we include it for notational convenience].
As before, we assume that in the initial configuration, the spins are i.i.d.

Bernoulli random variables, and denote by P0(σi(0)) their common distribution.

LEMMA 2.1. The following recursion holds

P(σT +1
ø ‖uT +1) = P0(σø(0))

∑
σT

1 ···σT
k−1

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
(6)

×
k−1∏
i=1

P(σ T
i ‖σT

ø ),

Ku(t)(· · ·) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I

{
σø(t + 1) = sign

(
k−1∑
i=1

σi(t) + u(t)

)}
,

if
k−1∑
i=1

σi(t) + u(t) �= 0,

1

2
, otherwise.

(7)

This recursion is based on the following intuition: for ease of explanation, we
will assume k is odd. The situation of the “child” nodes 1,2, . . . , k − 1 (and their
respective subtrees) with respect to the root trajectory σT

ø is essentially the same
as the situation of ø with respect to the fixed trajectory uT . If the root trajec-
tory had been “fixed” to σT

ø , the child trajectories would have been i.i.d. accord-
ing to P(·‖σT

ø ). However, the root trajectory σT
ø is itself a function of the child

trajectories σT
1 , . . . , σ T

k−1 and uT , instead of being a fixed trajectory. Thus we
sum over the product of terms P(σT

i ‖σT
ø ) multiplied by a “consistency” indica-

tor
∏T

t=0 Ku(t)(σø(t + 1)|σ∂ø(t)). The term P0(σø(0)) appears for obvious reasons.
We provide a rigorous proof of Lemma 2.1 in Appendix B.
The same proof applies, in fact, to quite a general class of processes on the

regular rooted tree Gø. More precisely, consider a model with spins taking value
in a finite domain σi(t) ∈ X , and are updated in parallel according to the rule (for
i �= ø)

σi(t + 1) = f
(
σi(t), σ ∂i\π(i)(t), σπ(i)(t),ωi,t

)
,(8)

where π(i) is the parent of node i (i.e., the only neighbor of i that is closer to the
root) and {ωi,t } are a collection of i.i.d. random variables. For the root ø, the above
rule is modified by replacing σπ(i)(t) by the arbitrary quantity u(t).

The next remark follows from a verbatim repetition of our proof of Lemma 2.1
(in Appendix B).
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REMARK 2.2. For a model with general update rule (8), the distribution of
the root trajectory satisfies (6) with the kernel

K
(
σø(t + 1)|σø(t), σ∂ø(t)

)
(9)

≡ Eωø,t

{
I
(
σø(t + 1) = f (σø(t), σ ∂ø(t), u(t),ωø,t )

)}
.

2.2. Upper bounds and the dynamic cavity method. While for small odd k the
consensus threshold is strictly positive, our next result shows that it approaches 0
very rapidly as k → ∞.

THEOREM 2.3. The consensus threshold on k regular trees converges to 0 as
k → ∞ faster than any polynomial. In other words, for any finite B > 0 and any
K > 0,

θ∗(k) ≤ Kk−B(10)

for k ≥ k∗(B,K).

Fix a vertex i ∈ V , and consider the process {σi(t)}t≥0. The proof of Theo-
rem 2.3 is obtained by developing a pretty complete characterization of this pro-
cess in the large k limit. We first consider the unbiased case (i.e., θ = 0) and prove
the convergence of this process {σi(t)}t≥0 to a well-defined limit as k → ∞. We
will call this limit the cavity process, for the case of unbiased initialization (i.e.,
for θ = 0). We formally define the cavity process below and then state our result
on convergence to the cavity process.

DEFINITION 2.4 (Effective process). Let C = {C(t, s)}t,s∈Z+ be a positive
definite symmetric matrix, and R = {R(t, s)}t,s∈Z+,t>s , h = {h(t)}t∈Z+ two arbi-
trary sets of real numbers.

A sample path of the effective process with parameters C,R,h is generated as
follows: let τ(0) be a Bernoulli(1/2) random variable and {η(t)}t∈Z+ be jointly
Gaussian zero mean random variables with covariance C, independent from τ(0).
For any t ≥ 0 we let

τ(t + 1) = sign

(
η(t) +

t−1∑
s=0

R(t, s)τ (s) + h(t)

)
.(11)

Notice that the distribution of the effective process depends on the three param-
eters C,R,h. We will denote expectation with respect to its distribution as EC,R,h.
The functions C(·, ·) and R(·, ·) will be referred to as correlation and response
functions. By convention, we let R(t, s) = 0 if t ≤ s. Finally, h is a perturbation
parameter needed to state our definition of the cavity process in terms of the effec-
tive process.
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DEFINITION 2.5 (Consistent parameters C, R). Let C,R be parameters in the
definition of the effective process. We say that C, R are consistent if they satisfy

C(t, s) = EC,R,0[τ(t)τ (s)] ∀t, s ≥ 0,(12)

R(t, s) = ∂

∂h(s)
EC,R,h[τ(t)]

∣∣∣∣
h=0

∀0 ≤ s < t.(13)

It is natural to ask whether consistent choices of C and R exist, and in that
case, whether they are unique or not. This question is addressed in Lemma 4.1
below, which proves that there exist unique consistent R and C, that is, there is a
unique solution of (12) and (13). In fact, these values are determined recursively.
One starts C(0,0) = 1 [and indeed C(t, t) = 1 for all t]. This leads to uniquely
determined values for C(1,0) and R(1,0), which then determines unique values
for C(2, s), R(2, s) and so on.

DEFINITION 2.6 (Cavity process). Let C, R be the unique consistent param-
eters (cf. Definition 2.5) as per Lemma 4.1. The cavity process {τ(t)}t∈Z+ defined
as the effective process with parameters C, R and with h = 0.

In the following, we will denote by Pcav the law of the cavity process. Our next
theorem establishes convergence of the majority process with unbiased initializa-
tion to the cavity process.

THEOREM 2.7. Consider the majority process on a regular tree of degree k

with uniform initialization θ = 0. Then for any i ∈ V and any time T ≥ 0, we have

(σi(0), σi(1), . . . , σi(T ))
d→ (τ (0), τ (1), . . . , τ (T )),

where {τ(0)}t≥0 is distributed according to the cavity process and convergence is
understood to be in distribution as k → ∞.

Theorem 2.7 is proved in Section 4.4.
Let us describe the intuitive picture which forms the basis of the last theorem.

The trajectory at target node i follows the majority rule in (1). The study of this
rule is complicated by the fact that the spins of the neighboring nodes ∂i at time
t > 0 are not independent of each other. The past trajectory σ t−1

i of target node i

affects the spins of nodes in ∂i at time t . The exact recursion equation (6) allows
an analytical treatment despite this dependence. We use a local central limit the-
orem (Theorem 4.4 in Section 4.3, proved in Appendix E) on the exact recursion
equation (6), to show convergence to the cavity process inductively in T . The re-
sponse term

∑t−1
s=0 R(t, s)σ (s) captures the effect of the spin trajectory up to time

t − 1 at the target node, on its environment at time t . The key part of the proof is
in Lemma 4.5.

We finally turn to the case of biased initialization Eθ {σi(0)} = θ .
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THEOREM 2.8. For T∗ a nonnegative integer and β0 ≥ 0, consider the ma-
jority process on a regular tree of degree k with i.i.d. initialization with bias
θ = β0/k(T∗+1)/2. Then for any i ∈ V and T ≤ T∗, we have

(σi(0), σi(1), . . . , σi(T ))
d→ (τ (0), τ (1), . . . , τ (T )),

where {τ(0)}t≥0 is distributed according to the cavity process and convergence is
understood to be in distribution as k → ∞.

Further, if β0 > 0, then for any i ∈ V and T ≥ T∗ + 2, we have

(σi(0), σi(1), . . . , σi(T ))
(14)

d→ (
τ(0), τ (1), . . . , τ (T∗), σ (T∗ + 1),+1,+1, . . . ,+1

)
,

where the random variable σ(T∗ + 1) dominates stochastically τ(T∗ + 1), and
P{σ(T∗ + 1) > τ(T∗ + 1)} is strictly positive.

Finally, there exist D = D(β0, T∗), with D(β0, T∗) > 0 for β0 > 0 such that, for
any T ≥ T∗ + 2,

Eθ {σi(T )} ≥ 1 − e−D(β0,T∗)k.(15)

Theorem 2.8 is proved in Section 4.5. Theorem 2.3 is an immediate corollary of
this general result.

PROOF OF THEOREM 2.3. Choose T∗ = �2B� and β0 = K in Theorem 2.8
and use (15) to check the assumptions of Lemma 1.2, whereby for t ≥ T∗ + 2, it is
sufficient to take k ≥ k∗ such that δ∗/k ≥ e−D(β0,T∗)k . �

Clearly, Theorem 2.7 is a special case of Theorem 2.8 (just take T∗ large enough
and β0 = 0). However our proof proceeds by first analyzing the unbiased case
θ = 0, and then turning to the biased one θ > 0. The latter is treated by establishing
a delicate relationship between processes with biased and unbiased initializations,
derived in Lemmas 4.6 and 4.7. In the unbiased case, one has E{σi(t)} = 0 by
symmetry at all times. In the biased case, we will prove a quantitative estimate of
how the fraction of +1 spins evolves with time. Let θt = E[σi(t)] for an arbitrary
node i. If θt = O(k−1) we obtain θt+1 = √

kθtR(t + 1, t)(1 + o(1)). In words, as
long as the fraction of +1 spins is small enough, it gets multiplied at each step by
a factor of order

√
k. By iterating this procedure with θ0 = β0/k(T∗+1)/2, we get

θT∗ = �(k−1/2) and θT∗+1 = �(1). At the next iteration, the fraction of +1 spins
approaches 1 and the bias saturates to θT∗+2 = 1 − e−�(k).

Theorem 2.8 also implies that, for large degree trees, consensus to majority
takes place very abruptly. Indeed the bias toward +1 passes from k−1/2 (at t =
T∗) to 1 − e−�(k) (at t = T∗ + 2) in 2 iterations. Numerical illustrations of this
phenomenon are provided in Section 2.4, specifically Figures 1 and 2.
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2.3. Lower bounds. We state a sequence of recursively computable lower
bounds. These lower bounds are based on the formation of “stable” structures of
−1’s. Once formed, these stable structures persist for all future times, hence pre-
venting the system from reach the +1 consensus. A key issue we overcome is that
such stable structures do not exist at time 0 (w.p. 1) for any k and θ > 0. The lower
bound θlb(k, T ) stated below is based on the formation w.p. 1 of stable structures
of −1’s at time T , as a result of majority dynamics up to that time.

THEOREM 2.9. Consider any T ≥ 0. For all σT , uT ∈ {−1,+1}T +1 define


0
odd,T (σ T

ø ‖uT ) = P(σ T
ø ‖uT ),

(16)

0

even,T (σ T
ø ‖uT ) = P(σ T

ø ‖uT )I
(
σø(T ) = −1

)
.

Define 
d+1
odd,T (σ T

ø ‖uT ),
d+1
even,T (σ T

ø ‖uT ) for d ≥ 0 recursively as per


d+1
odd,T (σ T

ø ‖uT )

= P0(σø(0))

k−1∑
r=�(k+1)/2�−1

(
k − 1

r

)

× ∑
σT

1 ···σT
k−1

T −1∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
(17)

×
r∏

i=1


d
even,T (σ T

i ‖σT
ø )

×
k−1∏

i=r+1

{P(σ T
i ‖σT

ø ) − 
d
even,T (σ T

i ‖σT
ø )},


d+1
even,T (σ T

ø ‖uT )

= I
(
σø(T ) = −1

)
P0(σø(0))

k−1∑
r=�(k+1)/2�−1

(
k − 1

r

)

× ∑
σT

1 ···σT
k−1

T −1∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
(18)

×
r∏

i=1


d
odd,T (σ T

i ‖σT
ø )

×
k−1∏

i=r+1

{P(σ T
i ‖σT

ø ) − 
d
odd,T (σ T

i ‖σT
ø )},
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Ku(t)(· · ·) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I

{
σø(t + 1) = sign

(
k−1∑
i=1

σi(t) + u(t)

)}
,

if
k−1∑
i=1

σi(t) + u(t) �= 0,

1

2
, otherwise.

(19)

Let 
odd,T (σ T ‖uT ) = limd→∞ 
d
odd,T (σ T ‖uT ). This limit exists.

Define θlb(k, T ) ≡ sup{θ ∈ [0,1] :
odd,T (σ T ‖uT ) > 0 for all σT ,uT }. Then,
for every k,T

θ∗(k) ≥ θlb(k, T ).(20)

It is obvious that evaluating the lower bound θlb(k, T ) analytically is quite chal-
lenging. An exception is provided by the case k = 3, where it is not too hard to
show that θlb(k = 3, T = 1) > 0.

We will instead evaluate the lower bounds θlb(k, T ) numerically. The above
recursion allows us to do it through a number of operations (sums and multipli-
cations) of order 2k(T +1)T (T + k). As explained in Section 5, the recursion can
be considerably simplified by exploiting the symmetries of the problem, while re-
maining exponential in k and T . Evaluating the lower bound for k = 3, 5, 7 and
T = 3, we get θ∗(3) > 0.573, θ∗(5) > 0.052 and θ∗(7) > 0.0080. This shows con-
vincingly that θ∗(k) > 0 for k ≤ 7, k odd.

2.4. Numerical illustration. The objective of this section is to provide illus-
trations of our results, and help to develop some intuition on the majority process.

It is obviously difficult to simulate the majority dynamics on infinite trees. On
the other hand, the state of any node i after t iterations only depends on the state
of its neighbors in the graph up to distance t . It is natural to consider sequences
of finite graphs having an increasing number of vertices n, that converge locally
to trees (in the sense of [1]). Random regular graphs drawn from the configuration
model [8] are a natural choice. A sequence of random k regular graphs does indeed
converge to the regular tree of degree k almost surely (e.g., see [14]).

Moreover, as demonstrated in Lemmas A.1 and A.2, the fraction of nodes that
are +1 at time t in the configuration model converges to the probability in the
infinite tree of an arbitrary node being +1.

It is worth emphasizing that we are using random regular graphs as a tool for
computing the evolution of the fraction of (+1)’s on the infinite tree. This approach
is supported by Lemmas A.1 and A.2. On the other hand, we will not attack the
problem of defining a consensus threshold for finite graphs. This indeed requires
some care as we briefly explain for clarity.

The consensus threshold θ∗ is well defined for a general infinite graph G . If G is
finite, then trivially θ∗(G) = 1: indeed for any θ < 1 there is a positive probability
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TABLE 1
Empirical thresholds θ∗,rgraph(k) and computed lower bounds on θ∗(k)

k θ∗,rgraph(k) Lower bd on θ∗(k) from Theorem 2.9

3 0.58 ± 0.01 0.574
4 0.000 ± 0.001 0
5 0.054 ± 0.001 0.052
6 0.000 ± 0.001 0
7 0.010 ± 0.001 0.008

that σ (0) is the all −1 configurations. However, given a sequence of graphs with
an increasing number of vertices n, one can define a threshold function θ∗,n(γ )

such that σ (t) → +1 with probability γ for θ = θ∗,n(γ ). It is an open question
to determine which graph sequences exhibit a sharp threshold [in the sense that
θ∗,n(γ ) has a limit independent of γ ∈ (0,1) as n → ∞]. It is a natural conjecture
that such a sharp threshold does indeed exist for sequences of random regular
graphs.

We carried out numerical simulations with random regular graphs of degree k.3

In this case, there appears empirically to be a sharp threshold bias that converges,
as n → ∞ to a limit θ∗,rgraph(k). Above this threshold, the dynamics converge with
high probability to all +1. Below this threshold, the dynamics converge instead to
either a stationary point or to a length-two cycle [19]. Threshold biases found for
small values of k are shown in Table 1.

The empirical threshold for the configuration model approaches 0 rapidly with
increasing k, for k odd, and appears to be identically 0 for all even k. The origin
of the odd–even difference lies in the fact that, for k odd, the majority dynamics is
deterministic. For k even, the possibility of ties leads to random choices [cf. (2)]
thus reducing the chance of blocking structures. Getting a rigorous understanding
of this phenomenon is an open problem.

For comparison, we have shown above the best lower bound value we could
compute based on Theorem 2.9 (combined with the trivial lower bound of 0). The
lower bounds we have obtained for the tree process are very close to the empirical
thresholds θ∗,rgraph(k). A full table of computed lower bound values is available in
Table 4.

Figures 1 and 2 compare our predictions for the evolution of θt with the average
observed values for finite values of k. Theorem 2.8 predicts almost complete con-
sensus is reached sharply at iteration T∗ +2. We see that the prediction provided by
our method is quite accurate already for k � 15. In particular, consensus develops
fairly rapidly between iteration T∗ and T∗ + 2.

3We used graphs of size up to n = 5 · 104, generated according to a modified configuration model
[8] (with eventual self-edges and double edges rewired randomly). The initial bias was implemented
by drawing a uniformly random configuration with n(1 + θ)/2 spins σi = +1.
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FIG. 1. Change of bias Eσi(t) over time t , with with initial bias Eσi(0) ≡ θ = 0.5/k (i.e., in our
notation T∗ = 1, β0 = 0.5). The “prediction” is based on β1, . . . , βT∗ computed according to (41)
and βT∗+1 computed according to the modified cavity process [see Lemma 4.8 and (61)].

3. Related work. The majority process is a simple example of a stochastic
dynamics evolving according to local rules on a graph. In the last few years, con-
siderable effort has been devoted to the study of high-dimensional probability dis-
tributions with an underlying sparse graph structure (e.g., see [29]). Such distribu-
tions are referred to as Markov random fields, graphical models, spin models or
constraint satisfaction problems, depending on the context. Common algorithmic
and analytic tools were developed to address a number of questions ranging from
statistical physics to computer science. Among such tools, we recall local weak
convergence [1, 5] and correlation decay [15, 18, 34].

The objective of the present paper is to initiate a similar development in the
context of stochastic dynamical processes that “factor” according to a sparse graph
structure. Rather than addressing a generic setting, we focus instead on a challeng-
ing concrete question, and try to develop tools that are amenable to generalization.

The majority process can be regarded as a example of interacting particle system
[26] or as a cellular automaton, two topics with a long record of important results.
In particular, it bears some resemblance with the voter model. The latter is however
considerably simpler because of the underlying martingale structure. Further, the
voter model does not exhibit any sharp threshold for θ∗(k) < 1.

More closely related to the model studied in this paper is the zero-temperature
Glauber dynamics for the Ising model, which obeys the same update rule as in
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FIG. 2. Change of bias Eσi(t) over time t , with initial bias θ = Eσi(0) = 2.5/k2 (i.e., T∗ = 3,
β0 = 2.5).

(1), (2). Let us stress that Glauber dynamics is defined to be asynchronous: each
spin is updated at the arrival times of an independent Poisson clock of rate 1.
Fontes, Schonmann and Sidoravicius [16] studied this dynamics on d-dimensional
grids, proving that the consensus threshold is θ∗ < 1 for all d ≥ 2. Howard [22]
studied zero-temperature Glauber dynamics on 3-regular trees and found that in-
finite “spin chains” of both signs are formed almost surely at positive times if we
start with an unbiased initialization. In our notation, this implies θ∗ > 0 for this
model. Positive-temperature Glauber dynamics on trees was the object of several
recent papers [6, 27]. While no “complete consensus” can take place for positive
temperature, at small enough temperature this model exhibits coarsening, namely
the growth of a positively (or negatively) biased domain. In particular, Caputo and
Martinelli [10] proved that the corresponding threshold θ∗,coars(k) → 0 as k → ∞.

As mentioned, an important difference with respect to these studies lies in the
fact that we focus on synchronous dynamics. Indeed our methods are somewhat
simpler to apply to the synchronous case. Nevertheless, we think that they can be
generalized to the asynchronous setting as well. In particular, we expect that a limit
theorem analogous to Theorem 2.7 (with a proper definition of the cavity process)
can be proved for Glauber dynamics as well. As for the lower bounds on θ∗(k),
we imagine that arguments similar to the ones leading to Theorem 2.9 can be
developed also for the asynchronous case. For instance, the result by Howard [22]
on k = 3 referred indeed to asynchronous dynamics.
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More important is the difference between trees and grids. The methods devel-
oped in this paper are well suited for analyzing stochastic processes on locally
tree-like graphs, while a good part of the literature on Glauber dynamics focused
on d-dimensional grids.

Variations of the majority dynamics on locally tree-like graphs have been stud-
ied recently within the statistical mechanics literature [20, 32]. Both of these papers
analyze the synchronous dynamics. In particular, the latter paper uses a nonrigor-
ous version of the cavity method.

The main technical ideas developed in this paper are quite far from the ones
within interacting particle systems. More precisely, we develop a dynamical ana-
logue of the so-called “cavity method” that has been successful in the analysis
of probabilistic models on sparse random graphs. The basic idea in that context
is to exploit the locally tree-like structure of such graphs to derive an approximate
dynamic-programming type recursion. This idea was further developed mathemat-
ically in the local weak convergence framework of Aldous and Steele [1]. Adapting
this framework to the study of a stochastic process is far from straightforward. First
of all, one has to determine what quantity to write the recursion for. It turns out
that an exact recursion can be proved for the probability distribution of the trajec-
tory of the root spin in a modified majority process (see Section 2.1 for a precise
definition). The next difficulty consists of extracting useful information from this
recursion which is rather implicit and intricate. We demonstrate that this can be
done for large k using an appropriate local central limit theorem proved in Ap-
pendix E. This allows to prove convergence to the cavity process; see Theorems
2.7 and 2.8. There has been previous work in this spirit (for other models) that uses
a normal approximation or a large degree limit (e.g., see [11, 33]).

The use of a dynamic cavity method for analyzing stochastic dynamics was
pioneered in the statistical physics literature on mean field spin glasses. In that
context, one is typically interested in the asymptotic behavior of Langevin dynam-
ics for large system sizes. The energy function is taken to be a spin-glass Hamilto-
nian, and the cavity method can be used to explore this asymptotics. A lucid (albeit
nonrigorous) discussion can be found in [30], Chapter VI. This approach allows
one to derive limit deterministic equations for the covariance and the “response
function” of the process under study. The study of such equations led to a deeper
understanding of fascinating phenomena such as “aging” in spin glasses [9]. For
some models, the limit equations were proved rigorously after a tour de force in
stochastic processes theory [4]. Theorem 2.7 presents remarkable structural simi-
larities with these results. It suggests that this type of approach might be useful in
analyzing a large array of stochastic dynamics on graphs.

Over the last couple of years, the cavity method has also been successfully ap-
plied in nonrigorous studies of quantum spin models on trees [24, 25], a topic of
interest in condensed matter physics. While this paper does treat quantum spin
models, there are strong mathematical similarities between the dynamic cavity
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method adopted here and the cavity analysis of [24, 25]. It would be interesting
to adapt the rigorous methods developed here to the analysis of quantum models.

The majority dynamics can be viewed as a simple model of iterative “social
learning” (see, e.g., [2, 13]). In this context, the initial spin σi(0) at node i can be
interpreted as a noisy version of some underlying “state of the world” that agents
are attempting to learn from each other. Tools developed in this work, such as the
dynamic cavity method, should be applicable to other models of social learning
(cf. Remark 2.2).

The majority process and similar models have been studied in the economic
theory literature [23, 31] within the general theme of “learning in games.” In this
context, each node corresponds to a strategic agent and each of the two states
to a different strategy. The dynamics studied in this paper is just a best-response
dynamics, whereby each agent plays a symmetric coordination game with each of
its neighbors. It would be interesting to apply the present methodology to more
general game-theoretic models.

4. The dynamic cavity method and proof of Theorem 2.8. The proof of
Theorem 2.8 is organized as follows. Section 4.1 introduces some notation. We
start by proving some basic properties of the cavity process in Section 4.2. We state
a local central limit theorem for lattice random variables in Section 4.3. A proof
of Theorem 2.7 follows in Section 4.4. Finally, in Section 4.5, we derive a delicate
relationship between the biased and unbiased processes and prove Theorem 2.8.

4.1. Notation. We use the following notation throughout this section. For
a sequence a(0), a(1), a(2), . . . , and given t ≥ s, we let at

s ≡ (a(s), a(s + 1),
. . . , a(t)). Further, given the correlation and response functions C and R, and an
integer T ≥ 0, we define the (T + 1) × (T + 1) matrices CT = {C(t, s)}t,s≤T and
RT = {R(t, s)}s<t≤T .

Given m ∈ Rd and � ∈ Rd×d , we let φm,�(x) be the density at x ∈ Rd of a
Gaussian random variable with mean μ and covariance �. Finally, if A ∈ Rd is a
rectangle, A = [a1, b1] × [a2, b2] × · · · × [ad, bd ] (with ai ≤ bi ), we let

�m,�(A) ≡
∫

A
φm,�(x)

∏
i∈[d] : bi>ai

dxi .(21)

Notice that those coordinates such that ai = bi are not integrated over. For a parti-
tion {1, . . . , d} = I0 ∪ I+ ∪ I− and a vector a ∈ Zd , define

A(a, I) ≡ {z ∈ Zd : zi = ai ∀i ∈ I0, zi ≥ ai ∀i ∈ I+, zi ≤ ai ∀i ∈ I−},(22)

A∞(I) ≡ {z ∈ Rd : zi = 0 ∀i ∈ I0, zi ≥ 0 ∀i ∈ I+, zi ≤ 0 ∀i ∈ I−}.(23)
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4.2. The cavity process. We start by checking that consistent R, C are
uniquely defined, thus justifying the definition of the cavity process.

LEMMA 4.1. There exist unique consistent C, R (cf. Definition 2.5).

PROOF. For T ≥ 0, let CT ,RT denote the restriction of C,R to index values
of at most T . Define

E(T ) ≡ There exists unique CT ,RT , such that (12) is satisfied for all s, t ≤ T

and

(13) is satisfied for all s < t ≤ T .

We want to show that E(T ) holds for all T ≥ 0. We proceed by induction. Clearly,
E(0) holds with C(0,0) = 1.

Suppose E(T ) holds. Denote by CT and RT the corresponding consistent co-
variance and response function, that exist and are unique by hypothesis. We
construct consistent CT +1 and RT +1 by suitably extending CT and RT . Let
(τ (0), τ (1), . . . , τ (T + 1)) be a sample path of the uniquely defined effective pro-
cess with parameters CT , RT and h as per (11). Define C(s, T + 1) = C(T + 1, s)

for all s ≤ T + 1 by (13) with t = T + 1. Define R(T + 1, s) for all s ≤ T by (12)
with t = T + 1. The resulting CT +1,RT +1 are clearly consistent up to T + 1. No-
tice that CT +1 is positive semidefinite by construction. We now need to argue that
there is no other consistent CT +1,RT +1. But this is clearly true since the restric-
tion up to time T must match CT ,RT for consistency up to T , and the extension to
T + 1 defined above is the only way to satisfy (12) and (13) with t = T + 1. Thus,
E(T + 1) holds. Induction completes the proof. �

LEMMA 4.2. Let {C(t, s)}t,s≥0 be the correlation function of the cavity pro-
cess. For any T ≥ 0 the matrix CT is strictly positive definite, and P(τT = λT ) > 0
for each λT ∈ {±1}T +1.

PROOF. As a preliminary remark notice that, by Lemma 4.1, R(t, s) is well
defined for all s < t . Moreover, it is easy to see that it is always finite.

We prove the lemma by induction. Clearly, C0 is positive definite and P(τ (0) =
±1) = 1

2 > 0. Suppose, CT is positive definite. Now, from the definition of the
cavity process, we have

P(τT +1 = λT +1) = 1
2�μ(λT ),CT

(A∞(IC(λ))),(24)

where IC(λT ) is the partition of {1,2, . . . , T } defined as follows:

IC(λ) ≡ (∅, IC,+, IC,−), IC,+ = {i :λ(i + 1) = +1},
(25)

IC,− = {i :λ(i + 1) = −1},

μ(λT ) ≡ (μ0(λ
T ), . . . ,μt (λ

T )) with μr(λ
T ) ≡

r−1∑
s=0

R(r, s)λ(s).(26)
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Since CT is positive definite, we have �μ(λT ),CT
(x) > 0 ∀x ∈ RT +1, whence

P(τT +1 = λT +1) > 0 for all λT +1 ∈ {−1,+1}T +2. Notice that CT +1 is positive
semidefinite by the definition of cavity process. If CT +1 is not strictly positive def-
inite, there must be a linear combination of (τ (0), . . . , τ (T + 1)) that is equal to
0 with probability 1. Since the distribution of τT +1 gives positive weight to each
possible configuration, there must exist a nontrivial linear function in RT +2 that
vanishes on very point of {±1}T +2, which is impossible. This proves that CT +1 is
strictly positive definite. �

The above proof provides, in fact, a procedure to determine C(t, s) and R(t, s)

by recursion over t . However, while the recursion for C consists just of a multi-
dimensional integration over the Gaussian variables {η(t)}, the recursion for R [cf.
(13)] is a priori more complicated since it involves differentiation with respect to h.
The next lemma provides more explicit expressions.

LEMMA 4.3. The correlation and response functions C and R of the cavity
process are determined by the following recursion:

C(t + 1, s) = 1

2

∑
λt+1∈{±1}(t+2)

λ(t + 1)λ(s)�μ(λt ),Ct
(A∞(IC(λ)))

(27)
∀0 ≤ s ≤ t,

R(t + 1, s) = 1

2

∑
λt+1∈{±1}(t+2)

λ(t + 1)λ(s + 1)�μ(λt ),Ct
(A∞(IR(λ, s)))

(28)
∀0 ≤ s ≤ t,

with boundary condition R(t, s) = 0 for t ≤ s, C(t, t) = 1 and C(s, t) = C(t, s).
Here, IC and IR are partitions of T = {0,1, . . . , t} of the form I ≡ (I0, I+, I−),
with IC and μ defined as per (26) with T = t and IR is defined by

IR(λ, s) ≡ ({s}, IR,+, IR,−), IR,+ = {i :λ(i + 1) = +1} \ {s},
(29)

IR,− = {i :λ(i + 1) = −1} \ {s}.

We provide a proof of this lemma in Appendix C.
Equation (28) yields in particular

R(t + 1, t) = ∑
λt∈{±1}t+1

�μ(λt ),Ct
(A∞(IR(λ, t))).(30)

Note that R(t + 1, t) > 0 ∀t ≥ 0, since it is a sum of positive terms. These facts
will be used later in Section 4.5.
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TABLE 2
Computed C(t, s) values

s

t 0 1 2 3

0 1
1 0 1
2 0.5751 0 1
3 0 0.7600 0 1

Tables 2 and 3 contain computed values of C and R, respectively, for small
values of s, t .

Note how C(t, s) = 0 when t and s have different parity, and R(t, s) = 0 when
t and s have the same parity. This is a simple consequence of the fact that the dy-
namics is “bipartite.” This also allows us to reduce the dimensionality of integrals
in (27) and (28), making numerical computations easier.

4.3. A central limit theorem. We will use repeatedly the following local cen-
tral limit theorem for lattice random variables.

THEOREM 4.4. For any B > 0 and d ∈ N, there exists a finite constant
D = D(B,d) such that the following is true. Let X1,X2, . . . ,XN , be i.i.d. ran-
dom vectors with X1 ∈ {+1,−1}d and

‖EX1‖ ≤ B√
N

, min
s∈{+1,−1}d

P(X1 = s) ≥ 1

B
.

Let pN be the distribution of SN =∑N
i=1 Xi . For a partition {1, . . . , d} = I0 ∪

I+ ∪ I− and a vector a ∈ Zd , with ‖a‖∞ ≤ B logN , define A(a, I), A∞(I) as in
(23) and (22).

TABLE 3
Computed R(t, s) values

s

t 0 1 2 3

1 0.7979
2 0 0.5804
3 0.4164 0 0.4607
4 0 0.2920 0 0.3950
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Assume the coordinates ai to have the same parity as N . We then have∑
y∈A(a,I)

pN(y) = 2|I0|

N |I0|/2 �√
NEX1,Cov(X1)

(A∞(I))
(
1 + Err(a, I,N)

)
,(31)

|Err(a, I,N)| ≤ D(B,d)N−1/(2|I0|+2).

A simple proof of this result can be obtained using the Bernoulli decomposition
method of [12, 28] and is reported in Appendix E. Indeed Appendix E proves a
slightly stronger result.

4.4. Unbiased initialization: Proof of Theorem 2.7. Throughout this section,
we consider the case of unbiased initialization, that is, θ = 0.

Before passing to the details of the actual proof, we attempt to provide some
intuition.

4.4.1. Theorem 2.7: Basic intuition. The central idea consists in studying the
dynamics at the root of the rooted tree Gø = (Vø, Eø) with updates modified ac-
cording to (5). The dynamics at the root is indeed completely characterized by the
recursion (6). Let yT =∑k−1

i=1 σT
i , and write P(yT ‖σT

ø ) for its distribution under

the product measure
∏k−1

i=1 P(σ T
i ‖σT

ø ). Since σT
ø only depends on its neighbors

through their sum yT , all that matters is in fact the distribution P(yT ‖σT
ø ). A fur-

ther simplification arises in the large k limit because we can apply the central limit
theorem to show that yT converges to a Gaussian random variable.

Two complications however arise: (i) The mean and variance of this Gaussian
depend in an a priori arbitrary way on σT

ø itself; (ii) In order to track this depen-
dence, it is necessary to establish a central limit theorem for yT .

In order to illustrate these points, it is useful to follow the first few steps of
the dynamics. First take T = 0. We know that P(σi(0)‖σø(0)) = P0(σi(0)) = 1/2.
Thus, using (6) for T = 0, we get

P(σ 1
ø ‖u1) = 1

2k

∑
σ1(0)···σk−1(0)

Ku(0)(σø(1)|σ∂ø(0)).

This expression can be estimated by approximating P(y(0)‖u(0)) with the
Gaussian distribution N (0, k − 1). In particular, using the expression (7) for
Ku(0)(σø(1)|σ∂ø(0)) we get, for (k − 1) even and u(0) ∈ {+1,−1}

E(σø(1)‖u1) = E sign

(
k−1∑
i=1

σi(0) + u(0)

)

= E sign
(
y(0) + u(0)

)= u(0)P
(
y(0) = 0

)
≈ u(0)P

(√
k − 1Z ∈ [−1,1])≈

√
2

πk
u(0),



MAJORITY DYNAMICS ON TREES 1713

where Z denotes a unit normal random variable. Using the fact that σø(0) is inde-
pendent of σø(1) by the bipartite nature of the dynamics, we obtain the estimate

P(σ 1
ø ‖u1) ≈ 1

4

(
1 + R(1,0)u(0)√

k
σø(1)

)
,

where R(1,0) = √
2/π as per (30). It follows that EP(·‖u1)[σø(1)] ≈ R(1,0) ×

u(0)k−1/2. Also, EP(·‖u1)[σø(1)σø(0)] = C(1,0) = 0 and EP(·‖u1)[σø(1)σø(1)] =
C(1,1) = 1. It follows that P(y1‖u1) has a Gaussian approximation N (

√
kμ(σ 1

ø ),
kC1), where μ(σø)

1 = (0 R(1,0)σø(0)). Note how the mean and standard devia-
tion of y1 are each of the same order �(

√
k).

When passing to T = 1 in (6), we can make this normal approximation for the
environment y1 =∑k−1

i=1 σ 1
i , up to time 1. We hence obtain a stochastic description

of the root spin process up to time 2. Essentially the same argument is extended to
any time T by induction, as is explained in detail in the following.

4.4.2. Theorem 2.7: The actual proof. The next lemma rigorizes the above
intuition and extends it to all times T by induction.

LEMMA 4.5. Let T ≥ 0 and uT with u(t) ∈ {+1,−1} be given. Assume σT
ø to

be distributed according to P(·‖uT ). Then, as k → ∞, we have

|E{σø(t)σø(s)} − C(t, s)| = o(1),
(32) ∣∣∣∣∣Eσø(t) − 1√

k

t−1∑
s=0

R(t, s)u(s)

∣∣∣∣∣= o(k−1/2)

for all t, s ≤ T . Further, for any uT , σT
ø

d→ τT , with τT distributed according to
the cavity process.

PROOF. The proof is by induction on the number of steps T . Obviously, the
thesis holds for T = 0.

Assume that it holds up to time T . Consider the exact recursion equation (6)
and fix a sequence σø(0), . . . , σø(T + 1). Under the measure

∏k−1
i=1 P(σ T

i ‖σT
ø ), the

vectors σT
1 , . . . , σ T

k−1 are independent and identically distributed. Further, by the
induction hypothesis

Eσ1(t) = 1√
k

t−1∑
s=0

R(t, s)σø(s) + o(k−1/2), E{σ1(t)σ1(s)} = C(t, s) + o(1).

By the central limit theorem { 1√
k

∑k
i=1 σi(t)}0≤t≤T converge in distribution to{

η(t) +
t−1∑
s=0

R(t, s)σø(s)

}
0≤t≤T

,(33)
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where {η(t)}0≤t≤T is a centered Gaussian vector with covariance E{η(t)η(s)} =
C(t, s). Since the product of indicator functions in (6) is a bounded function of the
vector { 1√

k

∑k
i=1 σi(t)}0≤t≤T , and the normal distribution is everywhere continu-

ous, we have

lim
k→∞P(σ T +1

ø ‖uT +1)

(34)

= P0(σø(0))Eη

[
T∏

t=0

I

{
σø(t + 1) = sign

(
η(t) +

t−1∑
s=0

R(t, s)σø(s)

)}]
,

that is, σT +1
ø converges in distribution to the first T +1 steps of the cavity process.

This implies the first equation in (32). It is therefore sufficient to prove the second
equation in (32), for t = T + 1.

To get the estimate of the mean, we use again (6), and consider the distribu-
tion P(σT +1

ø ‖0T +1) whereby the root perturbation is set to 0. This satisfies the
recursion equation (6), with u(t) = 0:

P(σ T +1
ø ‖0T +1)

(35)

= P0(σø(0))
∑

σT
1 ···σT

k−1

T∏
t=0

K0
(
σø(t + 1)|σ∂ø(t)

) k−1∏
i=1

P(σ T
i ‖σT

ø ).

Since |u(t)| ≤ 1, Ku(t)(· · ·) = K0(· · ·) for all values of t , except those in which∑k−1
i=1 σi(t) ∈ {+1,0,−1}. Let I0 = {t : |∑k−1

i=1 σi(t)| ≤ 1}. Further, irrespective of
u(t), Ku(t)(σø(t + 1)|σ∂ø(t)) is nonvanishing only if σø(t + 1)

∑k−1
i=1 σi(t) ≥ −1.

By taking the difference of (6) and (35), we get

P(σT +1
ø ‖uT +1) − P(σT +1

ø ‖0T +1)

= P0(σø(0))
∑

σT
1 ···σT

k−1

k−1∏
i=1

P(σ T
i ‖σT

ø )

T∏
t=0

I

{
σø(t + 1)

k−1∑
i=1

σi(t) ≥ −1

}
(36)

×
(∏

t∈I0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
− ∏

t∈I0

K0
(
σø(t + 1)|σ∂ø(t)

))
.

Let yT =∑k−1
i=1 σT

i , and write P(yT ‖σT
ø ) for its distribution under the product

measure
∏k−1

i=1 P(σ T
i ‖σT

ø ). Further, let

I+ ≡ {t : t < T , t /∈ I0, σø(t + 1) = +1},
I− = {t : t < T , t /∈ I0, σø(t + 1) = −1}.
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Then the above expression takes the form

P(σT +1
ø ‖uT +1) − P(σ T +1

ø ‖0T +1)

= P0(σø(0))
∑
yT

P(yT ‖(σø)
T )

∏
t∈I+

I{y(t) > 1}

× ∏
t∈I−

I{y(t) < −1}fI0({y(t)}t∈I0),

where we defined f ({y(t)}t∈I0) to be the term in parentheses in (36).
Now, we can apply Theorem 4.4 for every possible I0, by letting Xi = σT

i , so
that d = T + 1, and N = k − 1. Note that our induction hypothesis equation (32)
on the mean implies that∣∣∣∣∣Eσi(t) − 1√

k

t−1∑
s=0

R(t, s)σø(s)

∣∣∣∣∣= o(k−1/2)(37)

for all t ≤ T . In particular ‖EX1‖ ≤ B/
√

k as needed. Further, by Lemma 4.2,
our induction hypothesis equation (32), and the convergence result (34), we have
mins P{X1 = s} ≥ 1/B for all k large enough.

Now fI0({y(t)}t∈I0) = 0 for I0 = ∅. From Theorem 4.4, the contribution for
any I0 �= ∅ is �(k−|I0|/2). It follows that the dominating terms correspond to
I0 = {t0}. If we let μ′(σø) = √

k − 1E[(σ1)
T ], V (σø) = Cov((σ1)

T ), then

P(σT +1
ø ‖uT +1) − P(σ T +1

ø ‖0T +1)

= 2P0(σø(0))√
k − 1

T∑
t0=0

�μ′(σø),V (σø)(A∞(I))

(38)
× ∑

|y(t0)|≤1

{
Ku(t0)

(
σø(t0 + 1)|y(t0)

)
− K0

(
σø(t0 + 1)|y(t0)

)}(
1 + o(1)

)
,

where, with an abuse of notation, we wrote K·(σø(t0 + 1)|y(t0)) for K·(σø(t0 +
1)|σ∂ø(t0)) when

∑k−1
i=1 σi(t0) = y(t0). Further, the rectangle A∞(I) is defined as

in Theorem 4.4.
If k is odd, then the only term in the above sum is y(t0) = 0. An simple explicit

calculation shows that

Ku(t0)

(
σø(t0 + 1)|y(t0) = 0

)− K0
(
σø(t0 + 1)|y(t0) = 0

)= 1
2u(t0)σø(t0 + 1).

If k is even, two terms contribute to the sum: y(t0) = +1 and y(t0) = −1, with

Ku(t0)

(
σø(t0 + 1)|y(t0) = +1

)− K0
(
σø(t0 + 1)|y(t0) = +1

)
= −1

2σø(t0 + 1)I
(
u(t0) = −1

)
,
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Ku(t0)

(
σø(t0 + 1)|y(t0) = −1

)− K0
(
σø(t0 + 1)|y(t0) = −1

)
= −1

2σø(t0 + 1)I
(
u(t0) = +1

)
.

Also, by (37) we have limk→∞ μ′(σø) = μ(σø) with μ(·) defined as in (26).
The induction hypothesis equation (32) on the covariance of σø further implies
limk→∞ V (σø) = CT . By the continuity of Gaussian distribution, we get

lim
k→∞�μ′(σø),V (σø)(A∞(I)) = �μ(σø),CT

(A∞(I)).

Applying these remarks to (38), and using the fact that P0(σø(0)) = 1/2, we finally
get

P(σ T +1
ø ‖uT +1) − P(σ T +1

ø ‖0T +1)
(39)

= 1

2
√

k

T∑
t0=0

�μ(σø),CT
(A∞(I))u(t0)σø(t0 + 1)

(
1 + o(1)

)
.

By symmetry, we have EP(·‖0T +1)[σø(T + 1)] = 0. By summing over σT
ø equa-

tion (39), we get

EP(·‖uT +1)[σø(T + 1)]

= 1√
k

T∑
t0=0

u(t0)

{
1

2

∑
σT +1

ø

σø(T + 1)σø(t0 + 1)�μ(σø),CT
(A∞(I))

}(
1 + o(1)

)
.

It is easy to verify that the expression in parentheses matches the one for R(T +
1, t0) from Lemma 4.3. Therefore we proved

EP(·‖uT +1)[σø(T + 1)] = 1√
k

∑
s∈I

u(s)R(T + 1, s) + o
(
1/

√
k
)
,

which finishes the proof of the induction step. �

In the next section, we will use this estimate to prove Theorem 2.8, which in
particular implies Theorem 2.7. Let us notice however that Theorem 2.7 admits a
direct proof as a consequence of the last lemma.

PROOF OF THEOREM 2.7. As part of Lemma 4.5, we have proved that

σT
ø

d→ τT for each “fixed” trajectory uT ; see (34). In particular, this holds for
the extreme trajectories uT− = (−1,−1, . . . ,−1) and for uT+ = (+1,+1, . . . ,+1).
By monotonicity, the true trajectory of a spin σi in the regular tree G lies between
the trajectories σT

ø,− and σT
ø,+ distributed according to P(·‖uT+) and P(·‖uT−). Since

both σT
ø,− and σT

ø,+ converge in distribution to the cavity process τT , the original
trajectory σT

i converges to the cavity process as well. �
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4.5. Biased initialization: Proof of Theorem 2.8. In this subsection, we prove
Theorem 2.8. The proof is based on Lemmas 4.6 and 4.7 that capture the asymp-
totic behavior of the recursion (6) as k → ∞ in two different regimes.

Throughout this subsection, we adopt a special notation to simplify calculations.
We reserve P(σ T

ø ‖uT ) for the family of measures indexed by uT and introduced in
Section 2.1, in the case P0(σø(0) = ±1) = 1/2. We use instead Q(σ T

ø ‖uT ) when
the initialization is

Q0
(
σø(0) = ±1

)= 1

2
± β0

k(T∗+1)/2 ,

that is, when in the initial configuration, the spins of Gø are i.i.d. Bernoulli with
expectation Eσi(0) = 2β0k

−(T∗+1)/2.
Before providing the formal argument, we will describe the basic intuition.

4.5.1. Theorem 2.8: Basic intuition. The proof relies on a delicate comparison
between the unbiased case (analyzed in the previous section) and the biased case
treated here. An obvious but important fact is that, if the initialization is unbiased,
then the distribution of σT

i is exactly symmetric under inversion of all the spins.
How does the evolution with initial bias θ = 2β0/k(T∗+1)/2, β0 > 0, differ from

the unbiased initialization trajectory? Consider the coupling between these two
processes constructed as follows. Initialize the two processes by drawing the initial
spins at each vertex according to the optimal coupling between a Bernoulli(1/2)

and a Bernoulli(θ) random variable. At each subsequent step, the new spin values
are either chosen deterministically, or according to a fair coin toss (in the case of
a tie). In the former case, the coupling is obvious. In the latter—that is, if a tie
occurs in both processes at the same vertex—the coupling is constructed by using
the same coin. Notice that this coupling is monotone: for θ > 0 at each time the
biased process dominates the unbiased one.

Denote by σi(t) the spin at node i in the unbiased dynamics and by σ ′
i (t) the

spin at node i in the biased dynamics. Since the coupling is monotone, the two
processes can disagree at node i and time t only if σ ′

i (t) = +1 and σi(t) = −1.
For concreteness, let us consider T∗ = 2, that is, θ = 2β0/k3/2. At time t = 0, of

the k neighbors of an arbitrary node i, on average β0/k1/2 of them will be different
in the two processes. Further, each neighbor will disagree or not be independent
of the others. Since β0/k1/2 is much smaller than 1, most often no neighbors will
differ, occasionally 1 neighbor will differ and very rarely more than 1 neighbor will
differ. For simplicity, assume k is odd. The main event leading to σi(t) �= σ ′

i (t) at
t = 1 will be the following: the two process disagree on one neighbor of i (call this
event E1), and the spins that do not disagree across the two processes add up to 0
(call this E2). Since E[σi(1)] = 0 exactly, we have

E[σ ′
i (1)] = 2P{σ ′

i (1) �= σi(1)} ≈ 2P(E1)P(E2).
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The probability of E1 is estimated by the expected number of disagreements
P(E1) ≈ β0/k1/2. The probability of a near tie on the other spins is instead es-
timated through a Gaussian approximation as at the beginning of Section 4.4,
P(E1) ≈ P(

√
kZ ∈ [−1,1]) ≈ √

2/(πk). One gets therefore

E[σ ′
i (1)] ≈ 2R(1,0)

β0

k
≡ 2β1

k
,

where β1 is defined as in the statement of Theorem 2.8.
The next steps follow along the same lines. Consider the neighbors of i at time

t = 1. The two processes have a probability close to β1/k of disagreeing. Assum-
ing that disagreements are again roughly independent of each other, we expect
O(logk) disagreements at most. This leads, by an argument similar to the above,
to E[σ ′

i (2)] ≈ 2R(2,1)β1/
√

k ≡ 2β2/
√

k.
Finally, consider the neighbors of i at time t = 2. We expect the two processes to

disagree—on average—on
√

kβ2 neighbors. The two processes still agree on most
of the neighbors but the sum of these spins is also—by central limit theorem—of
order

√
k. This leads to E[σ ′

i (3)] = �(1). Continuing for one more step, we get
E[σ ′

i (4)] ≈ 1.
The next section will make this calculation rigorous, the main challenge being

of course a precise control of dependencies. The simple coupling argument above
is insufficient to achieve this goal. We will instead use once more the exact cavity
recursion (6), together with appropriate analytical arguments.

4.5.2. Theorem 2.8: The actual proof. The above intuition is rigorized by
Lemmas 4.6 and 4.7. We use the modified dynamics introduced in Section 2.1,
so that the exact cavity recursion in Lemma 2.1 can be used.

LEMMA 4.6. For σT ∈ {±1}T +1, let I+ = {t :σ(t +1) = +1}, I− = {t :σ(t +
1) = −1} and I0 = {T }. Define

IT (σT ) = �μ(σ),CT
(A∞(I)),(40)

where μ(σ) = (μ0(σ ), . . . ,μT (σ )) with μr(σ ) =∑r−1
s=0 R(r, s)σ (s). Set by defini-

tion I−1 = 1. Finally, for 0 ≤ T < T∗ − 1, define βT +1 recursively by

βT +1 = R(T + 1, T )βT .(41)

Then, for 0 ≤ T < T∗ − 1 and for all σT +1
ø , uT +1 ∈ {±1}T +2, we have

Q(σT +1
ø ‖uT +1) − P(σ T +1

ø ‖uT +1)
(42)

= βT

k(T∗−T )/2 σø(T + 1)IT (σT
ø )
(
1 + o(1)

)
.
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Further, for all uT +1 ∈ {±1}T +2, we have∑
σT +1

ø

σø(T + 1){Q(σT +1
ø ‖uT +1) − P(σT +1

ø ‖uT +1)}
(43)

= 2βT +1

k(T∗−T )/2

(
1 + o(1)

)
.

PROOF. The proof is by induction over T , for 0 ≤ T < T∗ − 1, whereby in the
base case (T + 1 = 0), (42) corresponds to

Q0(σø(0)) − P0(σø(0)) = β0

k(T∗+1)/2 σø(0)
(
1 + o(1)

)
(44)

and holds by definition. Making use of (6) for both P and Q, we get

Q(σ T +1
ø ‖uT +1) − P(σT +1

ø ‖uT +1)

= Q0(σø(0))
∑

σT
1 ···σT

k−1

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

) k−1∏
i=1

Q(σ T
i ‖σT

ø )

− P0(σø(0))
∑

σT
1 ···σT

k−1

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

) k−1∏
i=1

P(σ T
i ‖σT

ø )

(45)

= 1

2

∑
σT

1 ···σT
k−1

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)

×
{

k−1∏
i=1

Q(σ T
i ‖σT

ø ) −
k−1∏
i=1

P(σ T
i ‖σT

ø )

}

+ O
(
k−(T∗+1)/2).

Now we use
k−1∏
i=1

Q(σ T
i ‖σT

ø ) −
k−1∏
i=1

P(σ T
i ‖σT

ø )

=
k−1∑
r=1

(
k − 1

r

) r∏
i=1

{Q(σ T
i ‖σT

ø ) − P(σ T
i ‖σT

ø )}

×
k−1∏

i=r+1

P(σ T
i ‖σT

ø )

in (45) to obtain

Q(σT +1
ø ‖uT +1) − P(σ T +1

ø ‖uT +1) = 1

2

k−1∑
r=1

D(r, k) + O
(
k−(T∗+1)/2),(46)
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where

D(r, k) ≡
(

k − 1
r

) ∑
σT

1 ···σT
k−1

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

) ·(47)

×
r∏

i=1

{Q(σ T
i ‖σT

ø ) − P(σT
i ‖σT

ø )}
(48)

×
k−1∏

i=r+1

P(σ T
i ‖σT

ø ).

We claim that only the term r = 1 is relevant for large k:

k−1∑
r=2

|D(r, k)| = o
(
k−(T∗−T )/2).(49)

Before proving this claim, let us show that it implies the thesis. Set r0 = 1 (we
introduce this notation because the calculation below holds for larger values of r0
and this fact will be exploited in the next lemma).

The r = 1 term can be rewritten as

D(1, k) = (k − 1)
∑
{σT

i }

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t + 1)

)
× {Q((σ1)

T ‖σT
ø ) − P((σ1)

T ‖σT
ø )}

×
k−1∏
i=2

P(σ T
i ‖σT

ø ).

For t ∈ {0,1, . . . , T }, let

St ≡ {(σ2)
T · · · (σk−1)

T : |σ2(t) + · · · + σk−1(t) + u(t)| ≤ r0}.(50)

If (σ2)
T · · · (σk−1)

T is not in
⋃T

t=0 St , then the sum over (σ1)
T can be evalu-

ated immediately [as Ku(t)(· · ·) is independent of (σ1)
T ] and is equal to 0 due

to the normalization of Q(·‖σT
ø ) and P(·‖σT

ø ). We can restrict the innermost

sum to (σ2)
T · · · (σk−1)

T in
⋃T

t=0 St , that is, |∑k−1
i=2 σi(t) + u(t)| ≤ r0 for some

t ∈ {0, . . . , T }. Let I0 ⊆ {0, . . . , T } be the set of times such that this happens.
The expectation over (σ2)

T , . . . , (σk−1)
T can be estimated applying Theo-

rem 4.4, with N = k − 2, and using Lemmas 4.2 and 4.5 to check that the
hypotheses 4.4 hold for all k large enough. Using the induction hypothesis
|Q((σ1)

T ‖σT
ø ) − P((σ1)

T ‖σT
ø )| = O(k−(T∗−T +1)/2), this implies that the con-

tribution of terms with |I0| ≥ 2 is upper bounded as kO(k−(T∗−T +1)/2)2 =
o(k−(T∗−T )/2) (for T ≤ T∗−1). Therefore, we make a negligible error if we restrict
ourselves to the case |I0| = 1.
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If we let Ŝt0 ≡ Sto ∩ {⋂t �=t0
S t }, we then have

D(1, k) ≡ (k − 1)

T∑
t0=0

∑
(σ1)

T

{Q((σ1)
T ‖σT

ø ) − P((σ1)
T ‖σT

ø )}

× ∑
((σ2)

T ···(σk−1)
T )∈Ŝt0

k−1∏
i=2

P(σ T
i ‖σT

ø )

(51)

×
T∏

t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
+ o

(
k−(T∗−T )/2).

Consider the main term

J ′
t0
(σ T

ø , (σ1)
T )

(52)

≡ ∑
((σ2)

T ···(σk−1)
T )∈Ŝt0

k−1∏
i=2

P(σ T
i ‖σT

ø )

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
.

The arguments of this function will often be dropped in what follows, and we will
simply write J ′

t0
. For t �= t0, the kernel Ku(t)(σø(t + 1)|σ∂ø(t)) can be replaced by

an indicator function, and the constraint ((σ2)
T · · · (σk−1)

T ) ∈ Ŝt0 can be removed.
For t = t0 we write

Ku(t0)

(
σø(t0 + 1)|σ∂ø(t0)

)= K̂′
�(t0)

{
σø(t0 + 1)

(
u(t0) +

k−1∑
i=2

σi(t0)

)}
,

where

K̂′
a(x) =

⎧⎨⎩
1, if −a < x ≤ r0,
1/2, if x = −a,
0, otherwise,

and �(t) = σø(t + 1)σ1(t), |�(t)| ≤ r0. We thus have

J ′
t0

= ∑
(σ2)

T ···(σk−1)
T

k−1∏
i=2

P(σ T
i ‖σT

ø )K̂′
�(t0)

{
σø(t0 + 1)

(
u(t0) +

k−1∑
i=2

σi(t0)

)}

×
T∏

t=0

I

{
σø(t0 + 1)

(
u(t) +

k−1∑
i=2

σi(t0)

)
> r0

}
.

Notice that the only dependence on (σ1)
T is through �(t0). Therefore, we can

replace K̂′
�(t0)

{·} by K̂�(t0){·} = K̂′
�(t0)

{·} − K̂′
0{·} because the difference, once in-

tegrated over (σ1)
T as in (51), vanishes by the normalization of Q(·‖σT

ø ) and
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P(·‖σT
ø ). We thus need to evaluate

Jt0 = ∑
(σ2)

T ···(σk−1)
T

k−1∏
i=2

P(σ T
i ‖σT

ø )K̂�(t0)

{
σø(t0 + 1)

(
u(t0) +

k−1∑
i=2

σi(t0)

)}

×
T∏

t=0

I

{
σø(t + 1)

(
u(t) +

k−1∑
i=2

σi(t)

)
> r0

}
,

where, for a > 0, a ∈ Z

K̂a(x) =
⎧⎨⎩

1, if −a < x < 0,
1/2, if x = −a or x = 0,
0, otherwise,

K̂−a(x) =
⎧⎨⎩

−1, if 0 < x < −a,
−1/2, if x = 0 or x = −a,
0, otherwise.

Notice that
∑

x∈Z K̂a(x) = a ∀a ≥ −r0.
We apply Theorem 4.4 for any value of s(t0) ≡∑k−1

i=2 σi(t0) such that K̂�(t0){·}
is nonvanishing, and then sum over these values. Notice that |∑k−1

i=2 σi(t0)| ≤ r0 +1
and therefore the central limit theorem (Theorem 4.4) applies. The leading order
terms are all independent of s(t0). The O(1/k1/4) error term in (31) is multiplied
by a factor r0 and remains therefore negligible. We get

Jt0 = 1√
k
σø(t0 + 1)σ1(t0)�μ(σø),CT

(A∞(I))
(
1 + o(1)

)
(53)

≡ 1√
k
σø(t0 + 1)σ1(t0)J

∗
t0

(
1 + o(1)

)
,(54)

where μ(σ) = (μ0(σ ), . . . ,μT (σ )) with μr(σ ) = ∑r−1
s=0 R(r, s)σ (s), and I+ =

{t :σø(t) = +1} \ {t0}, I− = {t :σø(t) = −1} \ {t0} and I0 = {t0}. Notice that, in
particular J ∗

t0=T = IT (σT
ø ).

If we use this estimate in (51), we get

D(1, k) = (k − 1)

T∑
t0=0

σ1(t0){Q(σT
i ‖(σø)

T
0 ) − P(σT

i ‖σT
ø )}

× J ∗
t0√
k
σø(t0 + 1)

(
1 + o(1)

)+ o
(
k−(T∗−T )/2)

= k

T∑
t0=0

2βt0

k(T∗−t0+1)/2

J ∗
t0√
k
σø(t0 + 1)

(
1 + o(1)

)+ o
(
k−(T∗−T )/2)

= IT (σT
ø )

2βT

kT∗−T
σø(t0 + 1)

(
1 + o(1)

)
,



MAJORITY DYNAMICS ON TREES 1723

which, along with (30) implies the thesis equation (42).
Let us now prove the claim (49). Recall that induction hypothesis we have

Q(σT
i ‖σT

ø )− P(σ T
i ‖σT

ø ) = O(k−(T∗−T +1)/2). Since |Ku(t)(σø(t + 1)|σ∂ø(t))| ≤ 1,
this implies

|D(r, k)| ≤ kr
∑

(σ1)
T ···(σr )T

r∏
i=1

∣∣Q(σ T
i ‖σT

ø ) − P(σ T
i ‖σT

ø )
∣∣

= O
(
k−r(T∗−T −1)/2).

Since T∗ − T − 1 ≥ 1, we have

k−1∑
r=3

|D(r, k)| = O
(
k−3(T∗−T −1)/2)= o

(
k−(T∗−T )/2).

Further, |D(2, k)| = O(k−(T∗−T −1)) = o(k−(T∗−T )/2) unless T = T∗ − 2.
In order to argue in the r = 2, T = T∗ − 2 case, we will proceed analogously

to r = 1. Consider the definition of D(2, k) in (48). If (σ3)
T , . . . , (σk−1)

T are such
that |∑k−1

i=3 σi(t) + u(t)| > 2 for all t ∈ {0, . . . , T } then the factors Ku(t)(σø(t +
1)|σ∂ø(t)) become independent of (σ1)

T , (σ2)
T . We can therefore carry out the

sum over these variables obtaining

∑
(σ1)

T ,(σ2)
T

2∏
i=1

{Q(σ T
i ‖σT

ø ) − P(σT
i ‖σT

ø )}

=
r∏

i=1

∑
(σi)

T

{Q(σ T
i ‖σT

ø ) − P(σT
i ‖σT

ø )} = 0,

because both Q(·‖σT
ø ) and Q(·‖σT

ø ) are normalized. Therefore, we can restrict the

sum to those (σ3)
T , . . . , (σk−1)

T such that |∑k−1
i=3 σi(t0)+u(t0)| ≤ 2 for at least one

t0 ∈ {0, . . . , T }. However, analogously to the case r = 1, the probability that this
happens for the i.i.d. nondegenerate random vectors (σ3)

T · · · (σk−1)
T is at most

O(k−1/2), using Theorem 4.4. Together with the induction hypothesis, this yields
|D(2, k)| = O(k−1/2 · k−(T∗−T −1)) = o(k−(T∗−T )/2), which proves the claim.

Finally, (43) follows from (42) using the definitions (40), (41) and the identity
(28). �

The next lemma says that Lemma 4.6 extends to T = T∗ − 1. Since this case
requires a different (more careful) calculation, we state it separately, although the
conclusion is the same as for T < T∗ − 1. The proof is in Appendix D.

LEMMA 4.7. Let IT (σT ) be defined as in Lemma 4.6, and define βT∗ by

βT∗ = R(T∗, T∗ − 1)βT∗−1.(55)
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Then, for all σ
T∗
ø , uT∗ ∈ {±1}T∗+1, we have

Q(σ
T∗
ø ‖uT∗) − P(σ

T∗
ø ‖uT∗) = βT∗−1

k1/2 σø(T∗)IT∗−1(σ
T∗−1
ø )

(
1 + o(1)

)
.(56)

Further, for all uT∗ ∈ {±1}T∗+1, we have∑
σ

T∗
ø

σø(T∗){Q(σ
T∗
ø ‖uT∗) − P(σ

T∗
ø ‖uT∗)} = 2βT∗

k1/2

(
1 + o(1)

)
.(57)

We now show that, for the dynamics under external field, the process of the root
spin {σø(t)}t≥0 converges as in Theorem 2.8.

LEMMA 4.8. For T∗ a nonnegative integer, β0 > 0, and {u(t)}t≥0 ∈ {±1}N,
consider the majority process under external field u, on the rooted tree Gø =
(Vø, Eø), with i.i.d. initialization with bias θ = β0/k(T∗+1)/2. Then for any T ≥
T∗ + 2, we have

(σø(0), σø(1), . . . , σø(T ))
d→ (

τ(0), τ (1), . . . , τ (T∗), σ (T∗ +1),+1,+1, . . . ,+1
)
,

where the random variable σ(T∗ + 1) dominates stochastically τ(T∗ + 1), and
P{σ(T∗ + 1) > τ(T∗ + 1)} is strictly positive. Finally, there exists D(β0, T∗) > 0
such that, for any T ≥ T∗ + 2,

Eθ {σø(T )} ≥ 1 − e−D(β0,T∗)k.

PROOF. An immediate consequence of (57) and (43) is that, for all T , 0 ≤
T ≤ T∗

EQ(·‖uT )[σø(T )] − EP(·‖uT )[σø(T )] = 2βT

k(T∗−T +1)/2

(
1 + o(1)

)
.(58)

Further Lemmas 4.5 and 4.6 imply that

|EQ{σø(t)σø(s)} − C(t, s)| = o(1),
(59) ∣∣∣∣∣EQσø(t) − 1√

k

t−1∑
s=0

R(t, s)u(s)

∣∣∣∣∣= o(k−1/2)

for t, s ≤ T∗ − 1. At T∗, using Lemma 4.7 and (58) with T = T∗ we obtain

|EQ{σø(T∗)σø(s)} − C(t, s)| = o(1),
(60) ∣∣∣∣∣EQ

[
σø(T∗ + 1) − 1√

k

{
T∗−1∑
s=0

R(t, s)u(s) + 2βT∗

}]∣∣∣∣∣= o(k−1/2),

which holds for all s ≤ T∗.
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Now, repeating the CLT-based argument as in the proof of Lemma 4.5, we can
show that with a biased initialization, (σø(0), σø(1), . . . , σø(T∗ + 1)) converges to
a modified cavity process, where the governing equation at T∗ is

σ(T∗ + 1) = sign

(
η(T∗) +

T∗−1∑
s=0

R(t, s)τ (s) + 2βT∗

)
.(61)

Convergence to this process occurs for all uT∗+1. Clearly, since βT∗ > 0, this
process dominates the unmodified cavity process. Further, we have B(β0) =
E[σ ′(T∗ +1)] > 0. We know limk→∞ E[σø(T∗ +1)] = E[σ(T∗ +1)], and therefore
there exists k0, such that for all k > k0, E[σø(T∗ +1)] > B(β0, T∗)/2. Plugging this
back into the recursion equation (6) applied to Q, and using Azuma’s inequality,
we see that at T = T∗ + 2

Eθ {σø(T )} ≥ 1 − e−B2k/8 ∀k > k0.

Clearly, the same continues to hold for T > T∗ + 2, for sufficiently large k. �

Finally, we can prove Theorem 2.8.

PROOF OF THEOREM 2.8. As in the proof of Theorem 2.7, we consider the
dynamics on the rooted tree Gø under external fields u− = (−1,−1, . . .) and u+ =
(+1,+1, . . .), and we denote by σT

ø,−, σT
ø,+ be the corresponding trajectories. By

monotonicity of the dynamics, the process σT
i at any vertex of the regular tree G is

dominated by σT
ø,+ and dominates σT

ø,−. Since by Lemma 4.8 both σT
ø,+ and σT

ø,−
converge to the same limit, the same holds for σT

i as well. �

5. Lower bound: Proof of Theorem 2.9. In this section, we prove Theo-
rem 2.9, that provides a sequence of lower bounds on the consensus threshold
θ∗(k).

Our lower bounds are based on the formation of “stable” structures of −1 spins,
that is, once such a structure is formed, it continues to exist at all future times,
hence preventing consensus from being reached.

Consider k = 3. Clearly, if there is an infinite path of −1 spins, spins along the
path remain unchanged for all future times. In fact, it is sufficient to have an infinite
path having alternate vertices with −1 spins, due to the “bipartite” nature of the
dynamics. To see this, label an arbitrary node on the path 0. Choose an arbitrary
direction on the path and hence label nodes . . . ,−2,−1,0,1,2, . . . . Suppose that
at time t0, nodes with even labels . . . ,−2,0,2, . . . all have spin −1. At time t0 +1,
all nodes with odd labels will have spin −1. At time t0 + 2, all nodes with even
labels will again have spin −1 and so on. Note that any value for t0 suffices. t0 = 0
corresponds to an alternating core existing initially, but it is sufficient for such
structure to be formed, say, at t0 = 3.
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This idea can be generalized to any k. A � k+1
2 �-core of −1 spins is clearly

stable. In fact, an alternating � k+1
2 �-core of −1 spins (having alternate “levels” of

−1 spins) is stable. We formally define such structures below. The key point to note
is that though such structures exist in abundance at T = 0 with small positive θ for
k = 3, this is not the case for larger values of k. We do not obtain a positive lower
bound for k > 3 based on analysis of the initial configuration only. Thus, we need
a means to show that such structures form in abundance at t0(k) > 0 for positive
bias. We develop a set of iterative equations (see Theorem 2.9) whose fixed point
corresponds (roughly) to the probability of formation of an alternating core at time
t0 at an arbitrary node. A nontrivial fixed point implies that alternating cores are
formed in abundance. Such iterative equations are in the spirit of the exact cavity
recursion (Lemma 2.1) though the analysis here is more intricate.

5.1. Notation and preliminaries. Let H = (VH, E H) be an induced subgraph
of G with vertex set VH and edge set E H. We denote by ∂Hi the set of neighbors in
H of a node i ∈ H. Since H is an induced subgraph of G , we have VH ⊆ V and, for
all i ∈ VH, ∂Hi = {j : j ∈ ∂i, j ∈ VH}. Given the graph G , VH uniquely determines
the induced subgraph H.

DEFINITION 5.1. The subgraph H is an r-core of G with respect to spins
σ : V → {−1,+1} if H is an induced subgraph of G such that |∂Hi| ≥ r and σi =
−1 for all i ∈ VH.

Clearly, this definition is useful only for r ≤ k. Now, it is easy to see that if H is
an � k+1

2 �-core with respect to σ (T ), then it is also an � k+1
2 �-core with respect to

σ (T ′) for all T ′ > T , by definition of majority dynamics. In fact, a less stringent
requirement suffices for persistence of negative spins.

DEFINITION 5.2. H is an alternating r-core of a graph G with respect to spins
σ : V → {−1,+1}, if H is an induced subgraph of G such that:

1. |∂Hi| ≥ r ∀i ∈ VH ,
2. there is a partition (V−,H, V∗,H) of VH such that:

(a) σi = −1 for all i ∈ V−,H,
(b) ∂Hi ⊆ V−,H for all i ∈ V∗,H and ∂Hi ⊆ V∗,H for all i ∈ V−,H, that is, H

is bipartite with respect to the vertex partition (V−,H, V∗,H). We call V−,H
the even vertices and V∗,H the odd vertices.

LEMMA 5.3. If H is an alternating � k+1
2 �-core with respect to σ (T ), then it

is also an alternating � k+1
2 �-core with respect to σ (T ′) for all T ′ > T .

PROOF. We prove the lemma by induction over T ′. For this proof only, let

ET ′ ≡ “H is an alternating
⌈
k + 1

2

⌉
-core with respect to σ (T ′).”
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Clearly, ET holds. Suppose ET ′ holds. Let (V−,H, V∗,H ) = (V1, V2) be a partition
of H as in the Definition 5.2. In particular σi(T

′) = −1 for all i ∈ V1. By the
definition of majority dynamics, we know that σi(T

′ + 1) = −1 for all i ∈ V2. As
a consequence H is an alternating �(k + 1)/2�-core with respect to σ(T ′ + 1) with
partition (V−,H, V∗,H ) = (V2, V1), and therefore ET ′+1 holds. �

We now proceed in a manner similar to Section 2.1. We consider the rooted
tree Gø = (Vø, Eø), with a root vertex ø having k − 1 “children.” The root spin σø
evolves under as external field {u(t)}t≥0 as in (5) and we denote by P(σ T

ø ‖uT ) its
distribution. We use ∂̃ i to denote the “children” of node i ∈ Gø. In this section we
will assume uT ∈ {−1,+1}T +1.

DEFINITION 5.4. H is a rooted alternating r-core of Gø with respect to spins
σ : Vø → {−1,+1}, if H is a connected induced subgraph of Gø such that:

1. ø ∈ VH.
2. |∂̃Hi| ≥ r − 1 for all i ∈ VH,
3. there is a partition (V−,H, V∗,H) of VH such that:

(a) σi = −1 for all i ∈ V−,H,
(b) ∂Hi ⊆ V−,H for all i ∈ V∗,H and ∂Hi ⊆ V∗,H for all i ∈ V−,H, that is, H

is bipartite with respect to the vertex partition (V−,H, V∗,H). We call V−,H
the even vertices and V∗,H the odd vertices.

Let Gd
ø = (V d

ø , E d
ø ), be the induced subgraph of Gø containing all vertices that

are at a depth less than or equal to d from ø, the depth of ø itself being 0. For
example, G 0

ø contains ø alone. Denote by ∂̃Gd
ø , the set of leaves of Gd

ø . For example,
∂̃G 0

ø = {ø}.

DEFINITION 5.5. H is a depth-d rooted alternating r-core of Gø with respect
to spins σ : V d

ø → {−1,+1}, if H is an connected induced subgraph of Gd
ø such

that:

1. ø ∈ VH,
2. |∂̃Hi| ≥ r − 1 for all i ∈ VH \ ∂̃Gd

ø ,
3. there is a partition (V−,H, V∗,H) of VH such that:

(a) σi = −1 for all i ∈ V−,H,
(b) ∂Hi ⊆ V−,H for all i ∈ V∗,H and ∂Hi ⊆ V∗,H for all i ∈ V−,H, that is, H

is bipartite with respect to the vertex partition (V−,H, V∗,H). We call V−,H
the even vertices and V∗,H the odd vertices.

We define Hø,even(T ) to be the maximal rooted alternating � k+1
2 �-core of Gø

with respect to σ (T ), such that ø is an even vertex. For all d ≥ 0, we define
Hd

ø,even(T ) to be the maximal depth-d rooted alternating � k+1
2 �-core of Gø with
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respect to σ d(T ), such that ø is even. Here σ d(T ) is the restriction of σ (T ) to V d
ø .

We similarly define Hø,odd(T ) and Hd
ø,odd(T ).

We define Ceven(T ) = {ø ∈ VHø,even(T )}, that is, Ceven(T ) is the event of
Hø,even(T ) being nonempty. Define Cd

even(T ) = {ø ∈ V d
Hø,even(T )}. We similarly de-

fine Codd(T ) and Cd
odd(T ). It is easy to see that Cd

even(T ) ⊆ Cd ′
even(T ), ∀d ′ < d .

Also, Ceven(T ) = ⋂
d≥0 Cd

even(T ). Similarly, Cd
odd(T ) ⊆ Cd ′

odd(T ), ∀d ′ < d and
Codd(T ) =⋂

d≥0 Cd
odd(T ). We thus have the following remark.

LEMMA 5.6. Cd
even(T ), d ≥ 0, form a monotonic nonincreasing sequence of

events in d with limit
⋂

d≥0 Cd
even(T ) = Ceven(T ), for all T ≥ 0, similarly for the

“odd” quantities.

Let E(λT ) ≡ {σø(t) = λ(t),0 ≤ t ≤ T } and define the events

Aeven(T ,λT ) = Ceven(T ) ∩ E(λT ),

Ad
even(T ,λT ) = Cd

even(T ) ∩ E(λT ), d ≥ 0.

We similarly define Aodd,Ad
odd.

We now proceed to define 
d
even,T (σ T

ø ‖uT ) and 
d
odd,T (σ T

ø ‖uT ) as probabili-
ties. Immediately after the new definitions, we show that they are consistent with
the recursive definitions in Theorem 2.9.

DEFINITION 5.7.


even,T (σ T
ø ‖uT ) ≡ P(Aeven(T , σT

ø )‖uT ),


d
even,T (σ T

ø ‖uT ) ≡ P(Ad
even(T , σT

ø )‖uT ), d ≥ 0.

We similarly define 
odd,T (σ T
ø ‖uT ),
d

odd,T (σ T
ø ‖uT ).

It follows from Lemma 5.6 that Aeven(T ) = ⋂
d≥0 Ad

even(T ). Therefore

d

even,T (σ T
ø ‖uT ) is nonincreasing in d and by the monotone convergence theo-

rem


even,T (σ T
ø ‖uT ) = lim

d→∞
d
even,T (σ T

ø ‖uT ).(62)

Similarly, we have


odd,T (σ T
ø ‖uT ) = lim

d→∞
d
odd,T (σ T

ø ‖uT ).(63)

This is consistent with the definition of 
odd,T (σ T
ø ‖uT ) in Theorem 2.9.

The values for d = 0 follow from Definition 5.7,


0
odd,T (σ T

ø ‖uT ) = P(σT
ø ‖uT ),

(64)

0

even,T (σ T
ø ‖uT ) = P(σT

ø ‖uT )I
(
σø(T ) = −1

)
.
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Note consistency with (16).
Next, in Lemma 5.8, we show that 
d

even,T (σ T
ø ‖uT ) and 
d

odd,T (σ T
ø ‖uT )—as

per Definition 5.7—satisfy (17), (18) [repeated as (65), (66) below].

5.2. Proof of Theorem 2.9.

LEMMA 5.8. The following iterative equations are satisfied for all d ≥ 0:


d+1
odd,T (σ T

ø ‖uT )

= P0(σø(0))

k−1∑
r=�(k+1)/2�−1

(
k − 1

r

)

× ∑
σT

1 ···σT
k−1

T −1∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
(65)

×
r∏

i=1


d
even,T (σ T

i ‖σT
ø )

×
k−1∏

i=r+1

(
P(σ T

i ‖σT
ø ) − 
d

even,T (σ T
i ‖σT

ø )
)
,


d+1
even,T (σ T

ø ‖uT )

= I
(
σø(T ) = −1

)
P0(σø(0))

k−1∑
r=�(k+1)/2�−1

(
k − 1

r

)

× ∑
σT

1 ···σT
k−1

T −1∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
(66)

×
r∏

i=1


d
odd,T (σ T

i ‖σT
ø )

×
k−1∏

i=r+1

(
P(σ T

i ‖σT
ø ) − 
d

odd,T (σ T
i ‖σT

ø )
)
,

Ku(t)(· · ·) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I

{
σø(t + 1) = sign

(
k−1∑
i=1

σi(t) + u(t)

)}
,

if
k−1∑
i=1

σi(t) + u(t) �= 0,

1

2
, otherwise.
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Lemma 5.8 contains a type of “cavity recursion” similar to Lemma 2.1. The
main difference is that here we iterate over depth d instead of time T . The proof is
similar to that of Lemma 2.1 and can be found in Appendix B.

Let the vector of values taken by 
odd,T (·‖·) be denoted by 
̄odd,T . Define

̄even,T similarly. Define 
̄T = (
̄odd,T , 
̄even,T ).

As before, P0(−1) = 1−θ
2 and P0(+1) = 1+θ

2 . Define θlb(k, T ) = sup{θ :

̄odd,T � 0}, where v̄ � 0, denotes that every component of the vector v̄ is strictly
positive.

Finally, we relate quantities on the process on the rooted graph Gø to the process
on the infinite k-ary tree G . Pick an arbitrary node v ∈ V . Let Gd = (V d, E d), be
the induced subgraph of G containing all vertices that are at a distance less than or
equal to d from v. For example, G 0 contains v alone. Denote by ∂̃Gd , the set of
leaves of Gd . For example, ∂̃G 0 = {v}.

DEFINITION 5.9. H is a depth-d alternating r-core of G with respect to spins
σ : V d → {−1,+1}, if H is an connected induced subgraph of Gd such that:

1. v ∈ VH,
2. |∂̃Hi| ≥ r − 1 for all i ∈ VH \ ∂̃Gd ,
3. there is a partition (V−,H, V∗,H) of VH such that:

(a) σi = −1 for all i ∈ V−,H,
(b) ∂Hi ⊆ V−,H for all i ∈ V∗,H and ∂Hi ⊆ V∗,H for all i ∈ V−,H, that is, H

is bipartite with respect to the vertex partition (V−,H, V∗,H). We call V−,H
the even vertices and V∗,H the odd vertices.

We define Ĥeven(T ), as the maximal alternating � k+1
2 �-core of G with respect

to σ (T ), such that v is an even vertex. For all d ≥ 0, we define Ĥd
even(T ), as

the maximal depth-d alternating � k+1
2 �-core of G with respect to σ (T ) restricted

to V d , such that v is even. We similarly define Ĥodd(T ) and Ĥd
odd(T ).

We now proceed to define Ĉeven(T ), Ĉd
even(T ), Ĉodd(T ), Ĉd

odd(T ), Ê(λT ) and
Âeven(T ,λT ), Âd

even(T ,λT ), Âodd(T ,λT ), Âd
odd(T ,λT ) for G , analogously to the

definitions of Ceven(T ) etc. for Gø. An analog of Lemma 5.6 holds.
Define the probabilities


̂even,T (σ T ) = P(Âeven(T , σT )),


̂d
even,T (σ T ) = P(Âd

even(T , σT )), d ≥ 0.

As before, we have 
̂d
even,T (σ T ) is nonincreasing in d and


̂even,T (σ T ) = lim
d→∞ 
̂d

even,T (σ T ).(67)

We similarly define 
̂odd,T (σ T ), 
̂d
odd,T (σ T ) and have 
̂d

odd,T (σ T ) converging to

̂odd,T (σ T ) as d → ∞.
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LEMMA 5.10. The following identities are satisfied for all d ≥ 0:


̂d+1
odd,T (σ T ) = P0(σ (0))

k∑
r=�(k+1)/2�

(
k

r

)

× ∑
σT

1 ···σT
k

T −1∏
t=0

K̃
(
σ(t + 1)|σ∂v(t)

) r∏
i=1


d
even,T (σ T

i ‖σT )(68)

×
k∏

i=r+1

{P(σT
i ‖σT ) − 
d

even,T (σ T
i ‖σT )},


̂d+1
even,T (σ T ) = I

(
σ(T ) = −1

)
P0(σ (0))

k∑
r=�(k+1)/2�

(
k

r

)

× ∑
σT

1 ···σT
k

T −1∏
t=0

K̃
(
σ(t + 1)|σ∂v(t)

) r∏
i=1


d
odd,T (σ T

i ‖σT )(69)

×
k∏

i=r+1

{P(σT
i ‖σT ) − 
d

odd,T (σ T
i ‖σT )},

K̃(· · ·) ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
I

{
σ(t + 1) = sign

(
k∑

i=1

σi(t)

)}
, if

k∑
i=1

σi(t) �= 0,

1

2
, otherwise.

(70)

PROOF. The proof is very similar to the one of Lemma 5.8 (in Appendix B),
and we omit it for the sake of space. �

LEMMA 5.11. Assume that 
̄odd,T � 0 for some T ≥ 0 and θ ∈ [0,1]. Then
for the same θ and T , there exists an alternating � k+1

2 �-core of G with positive
probability with respect to σ (T ).

PROOF. Take the limit d → ∞ in (69). We have,


̂even,T (σ T )

= I
(
σ(T ) = −1

)
P0(σ (0))

(71)

×
k∑

r=�(k+1)/2�

(
k

r

) ∑
σT

1 ···σT
k

T −1∏
t=0

K̃
(
σ(t + 1)|σ∂v(t)

) r∏
i=1


odd,T (σ T
i ‖σT )

×
k∏

i=r+1

{P(σT
i ‖σT ) − 
odd,T (σ T

i ‖σT )}.
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Now, consider any θ such that 
̄odd,T � 0. Consider 
̂even,T (σ T ) for any σT with
σ(T ) = −1. Note that every term in the summation over r in (71) is nonnega-
tive, and, in fact, positive when 
̄odd,T � 0 holds. Hence, 
̂even,T (σ T ) > 0 ⇒
Pθ (∃ alternating � k+1

2 �-core H of G with respect to σ (T ) s.t. v ∈ H) > 0. �

The lower bound on θ∗(k) is an immediate consequence of the above lemmas.

PROOF OF THEOREM 2.9. The thesis follows Lemmas 5.3, 5.8 and 5.11, the
definition of θ∗ in (3) and (63). �

5.3. Evaluating the lower bound. Equations (17) and (18) can be iterated with
initial values given by (16) to compute θlb(k, T ). To simplify the recursion, we
notice that the dynamics is “bipartite”: each of ω and σ (0) can be partitioned
ω = (ω̂, ω̃), σ (0) = (σ̂ (0), σ̃ (0)) such that (ω̂, σ̂ (0) and (ω̃, σ̃ (0)) never “interact”
in the majority dynamics on an infinite tree. This remark reduces the number of
variables in the recursions equations (17) and (18). Further, for small values of T ,
instead of summing over all possible trajectories of children, it is faster to sum
over all possibilities for the histogram of the trajectories followed by children.

In Table 4, we present some of the lower bounds θlb(k, T ) computed through
this approach, and compare them with the empirical threshold θ∗,rgraph(k) deduced
from numerical simulations (cf. Section 2.4). In the same table, we present the
large k asymptotic behavior of θlb(k, T ) for fixed T .

TABLE 4
Computed lower bound values θlb(k,T )

T

k 0 1 2 3
Simulation threshold

θ∗,rgraph(k)

3 +0.508 +0.568 +0.572 +0.574 .......................................·

0.58
5 −0.084 +0.026 +0.048 +0.052 0.054
7 −0.14 −0.020 +0.002 +0.008 0.010
9 −0.14 −0.030 −0.006 −0.0008

11 −0.12 −0.028 −0.010 −0.0028
15 −0.12 −0.024 −0.008 −0.0028
21 −0.084 −0.018 −0.0054 −0.0018
31 −0.080 −0.014 −0.0032 −0.0010
51 −0.046 −0.0070 −0.0014 −0.00038

101 −0.026 −0.0032 −0.00048
201 −0.016 −0.0014 −0.00014
401 −0.0084 −0.00048 −0.000040

1001 −0.0035 −0.00012 −0.000008

Asymptotics −�(

√
log k
k

) −�(

√
log k

k3/2 ) −�(

√
log k

k2 )
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As observed in the Introduction, θ∗(k) ≥ 0 by symmetry and monotonicity.
Therefore, the lower bounds are nontrivial only if θlb(k, T ) > 0. It turns out that
for any fixed T , θlb(k, T ) becomes negative at large k. Nevertheless, for k ≤ 7, our
lower bounds are positive and closely approximate θ∗,rgraph(k), indicating that the
bounds may provide good estimates of θ∗(k).

The values of θlb(k, T ) are much lower for even values of k. For example, for
k = 4, 6, 8, θlb(k,3) ≈ −0.22, −0.09, −0.05, respectively. This is as expected,
since our requirement of an alternating � k+1

2 �-core is more stringent for even k.
On the other hand, numerical simulations suggest that θ∗(k) = 0 for small even
values of k.

APPENDIX A: PROOFS OF PRELIMINARY RESULTS

This section presents the proofs of Lemmas 1.1 and 1.2, with some auxiliary
results proved in the second subsection.

A.1. Proofs.

PROOF OF LEMMA 1.1. Consider the subgraph G+ of G induced by vertices
i ∈ V , such that σi(0) = +1: each vertex belongs to this subgraph independently
with probability (1 + θ)/2. Let G+,q be the maximal subgraph of G+ with mini-
mum degree q = k − �(k + 1)/2� + 1. It is clear that no vertex in G+,q ever flips
to −1 under the majority process. Consider a modified initial condition such that
σi(0) = +1 for i ∈ G+,q , and σi(0) = −1 otherwise. By monotonicity of the dy-
namics, it is sufficient to show that such a modified initial condition converges to
+1 under the majority process.

Notice that H = G \ G+,q is the subgraph induced by the final set of a bootstrap
percolation process with initial density ρ = (1 − θ)/2 and threshold �(k + 1)/2�
(a vertex joins if at least �(k + 1)/2� of its neighbors have joined). It is proven
in [17], Theorem 1.1, that there exists ρc(k) > 0 such that, for ρ < ρc(k), H is al-
most surely the disjoint union of a of countable number of finite trees. This implies
the thesis. Indeed, we can restrict our attention to any such finite tree occupied by
−1, and surrounded by +1 elsewhere. On such a tree, the set of vertices such that
of σi(t) = −1 never increases, and at least one vertex quits the set at each iteration.
Therefore, any such tree turns to +1 in finitely many iterations. �

PROOF OF LEMMA 1.2. Let Gn = ([n], En) be a random graph of degree k

over n vertices distributed according to the configuration model. We recall that a
graph is generated with this distribution by attaching k labeled half-edges to each
vertex i ∈ [n] and pairing them according to a uniformly random matching among
nk objects.

The proof of Lemma 1.2 is based on the analysis of the majority process on the
graph Gn. We will denote by Pθ,n the law of this process when the spins {σi(0)}i∈[n]
are initialized to i.i.d. random variables with Eθ,n{σi(0)} = θ . We use the following
auxiliary results.
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LEMMA A.1. For any fixed i ∈ N, j ∈ V and t ≥ 0 we have

lim
n→∞ Eθ,n{σi(t)} = Eθ {σj (t)}.(72)

LEMMA A.2. Let {σi(t)}i∈[n],t∈Z+ be distributed according to the majority
process on Gn, and define D(k, t) ≡ 4(t + 1)(kt+1 − 1)2/(k − 1)2. Then

Pθ,n

{∣∣∣∣∣
n∑

i=1

σi(t) − nEθ,nσ1(t)

∣∣∣∣∣≥ nε
∣∣∣Gn

}
≤ 2 exp

{
− nε2

2D(k, t)

}
.(73)

LEMMA A.3. There exists δ∗, k∗ > 0 such that for any k ≥ k∗ there is a set
Sk,n of “good graphs” such that P{Gn ∈ Sk,n} → 1, and the following happens.
For any Gn ∈ Sk,n and any initial condition {σi(0)}i∈[n] on the vertices of Gn with∑n

i=1 σi(0) ≥ n(1 − 2δ∗/k), we have

n∑
i=1

(
1 − σi(1)

)≤ 3

4

n∑
i=1

(
1 − σi(0)

)
.(74)

Let us now turn to the actual proof. Choose δ∗ and k∗ as per Lemma A.3 and
assume k ≥ k∗. By assumption, there exists a time t∗ such that Eθ {σi(t∗)} ≥ 1 −
δ∗/k. By Lemmas A.1 and A.2, for all n large enough we have

Pθ,n

{
n∑

i=1

σi(t∗) ≥ n

(
1 − 2

δ

k

)}
≥ 1 − e−Cn.(75)

Assume
∑n

i=1 σi(t∗) ≥ n(1 − 2 δ∗
k
) and Gn ∈ Sk,n. Then, by Lemma A.3, and

any t ≥ t∗ we have

n∑
i=1

(
1 − σi(t)

)≤ n(3/4)t−t∗ .(76)

Combining this with the above remarks, and using the symmetry of the graph
distribution with respect to permutation of the vertices, we get

Pθ,n{σ1(t) �= +1} ≤ 2(3/4)t−t∗ + P{Gn /∈ Sk,n} + e−Cn.(77)

By Lemma A.1, this implies Pθ {σi(t) �= +1} ≤ 5(3/4)t−t∗ which, by Borel–
Cantelli implies σi(t) → +1 almost surely, whence the thesis follows. �

A.2. Proofs of auxiliary results.

PROOF OF LEMMA A.1. Fix a vertex i in Gn, and denote by Bi (t) the subgraph
induced by vertices whose distance from i is at most t . The value of σi(t) only
depends on Gn through the Bi (t). If Bi (t) is a k-regular tree of depth t [to be
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denoted by T(t)] then the distribution of σj (t) is the same that would be obtained
on G , whence

|Eθ,n{σi(t)} − Eθ {σj (t)}| ≤ 2Pθ,n{Bi (t) �� T(t)}.
The thesis follows since Pθ,n{Bi (t) �� T(t)} ≤ Dt/n for some constant D (depen-
dent only on k). �

PROOF OF LEMMA A.2. Let Xn(t) ≡∑n
i=1 σi(t). This is a deterministic func-

tion of the n(t + 1) bounded random variables {σi(0)}i∈[n] and of {Ai,s}i∈[n],s≤t .
Further, it is a Lipschitz function with constant D̂(k, t) ≤ 2(kt+1 − 1)/(k − 1),
because any change in σi(0), or Ai,s only influences the values σj (t) within a ball
of radius t around i. By the Azuma–Hoeffding inequality,

Pθ,n{|Xn(t) − Eθ,nXn(t)| ≥ �} ≤ 2 exp
{
− �2

2n(t + 1)D̂2

}
,(78)

which implies the thesis. �

PROOF OF LEMMA A.3. Although the proof follows from a standard expan-
sion argument, we reproduce it here for the convenience of the reader.

Recall that a graph Gn over n vertices is a (k(1 − ε), δ/k) (vertex) expander
if each subset W of at most nδ/k vertices is connected to at least k(1 − ε)|W|
vertices in the rest of the graph. It is known that there exists δ∗ > 0 such that, for all
k large enough, a random k regular graph is, with high probability, a (3k/4, δ∗/k)

expander [21]. We let Sk,n be the set of k-regular graphs Gn that are (3k/4, δ∗/k)

expanders.
Let W be the set of vertices i ∈ [n] such that σi(0) = −1. By hypothesis, |W| ≤

nδ/k. Denote by n− the number of vertices in [n] \ W that have at least �k/2�
neighbors in W [and hence, such that potentially σi(1) = −1], and by n+ the set
of vertices that have between 1 and �k/2�− 1 neighbors in W . Further, let l be the
number of edges between vertices in W . Then⌈

k

2

⌉
n− + n+ + 2l ≤ k|W|, n− + n+ ≥ 3

4
k|W|,

where the first inequality follows by edge-counting and the second by the expan-
sion property. By taking the difference of these inequalities, we get(⌈

k

2

⌉
− 1

)
n− + 2l ≤ k

4
|W|.

Let W ′ be the set of vertices such that σi(1) = −1. Thus W ′ is contained in the
set of vertices with at least �k/2� neighbors in W whence |W ′| ≤ n− ≤ n− +
(2l)/(�k/2� − 1), and therefore

|W ′| ≤ k

4(�k/2� − 1)
|W|,

which yields the thesis. �
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APPENDIX B: PROOF OF THE EXACT CAVITY RECURSION

PROOF OF LEMMA 2.1. Throughout the proof, we denote the neighbors of
the root as {1, . . . , k − 1}. Let σ (0) be the vector of initial spins of the root and all
the vertices up to a distance T from the root. For each i ∈ {1, . . . , k − 1}, let σ i(0)

be the vector of initial spins of the sub-tree rooted at i, and not including the root,
and up to the same distance T from the root. Clearly, if we choose an appropriate
ordering, we have σ (0) = (σø(0), σ 1(0), σ 2(0), . . . , σ k−1(0)). Finally, we denote
by ωT the set of coin flips {ωi,t } with t ≤ T , and i at distance at most T from the
root. As above, we have ωT = (ωT

ø ,ωT
1 , . . . ,ωT

k−1), where ωT
i is the subset of coin

flips in the subtree rooted at i ∈ {1, . . . , k − 1}. By definition, the trajectory σT +1
ø

is a deterministic function of σ (0), uT +1 and ωT . We shall denote this function by
F and write σ t

ø = F t (σ (0), ut+1,ωt ). This function is uniquely determined by the
update rules. We shall write the latter as

σø(t + 1) = f (σø(t), σ ∂ø(t), u(t),ωø,t ).(79)

We have therefore

P(σ T +1
ø = λT +1‖uT +1)

(80)
= EωT

∑
σ (0)

P(σ (0))I
(
λT +1 = F T +1(σ (0), uT +1,ωT )

)
.

Now we analyze each of the terms appearing in this sum. Since the initialization is
i.i.d., we have

P(σ (0)) = P0(σø(0))P(σ 1(0))P(σ 2(0)) · · ·P(σ k−1(0)).(81)

Further since the coin flips ωi,t and ωj,t ′ are independent for i �= j , we have

EωT {· · ·} = EωT
ø
EωT

1
· · ·EωT

k−1
{· · ·}.(82)

Finally, the function F T +1(· · ·) can be decomposed as follows:

I
(
λT +1 = F T +1(σ (0), uT +1,ωT )

)
= I

(
σø(0) = λ(0)

)
(83)

× ∑
σT

1 ···σT
k−1

T∏
t=0

I
(
λ(t + 1) = f (σø(t), σ ∂ø(t), u(t),ωø,t )

)

×
k−1∏
i=1

I
(
σT

i = F T (σ i(0), λT ,ωT −1
i )

)
.
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Using (81), (82) and (83) in (80) and separating terms that depend only on
σ i(0), we get

P(σT +1
ø = λT +1‖uT +1)

= P(λ(0))
∑

σT
1 ···σT

k−1

T∏
t=0

I
(
λ(t + 1) = f (σø(t), σ ∂ø(t), u(t),ωø,t )

)

×
k−1∏
i=1

∑
σ i(0)

P(σ i(0))I
(
σT

i = F T (σ i(0), λT ,ωT −1
i )

)
.

The recursion equation (6) follows. �

PROOF OF LEMMA 5.8. Consider any d ≥ 0. We denote the neighbors of the
root as {1, . . . , k − 1}. We reuse the definitions of σ (0) and σ i(0) for 1 ≤ i ≤
(k − 1) from Lemma 2.1, with depth T replaced with depth (T + d + 1). We
denote by ωT −1 the set of coin flips {ωi,t } with t ≤ T − 1, and i at distance at
most T + d + 1 from the root. We have ωT −1 = (ωT −1

ø ,ωT −1
1 , . . . ,ωT −1

k−1 ), where

ωT −1
i is the subset of coin flips in the subtree rooted at i ∈ {1, . . . , k − 1}. Let

Gi be the subtree rooted at i. Define Hd
i,even(T ), as the maximal depth-d rooted

alternating � k+1
2 �-core of Gi with respect to σ i(T ),4 such that i is even. Define

Cd
i,even(T ) = {ø ∈ V d

Hi,even(T )}. Let Ei (λ
T ) ≡ {σi(t) = λ(t),0 ≤ t ≤ T }. We define

Ad
i,even(T ,λT ) = Cd

i,even(T ) ∩ Ei (λ
T ). Hence, we have mirrored the definitions for

the root ø at the child i.
Let C = {1,2, . . . , k − 1}. By Definition 5.5, it follows that (here A� denotes the

complement of an event A)

Cd+1
odd (T ) = ⋃

S⊆C
|S|≥�(k−1)/2�

⋂
i∈S

Cd
i,even(T )

⋂
j∈C−S

(Cd
j,even(T ))�,

Cd+1
even(T ) = I

(
σø(T ) = −1

)
(84)

× ⋃
S⊆C

|S|≥�(k−1)/2�

⋂
i∈S

Cd
i,odd(T )

⋂
j∈C−S

(Cd
j,odd(T ))�.

Let J d
odd(σ (0), uT ,ωT ) ≡ I(Cd

odd(T )). When σ (0) is passed as an argument to
J d

odd, we implicitly mean that only the restriction of σ (0) to depth T + d from the
root is under consideration. Note that J d

odd is a deterministic function. Similarly

4More precisely, we take only the restriction of σ i(T ) up to depth d in defining Hd
i,even(T ).
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define J d
even. From (84), we have

J d+1
odd (σ (0), uT ,ωT )

= ∑
S⊆C

|S|≥�(k−1)/2�

∏
i∈S

J d
i,even(σ i, σ

T
ø ,ωT

i )(85)

× ∏
j∈C−S

(
1 − J d

j,even(σ j , σ
T
ø ,ωT

j )
)
.

Define f (·, ·, ·, ·) and F (·, ·, ·) as in the proof of Lemma 2.1 (cf. Appendix B).
We have I(Ad+1

odd (T ,λT )) = I(E(λT ))I(Cd+1
odd (T )), leading to


d+1
odd (λT ‖uT ) = EωT −1

∑
σ (0)

P(σ (0))I
(
λT = F T (σ (0), uT ,ωT −1)

)
(86)

× J d+1
odd (σ (0), uT ,ωT +d).

Subtracting (86) from (80) after replacing T + 1 by T , we get

P(λT ‖uT ) − 
d+1
odd (λT ‖uT )

= EωT −1

∑
σ (0)

P(σ (0))I
(
λT = F T (σ (0), uT ,ωT −1)

)
(87)

× (
1 − J d+1

odd (σ (0), uT ,ωT +d)
)
.

Equations (81) and (82) (with T replaced by T − 1) continue to hold. Using (85),
we have the following decomposition, similar to (83):

I
(
λT = F T (σ (0), uT ,ωT −1)

)
J d+1

odd (σ (0), uT ,ωT +d)

= I
(
σø(0) = λ(0)

)
× ∑

σT
1 ···σT

k−1

T −1∏
t=0

I
(
λ(t + 1) = f (σø(t), σ ∂ø(t), u(t),ωø,t )

)
× ∑

S⊆C
|S|≥�(k−1)/2�

∏
i∈S

I
(
σT

i = F T (σ i(0), λT ,ωT −1
i )

)
(88)

× J d
i,even(σ i(0), σ T

ø ,ωT
i )

× ∏
j∈C−S

I
(
σT

j = F T (σ j (0), λT ,ωT −1
j )

)
× (

1 − J d
j,even(σ j (0), σ T

ø ,ωT
j )
)
.



MAJORITY DYNAMICS ON TREES 1739

Using (81), (82) and (88) in (86) and separating terms that depend only on σ i(0),
we get


d+1
odd (λT ‖uT )

= P(λ(0))
∑

σT
1 ···σT

k−1

T −1∏
t=0

I{λ(t + 1) = f (σø(t), σ ∂ø(t), u(t),ωø,t )}

× ∑
S⊆C

|S|≥�(k−1)/2�

{∏
i∈S

∑
σ i(0)

P(σ i(0))I
(
σT

i = F T (σ i(0), λT ,ωT −1
i )

)

× J d
i,even(σ i(0), σ T

ø ,ωT
i )

× ∏
j∈C−S

∑
σ j (0)

P(σ j (0))I
(
σT

j = F T (σ j (0), λT ,ωT −1
j )

)

× (
1 − J d

j,even(σ j (0), σ T
ø ,ωT

j )
)}

.

Using the “even” versions of (86) and (87), and noticing the symmetry in the ex-
pression between the k − 1 children, we recover equation (65).

Equation (66) follows similarly, with the additional I(σø(T ) = −1) term ap-
pearing due to the modification in (84). �

APPENDIX C: PROOF OF LEMMA 4.3

Equation (27) follows directly from (12) and (24). We only need to prove (28).
Let I = {0, . . . , t} and, for S ⊂ I , define the rectangle R(λ, S,R,h) ⊆ Rt+1 as

the set of vectors ηt = (η(0), . . . , η(t)) such that

η(r) +
r−1∑
s=0

R(r, s)λ(s) + h(r) = 0 for all r ∈ S,(89)

sign

(
η(r) +

r−1∑
s=0

R(r, s)λ(s) + h(r)

)
= λ(r + 1)

(90)
for all r ∈ I \ S.

Equation (11) defines σ(t + 1) as a function of σ(0), ηt and h. Let us denote this
function by writing σ(t + 1) = Fσ(t+1)(σ (0), ηt ;h):

EC,R,h[σ(t + 1)]

= 1

2

∑
λ(0)∈{±1}

∫
Rt+1

Fσ(t+1)(λ(0), ηt ;h)φ0,Ct (η
t )

t∏
i=0

dη(i)
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= 1

2

∑
λt∈{±1}t+1

∫
Rt+1

λ(t + 1)φ0,Ct (η
t )

×
t∏

i=0

I

{
sign

(
η(i) +

i−1∑
s=0

R(i, s)λ(s) + h(i)

)
= λ(i + 1)

}
dη(i)

= 1

2

∑
λt∈{±1}t+1

λ(t + 1)

∫
R(λ,∅,R,h)

φ0,Ct (η
t )

t∏
i=0

dη(i)

= 1

2

∑
λt∈{±1}t+1

λ(t + 1)�0,Ct (R(λ,∅,R,h)).

Since Ct is strictly positive definite by Lemma 4.2, x �→ φ0,Ct (x) is a continuous
function. By the fundamental theorem of calculus, we have

∂�0,Ct (R(λ,∅,R,h))

∂h(s)

∣∣∣∣
h=0

=
{

�0,Ct (R(λ, {s},R,0)), if λ(s + 1) = +1,
−�0,Ct (R(λ, {s},R,0)), if λ(s + 1) = −1.

The definition of R(t, s) for a cavity process in (13) now leads to

R(t + 1, s) = 1

2

∑
λt+1∈{±1}t+2

λ(t + 1)λ(s + 1)�0,Ct (R(λ, {s},R,0))

for all t ≥ s ≥ 0. The result follows by the change x′
i = xi +μi(λ

t ) in the Gaussian
integral defining �.

APPENDIX D: PROOF OF LEMMA 4.7

Throughout the proof, we let T = T∗ − 1. Equation (45) continues to hold. We
rewrite it as

Q(σ T +1
ø ‖uT +1) − P(σ T +1

ø ‖uT +1) = 1

2

k−1∑
r=1

D(r, k) + O
(
k−(T∗+1)/2),(91)

D(r, k) ≡
(

k − 1
r

) ∑
σT

1 ···σT
r

r∏
i=1

{Q(σ T
i ‖σT

ø ) − P(σ T
i ‖σT

ø )}
(92)

× ∑
σT

r+1···σT
k−1

k−1∏
i=r+1

P(σ T
i ‖σT

ø )

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
.

Let r0 = �log k�. Split the summation over r in (91) into two parts: the first
for 1 ≤ r ≤ r0, the second for r0 < r ≤ k − 1. We will first show that the second
part is of order o(k−1/2). Indeed, by Lemma 4.6, we know that Q(σ T

i ‖σT
ø ) −
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P(σ T
i ‖σT

ø ) ≤ B/k for some constant B and all σT
i ∈ {±1}T +1. Using the fact that

the innermost sum in (92) is bounded by 1, we get∣∣∣∣∣
k−1∑

r=r0+1

D(r, k)

∣∣∣∣∣≤
k−1∑

r=r0+1

(
k − 1

r

) ∑
σT

1 ···σT
r

r∏
i=1

∣∣Q(σ T
i ‖σT

ø ) − P(σT
i ‖σT

ø )
∣∣(93)

≤
k−1∑

r=r0+1

(
k − 1

r

)(
2T +1B

k

)r

(94)

≤ ∑
r≥log(k)

1

r!(2
T +1B)r = o(k−1/2),

where the last estimate follows from standard tail bounds on Poisson random vari-
ables.

We are left with the sum of D(r, k) over r ∈ {0, . . . , r0}. As in Lemma 4.6, let

St ≡ {σT
r+1 · · ·σT

k−1 : |σr+1(t) + · · · + σk−1(t) + u(t)| ≤ r0}.
If σT

r+1 · · ·σT
k−1 is not in

⋃T
t=0 St , then the sum over σT

1 · · ·σT
r is 0 due to the

normalization of Q(·‖σT
ø ) and P(·‖σT

ø ) (the same argument was already used in
the proof of Lemma 4.6). Restricting the innermost sum and letting as before Ŝt0 ≡
Sto ∩ {⋂t �=t0

S t } with St defined as in (50), we then have

D(r, k) =
(

k − 1
r

) T∑
t0=0

∑
σT

1 ···σT
r

r∏
i=1

{Q(σ T
i ‖σT

ø ) − P(σT
i ‖σT

ø )}

× ∑
(σT

r+1···σT
k−1)∈Ŝt0

k−1∏
i=r+1

P(σ T
i ‖σT

ø )(95)

×
T∏

t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)+ R(r, k).

By inclusion–exclusion, the error term is bounded as

|R(r, k)| ≤
(

k − 1
r

) ∑
t1 �=t2

∑
σT

1 ···σT
r

r∏
i=1

∣∣Q(σ T
i ‖σT

ø ) − P(σT
i ‖σT

ø )
∣∣

× ∑
(σT

r+1···σT
k−1)∈St1∩St2

k−1∏
i=r+1

P(σ T
i ‖σT

ø )

×
T∏

t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
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≤
(

k − 1
r

) ∑
t1 �=t2

∑
σT

1 ···σT
r

r∏
i=1

∣∣Q(σ T
i ‖σT

ø ) − P(σ T
i ‖σT

ø )
∣∣Br2

0

k

≤
(

k − 1
r

)
T 22T r

(
B

k

)r Br2
0

k
.

The first inequality follows by applying Lemma 4.4 to the N = k − r − 1 ≥
k − log(k) − 1 i.i.d. random vectors (σr+1)

T , . . . , (σk−1)
T , which are nondegen-

erate for all k large enough by Lemma 4.5, and summing over the values of
at1 =∑k−1

i=r+1 σi(t1) + u(t1) and at2 =∑k−1
i=r+1 σi(t2) + u(t2), with |at1 |, |at2 | ≤ r0.

The second inequality is instead implied by Lemma 4.6. It is now easy to sum over
r to get ∣∣∣∣∣

r0∑
r=1

R(r, k)

∣∣∣∣∣≤
∞∑

r=0

1

r!T
2(2T B)rB

(log k)2

k
= o(k−1/2).

Therefore, the error terms R(r, k) can be neglected.
Let us now consider the main term in (95), and define

J ′
t0
(σ T

ø , (σ1)
T
0 , . . . , (σr)

T
0 )

≡ ∑
(σT

r+1···σT
k−1)∈Ŝt0

k−1∏
i=r+1

P(σ T
i ‖σT

ø )

T∏
t=0

Ku(t)

(
σø(t + 1)|σ∂ø(t)

)
.

We now proceed exactly as in the proof of Lemma 4.6, cf. (52) to (54) with �(t) =
σø(t + 1)(

∑r
i=1 σi(t)) and r0 = log(k). Notice Theorem 4.4 continues to hold and

r0 times the O(k−1/4) error is still o(1). We arrive at

Jt0 = 1√
k
σø(t0 + 1)

(
r∑

i=1

σi(t0)

)
J ∗

t0

(
1 + R̃t0(k)

)
,

where R̃t0(k) → 0 as k → ∞ for any fixed t0.
If we use this estimate in (95), we get

D(r, k) =
(

k′
r

) T∑
t0=0

∑
{σT

i }

r∏
i=1

{Q(σ T
i ‖σT

ø ) − P(σT
i ‖σT

ø )} J ∗
t0√
k
σø(t0 + 1)

×
r∑

i=1

σi(t0)
(
1 + R̃t0(k)

)+ o(k−1/2)

= r

(
k′
r

) T∑
t0=0

∑
{σT

i }

r∏
i=1

(
Q(σ T

i ‖σT
ø ) − P(σ T

i ‖σT
ø )
) J ∗

t0√
k
σø(t0 + 1)

× σ1(t0)
(
1 + R̃t0(k)

)+ o(k−1/2),
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where k′ ≡ k − 1 and we used the symmetry among the vertices {1, . . . , r} to re-
place (

∑r
i=1 σi(t)) by rσ1(t). If r ≥ 2, the sums over (σ2)

T
0 , . . . , σ T

r vanish ex-
cept for the error terms R̃t0(k) [once more by the normalization of P(·‖σT

ø ) and
Q(·‖σT

ø )]. We need to bound contribution of such error terms. Find M such that
|Q(σT

i ‖(σø)
T
0 ) − P(σ T

i ‖σT
ø )| ≤ M/k. We have∣∣∣∣r (k − 1

r

) ∑
σT

1 ···σT
r

{Q(σ T
i ‖σT

ø ) − P(σ T
i ‖σT

ø )}R̃t0(k)

∣∣∣∣
≤ r

(
(k − 1)e

r

)r

2T

(
M

k

)r

|R̃t0(k)|
(96)

≤ r

(
2T eM

r

)r

|R̃t0(k)|

≤
(

M ′

2r

)
|R̃t0(k)|

for suitable M ′. Here we have used the standard bound
(n
m

) ≤ (ne
m

)m. Summing
(96) over t0 and r , we see that

∑r0
r=2|D(k, r)| ≤ C|J ∗

t0
R̃t0(k)|/√k = o(k−1/2).

Further, ∑
σT

1

σ1(t){Q(σT
1 ‖σT

ø ) − P(σT
1 ‖σT

ø )}

=∑
σ t

1

σ1(t){Q(σ t
1‖σ t

ø) − P(σ t
1‖σ t

ø)}

= 2
βt

k(T∗−t+1)/2

(
1 + o(1)

)
,

where the second equality follows by Lemma 4.6. Note that for t < T∗ − 1, this
sum is o(k−1). As a consequence, only the t0 = T term is relevant in the sum
over t0.

Using these two remarks, we finally obtain
r0∑

r=1

D(k, r) = D(k,1) + o(k−1/2)

= k

T∑
t0=0

J ∗
t0√
k

2
βt0

k(T∗−t0+1)/2 σø(t0 + 1)
(
1 + o(1)

)+ o(k−1/2)

= 2
βT∗−1

k1/2 σø(T∗)IT∗−1(σ
T∗−1
ø )

(
1 + o(1)

)
,

which, together with (94) and (91), proves our thesis. Equation (57) follows as in
the previous lemma.
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APPENDIX E: PROOF OF THE LOCAL CENTRAL LIMIT THEOREM

The proof repeats the arguments of [12], while keeping track explicitly of error
terms. We will therefore focus on the differences with respect to [12]. We will
indeed prove a result that is slightly stronger than Theorem 4.4. Apart from a trivial
rescaling, the statement below differs from Theorem 4.4 in that we allow for larger
deviations from the mean.

THEOREM E.1. Let X1, . . . ,XN be i.i.d. vectors Xi = (Xi,1,Xi,2, . . . ,Xi,d)

∈ {0,1}d with ∣∣∣∣P{X1,� = 1} − 1

2

∣∣∣∣≤ B√
N

(97)

for � ∈ {1, . . . , d}. Further assume P{Xi = s} ≥ 1/B for all s ∈ {0,1}d .
Let a ∈ Zd be such that supi |ai − N/2| ≤ B

√
N , and define, for a partition

{1, . . . , d} = I0 ∪ I+,

A(a, I) ≡ {z ∈ Zd : zi = ai ∀i ∈ I0, zi ≥ ai ∀i ∈ I+},
A∞(a, I) ≡ {

z ∈ Rd : zi = ai/
√

N ∀i ∈ I0, zi ≥ ai/
√

N ∀i ∈ I+
}
.

Let pN be the distribution of SN = ∑N
i=1 Xi . Then, there exists a finite constant

D = D(B,d) such that for K ≡ |I0|,∣∣∣∣F(a, I) − 1

NK/2 �√
NEX1,Cov(X1)

(A∞(a, I))

∣∣∣∣ ≤ D(B,d)

N(K+(K+1)−1)/2
,

(98)
F(a, I) ≡ ∑

y∈A(a,I)

pN(y).

Since �√
NEX1,Cov(X1)

(A∞(a, I)) is bounded away from 0 for B bounded, the
error estimate in the last statement is equivalent to the one in Theorem 4.4. For
K = 0 our claim is implied by the multi-dimensional Berry–Esseen theorem [7],
and we will therefore focus on K ≥ 1.

Recall that the Bernoulli decomposition of [12] allows to write, for SN =
(SN,1, . . . , SN,d) and r ∈ {1, . . . , d}

SN,r = ZN,r +
MN,r∑
i=1

Li,r ,(99)

where ZN is a lattice random variable, MN,r ∼Binom(N,qr) for r = 1, . . . , d , and
{Li,r} is a collection of i.i.d. Bernoulli(1/2) random variables independent from
ZN and MN . Finally, it is easy to check that qr ≥ 1/(Bd).

We have the following key estimate.
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LEMMA E.2. There exists a numerical constant D̂ such that, for any a, b ∈ Zd

|F(a, I) − F(b, I)| ≤ D̂

(
Bd

N

)(K+1)/2
‖a − b‖,(100)

where ‖ · ‖ denotes the L1 norm.

PROOF. As in [12], we let, for x,m ∈ Zd ,

rm(x) ≡
d∏

i=1

1

2mi

(
mi

xi

)
,(101)

be the probability mass function of the vector �m ≡ (
∑m1

i=1 Li,1, . . . ,
∑md

i=1 Li,d).
It then follows immediately that∣∣∣∣ ∑

x∈A(a,I)

rm(x) − ∑
y∈A(b,I)

rm(y)

∣∣∣∣≤ D̃

mini (mi)(K+1)/2 ‖a − b‖(102)

for some numerical constant D̃. This is a slight generalization of Lemma 2.2 of
[12], and follows again immediately from the same estimates on the combinatorial
coefficients used in [12].

We then proceed analogously to the proof of Theorem 2.1 of [12], namely, for
h ∈ Zd ,

sup
a∈Zd

|F(a + h, I) − F(a, I)|

≤ sup
a∈Zd

∑
m∈Zd

P{MN = m}∣∣P{SN ∈ A(a, I)|MN = m}

− P{SN ∈ A(a + h, I)|MN = m}∣∣
= sup

a∈Zd

∑
m∈Zd

P{MN = m}∣∣P{ZN + �m ∈ A(a, I)|MN = m}

− P{ZN + �m ∈ A(a + h, I)|MN = m}∣∣
≤ sup

a∈Zd

∑
m∈Zd

P{MN = m} ∑
l∈Zd

P{ZN = l}

× ∣∣P{�m ∈ A(a − l, I)|MN = m}
− P{�m ∈ A(a + h − l, I)|MN = m}∣∣

≤ ∑
m∈Zd

D̃

mini (mi)(K+1)/2 ‖h‖,

which is bounded as in the statement by the same argument used in [12]. �

We are now in a position to prove Theorem E.1.
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PROOF OF THEOREM E.1. For a as in the statement and � > 0, let

R(a, �) = {z ∈ Zd : |zi − ai | ≤ � ∀i ∈ I0, zi = ai ∀i ∈ I+},
R∞(a, �) = {

z ∈ Rd :
∣∣zi − ai/

√
N
∣∣≤ �/

√
N ∀i ∈ I0, zi ≥ ai/

√
N ∀i ∈ I+

}
.

Then, by Lemma E.2, there exists a constant D1(B, d) such that∣∣∣∣F(a, I) − 1

|R(a, �)|
∑

z∈R(a,�)

F (z, I)

∣∣∣∣≤ D1(B, d)�

N(K+1)/2 .(103)

On the other hand, by the Berry–Esseen theorem,∣∣∣∣ ∑
z∈R(a,�)

F (z, I) −
∫

R∞(a,�)
�√

NEX1,Cov(X1)
(A∞(z, I)) dz

∣∣∣∣≤ D2(d)

N1/2 .(104)

Finally, it is easy to see that �√
NEX1,Cov(X1)

(A∞(z, I)) is Lipschitz continuous
in z with Lipschitz constant bounded uniformly in N , whence∣∣∣∣�√

NEX1,Cov(X1)
(A∞(a, I))

− 1

|R∞(a, �)|
∫

R∞(a,�)
�√

NEX1,Cov(X1)
(A∞(z, I)) dz

∣∣∣∣(105)

≤ D3�√
N

.

The proof is completed by putting together (103), (104) and (105), using
|R(a, �)| = �(�K), |R∞(a, �)| = �(�KN−K/2), and setting � = NK/(2K+2). �
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