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We study the inverse boundary crossing problem for diffusions. Given a
diffusion process Xt , and a survival distribution p on [0,∞), we demonstrate
that there exists a boundary b(t) such that p(t) = P[τ > t], where τ is the first
hitting time of Xt to the boundary b(t). The approach taken is analytic, based
on solving a parabolic variational inequality to find b. Existence and unique-
ness of the solution to this variational inequality were proven in earlier work.
In this paper, we demonstrate that the resulting boundary b does indeed have
p as its boundary crossing distribution. Since little is known regarding the
regularity of b arising from the variational inequality, this requires a detailed
study of the problem of computing the boundary crossing distribution of Xt

to a rough boundary. Results regarding the formulation of this problem in
terms of weak solutions to the corresponding Kolmogorov forward equation
are presented.

1. Introduction. Let {Bt }t≥0 be a standard Brownian motion defined on a
filtered probability space (�,P, {Ft }t≥0) satisfying the usual conditions. We con-
sider a diffusion process {Xt }t≥0 defined by the stochastic differential equation

dXt = μ(Xt , t) dt + σ(Xt , t) dBt ∀t > 0,

where μ,σ : R × R+ → R are smooth bounded functions, with bounded deriva-
tives4 and infR×R+ σ > 0. We assume that X0 is independent of B , and has initial
distribution P(X0 ≤ x) = p0(x,0), with density ρ0(x,0). For y ∈ R and t ≥ s,
we further denote by F(y, s; ·, t) and ρ(y, s; ·, t) the transition distribution and
density, respectively, of Xt given Xs = y:

F(y, s;x, t) := P(Xt ≤ x|Xs = y), ρ(y, s;x, t) := ∂F (y, s;x, t)

∂x
.
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In the sequel, we denote by ρ0(·, t) and p0(·, t) the density5 and cumulative distri-
bution of Xt :

p0(x, t) := P(Xt ≤ x) =
∫

R

ρ0(y,0)F (y,0;x, t) dy,

ρ0(x, t) := ∂p0(x, t)

∂x
:=

∫
R

ρ0(y,0)ρ(y,0;x, t) dy.

For a given function b : R+ → [−∞,∞), the first boundary crossing time τ̂ is
defined to be

τ̂ = inf{t > 0|Xt ≤ b(t)}.(1.1)

We shall also have occasion to consider the related, but less commonly used, first
time that Xt goes strictly below b:

τ = inf{t > 0|Xt < b(t)}.(1.2)

We are interested in the following two problems.

1. The boundary crossing problem: for a given function b : R+ → [−∞,∞), com-
pute the survival distribution of the first time that X crosses b; that is,

p(t) = P(τ̂ ≥ t).(1.3)

In this case, we denote p = P[b].
2. The inverse boundary crossing problem: for a given survival distribution p on

(0,∞) find a function b such that b satisfies (1.1), (1.3). If such a boundary
exists and is unique, we denote it by B[p].

The boundary crossing problem is classical, and the subject of a large literature.
The inverse boundary crossing problem has recently been the subject of increased
interest by probabilists and researchers in mathematical finance. The main purpose
of this paper is to show that the inverse boundary crossing problem is well posed.

According to Zucca and Sacerdote (2009), the problem was originally posed
by A. N. Shiryayev in 1976, for the special case where Xt is a Brownian motion
and p is the exponential distribution. Dudley and Gutmann (1977) and Anulova
(1980) showed that there exists a stopping time with the given distribution; how-
ever, this stopping time is not realized as the first time the process X crosses a
boundary b. Recently, there has been an increase of interest in the problem due
to its importance in applications. In mathematical finance, with Xt an indicator
of a firm’s financial health, and p the distribution of its time to default (estimated
from the prices of market instruments), the problem is to find a default barrier that
reproduces the given default distribution. Many authors have proposed numerical
methods for finding such a boundary, including Hull and White (2001), Iscoe and

5At t = 0, ρ0 is interpreted as the distributional derivative of p0.
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Kreinin (2002), Huang and Tian (2006), Avellaneda and Zhu (2001) and Zucca
and Sacerdote (2009). A formulation of the problem in terms of nonlinear Volterra
integral equations has been given by Peskir (2002) [see also Peskir and Shiryayev
(2005) for a more detailed discussion].

The numerical method proposed by Avellaneda and Zhu (2001) is most relevant
to our work. They note that for sufficiently smooth boundaries b, the function
U(x, t) = ∂xP(τ̂ ≥ t,Xt ≤ x) should be the solution of the free boundary problem⎧⎨

⎩
L1U(x, t) = 0, for x > b(t), t > 0,
U(x, t) = 0, for x ≤ b(t), t > 0,
U(x,0) = ρ0(x,0), for x ∈ R,

(1.4)

with the free boundary condition

ṗ(t) = −1
2(σ 2U)x |x=b(t) ∀t ≥ 0,(1.5)

where L1 is the differential operator

L1φ := ∂φ

∂t
− 1

2

∂2[σ 2φ]
∂x2 + ∂[μφ]

∂x
.(1.6)

Avellaneda and Zhu (2001) perform a change of variables to “straighten out the
boundary,” and then solve the resulting transformed PDE numerically using finite
differences.

An analytic study of the inverse boundary crossing problem was initiated by
Cheng et al. (2006). In that work, we defined

w(x, t) =
∫ ∞
x

U(y, t) dy.(1.7)

Formally, direct calculation from (1.4), (1.5) shows that w should satisfy the free
boundary problem⎧⎪⎪⎨

⎪⎪⎩

Lw(x, t) = 0, for x > b(t), t > 0,
w(x, t) = p(t), for x ≤ b(t), t > 0,
wx(x, t) = 0, for x ≤ b(t), t > 0,
w(x,0) = 1 − p0(x,0), for x ∈ R,

(1.8)

where L is the differential operator

Lφ := ∂φ

∂t
− 1

2

∂

∂x

(
σ 2 ∂φ

∂x

)
+ μ

∂φ

∂x
.(1.9)

Formally,

w(x, t) = P(τ̂ ≥ t,Xt > x),(1.10)

providing the connection between the probabilistic problems (1.1), (1.3) and our
analytic approach. Based on the free boundary problem (1.8), one can infer that w

should satisfy the variational inequality

max{Lw,w − p} = 0 in L∞(
R × (0,∞)

)
,

(1.11)
w(·,0) = 1 − p0(·,0) on R,
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and b can be recovered from w by

b(t) := inf{x|p(t) − w(x, t) > 0} ∀t > 0.(1.12)

In Cheng et al. (2006), the existence and uniqueness of a viscosity solution to
(1.11) was proved. However, no attempt was made to connect the resulting func-
tions w,b to the original probabilistic formulation of the inverse boundary crossing
problem. In this paper, we show that b does in fact give a boundary that repro-
duces the survival distribution p. This is complicated by the fact that it is very
difficult to prove the regularity of the boundary b derived from the variational
inequality.6 As a consequence, in order to verify that b has the required hitting
distribution, we must first study the problem of computing the boundary cross-
ing probabilities of diffusions to nonsmooth boundaries. To this end, for a given
function b : (0,∞) → [−∞,∞), we define

b∗(t) := max
{
b(t), lim

s→t
b(s)

}
, b∗−(t) := lim

s↗t
b(s) ∀t > 0.(1.13)

When needed, we also define b∗(0) := lims↘0 b(s). We also employ the notation
Qb := {(x, t)|x > b(t), t > 0}. It will turn out that the inverse boundary crossing
problem is most naturally formulated in the following spaces:

B0 :=
{
b : (0,∞) → [−∞,∞)|b = b∗ = b∗−,P

(⋃
ε>0

⋂
s∈(0,ε)

{Xs ≥ b(s)}
)

= 1
}
,

P0 := {p ∈ C([0,∞))|p(0) = 1 ≥ p(s) ≥ p(t) > 0 ∀t > s ≥ 0}.
The main result of this paper is the following theorem.

THEOREM 1.

1. For every p ∈ P0, there exists a unique viscosity solution, w, for the survival
distribution of the inverse boundary crossing problem associated with p [i.e.,
a viscosity solution of problem (1.11)]. In addition the unique solution, w, sat-
isfies

0 ≤ 1 − [w(x, t) + p0(x, t)] ≤ 1 − p(t),
(1.14)

w(x, t) ≤ w(y, t) ∀t ≥ 0, x ∈ R, x ≥ y.

Consequently, the operator B

b(t) = B[p](t) := inf{x ∈ R|w(x, t) < p(t)} ∀t > 0,(1.15)

is well defined on P0.

6The problem of the regularity of the boundary has subsequently been investigated by Chen (2011).
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2. For every p ∈ P0, B[p] ∈ B0 and (P ◦ B)[p] = p, where (P[b])(t) = P(τ̂ ≥ t)

and τ̂ is defined as in (1.1).
(This implies that for a given p ∈ P0, b := B[p] is a solution of the inverse

problem since P[b] = (P ◦ B)[p] = p.)
3. For every b ∈ B0, P[b] ∈ P0 and (B ◦ P)[b] = b.

(This implies that for a given p ∈ P0, if b̃ ∈ B0 is a solution of the inverse
problem, i.e., P[b̃] = p, then b̃ can be identified as b̃ = (B ◦ P)[b̃] = B[p], the
viscosity solution of the inverse problem.)

4. If (w,b) is a classical (i.e., w + p0 ∈ C(R × [0,∞)), ∂xw ∈ C(R × (0,∞),
∂tw, ∂xxw ∈ C(Qb)) solution of the free boundary problem (1.8), then b is the
solution of the inverse boundary crossing problem associated with p, that is,
P[b] = p. Similarly, if (U, b) is a classical (i.e., U − ρ0 ∈ C(R × [0,∞)),
∂tU, ∂2

xxU ∈ C(Qb)) solution of the free boundary problem (1.4), (1.5), then
P[b] = p.

The proof of the above theorem proceeds as follows. We begin by studying
the direct problem of computing the distribution of τ̂ , and the function w(x, t) =
P(τ̂ ≥ t,Xt > x) for boundaries b ∈ B0. By considering a carefully constructed
discrete approximation scheme motivated by (1.4) when b is known, we are able to
show that w is the unique viscosity solution to (1.8). Elementary calculations ver-
ify that the viscosity solution of the variational inequality (1.11) also solves (1.8).
Once we have also determined that {x > b} = {w < p}, the verification proceeds
by relatively straightforward arguments.

We note that the sequence of stopping times constructed in our discrete time ap-
proximation actually converges to the first time that X is strictly below the bound-
ary b, τ as given by (1.2). This definition of the boundary crossing time is slightly
different from the standard one (1.1) for τ̂ . We have found that for the analytic
approach we take here (particularly for rough boundaries), our definition is more
convenient. In Section 2 below, we show that for boundaries with minimal regu-
larity properties (including those arising from the solution to the inverse boundary
crossing problem, b ∈ B0), P(τ = τ̂ ) = 1.

The remainder of the paper is structured as follows. The second section proves
measurability properties of τ and τ̂ , and proves that these times are almost surely
equal. In addition, it gives preliminary results that are needed for the study of
our approximation scheme. The third section studies the approximation scheme
in detail, and proves convergence. The convergence provides a rigorous connec-
tion between the probabilistic definition of the survival probability p and the PDE
definition of the survival distribution w. The fourth section formulates viscosity
solutions for the direct problem of computing p for a given b ∈ B0, and shows that
the survival distribution w gives the unique viscosity solution for the direct prob-
lem. The fifth section provides the link between the variational inequality studied
in Cheng et al. (2006) and the inverse boundary crossing problem. It also provides
a sufficient condition under which the resulting boundary b is continuous.
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2. Crossing times of upper-semi-continuous boundaries. We calculate
boundary crossing distributions for rough boundaries based on discrete time ap-
proximations to be studied in the next section. In order to ensure convergence of
our approximation scheme, the time points used must be chosen carefully. We re-
fer to the selected points as the “landmark points” of the boundary. In this section,
we begin by defining the landmark points and investigating their properties. Using
these properties, we study the measurability of τ and τ̂ , show that the boundary
crossing times of b and b∗ are equal and that P(τ = τ̂ ) = 1 for b ∈ B0.

DEFINITION 1. Let b : (0,∞) → [−∞,∞), and b∗ be its upper-semi-
continuous envelope. The set of landmark points of b, denoted by A(b), is defined
as follows:

A(b) := ⋃
n∈N

An(b), An(b) := {t in|i ∈ N},(2.1)

t in := inf
{
t ∈

[
i

2n
,
i + 1

2n

]∣∣∣b∗(t) ≥ sup
[2−ni,2−n(i+1)]

b(·)
}
.(2.2)

The following lemma summarizes some properties of the landmark points that
are used in the paper.

LEMMA 2.1. Let b : (0,∞) → [−∞,∞), and let its landmark points A(b) be
defined as in (2.2).

1. For i, n ∈ N, b∗(t in) ≥ b∗(s) for every s ∈ [2−ni,2−n(i + 1)).
2. For i, n ∈ N, either t in = t2i

n+1 or t in = t2i+1
n+1 , so An(b) ⊂ An+1(b).

PROOF. 1. If s ∈ (2−ni,2−n(i + 1)), then by definition b∗(t in) ≥ b(t) for t ∈
(s − ε, s + ε) with ε small enough. b∗(t in) ≥ b∗(s) follows immediately. If s =
2−ni, and b∗(s) ≥ b∗(t in) ≥ sup{b(t)|t ∈ [2−ni,2−n(i + 1)]} then s = t in by (2.2).

2. We first claim that if t in ∈ [2−ni,2−(n+1)(2i + 1)) then t in = t2i
n+1. Clearly,

b∗(t in) ≥ sup{b(s)|s ∈ [2−ni,2−n(i +1)]} ≥ sup{b(s)|s ∈ [2−ni,2−(n+1)(2i +1)]},
so by definition t2i

n+1 ≤ t in. If the inequality is strict, there is a δ > 0 small enough
so that (t in − δ, t in + δ) ⊆ (2−ni,2−(n+1)(2i + 1)), and since b∗(t2i

n+1) ≥ b on this
interval, we obtain b∗(t2i

n+1) ≥ b∗(t in), contradicting the definition of t in. A similar

proof shows that if t in ∈ [2−(n+1)(2i + 1),2−n(i + 1)), then t in = t2i+1
n+1 . Finally,

it is easy to see that if t in = 2−n(i + 1), then sup{b(s)|s ∈ [2−ni,2−n(i + 1)]} =
sup{b(s)|s ∈ [2−(n+1)(2i + 1),2−n(i + 1)]} ≥ sup{b(s)|s ∈ [2−ni,2−(n+1)(2i +
1)]}, after which repeating the same argument by contradiction ensures that t in =
t2i+1
n+1 . �

The following lemma collects some properties of upper-semi-continuous func-
tions that are used throughout the paper. The proofs are elementary, and are omit-
ted.
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LEMMA 2.2. Let b : (0,∞) → [−∞,∞) be upper-semi-continuous.

1. If x : [0,∞) → (−∞,∞) is continuous, then for all t > 0,

inf{s > 0|x(s) ≤ b(s)} > t ⇐⇒ x(s) > b(s) ∀s ∈ (0, t]
2. The set Qb := {(x, t)|x > b(t), t > 0} is open.

The next proposition addresses two main issues. First, it considers the mea-
surability of τ and τ̂ , to ensure that the various functions considered in the re-
mainder of the paper are well defined. Second, it shows that for the purposes of
computing the distribution of τ , it is enough to consider the upper-semi-continuous
envelope, b∗, of the boundary b. We observe that the result for τ holds with min-
imal assumptions on the function b (we have not even assumed measurability).
Furthermore, we note that some of the results on measurability could be derived
by applying more general theorems [e.g., τ̂ is the first hitting time of the two-
dimensional process (Xt , t) to the set {(x, s)|x ≤ b(s)}, which is closed when b is
upper-semi-continuous]. However, we have decided to present elementary proofs
of these assertions to make the paper more self-contained.

PROPOSITION 1. Let b : (0,∞) → [−∞,∞).

1. Let b∗ be as in (1.13) and A(b) be as in (2.1) and (2.2). Then for every t > 0,⋂
s∈(0,t)

{Xs ≥ b(s)} = ⋂
s∈(0,t)∩A(b)

{Xs ≥ b∗(s)}.(2.3)

Consequently, we can define the first boundary crossing time τ :� →
[0,∞], the survival probability p : [0,∞) → [0,1], and the survival distribu-
tion w : R × [0,∞) → [0,1] by

τ(ω) := inf{s > 0|Xs(ω) < b(s)} ∀ω ∈ �,(2.4)

p(t) := P
(
Xs ≥ b(s) ∀s ∈ (0, t)

) ∀t ≥ 0,(2.5)

w(x, t) := P
(
Xs ≥ b(s) ∀s ∈ (0, t),Xt > x

) ∀x ∈ R, t ≥ 0.(2.6)

In addition, τ is an optional time with respect to the filtration generated by
the process X, {τ ≥ t} ∈ F X

t ,∀t ≥ 0. Also

p(t) = P(τ ≥ t), w(x, t) = P(τ ≥ t,Xt > x).

2. Let the (conventional) first crossing time τ̂ :� → [0,∞] be defined by

τ̂ (ω) := inf{s > 0|Xs(ω) ≤ b(s)} ∀ω ∈ �.

If b is upper-semi-continuous, i.e., b = b∗, then τ̂ is a stopping time with respect
to the filtration generated by the process X, {ω ∈ �|τ̂ (ω) > t} ∈ F X

t ∀t ≥ 0, so
that we can define p̂(t) := P(τ̂ (ω) > t) ∀t ≥ 0.
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PROOF. 1. When t = 0, we have {τ ≥ 0} = � = {ω ∈ �|Xs(ω) ≥ b(s),Con
∀s ∈ (0, t)} and p(0) = P(�) = 1. Now we assume that t > 0. It is easy to verify
that ⋂

s∈(0,t)

{Xs ≥ b(s)} = {Xs ≥ b(s) ∀s ∈ (0, t)} = {τ ≥ t}.

Hence, to complete the proof of the first assertion, it suffices to verify (2.3). Sup-
pose ω ∈ {Xs ≥ b(s) ∀s ∈ (0, t)}. Then Xs(ω) ≥ b(s) for every s ∈ (0, t). For
every ŝ ∈ (0, t), by the continuity of X•(ω),

Xŝ(ω) = lim
s→ŝ

Xs(ω) ≥ max
{
b(ŝ), lim

s→ŝ
b(s)

}
= b∗(ŝ).

As ŝ ∈ (0, t) is arbitrary, we have ω ∈ {Xs ≥ b∗ ∀s ∈ (0, t)}. Thus, {Xs ≥ b(s) ∀s ∈
(0, t)} ⊂ {Xs ≥ b∗(s) ∀s ∈ (0, t)} ⊂ {Xs ≥ b∗(s) ∀s ∈ (0, t) ∩ A(b)}.

Next, suppose ω ∈ {Xs(ω) ≥ b∗(s) ∀s ∈ (0, t) ∩ A(b)}. Let ŝ ∈ (0, t) be arbi-
trary. We want to show that Xŝ ≥ b(ŝ). For each integer n satisfying 2−n ≤ ŝ,

let in be the integer such that ŝ ∈ [in2−n, (in + 1)2−n). Then t
in
n ∈ A(b) and

X
t
in
n

(ω) ≥ b∗(t inn ) ≥ b∗(ŝ) by Lemma 2.1. Hence,

Xŝ(ω) = lim
n→∞X

t
in
n

(ω) ≥ lim
n→∞b∗(t inn ) ≥ b∗(ŝ) ≥ b(ŝ).

Since ŝ is arbitrary, we see that ω ∈ {Xs ≥ b(s) ∀s ∈ (0, t)}. Consequently,

{τ ≥ t} = ⋂
s∈(0,t)

{Xs ≥ b(s)} = ⋂
s∈(0,t)

{Xs ≥ b∗(s)}

= ⋂
s∈(0,t)∩A(b)

{Xs ≥ b∗(s)} ∈ F X
t .

This proves (2.3) and also the first assertion.
2. Assume that b is usc, that is, b = b∗. Then by the continuity of the sample

paths of X, if ŝ > 0 and Xŝ(ω) > b(ŝ) then there exists δ > 0 such that Xs(ω) >

b(s) + δ for all s ∈ [ŝ − δ, ŝ + δ]. By the Heine–Borel theorem, if Xs > b(s)

for every s ∈ [a, c] ⊂ (0,∞), then there exists a large integer i such that Xs >

b(s) + 2−i for every s ∈ [a, c]. Hence, for every t > 0,

{τ̂ > t} = ⋂
s∈(0,t]

{Xs > b(s)} = ⋂
n∈N

⋂
s∈[2−nt,t]

{Xs > b(s)}

= ⋂
n∈N

⋃
i∈N

⋂
s∈[2−nt,t]

{Xs ≥ b(s) + 2−i}(2.7)

= ⋂
n∈N

⋃
i∈N

⋂
s∈{2−nt,t}∪(A(b)∩[2−nt,t])

{Xs ≥ b(s) + 2−i} ∈ F X
t .

This completes the proof of the second assertion. �
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The following proposition justifies our choice to work with τ , the first time
the process is strictly below the boundary, rather than τ̂ , the first time the process
hits the boundary. In particular, the second assertion implies that these times are
almost surely equal, and hence they have the same distributions (so solving the
inverse boundary crossing problem for τ is the same as solving it for τ̂ ). We will
see in the next section that it is easier to work with τ in defining approximations
for the boundary crossing problem.

PROPOSITION 2. Let b : (0,∞) → [−∞,∞).

1. Let b∗ and b∗− be as in (1.13). Then

{ω ∈ �|τ(ω) = t or τ̂ (ω) = t} ⊂ {ω ∈ �|Xt(ω) ∈ [b∗−(t), b∗(t)]} ∀t > 0.

2. The set {τ �= τ̂ } has probability zero, so that

p(t) = p(t−) = p̂(t−) = P(τ ≥ t) ∀t > 0,

p̂(t) = p̂(t+) = p(t+) = P(τ > t) ∀t ≥ 0.

Consequently, if b∗ = b∗−, then p ∈ C((0,∞)), p̂ = p on (0,∞), and p̂ ∈
C([0,∞)).

PROOF. To prove the first assertion, let t > 0 and ω ∈ {τ = t} ∪ {τ̂ = t}.
Then Xs(ω) ≥ b(s) for all s ∈ (0, t) so Xt(ω) ≥ lims↗t b(s) = b∗−(t). Also,
τ(ω) = t or τ̂ (ω) = t implies that there exists a sequence {si} of positive num-
bers such that limi→∞ si = t and Xsi (ω) ≤ b(si) for all i. This implies that
Xt(ω) = limi→∞ Xsi (ω) ≤ limi→∞ b(si) ≤ b∗(t). Hence, Xt(ω) ∈ [b∗−(t), b∗(t)].
Also, note that if b∗−(t) = b∗(t), then P({τ = t} ∪ {τ̂ = t}) ≤ P({Xt = b∗(t)}) = 0.

Since the family {τ > t + ε}ε≥−t of sets is monotonic in ε, we see that

p(t+) = lim
ε↘0

p(t + ε) = lim
ε↘0

P(τ ≥ t + ε)

= P

(⋃
ε>0

{τ ≥ t + ε}
)

= P(τ > t) ∀t ≥ 0,

p(t−) = lim
ε↘0

p(t − ε) = lim
ε↘0

P(τ ≥ t − ε)

= P

(⋂
ε>0

{τ ≥ t − ε}
)

= P(τ ≥ t) = p(t) ∀t > 0.

Clearly, if b∗−(t) = b∗(t), then p(t−) − p(t+) = P(τ = t) = 0 so p is continu-
ous at t . Similarly, when b∗ = b so p̂ is well defined, we have p̂(t) = P(τ̂ > t) =
p̂(t+) and p̂(t−) = P(τ̂ ≥ t).

To complete the proof, it remains to show that the set {τ �= τ̂ } has probability
zero. For every ω ∈ �,

τ(ω) = inf{s > 0|Xs(ω) < b(s)} ≥ inf{s > 0|Xs(ω) ≤ b(s)} = τ̂ (ω).
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Now, suppose τ(ω) �= τ̂ (ω). Then we must have τ̂ (ω) < τ(ω). Set t = τ(ω).
Then Xs ≥ b(s) ∀s ∈ (0, t). By continuity, we also have Xs ≥ b∗(s) ∀s ∈ (0, t).
Set t̂ = τ̂ (ω). If t̂ = 0, then by definition, there exists r ∈ (0, t) such that
Xr(ω) ≤ b(r). If t̂ > 0, then by definition, there exists r ∈ [t̂ , t) such that
Xr(ω) ≤ b(r). As Xs(ω) ≥ b∗(s) for all s ∈ (0, t), in either case, we have r ∈ (0, t)

and Xr(ω) = b∗(r). Taking r1 ∈ A(b) ∩ (0, r) and r2 ∈ A(b) ∩ (r, t) we obtain
mins∈[r1,r2]{Xs(ω) − b∗(s)} = 0. Hence,

{τ �= τ̂ } = {τ̂ < τ } ⊂ ⋃
r1∈A(b)

⋃
r2∈A(b)∩(r1,∞)

B(r1, r2),

where for every 0 < a < c < ∞,

B(a, c) =
{
ω ∈ �

∣∣ min
s∈[a,c]{Xs(ω) − b∗(s)} = 0

}
.

Note that for each c > a > 0, B(a, c) is Fc measurable since

B(a, c) =
{

min
s∈[a,c]{Xs − b∗

s } ≥ 0
}

∖ ∞⋃
n=1

{
min

s∈[a,c]{Xs − b∗(s)} ≥ 2−n
}
,

{
min

s∈[a,c]{Xs − b∗(s)} ≥ h
}

= ⋂
s∈{a,c}∪(A(b)∩[a,c])

{Xs ≥ b∗(s) + h} ∈ Fc ∀h ∈ R.

It remains to show that for each c > a > 0, the set B(a, c) has measure zero.
Suppose, on the contrary, that P(B(a, c)) > 0 for some fixed c > a > 0. Fixing
t0 ∈ (0, a), we then have

0 < P(B(a, c)) =
∫

R

P
(
B(a, c)|Xt0 = z

)
ρ0(z, t0) dz.

Consequently, there exists a finite number M > 0 such that
∫ M

−M
P

(
B(a, c)|Xt0 = z

)
ρ0(z, t0) dz > 0.

For each h ∈ R, we consider the set

Bh(a, c) =
{

min
s∈[a,c]

(
Xs − b∗(s)

) = h
}
.

For the process {Xt }t≥t0 , for each ω ∈ {Xs = z} and h ∈ R, we denote by ωh the
element in {Xt0 = z + h} such that Xt(ω

h) = h + Xt(ω) ∀t ∈ [t0,∞). Then

min
s∈[a,c]

(
Xs(ω) − b∗(s)

) = 0 ⇐⇒ min
s∈[a,c]

(
Xs(ω

h) − b∗(s)
) = h.

Assume for simplicity that we are dealing with Brownian motion. [By a change of
variables, we can assume σ ≡ 1; see Section 4. Since μ is smooth and bounded,
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if {Xt } is not a Brownian motion, we can use the Girsanov theorem [Karatzas and
Shreve (1996)] to change to an equivalent measure under which Xt is a Brownian
motion, and the argument below can still be used to show that P(B(a, c)) = 0.] By
the translation invariance of Brownian motion and the Markov property, we have

P
(
B(a, c)|Xt0 = z

) = P
(
Bh(a, c)|Xt0 = z + h

)
.

Hence,

P(Bh(a, c)) =
∫

R

P
(
Bh(a, c)|Xt0 = z + h

)
ρ0(z + h, t0) dz

=
∫

R

P
(
B(a, c)|Xt0 = z

)
ρ0(z + h, t0) dz

≥ min
z∈[−M,M]

ρ0(z + h, t0)

ρ0(z, t0)

∫ M

−M
P

(
B(a, c)|Xt0 = z

)
ρ0(z, t0) dz > 0.

Note that all elements in {Bh(a, c)}h∈R are disjoint and measurable. We then
obtain a contradiction since � does not contain an uncountable disjoint union
of measurable sets with positive probability. Thus, B(a, c) must have probabil-
ity zero, for every pair (a, c) with a > c > 0. Consequently, the set {τ̂ �= τ } has
probability zero. This completes the proof of Proposition 2. �

THEOREM 2. The operator P defined by P[b](t) = P(τ ≥ t) maps B0 to P0.

PROOF. Suppose b ∈ B0. Then b∗ = b∗− so p := P[b] ∈ C((0,∞)). In addi-
tion,

lim
ε↘0

p(ε) = lim
ε↘0

P

( ⋂
s∈(0,ε)

{Xs > b(s)}
)

= P

(⋃
ε>0

⋂
s∈(0,ε)

{Xs > b(s)}
)

= 1 = p(0).

Hence, p ∈ C([0,∞)). It remains to show that p > 0 on [0,∞). Since p(0+) =
p(0) = 1, there exists ε > 0 such that p(t) > 0 for every t ∈ [0, ε]. Let T > ε.
The upper-semi-continuity of b implies that M := sups∈[0,T ] b(s) is finite. Then

P(τ > ε,Xε > M) > 0. Using standard results for a constant barrier b̃ ≡ M on
the set {τ > ε,Xε > M} for the time interval [ε, T ], we see that P({τ > ε,Xs > M

∀s ∈ [ε, T ]}) > 0. Hence, p(T ) > 0. As T is arbitrary, we see that p > 0 on [0,∞),
so that p ∈ P0. �

PROPOSITION 3 (A semi-continuous dependence property of P ). Assume that
b, b1, b2, . . . are upper-semi-continuous functions having the property

b1 ≤ b2 ≤ b3 ≤ · · · , b(t) = lim
n→∞bn(t) ∀t > 0.

Let p = P[b] and pn = P[bn]. Then for every t ≥ 0, p(t) = limn→∞ pn(t).
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PROOF. For every t > 0,

{τ ≥ t} = ⋂
s∈(0,t)

{Xs ≥ b(s)} = ⋂
s∈(0,t)

⋂
n∈N

{Xs ≥ bn(s)}

= ⋂
n∈N

⋂
s∈(0,t)

{Xs ≥ bn(s)}.

Hence,

p(t) = P

( ⋂
n∈N

⋂
s∈(0,t)

{Xs ≥ bn(s)}
)

= lim
n→∞P

( ⋂
s∈(0,t)

{Xs ≥ bn(s)}
)

= lim
n→∞pn(t). �

3. Approximating sequences for boundary crossing times. In this section,
we use the landmark points to construct straightforward approximations that even-
tually, upon passing to the limit, will allow us to transfer the problem of calculating
the survival probability to problems of solving partial differential equations. The
advantage of studying the first time the process is strictly below the boundary is
suggested by comparing the relative complexity of the expressions (2.3) and (2.7).
In this case, a simple approximation to the survival probability and distribution can
be developed. We approximate a real barrier b by a simple barrier bn defined by
bn(t) = b∗(t) if t ∈ An(b) and bn(t) = −∞ otherwise. The approximate problem
then involves only the random variables {Xt |t ∈ An(b)} so that all relevant proba-
bilities can be calculated through transition probability densities. Though it turns
out that survival probabilities computed using both viewpoints are equivalent, we
do not see a simple adaptation of our method that allows us to approximate τ̂

directly without appealing to the results in Section 2.

PROPOSITION 4. Let b : [0,∞) → [−∞,∞) be upper-semi-continuous and
(τ,p,w) be defined as in (2.4)–(2.6). Let A(b) = ⋃

n∈N An(b) be the landmark
points of b, An(b) = {t in|i ∈ N} and

τn(ω) := min{s ∈ An(b)|Xs(ω) < b(s)}, pn(t) := P(τn ≥ t),(3.1)

wn(x, t) := P(τn ≥ t,Xt > x).(3.2)

Then the following hold:

1. For all (x, t),

wn(x, t) =
∫ ∞
x

Un(y, t) dy,

where, for t ∈ [0, t0
n ], {τn ≥ t} = �,pn(t) = 1,wn(·, t) = 1 − p0(·, t) and

Un(·, t) = ρ0(·, t), and when t ∈ (tkn, tk+1
n ] with k ∈ N, {τn ≥ t} = ⋂k

i=1{Xtin
≥
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b(t in)} and

Un(x, t) =
∫ ∞
b(tkn )

Un(y, tkn)ρ(y, tkn;x, t) dy,

(3.3)
pn(t) =

∫
R

Un(y, t) dy =
∫ ∞
b(tkn )

U(y, tkn) dy.

2. For every n ∈ N, τn ≥ τn+1 ≥ τ,pn ≥ pn+1 ≥ p,wn ≥ wn+1 ≥ w,ρ0 ≥ Un ≥
Un+1 ≥ 0.

3. There exists U : R × (0,∞) → [0,∞) such that for every ω ∈ �, t > 0 and
x ∈ R,

lim
n→∞(τn(ω),pn(t),wn(x, t),Un(x, t)) = (τ (ω),p(t),w(x, t),U(x, t)).

PROOF. 1. This result follows immediately from the Chapman–Kolmogorov
equations and the fact that the fundamental solution of L1 gives the transition
densities of the Markov process X [see, e.g., Friedman (1975), Theorem I.6.5.4,
page 149]. From the definition of τn and An(b), it is easy to see that {τn ≥ t1

n} = �

and {τn ≥ t} = ⋂k
i=1{Xtkn

≥ b(t in)} when t ∈ (tkn, tk+1
n ]. When t ∈ [0, t1

n ], {τn ≥ t} =
� so the evaluation of pn,wn,Un is trivial. When t ∈ (t in, t

i+1
n ], P(τn ≥ t,Xt >

x) = P(Xt1
n

≥ b(t1
n), . . . ,Xtin

≥ b(t in),Xt > x), so using the transition probability

density for the Markov process, we have Un(·, t) = ∫ ∞
bn(t in) Un(y, t in)ρ(y, t in; ·, t) dy,

from which we find the corresponding wn and pn. The first assertion thus follows.
2. By the second part of Lemma 2.1, we have τ ≤ τn+1 ≤ τn, and therefore

p ≤ pn+1 ≤ pn, and w ≤ wn+1 ≤ wn. It is clear from the definition that t0
n ≤ t0

n+1
and so ρ0 = Un = Un+1 on (0, t0

n+1]. Now suppose Un+1 ≤ Un on (0, tkn+1]. Let t ∈
(tkn+1, t

k+1
n+1 ]. Then t ∈ (t

j
n , t

j+1
n ] for some j (the case t ≤ t1

n is easier and handled
similarly). Then

Un+1(x, t) =
∫ ∞
b(tkn+1)

Un+1(y, tkn+1)ρ(y, tkn+1;x, t) dy

≤
∫ ∞
b(tkn+1)

Un(y, tkn+1)ρ(y, tkn;x, t) dy

=
∫ ∞
b(tkn+1)

ρ(y, tkn+1;x, t)

∫ ∞
b(t

j
n )

Un(z, t
j
n )ρ(z, tjn ;y, tkn+1) dz dy

≤
∫ ∞
b(t

j
n )

Un(z, t
j
n )

∫ ∞
−∞

ρ(z, tjn ;y, tkn+1)ρ(y, tkn+1;x, t) dy dz

=
∫ ∞
b(t

j
n )

Un(z, t
j
n )ρ(z, tjn ;x, t) dz = Un(x, t)

and Un+1 ≤ Un by induction on k. The proof that 0 ≤ Un ≤ ρ0 is similar. The
second assertion thus follows.
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3. The monotonicity of (τn,pn,wn,Un) implies the existence of the limit as
n → ∞. First we show that limn→∞ τn = τ . For this, let ω ∈ � be arbitrary. (i) If
τ(ω) = ∞, then we have τn(ω) = ∞ for all n ∈ N so limn→∞ τn(ω) = ∞ = τ(ω).
(ii) Suppose τ(ω) < ∞. Note that (2.3) gives

{τ ≥ t} = ⋂
s∈A(b)∩(0,t)

{Xs ≥ b(s)}
(3.4)

= ⋂
n∈N

⋂
s∈An(b)∩(0,t)

{Xs ≥ b(s)} = ⋂
n∈N

{τn ≥ t}.

Set t := limn→∞ τn(ω). Then as τn+1 ≥ τn ≥ τ for all n ∈ N, we see that τn(ω) ≥
t ≥ τ(ω) for every n ∈ N. Consequently, ω ∈ ⋂

n∈N{τn ≥ t} = {τ ≥ t}. Hence,
we must have τ(ω) = t = limn→∞ τn(ω). Combining the two cases, we obtain
limn→∞ τn(ω) = τ(ω) for every ω ∈ �.

Next, we consider the limits of wn and pn. When t = 0, we have w(·,0) =
wn(·,0) = 1 − p0(·,0) and p(0) = 1 = pn(0). When t > 0, for each x ∈ R,

wn(x, t) − w(x, t) = P(τn ≥ t,Xt > x) − P(τ ≥ t,Xt > x)

= P(τn ≥ t > τ,Xt > x) ≤ P(τ < t ≤ τn).

Thus,

lim
n→∞‖wn(·, t) − w(·, t)‖L∞(R)

≤ lim
n→∞|pn(t) − p(t)| = lim

n→∞ P(τn ≥ τ > t)(3.5)

= P

( ⋂
n∈N

{τn ≥ t > τ }
)

= 0.

Finally, defining U := limn→∞ Un we complete the proof of the proposition.
�

The approximating functions Un introduced in the previous proposition are
expressed in terms of the transition densities of the diffusion X. From an ana-
lytic point of view, they are obtained step by step, for i = 1,2, . . . , by solving
the diffusion equations L1Un = 0 in the set R × (t in, t

i+1
n ] with initial values

U(·, t in+) = U(·, t) · χ(b(tin),∞)(·), where χA(x) is the indicator function of the
set A. In the sequel, L and L1 are the differential operators introduced in (1.9)
and (1.6), respectively. Recall the notation Qb := {(x, t)|x > b(t), t > 0}. When
b : [0,∞) → [−∞,∞) is upper-semi-continuous, the set Qb is an open set with
[b(0),∞) × {0} as its “initial” boundary.

PROPOSITION 5. Let b : [0,∞) → [−∞,∞) be upper-semi-continuous and
(p,w) be the survival probability and survival distribution associated with b, de-



INVERSE BOUNDARY CROSSING PROBLEM 1677

fined in (2.4)–(2.6). Then there exists a function U such that the following hold:

p(t) =
∫ ∞
−∞

U(y, t) dy =
∫ ∞
b(t)

U(y, t) dy,(3.6)

w(x, t) =
∫ ∞
x

U(y, t) dy(3.7)

(3.8) ∀x ∈ R, t > 0,0 ≤ U ≤ ρ0,0 ≤ w ≤ 1 − p0,

‖w(·, t) + p0(·, t) − 1‖L∞(R) ≤ 1 − p(t) ∀t > 0,(3.9)

L1U ≤ 0, Lw ≤ 0 in R × (0,∞),
(3.10)

L1U = 0, Lw = 0 in Qb,

where the inequalities in (3.10) are understood in the sense of distributions.

PROOF. Let U = limn→∞ Un. Since ρ0 ≥ Un ≥ Un+1 ≥ 0, using the Dom-
inated Convergence theorem and the identity wn(x, t) = ∫ ∞

x Un(y, t) dy we ob-
tain w(x, t) = ∫ ∞

x U(y, t) dy for every x ∈ R and t > 0. Since τ(ω) ≥ t implies
Xt(ω) ≥ b(t), we see that w(x, t) = w(−∞, t) = p(t) for every x < b(t).

It is clear that 0 ≤ U ≤ ρ0 and 0 ≤ w ≤ 1 − p0. Also, for t > 0,

w(x, t) = P(Xt > x) − P(τ < t,Xt > x) ≥ P(Xt > x) − P(τ < t)

= [1 − p0(x, t)] − [1 − p(t)].
Thus, 0 ≤ 1 − w(x, t) − p0(x, t) ≤ 1 − p(t) or ‖w(·, t) + p0(·, t) − 1‖L∞(R) ≤
1 − p(t).

It is useful to note that for each t > 0, both wn(·, t) and Un(·, t) are smooth
functions. In addition, as functions of (x, t), wn and Un are smooth in R× (0,∞)\⋃∞

i=1(−∞, bn(t
i
n)] × {t in}. In particular,

L1Un = 0, Lwn = 0 in Qb := {(x, t)|x > b(t), t > 0}.
Since both {Un}n∈N and {wn}n∈N are uniformly bounded in any compact subset
of Qb, it then follows from standard results on parabolic partial differential equa-
tions [see Friedman (1964), Theorem 3.11, page 74, and Theorem 3.15, page 80]
that w,U ∈ C∞(Qb) and Lw = 0 and L1U = 0 in Qb.

The set of discontinuities of Un and wn is
⋃

i∈N(−∞, b(t in)]×{t in}. In particular,

wn(·, t) = wn(·, t−), Un(·, t) = Un(·, t−),

p(t) = p(t−) ∀t ∈ (0,∞),

Un(x, t+) = 0, wn(x, t+) = pn(t) ∀x < b(t), t ∈ {t in}i∈N.
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Denote by δ(· − s) the Dirac measure with mass at s and by χA the characteristic
function of the set A. Then in the sense of distributions, we find that

L1Un =
∞∑
i=0

[Un(x, ·)]t in+
t in−δ(t − t in)

= −
∞∑
i=0

Un(x, t in)δ(t − t in)χ(−∞,b(t in)](x) ≤ 0 in R × (0,∞).

Lwn =
∞∑
i=0

[wn(x, ·)]t in+
t in−δ(t − t in)

= −
∞∑
i=0

[wn(x, t in) − pn(t
i
n)]δ(t − t in)χ(−∞,b(t in)](x) ≤ 0 in R × (0,∞).

Sending n → ∞ we find that Lw ≤ 0 and L1U ≤ 0 in R × (0,∞) in the sense of
distributions. This proves (3.10) and also completes the proof of the proposition.

�

4. Viscosity solutions and boundary crossing probabilities. In this section,
we show that the survival distribution w defined in (2.6) is the unique viscosity
solution of the time dependent Kolmogorov forward equation (1.8). As mentioned
above, the use of viscosity solutions is necessitated by the fact that the boundaries
arising from the solution to the variational inequality for the inverse boundary
crossing problem do not have sufficient regularity for us to employ classical solu-
tions. We do note however, that when a classical solution exists, it gives the unique
viscosity solution. Consequently, the classical solution of the partial differential
equation (1.8), if it exists, is the survival distribution function associated with b,
defined in (2.6). Since classical solutions of (1.4) are obtained from classical so-
lutions of (1.8) via the transformation U = −∂w/∂x, we also see that a classical
solution of (1.4), if it exists, is the survival probability density of the first boundary
crossing problem that we want to calculate.

For simplicity, we work with b in the class B0 so that the survival probability
associated with b is continuous on [0,∞). Furthermore, we work with the function
w which is monotone in the spatial variable, and smoother than U . The following
definition is based on the differential inequalities/equalities in (3.10).

DEFINITION 2. Let b ∈ B0. A viscosity solution (for the survival distribution)
of the boundary crossing problem associated with b is a function w defined on
R × (0,∞) that has the following properties:

1. w ∈ C(R × (0,∞)); limt↘0 ‖w(·, t) + p0(·, t) − 1‖L∞(R) = 0; 0 ≤ w ≤ 1;
2. w(x, t) = w(b(t), t) ∀x ≤ b(t), t > 0; w(x, t) < w(b(t), t) ∀x > b(t), t > 0;

Lw = 0 in Qb;
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3. If for a smooth ϕ, point x ∈ R and time t > δ > 0, the function ϕ − w attains a
local minimum at (x, t) on [x − δ, x + δ] × [t − δ, t], then Lϕ(x, t) ≤ 0.

We define one-sided time derivatives by

∂+φ(x, t)

∂t
= lim


t↘0

φ(x, t + 
t) − φ(x, t)


t
,

∂−φ(x, t)

∂t
= lim


t↘0

φ(x, t) − φ(x, t − 
t)


t
.

Denote by L± and L±
1 the operator L and L1 with time derivative replaced by the

above one-sided derivative. Then from the expression of Un in (3.3), we see that
L−

1 Un = L−wn = 0 in R × (t in, t
i+1
n ]. Thus, we have

L−Un(x, t) = 0, L−wn(x, t) = 0 ∀(x, t) ∈ R × (0,∞).(4.1)

In the uniqueness proof in the following theorem it is convenient to work with the
special case σ ≡ 1. This can be done without loss of generality by considering the
transformation

Y(x, t) :=
∫ x

0

1

σ(z, t)
dz ∀x ∈ R, t ≥ 0,

(4.2)
Yt := Y(Xt , t) ∀t ≥ 0.

The change of variables (x, t) → (y, t) via y = Y(x, t) is smooth and invertible.
Also, by Itô’s lemma,

dYt = μ̃(Yt , t) dt + dBt .

Here, denoting by x = X(y, t) the inverse of y = Y(x, t),

μ̃(y, t) := −
∫ x

0

σt (z, t)

σ 2(z, t)
dz + μ(x, t)

σ (x, t)
− 1

2
σx(x, t)

∣∣∣∣
x=X(y,t)

.

Under the transformation, a boundary b for {Xt } is transformed to a boundary
b̃ : t ∈ [0,∞) → Y(b(t), t) for {Yt }. Similarly, a boundary b̃ for {Yt } is transferred
back to b : t ∈ [0,∞) → X(b̃(t), t).

THEOREM 3. Assume that b ∈ B0.

1. The survival distribution associated with b defined in (2.6) is the unique vis-
cosity solution for the survival distribution of the boundary crossing problem
associated with b. Consequently, the survival probability p = P[b] can be eval-
uated by p(·) = w(−∞, ·) where w is the viscosity solution of the boundary
crossing problem associated with b in Definition 2.
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2. If w is a classical (i.e., w + p0 ∈ C(R × [0,∞)), ∂xw ∈ C(R × (0,∞)),
∂tw, ∂2

xw ∈ C(Qb)) solution of (1.8), then w is the survival distribution of
the boundary crossing problem associated with b. If U is a classical (i.e.,
U −ρ0 ∈ C(R×[0,∞)), ∂tU, ∂2

xU ∈ C(Qb)) solution of (1.4), then w(x, t) :=∫ ∞
x U(y, t) dt is the survival distribution of the boundary crossing problem.

PROOF. Existence. Let b ∈ B0 and τ,p,w be defined as in (2.4)–(2.6). Then
p = P[b] ∈ C([0,∞)). We show that w is a viscosity solution in the sense of
Definition 2. First, we show that w is continuous. Fix x ∈ R. For any t > s > 0,

w(x, t) − w(x, s)

= P(τ ≥ t,Xt > x) − P(τ ≥ s,Xs > x)

= P(τ ≥ t,Xt > x) − P(τ ≥ t,Xs > x) − P(t > τ ≥ s,Xs > x)

= P(τ ≥ t,Xt > x ≥ Xs) − P(τ ≥ t,Xs > x ≥ Xt) − P(t > τ ≥ s,Xs > x).

Note that P(t > τ ≥ s,Xs > x) ≤ P(t > τ ≥ s) = p(s) − p(t) so we have

|w(x, t) − w(x, s)| ≤ P(Xs > x ≥ Xt) + P(Xt > x ≥ Xs) + |p(s) − p(t)|.
Since p is continuous, sending t → s or s → t we conclude that w(x, ·) is contin-
uous in (0,∞). Next, for x < y and t > 0,

0 ≤ w(x, t) − w(y, t) = P(τ ≥ t, y ≥ Xt > x)

≤ P(y ≥ Xt > x) = p0(y, t) − p0(x, t).

Thus, w(·, t) is continuous, uniform in t ∈ [ε,∞) for any ε > 0. In conclusion, w ∈
C(R×(0,∞)). Recall from (3.8) that ‖w(·, t)+p0(·, t)−1‖L∞(R) ≤ 1−p(t). The
continuity of p on [0,∞) then implies that limt↘0‖w(·, t) + p0(·, t) − 1‖L∞(R) =
limt↘0(1 − p(t)) = 0. Thus, w satisfies the first requirement of being a viscosity
solution.

REMARK 4.1. The continuity of the survival probability p plays a central role
in the proof here. In a more general case, that is, b /∈ B0, w is not continuous so the
definition of a viscosity solution needs to be revised. To avoid such technicalities,
we take the simple case that b ∈ B0. The work of Cheng et al. (2006) does allow
discontinuous survival probabilities.

Note that τ(ω) ≥ t implies Xt ≥ b(t). Hence, w(x, t) = P(τ ≥ t,Xt > x) =
w(b(t), t) when x < b(t). Also, since U = −∂w/∂x ≥ 0, U �≡ 0 and L1U = 0
in Qb, we have U > 0 in Qb. In particular, if U(x, t) = 0, with (x, t) ∈ Qb, then
the strong maximum principle [Friedman (1964), Theorem 3.5, page 39] implies
that U(y, t) = 0 for all y such that (y, t) ∈ Qb [and therefore all y ∈ R, as it is
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easy to see that U(y, t) = 0 for (y, t) /∈ Qb]. This is a contradiction, since the
Dominated Convergence theorem implies that

0 < p(t) ≤ pn(t) = lim
n→∞

∫ ∞
−∞

Un(y, t) dy =
∫ ∞
−∞

U(y, t) dy

with the application of Dominated Convergence justified by the bounds ρ0 ≥ Un ≥
0 from part 2 of Proposition 4. Thus, w(·, t) is strictly decreasing in (b(t),∞), so
w(x, t) < w(b(t), t) for all x > b(t). Finally, from (3.10), we know Lw = 0 in Qb.
Thus, w satisfies the second requirement of being a viscosity solution.

REMARK 4.2. Recall that P[b] = P[b∗] for any boundary b; that is, under
our nonconventional definition of default time and survival probability, both the
original boundary b and its upper-semi-continuous envelope b∗ produce the same
crossing time, survival probability, and survival distribution. Here, we needed to
use the upper-semi-continuous representation of the barrier so Qb is open and
w(·, t) is strictly decreasing for x > b(t).

We now verify the third requirement for w being a viscosity solution. Assume
that ϕ − w attains a local minimum at (x, t) on A := [x − δ, x + δ] × [t − δ, t]
where ϕ is smooth and t > δ > 0. We want to show that Lϕ(x, t) ≤ 0. We follow a
standard technique for viscosity solutions. First, we modify ϕ to a new smooth ψ

so ψ − w attains a strict local minimum value zero at (x, t) on A. The function is
defined by

ψ(y, s) := ϕ(y, s) + (x − y)4δ−4 + (t − s)2δ−2 + [w(x, t) − ϕ(x, t)].
Then ψ(x, t) − w(x, t) = 0 and Lψ(x, t) = Lϕ(x, t). That ϕ − w attains a local
minimum at (x, t) implies

ψ(y, s) − w(y, s)

= (x − y)4δ−4 + (t − s)2δ−2 + [ϕ(y, s) − w(y, s)] − [ϕ(x, t) − w(x, t)]
≥ (x − y)4δ−4 + (t − s)2δ−2 ∀(y, s) ∈ A.

Thus, ψ(y, s) − w(y, s) attains on A a strict local minimum, being zero, at (x, t).
Using a standard viscosity solution technique, the differential inequality

Lϕ(x, t) ≤ 0 is obtained by comparison of ϕ with smooth approximations of
viscosity solution candidates. Here, we choose the smooth approximations to be
{wn} introduced in Proposition 4. For each positive integer n, let wn be defined
as in (3.2) in Proposition 4. Then wn is upper-semi-continuous on R × [0,∞), so
ψ −wn attains a local minimum, on the closed set A = [x−δ, x+δ]×[t −δ, t]. On
the parabolic boundary of A, we have ψ −w ≥ 1 and w−wn > −1 so ψ −wn > 0.
At (x, t), ψ − wn = w(x, t) − wn(x, t) ≤ 0. Hence, the minimum is attained in
(x − δ, x + δ) × (t − δ, t]. We denote by (xn, tn) an arbitrary local minimizer of
ψ − wn in A.
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That ψ − wn attains a local minimum at (xn, tn) implies that at (xn, tn),
∂ψ/∂x = ∂wn/∂x, ∂ψ/∂t ≤ ∂−wn/∂t and ∂2ψ/∂x2 ≥ ∂2wn/∂x2. Hence, Lψ(xn,
tn) ≤ L−wn(xn, tn) = 0.

In order to take the limit, we want to show that (xn, tn) → (x, t) as n → ∞.
Intuitively this is obvious since ψ − w attains a strict local minimum at (x, t) and
wn → w (uniformly). Since ψ(y, s) − w(y, s) ≥ (x − y)4δ−4 + (t − s)2δ−2 with
(y, s) = (xn, tn), we have

lim
n→∞{(xn − x)4δ−4 + (tn − t)2δ−2}

≤ lim
n→∞{ψ(xn, tn) − w(xn, tn)}

= lim
n→∞{[ψ(xn, tn) − wn(xn, tn)] + [wn(xn, tn) − w(xn, tn)]}

≤ lim
n→∞

{
[ψ(x, t) − wn(x, t)] + max[x−δ,x+δ]×[t−δ,t] |wn − w|

}

= ψ(x, t) − w(x, t) = 0.

Here, we have used the uniform convergence of wn → w, derived as follows:

0 ≤ wn(x, s) − w(x, s)

= P(τn ≥ s,Xs > x) − P(τ ≥ s,Xs > x)

= P(τn ≥ s > τ,Xs > x) ≤ P(τn ≥ s > τ)

= P(τn ≥ s) − P(τ ≥ s) = pn(s) − p(s).

Thus, we have ‖wn(·, s) − w(·, s)‖L∞(R) ≤ pn(s) − p(s). Since pn,p are con-
tinuous, and pn ↘ p, the point-wise convergence of pn → p implies local uni-
form convergence, that is, limn→∞ ‖pn − p‖L∞([0,T ]) = 0. Thus, limn→∞ ‖wn −
w‖L∞(R×[0,T ]) = 0 for any T > 0. Hence, limn→∞(xn, tn) = (x, t). Finally, this
implies Lϕ(x, t) = Lψ(x, t) = limn→∞ Lψ(xn, tn) ≤ 0.

Uniqueness. We can assume without loss of generality that σ ≡ 1, since other-
wise we can work with the process {Yt }t≥0 defined in (4.2). In terms of our vis-
cosity solution, it means that we make a smooth change of variable (x, t) → (y, t)

via

y = Y(x, t) :=
∫ x

0

1

σ(z, t)
dz.

In the new variables, we are working on the function w(X(y, t), t) and the barrier
is b(X(y, t)) where x = X(y, t) is the inverse of y = Y(x, t). Retaining the nota-
tion (x, t) as independent variables, we can assume that L = ∂t − 1

2∂2
x +μ(x, t)∂x .

We denote

M = ‖μ‖L∞(R×[0,∞)) + ‖∂xμ‖L∞(R×[0,∞)),

R(t) = ‖ρ0‖L∞(R×[t,∞)) ∀t > 0.
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We note that R(t) < ∞ by the standard Gaussian upper bound on the fundamen-
tal solution of L1 [see Friedman (1964), page 24]. Let w be the survival probabil-
ity of the boundary crossing problem. Then |∂xw| ≤ ρ0 is uniformly bounded in
R×[t0,∞) for any t0 > 0. Let w̃ be an arbitrary viscosity solution of the boundary
crossing problem. We want to show that w = w̃.

Suppose w �= w̃. Then there exists x0 ∈ R, t0 > δ > 0 such that either
w(x0, t0) > w̃(x0, t0) + 6δ or w̃(x0, t0) > w(x0, t0) + 6δ. In the former case, we
set (w1,w2) = (w, w̃) and in the latter case we set (w1,w2) = (w̃,w). Then both
w1 and w2 are viscosity solutions and

w1(x0, t0) − w2(x0, t0) > 6δ > 0.

By spatial translation, we can assume, without loss of generality, that b(t) < 0 for
all t ∈ [0, t0].

We now fix a constant ε satisfying

0 < ε, εt0 + ε4x4
0 ≤ min(δ,1), ε4 + 4ε2M ≤ ε/4.

We need another small positive constant η determined as follows. By the sec-
ond property of viscosity solutions, we can find t1 ∈ (0, t0) such that ‖wi(·, t1) +
p0(·, t1) − 1‖L∞(R) < δ, i = 1,2. Since p0(·, t1) is uniformly continuous on R

and w2 is continuous at (x0, t0), there exist η0 > 0 such that for every η ∈ (0, η0],
|w2(x0, t0) − w2(x0 + η, t0)| ≤ δ and ‖p0(·, t1) − p0(· + η, t1)‖L∞(R) ≤ δ. The
latter inequality implies

‖w1(·, t1) − w2(· + η, t1)‖L∞(R)

≤ ‖w1(·, t1) + p0(·, t1) − 1‖L∞(R)

+ ‖w2(· + η, t1) + p0(· + η, t1) − 1‖L∞(R)

+ ‖p0(·, t1) − p0(· + η, t1)‖L∞(R) ≤ 3δ.

Now, we fix an η ∈ (0, η0] such that

0 < Mη[R(t1) + 4ε2] ≤ ε/4.

Consider the continuous function

�(x, t) = w1(x, t) − w2(x + η, t) − εt − ε4x2, x ∈ R, t ∈ [t1, t0].
Note that �(x0, t0) = [w1(x0, t0) − w2(x0, t0)] + [w2(x0, t0) − w2(x0 + η, t0)] −
εt0 − ε4x2

0 ≥ 6δ − δ − δ = 4δ. On the other hand, when t = t1, �(x, t1) ≤
‖w1(·, t1) − w2(· + η, t2)‖L∞(R) ≤ 3δ. Hence, there exists (x∗, t∗) ∈ R × (t1, t0]
such that � attains at (x∗, t∗) the global positive maximum of � on R × [t1, t0]:

�(x∗, t∗) ≥ �(x, t) ∀x ∈ R, t ∈ [t1, t0].
We consider two cases: (i) x∗ ≤ b(t∗) − η; (ii) x∗ > b(t∗) − η.
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Suppose (i) x∗ ≤ b(t∗) − η. Then we have w1(x∗, t∗) = w1(b(t∗), t∗) and
w2(x∗ + η, t∗) = w2(b(t∗), t∗). Consequently, since ‖w2(·, t∗)‖L∞(R) = w2(b(t∗),
t∗) = w2(x

∗ + η, t∗) and x∗ < b(t∗) < 0, we obtain

�(b(t∗), t∗) − �(x∗, t∗)
= ε4(

x2∗ − b(t∗)2) + (
w2(x

∗ + η, t∗) − w2
(
b(t∗) + η, t∗

))
> 0

contradicting the maximality of �(x∗, t∗).
(ii) x∗ > b(t∗) − η. Set ϕ(x, t) = w2(x + η, t) + εt + ε4x2. Then ϕ − w1 = −�

attains at (x∗, t∗) a minimum over R × [t0, t1]. Since x∗ > b(t∗) − η, we see that
w2(· + η, ·) is smooth in a neighborhood of (x∗, t∗). Then ϕ is smooth in a small
neighborhood of (x∗, t∗) and ϕ − w1 attains a local minimum at (x∗, t∗). Since w1
is a viscosity solution, we must have Lϕ(x∗, t∗) ≤ 0.

Now, we calculate Lϕ(x∗, t∗). Using Lw2 = 0 in Qb and the fact that σ is
assumed to be a constant, we have

Lϕ(x∗, t∗) = ε − ε4 + 2ε4x∗μ(x∗, t∗)
+ [μ(x∗, t∗) − μ(x∗ + η, t∗)]∂xw2(x∗ + η, t∗).

First, we note that �(x∗, t∗) ≥ �(x0, t0), so εt∗ + ε4x2∗ ≤ 2 + εt0 + ε4x4
0 ≤ 3.

This implies that ε2|x∗| ≤ 2. Hence,

Lϕ(x∗, t∗) ≥ ε − ε4 − 4ε2M − Mη|∂xw2(x∗ + η, t∗)|.
To estimate ∂xw2(x∗ + η, t∗), we consider two situations.

(a) w2 = w is the survival distribution function. Then ‖∂xw(x∗, t∗)‖ ≤ ρ0(x∗,
t∗) ≤ R(t1).

(b) w2 = w̃. Then w2 is differentiable at (x∗, t∗) and w1(·, t∗) is Lipschitz
continuous with Lipschitz constant ‖U(·, t∗)‖L∞(R). Hence, sending h ↘ 0 in
[(�(x∗ ± h, t∗) − �(x∗, t∗)]/h ≥ 0 we derive

|∂xw2(x∗, t∗)| ≤ ‖∂xw(·, t∗)‖L∞(R) + 2ε4|x∗| ≤ R(t1) + 4ε2.

Thus, in either case, we have

Lϕ(x∗, t∗) ≥ ε − ε4 − 4ε2M − Mη{R(t1) + 4ε2} ≥ ε/4 > 0

by our careful choices of ε and η. This contradicts Lϕ(x∗, t∗) ≤ 0. The contra-
diction implies that we must have w1 ≡ w2. Thus, the viscosity solution of the
boundary crossing problem is unique.

Proof of the second assertion. The equivalence of classical solutions of (1.8)
and (1.4) via U = −∂w/∂x is trivial. Here we show that a classical solution of
(1.8) is a viscosity solution.

Assume that w is a classical solution of (1.8). Then U = −∂w/∂x is a classi-
cal solution of (1.4). Applying the maximum principle to U and ρ0 − U on Q̄b,
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we find that 0 ≤ U ≤ ρ0. Also, the strong maximum principle [Friedman (1964),
Theorem 3.5, page 39] shows U > 0 in Qb [if U(x, t) = 0 for (x, t) ∈ Qb,
then U(y, s) = 0 for all (y, s) in Qb with s ≤ t , contradicting the initial con-
dition at time 0]. Hence, w is monotone in x and w(x, t) < w(b(t), t) for all
x > b(t), t > 0. In addition, for each t0 > 0, comparing U with the solution of
LV = 0 in R × (t0,∞) with initial value V (·, t0) = U(·, t0) we see that U ≤ V

on R × [t0,∞) so
∫
R

U(y, t) dy ≤ ∫
R

V (y, t) dy = ∫
R

U(y, t0) dy for every t > t0.
This implies that p(t) := w(−∞, t) = w(b(t), t) is a decreasing function of t .

Next, since w +p0 ∈ C(R×[0,∞)), ∂xw ≤ 0, ∂xp0 ≤ 0, and w(∞,0) = 0 and
w(−∞,0) = 1, one can show that limt↘0 ‖w(·, t)+p0(·, t)− 1‖L∞(R) = 0. Thus,
w satisfies the first and second requirements of a viscosity solution in Definition 2.

To verify the third requirement in Definition 2, suppose ϕ is smooth, x ∈ R, t >

δ > 0 and ϕ − w attains a local minimum at (x, t) on [x − δ, x + δ] × [t − δ, t].
We want to show that Lϕ(x, t) ≤ 0. We consider two cases: (i) x > b(t) and (ii)
x ≤ b(t).

(i) Suppose x > b(t). Then (x, t) is an interior point of Qb, in which w is
smooth. Since ϕ −w attains a local minimum at (x, t) on [x −δ, x +δ]×[t −δ, t],
we have ∂tϕ(x, t) ≤ ∂tw(x, t), ∂xϕ(x, t) = ∂xw(x, t) and ∂2

xϕ(x, t) ≥ ∂2
xw(x, t).

This implies that Lϕ(x, t) ≤ Lw(x, t) = 0.
(ii) Suppose x ≤ b(t). Then ∂xϕ(x, t) = ∂xw(x, t) = 0. Note that ϕ(x − z, t) −

ϕ(x, t) ≥ w(x − z, t)−w(x, t) = 0 for all z ≥ 0. This implies, since ϕ is a smooth
and ∂xϕ(x, t) = 0, that ∂2

xxϕ(x, t) ≥ 0.
To complete the proof that Lϕ(x, t) ≤ 0, it suffices to show that ∂tϕ ≤ 0. Sup-

pose on the contrary that ∂tϕ(x, t) > 0. Then there exists ε ∈ (0, δ) such that
ϕ(x, t − s) < ϕ(x, t) for all s ∈ (0, ε]. As ϕ − w attains a local minimum at
(x, t), we see that w(x, t − s) ≤ w(x, t)−ϕ(x, t)+ϕ(x, t − s) < w(x, t) = p(t) ≤
p(t − s) for all s ∈ (0, ε]. Thus, [x,∞)×[t −ε, t) ⊂ Qb. Since w is monotone, we
also have w(y, t − s) ≤ p(t) = w(x, t) for all y > x, s ∈ [0, ε]. That is, w attains at
(x, t) a local maximum over the region [x,∞)×[t −ε, t]. Hence, applying Hopf’s
lemma [Protter and Weinberger (1967), Theorem 3.3] for w on [x,∞)× (t − s, t),
we have wx(x, t−) < 0, which contradicts the definition of a classical solution that
∂xw(x, t−) = ∂xw(x, t) = 0. Thus, we must have ∂tϕ(x, t) ≤ 0. Together with
∂xϕ(x, t) = 0, ∂2

xxϕ(x, t) ≥ 0, we conclude that Lϕ(x, t) ≤ 0.
Hence, w is a viscosity solution. Applying the conclusion of the first assertion,

we then see that w is the survival distribution of the boundary crossing problem
associated with b. �

REMARK 4.3. (i) The addition of the term ε4x2 confines our attention in
searching for the maximum of � to a compact set [−2ε−2,2ε−2] × [0, t0]. So
we indeed only need w + p0 ∈ C(R × [0,∞)) and w + p0 − 1 = 0 on R × {0} in
the definition of viscosity solutions.

(ii) Fix t2 > t1 ≥ 0. In the proof, if we take w2 to be a solution of Lw2 = 0
in R × (t1, t2) subject to initial condition w2(·, t1) ≥ w(·, t1). Then following the
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proof we see that supR×[t1,t2)(w − w2) > 0 is impossible. Thus, we have w ≤ w2
on R × [t1, t2). This is a simple version of the comparison principle in the theory
of viscosity solutions. This result will be used in the next section.

5. Viscosity solutions for the inverse boundary crossing problem. The in-
verse boundary crossing problem is to find b, for a given p, such that p is the sur-
vival probability associated with b. In this section, we prove that for any p ∈ P0,
from the viscosity solution of the variational inequality (1.11), we can find an
unique b ∈ B0 such that the resulting p gives the survival distribution of the first
time that X crosses b. Since the forward problem maps B0 to P0, we study, for
simplicity, the inverse problem for p ∈ P0, though in Cheng et al. (2006) the vari-
ational inequality (1.11) was considered for more general survival functions.

5.1. Viscosity solutions. In general, classical solutions of the variational in-
equality (1.11) for the inverse problem may not exist. In Cheng et al. (2006), vis-
cosity solutions were introduced, and it was shown that for any p satisfying

p(0+) = 1 ≥ p(s) = p(s−) ≥ p(t) ≥ 0 ∀t > s > 0,(5.1)

there exists a unique viscosity solution. From this solution, we can define a bound-
ary b such that Qb = {w < p}, and consider it as a candidate for the solution to
the inverse boundary crossing problem. To verify that b is indeed a solution, we
show that w is a viscosity solution to the direct problem (1.8), and then appeal to
Theorem 3 to see that w and p give the survival distribution of the first time that
X crosses b.

When p ∈ P0, we know a priori that the unique solution of the variational in-
equality is continuous so many technicalities in Cheng et al. (2006) regarding the
definition, existence, and uniqueness of viscosity solutions can be ignored. In par-
ticular, the viscosity solution introduced in Cheng et al. (2006) can be reformulated
(removing those specifics that take care of discontinuities) as follows.

DEFINITION 3. Let p ∈ P0 be given. A viscosity solution for the survival dis-
tribution of the inverse boundary crossing problem associated with p is a function
w defined on R × (0,∞) that has the following properties:

1. w + p0 ∈ C(R × (0,∞)), limt↘0 ‖p0(·, t) + w(·, t) − 1‖L∞(R) = 0;
2. 0 ≤ w(x, t) ≤ p(t), ∀(x, t) ∈ R × (0,∞) and Lw(x, t) = 0 in the set Q :=

{(x, t)|t > 0,w(x, t) < p(t)};
3. if x ∈ R and t > δ > 0, and ϕ is a smooth function such that ϕ − w attains at

(x, t) a local minimum on [x − δ, x + δ] × [t − δ, t], then Lϕ(x, t) ≤ 0.

A viscosity solution of the inverse boundary crossing problem associated with
p is the function b given by

b(t) := inf{x ∈ R|w(x, t) < p(t)} ∀t > 0,(5.2)
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where w is a viscosity solution for the survival distribution of the inverse boundary
crossing problem associated with p. If there is a unique viscosity solution, we
denote b = B[p].

The remainder of this section is devoted to a proof of the main result of the
paper, Theorem 1, stated in the Introduction.

PROOF OF THEOREM 1. The fourth assertion follows from the first assertion
and the following facts which are easy to verify: a classical solution of (1.11) is
automatically a viscosity solution, and if (U, b) is a classical solution of (1.4), then
(w,b) with w defined by w(x, t) = ∫ ∞

x U(y, t) dy is a classical solution of (1.11).
We divide the proof of the first three assertions into several parts.

Existence and uniqueness of a viscosity solution. The proof of the existence of a
unique viscosity solution, together with the properties (1.14), is the major result of
Cheng et al. (2006) and hence is omitted here.7 It is important to note that, by the
monotonicity of w in the spatial variable and the definition of b in (5.2), we have

Q := {(x, t)|t > 0,w(x, t) < p(t)} = Qb := {(x, t)|t > 0, x > b(t)}.

Weak regularity of the free boundary. The regularity of the free boundary
b = B[p] defined by (5.2) was not discussed in Cheng et al. (2006). Here, un-
der the assumption that p ∈ P0, we establish a very basic regularity result on b. In
particular, we show that b ∈ B0.

We begin by showing that b(t) < ∞ for every t > 0. Indeed, if b(t) = ∞, then
by the definition b(t) = inf{x|w(x, t) < p(t)} we see that w(x, t) = p(t) for all
x ∈ R. Since limx→∞ w(x, t) = 0 (recalling w ≤ 1 − p0), we see that w(·, t) ≡ 0.
This contradicts the assumption that p ∈ P0, since p ∈ P0 guarantees p(s) > 0 for
all s ∈ [0,∞).

Next, we show that X0 ≥ b∗(0) = limt↘0 b(t) almost surely. To see this, we
use the estimate w ≤ 1 − p0 to derive p(t) = w(b(t), t) ≤ 1 − p0(b(t), t). This
implies that limt↘0 p0(b(t), t) ≤ limt→0(1 − p(t)) = 0 since p ∈ P0 gives p ∈
C([0,∞)) and p(0) = 1. Now suppose to the contrary that P(X0 < b∗(0)) > 0.
Then there exists δ > 0 and ε > 0 such that p0(b

∗(0) − 2δ,0) = P(X0 ≤ b∗(0) −
2δ) > 2ε. Consequently, there exists t0 > 0 such that p0(b

∗(0) − δ, t) = P(Xt <

b∗(0) − δ) > ε for all t ∈ [0, t0]. However, by the definition of b∗(0), there exists
a sequence tk ↘ 0 such that limk→∞ b(tk) = b∗(0). For all sufficiently large k, we
have b(tk) > b∗(0) − δ which implies that p0(b(tk), tk) ≥ p(b∗(0) − δ, tk) > ε, so

7In Cheng et al. (2006), it was assumed that P(X0 = 0) = 1. The same techniques can be applied
to prove existence and uniqueness for more general initial distributions considered here.
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we obtain limt↘0 p0(b(t), t) ≥ ε. This contradicts limt↘0 p0(b(t), t) = 0. Hence,
we must have P(X0 < b∗(0)) = 0, that is, X0 ≥ b∗(0) a.s.

The next step is to show that b := B[p] is upper-semi-continuous on [0,∞).
First of all, the definition b(0) := lim supt↘0 b(t) implies that b is upper-semi-
continuous at t = 0. Next, let t > 0 be arbitrary. We consider two cases: (i) b(t) >

−∞, (ii) b(t) = −∞.
(i) Suppose b(t) > −∞. Fix any ε > 0. Then p(t) − w(b(t) + ε, t) > 0. By

continuity, p(s)−w(b(t)+ ε, s) > 0 for all s in a neighborhood of t . This implies
that b(s) < b(t) + ε for all s in a neighborhood of t . Consequently, lims→t b(s) ≤
b(t) + ε. As ε > 0 is arbitrary, we have lims→t b(s) ≤ b(t).

(ii) Suppose b(t) = −∞. Then for any M > 0, we have p(t) − w(−M, t) > 0.
Consequently, p(s)−w(−M,s) > 0 for all s sufficiently close to t . Hence, b(s) <

−M for all s sufficiently close to t . This implies that lims→t b(s) ≤ −M . As M

can be made arbitrarily large, we hence see that lims→t b(s) = −∞ = b(t).
In conclusion, b : [0,∞) → [−∞,∞) is upper-semi-continuous.
Let Q := {w < p} := {(x, t) ∈ R × (0,∞)|w(x, t) < p(t)} and Qb := {(x, t) ∈

R × (0,∞)|x > b(t)}. Then Q = Qb and U := −∂xw > 0 in Qb. Indeed, Q = Qb

follows from the definition of b = B[p] in (5.2) and the monotonicity of w in
the spatial variable [see Cheng et al. (2006)]. In addition, since b is upper-semi-
continuous and bounded above in any compact interval in [0,∞), any points
(x1, t1), (x2, t2), t1 ≤ t2 in Qb can be connected by a smooth curve x = h(t) in
Qb defined on t ∈ [t1, t2] such that h(ti) = xi . Applying the strong maximum
principle [Friedman (1964), Theorem 3.5, page 39] to U := −∂xw (U ≥ 0 by the
monotonicity of w), we conclude that U > 0 in Q = Qb [an elementary argument
shows there cannot exist a t2 > 0 such that U(·, t1) ≡ 0 in Qb for all t1 ≤ t2].

Next, we show that b = b∗ = b∗−. Upper-semi-continuity (b = b∗) was shown
above, so it remains to prove that b(t) = lims↗t b(s) =: b∗−(t) for every t > 0.
Let t > 0, and suppose b(t) �= b∗−(t). Then b(t) = b∗(t) > b∗−(t). Set δ = [b(t) −
b∗−(t)]/4. By the definition of b∗−(t), we can find ε > 0 such that b(s) < b∗−(t) + δ

for all s ∈ [t − 2ε, t). Then D := [b∗−(t) + δ, b(t)] × [t − 2ε, t) is a subset of
Q := {w < p}. Since we know that L1U = 0 and U = −∂w/∂x > 0 in Q. We can
apply the Harnack inequality on the cube (b∗−(t)+δ, b(t))× (t −2ε, t) to conclude
that there exists a positive constant η > 0 such that U > η in [b∗−(t) + 2δ, b(t) −
δ] × (t − ε, t). Consequently,

w
(
b∗−(t) + 2δ, s

) − w
(
b(t) − δ, s

)

=
∫ b(t)−δ

b∗−(t)+2δ
U(y, s) dy ≥ [b(t) − b∗−(t) − 3δ]η

= δη ∀s ∈ (t − ε, t).

Sending s ↗ t we then conclude that w(b∗ + 2δ, t) ≥ w(b(t) − δ, t) + δη ≥
p(t) + δη, which violates the requirement that w ≤ p for a viscosity solution.
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Hence, we must have b(t) = b∗−(t). In summary, b = b∗ = b∗−. This also implies
that

b(t) = lim
s→t

b(s) = lim
s↗t

b(s) ≥ lim
s↘t

b(s).

Finally, to show that b ∈ B0, it remains to show that the survival probability p̃ :=
P[b] associated with b has the property limt↘0 p̃(t) = 1. For this, we consider the
sequence {wn}, associated with b, defined in Proposition 4. It follows from a (vis-
cosity solution) comparison principle, applied iteratively to R× (t in, t

i+1
n ] (t0

n := 0)
for i = 0,1, . . . , that wn ≥ w; see Remark 4.3. Taking the limit, we find that w ≤
limn→∞ wn. This implies that p(t) = w(−∞, t) ≤ limn→∞ wn(−∞, t) = p̃(t).
Since our assumption p ∈ P0 implies that limt↘0 p(t) = 1, we also know that
limt↘0 p̃(t) = 1. Thus, we have shown that b ∈ B0.

Verification that the boundary derived from the variational inequality has the
required crossing time distribution. Given p ∈ P0, let b = B[p] be the boundary
derived from the unique solution of the variational inequality (1.11). We need to
show that P[b] = p, that is, that b is truly a solution of the inverse boundary cross-
ing problem. Summarizing, this means that we want to show that (P ◦ B)[p] = p

for every p ∈ P0.
Let w be the unique viscosity solution for survival distribution of the inverse

problem associated with p as given in Definition 3. Define b = B[p] as in (5.2). Let
p̃ = P[b]. We want to show that p̃ = p. It is enough to show that w is a viscosity
solution of the survival probability for the boundary crossing problem associated
with b, since in this case part 1. of Theorem 3 yields that p̃(t) = w(−∞, t), while
taking limits as x goes to −∞ in (1.14) gives that p(t) = w(−∞, t). By check-
ing the Definitions 3 and 2 of viscosity solutions, one readily sees that w being
a viscosity solution in the sense of Definition 3 implies that w is indeed the vis-
cosity solution in the sense of Definition 2, provided that Q := {w < p} = Qb :=
{(x, t)|x > b(t), t > 0}. But this last property is immediate from the monotonic-
ity of w. We thus conclude that w is indeed the viscosity solution of the survival
distribution of the boundary crossing problem associated with b. Consequently,
P[b](t) = w(−∞, t) = p(t), so we have P[b] = p and p = P[b] = (P ◦ B)[p].

Uniqueness of the solution of the inverse boundary crossing problem in the
class B0. For a given p ∈ P0, we have shown that B[p] is a solution of the original
inverse boundary crossing problem. Here we show that there is indeed only one
such b in the class B0. To show this, it suffices to show that (B ◦ P)[b] = b for
every b ∈ B0, since this implies that if P[b̃] = p then b̃ = (B ◦ P)[b̃] = B[p].

Let b̃ ∈ B0. Define (τ,p,w) as in (2.4)–(2.6). That is, p = P[b̃] and w are the
survival probability and distribution of the boundary crossing problem associated
with b̃. Since b̃ is upper-semi-continuous we can derive from Proposition 5 and
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the strong maximum principle that U := −∂xw > 0 in Q
b̃

(see the proof of The-
orem 3). This implies that Q

b̃
⊂ {w < p}. Also, since w(x, t) = P(τ ≥ t,Xt > x)

we know that w(x, t) = p(t) when x ≤ b̃(t). Thus, Q
b̃
= {w < p}.

By Theorem 3, w is a viscosity solution of the survival probability distribu-
tion of the boundary crossing problem in the sense of Definition 2, associated
with b̃. By checking the definition of a viscosity solution of the variational in-
equality associated with p (Definition 3), we find that w is indeed a viscosity so-
lution associated with p = P[b̃]. Now, according to the definition of B[p] in (5.2),
B[p](t) = inf{x|w(x, t) < p(t)}. Since Q

b̃
= {w < p}, we see that B[p] = b̃. Thus

b̃ = B[p] = (B ◦ P)[b̃] for every b̃ ∈ B0. This completes the proof of Theorem 1.
�

5.2. Continuity of the free boundary in the inverse boundary crossing problem.
In this subsection, we investigate the continuity of the free boundary b = B[p]
for the inverse boundary crossing problem for p ∈ P0. We already know that b is
upper-semi-continuous, and since b = b∗−, it cannot “jump up.” For b to be con-
tinuous, we need to prevent it from “jumping down.” Note the fact that if p is
a constant in an open interval, then b = −∞ in that interval. Hence, to eliminate
steep drops of b we require a lower bound on the rate of decrease of p. We consider
the following:

L(p,T1, T2) := inf
T1≤s<t≤T2

p(s) − p(t)

t − s
∀0 ≤ T1 < T2.

The following proposition gives a sufficient condition for the boundary to be con-
tinuous, in the case that X is a standard Brownian motion.

PROPOSITION 6. Suppose that X is a standard Brownian motion, that is,
μ ≡ 0, σ ≡ 1, and p0(x,0) = χ[0,∞)(x). Let p ∈ P0 and b = B[p].

1. If L(p,T1, T2) > 0 for some positive T1, T2 with T1 < T2, then b = B[p] is
continuous on (T1, T2).

2. Assume that L(p,0, T ) > 0 for every T > 0. Then b ∈ C([0,∞)).

PROOF. 1. Let t1 ≥ 0 be arbitrary. Define

w̃(x, t) = w(b(t1) + x, t + t1)

p(t1)
, b̃(t) = b(t1 + t) − b(t1),

p̃(t) = p(t + t1)

p(t1)
.

Then (w̃, b̃) is the solution of the inverse problem with initial value w̃(·,0) and
survival probability p̃. This statement follows by an immediate application of the
definitions. Note that w̃(x, t) = P(Xt+t1 > x, τ ≥ t + t1|τ ≥ t1). p̃(t) = P(τ ≥
t + t1|τ ≥ t1). The conditional probabilities and the boundary from time t1 on are
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the same as the solution of the inverse problem started with the initial position
equal to the conditional distribution of X given that τ ≥ t1.

Now let (w,b) be the solution of the inverse problem with initial data χ(−∞,0)

and survival probability p̃. Note that w(x,0) = 1 = w̃(x,0) for x < 0 and
w(x,0) = 0 ≤ w(x,0) for x ≥ 0. Hence, w(·,0) ≤ w̃(·,0). It then follows from
a comparison principle [cf. the proof of Lemma 4.2 in Cheng et al. (2006)] that
w ≤ w̃ and that b ≤ b̃. Again, this is obvious from the probabilistic interpretation
of the problem. The boundary b is the one that produces the hitting distribution
p̃ when the process starts at b(t1) at time t1. The boundary b̃ produces the same
hitting distribution with the process started at the conditional distribution of Xt1

given that τ ≥ t1. Since in this case we must have Xt1 ≥ b(t1), we have that the
boundaries b̃ and b produce the same hitting distribution for the process X, with
b̃ arising from X starting at a higher point with probability 1. Therefore, we must
have b̃ ≥ b.

Thus, for 0 < t ≤ 1/2,

b(t1 + t) − b(t1) = b̃(t) ≥ b(t) ≥ −[1 + O(1)]
√

−2t log[1 − p̃(t)]
by the estimate on line 16, page 867 of Cheng et al. (2006). Upon noting that

|log[1 − p̃(t)]| = |log[p(t1 + t) − p(t1)] − logp(t1)|
= ∣∣log

(
t ṗ(t1 + θ)

)∣∣ + O(1)

= |log t | + O(1) = O(1)|log t |,
where

ṗ(t) := lim sup
s↗t

p(t) − p(s)

t − s
∈ [0,∞]

we find that there exists a constant C(t1) such that

b(t + t1) − b(t1) ≥ −C(t1)
√

t |log t | ∀t ∈ (0,1/2].
Now pick any t ∈ (T1, T2). Let {ti}∞i=1 be a sequence in [T1, t) such that

limi→∞ ti = t and limi→∞ b(ti) = b(t) [recalling b(t) = b∗−(t) := lims↗t b(s)].
Then setting hi = [t − ti]/2, we have

b(ti + h) > b(ti) − c
√

|hi loghi | ∀h ∈ [hi,3hi].
This implies that

inf
s∈[t−hi,t+hi ]

b(s) ≥ b(ti) − c
√

hi |loghi |,
so that

lim
s→t

b(s) ≥ b(ti) − c
√

hi |loghi |.
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Sending i → ∞ we then obtain lims→t b(s) ≥ b(t). Thus, b is lower-semi-
continuous in (T1, T2). Since b is also upper-semi-continuous, we see that b is
continuous in (T1, T2).

2. By the first assertion, we know that b is continuous in (0,∞). At t = 0, since
p0(x,0) > 0 for all x > 0, the proof in Cheng et al. [(2006), Lemma 4.5, page 865]
implies that there exists a positive constant C that depends on L(p,0,1/2) such
that

b(t) ≥ −C
√

t |log t | ∀t ∈ [0,1/2].
This implies that limt↘0 b(t) ≥ 0.

We recall that 1 − w(x, t) − p0(x, t) ≥ 0. Evaluating this inequality at x = b(t)

gives p0(b(t), t) ≤ 1 − p(t) for all t > 0. Since p0(x,0) > 0, sending t ↘ 0 we
conclude that limt↘0 b(t) ≤ 0. Thus, b(0) := limt↘0 b(t) = 0. This completes the
proof. �

Note that if the hitting time density −ṗ is everywhere strictly positive, then
we obtain that b = B[p] is continuous. In particular, this criterion is satisfied by
the boundary arising from the exponential distribution and hence provides the so-
lution to the inverse boundary crossing problem as originally proposed by A. N.
Shiryayev.
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