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THE LONGSTAFF–SCHWARTZ ALGORITHM FOR LÉVY
MODELS: RESULTS ON FAST AND SLOW CONVERGENCE

BY STEFAN GERHOLD1

Vienna University of Technology

We investigate the Longstaff–Schwartz algorithm for American option
pricing assuming that both the number of regressors and the number of Monte
Carlo paths tend to infinity. Our main results concern extensions, respectively,
applications of results by Glasserman and Yu [Ann. Appl. Probab. 14 (2004)
2090–2119] and Stentoft [Manag. Sci. 50 (2004) 1193–1203] to several Lévy
models, in particular the geometric Meixner model. A convenient setting to
analyze this convergence problem is provided by the Lévy–Sheffer systems
introduced by Schoutens and Teugels.

1. Introduction. PDE or tree methods for pricing financial products become
ineffective in the presence of many stochastic factors and path dependent payoff
structures. When resorting to Monte Carlo, early exercise features like callabil-
ity or flip options pose difficulties. Typical examples are the pricing of callable
LIBOR exotics with the LIBOR market model [3] or the valuation of life insur-
ance contracts with early exercise features [1].

The least squares Monte Carlo approach by Longstaff and Schwartz [17] has
become the standard method to deal with such American/Bermudan products. It
proceeds by backward induction and estimates value functions by regression on
a prescribed set of basis functions. The computed exercise strategy is subopti-
mal, resulting in a lower bound for the option price; see Belomestny, Bender and
Schoenmakers [2] for recent work on upper bounds. Fouque and Han [12] discuss
numerical aspects of American option pricing, including variance reduction.

The convergence analysis of the Longstaff–Schwartz algorithm was com-
menced in the original paper [17] and was carried out in detail by Clément, Lam-
berton and Protter [4]. They show convergence of the regression approximation
to the true Bermudan price and convergence of the Monte Carlo procedure for a
fixed number of basis functions. Glasserman and Yu [14] and Stentoft [25] have
analyzed settings in which the number of basis functions and the number of sim-
ulation paths increase together. In particular, Glasserman and Yu [14] have shown
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that the number of paths must grow exponentially in the number of basis functions
if the underlying process is Brownian motion or geometric Brownian motion. On
the other hand, Stentoft [25] appealed to results on series estimators [7, 20] to ob-
tain polynomial growth for rather general models, assuming that the underlying has
a bounded state space. The latter assumption was also imposed by Eglof, Kohler
and Todorovic [9, 10] in the analysis of their extension of the Longstaff–Schwartz
algorithm.

In the present paper we discuss the applicability of Stentoft’s results to expo-
nential Lévy models and extend Glasserman and Yu’s analysis to several models,
including the Meixner model [16, 22]. These latter results provide an application
of the neat martingale properties that Schoutens and Teugels [21, 23] found for
certain Lévy processes and families of orthogonal polynomials.

In the following section we recall the dynamic programming principle and the
Longstaff–Schwartz algorithm. We show how Stentoft’s [25] convergence result
can be applied to Lévy models, in particular, to the Meixner model. This involves
discussing the assumption of a bounded underlying and the smoothness of the
value functions occurring in the backward induction.

In Section 3 we describe the problem that Glasserman and Yu [14] treated. The
main difference to Stentoft’s setting is the unbounded support of the underlying.
Section 4 recalls the notions of Sheffer system and Lévy–Meixner system. Besides
Brownian motion, this theory yields four processes that lend themselves to the in-
vestigation: the Meixner, standard Poisson, Gamma and Pascal processes [8, 13].
In Section 5 we assume that our option has only three exercise opportunities re-
sulting in a single regression and show how fast the number of simulation paths
must increase in order to ensure convergence of the Longstaff–Schwartz algorithm
for a growing number of basis functions. Finally, Section 6 contains an analogous
bound for the multi-period setting, which is weaker, but upon inversion still leads
to the same critical asymptotic rate as the single-period case. In the course of the
proofs it turns out that the different critical rate pertaining to Brownian motion
stems from the comparatively slow growth of the linearization coefficients of the
associated Lévy–Meixner system, namely, the Hermite polynomials.

2. Bounded state space and fast convergence. Suppose that our asset fol-
lows a Markov process St . We assume throughout the paper that the interest rate
is zero; extending our results to a constant interest rate r > 0 is trivial. Consider a
Bermudan option (which may serve as a proxy for an American option) that can
be exercised at the times 0 = t0 < · · · < tm. The payoff from exercise is hn(Stn)

for given functions hn, 0 ≤ n ≤ m. By the dynamic programming principle the op-
tion value at time t0 = 0 equals V0 = max{h0(S0),C0(S0)}, where the continuation
values Cn are given by

Cm(x) = 0,

Cn(x) = E[max{hn+1(Stn+1),Cn+1(Stn+1)} | Stn = x], 0 ≤ n < m.
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Suppose that N sample paths of the underlying are simulated. Longstaff and
Schwartz [17] propose to approximate the continuation values by a linear com-
bination of basis functions ψnk ,

Cn(x) ≈
K∑

k=0

βnkψnk(x) = βT
n ψn(x),

where βn = (βn0, . . . , βnK)T is a vector of real numbers which is estimated by
regression over the simulated paths and ψn(x) = [ψn0(x), . . . ,ψnK(x)]T.

To obtain a good convergence result as N and K both tend to infinity, Stentoft
[25] assumes that samples above and below certain thresholds are discarded. So
let us fix finite truncation intervals I1, . . . , Im ⊂ ]0,∞[ and discard all sample
paths with Stn /∈ In when estimating the continuation value Cn(x). We are then
estimating the following “truncated” continuation values:

Ctr
m(x) = 0,

Ctr
n (x) = 1In(x) · E[max{hn+1(Stn+1),C

tr
n+1(Stn+1)} | Stn = x], 1 ≤ n < m,

Ctr
0 (x) = E[max{h1(St1),C

tr
1 (St1)} | S0 = x].

The option value at time t0 = 0 approximately equals

V tr
0 = max{h0(S0),C

tr
0 (S0)}.(2.1)

Outside of the truncation intervals In ⊂ ]0,∞[ we extrapolate by zero since it does
not matter in the theoretical analysis.

Besides truncation, another possibility to make the state space bounded would
be absorption of the underlying process at some lower and upper bounds [9, 10].
This, however, causes atoms in the distribution so that Stentoft’s result is no longer
applicable as it requires the existence of a density.

We assume in the present section that the underlying has the following dynam-
ics. (Recall that we suppose throughout that the interest rate is zero.)

ASSUMPTION A (Exponential Lévy dynamics). The risk neutral dynamics of
the underlying are

St = S0 exp(Xt),

where Xt is a Lévy process with X0 = 0. The support of Xt is the whole real line
for t > 0 and Xt has a continuous density function.

ASSUMPTION B (Value smoothness). Let the function h be of, at most, linear
growth and such that h(ST ) is integrable for each T > 0. Then E[h(ST ) | S0 = x]
is a C1-smooth function of x.

Without going into detail we note that Stentoft [25] imposes the following ad-
ditional assumptions:
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ASSUMPTION C (Further technical assumptions). The basis functions are
shifted Legendre polynomials, the continuation values Cn(Stn) are in the L2-span
of the regressors, the simulated paths are independent and the probability that the
exercise payoff exactly equals the continuation value is zero.

Now Stentoft’s main result ([25], Theorem 2), specialized to Lévy models, reads
as follows. (By “truncated algorithm” we mean that we discard the samples outside
the intervals In as explained above.)

THEOREM 1. Fix arbitrary finite truncation intervals I1, . . . , Im contained in
]0,∞[ and assume that Assumptions A–C hold. Let N (the number of paths) and
K (the number of basis functions) tend to infinity such that K3/N → 0. Then the
option prices computed by the truncated Longstaff–Schwartz algorithm converge
to V tr

0 , defined by (2.1).

If the truncation intervals are large enough, then one would hope that the ap-
proximate price V tr

0 is close to the exact price V0. We will now show that this is
indeed the case for Lévy models, assuming mild integrability and (at most) linearly
growing payoff functions.

ASSUMPTION D (Integrability). For each t there are p > 1 and p′ > 0 such

that S
p
t and S

−p′
t are integrable.

ASSUMPTION E (Linear payoff growth). The payoff functions grow at most
linearly,

|hn(x)| ≤ c(1 + x), x ≥ 0,1 ≤ n ≤ m, for some c > 0.(2.2)

THEOREM 2. Assume that Assumptions A, D and E are satisfied and that the
truncation intervals satisfy

In = [b−1
n , bn], 1 ≤ n < m,

where

bn = bν
n+1, 1 ≤ n < m − 1,(2.3)

with

ν = min
{

p′

p′ + q
,

p

p + q

}
and

1

p
+ 1

q
= 1.

Then V tr
0 converges to the exact option price V0 as bm tends to infinity.
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Note that ν = 1 − 1/p in (2.3) if p = p′. In particular, if all moments of the
underlying and its reciprocal exist, like in the Black–Scholes model, then the ex-
ponent ν ∈ ]0,1[ is arbitrarily close to 1.

PROOF OF THEOREM 2. A trivial induction, using the martingale property
of St , shows that the continuation values Cn(x) and Ctr

n (x) satisfy the bound (2.2)
too. We will show that for all n

Ctr
n (x) = Cn(x) + o(1) as bm → ∞, uniformly w.r.t. x ∈ In.

For x ∈ In, we have

Cn(x) − Ctr
n (x)(2.4)

= E
[
1{Stn+1 /∈In+1} max{hn+1(Stn+1),Cn+1(Stn+1)} | Stn = x

]
+ E

[
1{Stn+1∈In+1} max{hn+1(Stn+1),Cn+1(Stn+1)} | Stn = x

]
− E

[
1{Stn+1∈In+1} max{hn+1(Stn+1),C

tr
n+1(Stn+1)} | Stn = x

]
(2.5)

− E
[
1{Stn+1 /∈In+1} max{hn+1(Stn+1),C

tr
n+1(Stn+1)} | Stn = x

]
.

It follows readily from the induction hypothesis that the difference of the second
and the third term is uniformly o(1) on In, as bm−1 → ∞. In the following, we
write c for various positive constants whose precise value is irrelevant. Now let us
estimate the first and the last expectation on the right-hand side of (2.5). Again, for
x ∈ In we use Hölder’s inequality and Minkowski’s inequality to see that each of
them is bounded by

E
[
1{Stn+1 /∈In+1}c(1 + Stn+1) | Stn = x

]
≤ cP[Stn+1 /∈ In+1 | Stn = x]1/q · E[(1 + Stn+1)

p | Stn = x]1/p

= cP
[
x

Stn+1

Stn

/∈ In+1

]1/q

· E
[(

1 + x
Stn+1

Stn

)p]1/p

(2.6)

≤ c

(
1 − Fn

(
bn+1

x

)
+ Fn

(
1

xbn+1

))1/q(
1 + xE

[(
Stn+1

Stn

)p]1/p)

≤ cbn

(
1 − Fn

(
bn+1

bn

)
+ Fn

(
bn

bn+1

))1/q

,

where Fn is the distribution function of Stn+1/Stn . Now note that

bq
n

(
1 − Fn

(
bn+1

bn

))
= bp+q

n b
−p
n+1

(
bn+1

bn

)p(
1 − Fn

(
bn+1

bn

))

≤
(

bn+1

bn

)p(
1 − Fn

(
bn+1

bn

))

= o(1), bm−1 → ∞,
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where the last equality follows [11] from Stn+1/Stn ∈ Lp . Similarly, if Gn denotes
the distribution function of Stn/Stn+1 , we have

bq
nFn

(
bn

bn+1

)
= bq

n

(
1 − Gn

(
bn+1

bn

))

= bp′+q
n b

−p′
n+1

(
bn+1

bn

)p′(
1 − Gn

(
bn+1

bn

))

= o(1). �

Besides the bounded state space, a crucial assumption of Stentoft’s result (Theo-
rem 1) is the smoothness of the continuation value functions. In the Black–Scholes
model, and more generally in models where the log-price Xt has a diffusion com-
ponent, they are always C∞-smooth [5]. The variance Gamma model is an exam-
ple of a pure jump process where the value functions are not necessarily continu-
ously differentiable [5]. In the geometric Meixner model [16, 22, 23], on the other
hand, the continuation values are smooth, as we will now show. Consequently,
Theorem 1 is applicable to the geometric Meixner model (if the mild Assump-
tions C and D are satisfied).

PROPOSITION 3. Suppose that Assumptions A and D hold and that the log-
price Xt is a Meixner process. Then Assumption B holds.

PROOF. For fixed t > 0 the log-price Xt follows the Meixner distribution
Meix(α,β,μt, δt), where α > 0, −π < β < π , μ > 0 and δ ∈ R. This means
that the density of Xt equals

ft (x) = (2 cos(β/2))2δt

2πα�(2δt)
eβ/α(x−μt)

∣∣∣∣�
(
δt + i

x − μt

α

)∣∣∣∣
2

and the value function for the payoff h(ST ) is

E[h(ST ) | St = x] =
∫ ∞
−∞

h(eyx)fT −t (y) dy

(2.7)

=
∫ ∞

0
h(z)fT −t

(
log

z

x

)
dz/z.

By the asymptotic formulas [22]

ft (x) ∼ c±|x|2δt−1e−|x|(π±β)/α, x → ±∞,

and the integrability Assumption D, we must have (π +β)/α > 1. We can now dif-
ferentiate the value function (2.7) under the integral sign, justified by the following
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fact: for real u and natural k the quantity

∂k/∂vk|�(u + iv)|
|�(u + iv)|

grows only polynomially in v as v → ±∞. To see this start from Lerch’s formula
[15]

|�(u + iv)| = �(u + 1)√
u2 + v2

∞∏
n=1

(
1 + v2

(u + n)2

)−1/2

,

hence, we have

∂/∂v|�(u + iv)|
|�(u + iv)| = − v

u2 + v2 − v

∞∑
n=1

1

(u + n)2 + v2 .

It suffices to note that 1/[(u + n)2 + v2] ≤ 1/(u + n)2 to see that this expres-
sion grows only polynomially in v. The higher derivatives can be dealt with by a
straightforward induction. �

3. Unbounded state space and slow convergence. If we drop the assumption
that the state space of our underlying is bounded, the convergence behavior of the
Longstaff–Schwartz algorithm radically changes. (As above, we suppose that both
the number of paths and the number of basis functions tend to infinity.) This is
illustrated by results of Glasserman and Yu [14] who showed, assuming that the
underlying follows either Brownian motion or geometric Brownian motion, that
the number of Monte Carlo paths must grow exponentially in the number of basis
functions to retain convergence. The first and last lines of Table 1 reflect this result;
the lines in between will be established below.

For the reader’s convenience, our notation closely follows that of [14]. Recall
that we assume that the interest rate is r = 0 throughout the paper.

The variant of the Longstaff–Schwartz algorithm to be analyzed proceeds as
follows. Start with the final continuation value Ĉm = 0 and the final option value

TABLE 1
The highest possible number of basis functions for N paths

Process Basis polynomials #Basis functions

Geometric Brownian motion Monomials
√

logN

Meixner Meixner–Pollaczek logN/ log logN

Standard Poisson Charlier logN/ log logN

Gamma Laguerre logN/ log logN

Pascal Meixner logN/ log logN

Brownian motion Hermite logN
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V̂m = hm. For n = m− 1, . . . ,1 generate N sample paths {S(i)
t1

, . . . , S
(i)
tn+1

}, 1 ≤ i ≤
N , and set

γ̂n = 1

N

N∑
i=1

V̂n+1
(
S

(i)
tn+1

)
ψn

(
S

(i)
tn

)
,

β̂n = �−1
n γ̂n,

Ĉn = β̂T
n ψn,

V̂n = max{hn, Ĉn}.
Finally, the initial continuation value is Ĉ0(S0) = N−1 ∑N

i=1 V̂1(S
(i)
t1

) from which

the initial option value is estimated by V̂0 = max{h0(S0), Ĉ0(S0)}.
There are two (minor) differences to the variant of the algorithm that we ana-

lyzed in Section 2: first, we assume now that a fresh set of paths is generated for
each exercise date. Second, in the present section we will use explicit expressions
for the (K + 1) × (K + 1) matrix

�n = E[ψn(Stn)ψn(Stn)
T],(3.1)

which has to be estimated by its sample counterpart in general.
In the single-period case m = 2, the question that Glasserman and Yu [14]

treated is as follows. Suppose that there is an exact representation

h2(St2) =
K∑

k=0

βkψ2k(St2),(3.2)

with unknown constants βk . This assumption is not too restrictive; an infinite series
representation of this kind has to be assumed anyway to get convergence of the
algorithm and since we are interested in K → ∞, we can suppose that (3.2) is a
good approximation of the payoff at t2. Furthermore, assume that the martingale
property

E[ψ2k(St2) | St1] = ψ1k(St1)(3.3)

holds. (In [14], additional deterministic factors in (3.3) are allowed; we chose to
absorb these into the basis functions.) How fast may K tend to infinity compared
to N while assuring that the mean square error of β tends to zero? To this end,
Glasserman and Yu [14] established the bounds

sup
|β|=1

E[|β − β̂|2] ≤ ‖�−1
1 ‖2

N

K∑
j=0

K∑
k=0

E[ψ2j (St2)
2ψ1k(St1)

2](3.4)

and

sup
|β|=1

E[|β − β̂|2] ≥ 1

N‖�1‖2

K∑
k=0

E[ψ2K(St2)
2ψ1k(St1)

2] − 1

N
.(3.5)
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Here and in what follows, | · | denotes the Euclidean vector norm and ‖ · ‖ denotes
the Euclidean (or Frobenius) matrix norm. With regard to notation, Glasserman
and Yu [14] call the coefficients in (3.2) ak instead of βk ; our simplified assumption
(3.3) makes both their a and β equal to our β . This has to be kept in mind when
comparing (3.4) and (3.5) to [14], formulas (22), respectively, (23).

The proofs of the estimates (3.4) and (3.5) are short; the bulk of the work of
Glasserman and Yu [14] lies in the concrete examples (Brownian motion and geo-
metric Brownian motion) and in the general analysis of the multi-period case on
which we will build in Section 6.

The martingale property (3.3) is convenient for estimating the expectations in
the bounds (3.4) and (3.5). Another useful property is orthogonality of the basis
functions. If St is Brownian motion, then Glasserman and Yu [14] have shown
that for N paths the highest K , for which the mean square error tends to zero,
is roughly logN . Hermite polynomials are natural basis functions in this case. If
the underlying process is geometric Brownian motion and monomials are used as
basis functions, then K may only be as high as

√
logN . In the following sections

we show that the analogous rate for the Meixner, Poisson, Gamma and Pascal
processes is in between, namely, logN/ log logN .

4. Lévy–Meixner systems. A source of basis functions and processes that
satisfy martingale equalities of the type (3.3) are the Lévy–Meixner systems intro-
duced by Schoutens and Teugels [21, 23]. Recall that Meixner [18] has determined
all sets of orthogonal polynomials Qk(x) that satisfy Sheffer’s condition

f (z) exp(xu(z)) =
∞∑

k=0

Qk(x)
zk

k!
for some formal power series f and u with u(0) = 0, u′(0) 
= 0 and f (0) 
= 0.
Schoutens and Teugels [23] introduce a time parameter t via

f (z)t exp(xu(z)) =
∞∑

k=0

Qk(x, t)
zk

k!
and show how an infinitely divisible characteristic function, and thus a Lévy
process, can be defined by f and u under appropriate conditions. Building on
Meixner’s characterization, five sets of orthogonal polynomials Qk(Xt , t) and as-
sociated Lévy processes Xt are determined which satisfy martingale equalities of
the type

E[Qk(Xt , t) | Xs] = Qk(Xs, s), 0 ≤ s ≤ t.

This furnishes the connection between Sheffer (resp., Lévy–Meixner) systems
and condition (3.3). There are five Lévy–Meixner systems constructed from
Hermite polynomials, Charlier polynomials Ck(x,μ), Laguerre polynomials
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L
(α)
k (x), Meixner polynomials Mk(x;μ,q) and Meixner–Pollaczek polynomials

Pk(x;μ,ζ ), respectively. The resulting Lévy processes Xt are standard Brownian
motion Bt , the standard Poisson process Nt , the Gamma process Gt , the Pascal
process Pt and the Meixner process Ht , respectively. See Schoutens and Teugels
[21, 23] for details on all these processes and families of orthogonal polynomials.

Brownian motion is not of interest to us since the corresponding last line of
Table 1 has been established by Glasserman and Yu [14]. As for the remaining
four processes, in the light of condition (3.3), the martingale relations [21]

E[Ck(Nt , t) | Ns] =
(

s

t

)k

Ck(Ns, s),

E
[
L

(t−1)
k (Gt) | Gs

] = L
(s−1)
k (Gs),

(4.1)

E[Mk(Pt ; t, q) | Ps] = (s)k

(t)k
Mk(Ps; s, q),

E[Pk(Ht ; t, ζ ) | Hs] = Pk(Hs; s, ζ ),

valid for 0 < s < t , prompt us to choose the basis functions in Table 2. [Note that
(t)k = t (t + 1) · · · (t + k − 1) is the Pochhammer symbol.] When specializing the
bounds (3.4) and (3.5) to our examples, we will require the orthogonality proper-
ties

E[Ck(Nt , t)Cl(Nt , t)] = t−kk!δkl,(4.2)

E
[
L

(t)
k (Gt)L

(t)
l (Gt )

] = �(k + t + 1)

k! δkl,(4.3)

E[Mk(Pt ; t, q)Ml(Pt ; t, q)] = k!
(t)kqk

δkl,(4.4)

E[Pk(Ht ; t, ζ )Pl(Ht ; t, ζ )] = �(k + 2t)

(2 sin ζ )2t k!δkl,(4.5)

TABLE 2
Lévy–Meixner systems

Process Notation Basis polynomials ψnk(x) Parameters

Meixner Ht ψM
nk(x) = Pk(x; tn, ζ ) 0 < ζ < π

Standard Poisson Nt ψP
nk(x) = tknCk(x, tn)

Gamma Gt ψG
nk(x) = L

(tn−1)
k (x)

Pascal Pt ψPa
nk (x) = (tn)kMk(x; tn, q) 0 < q < 1
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as well as a way to express the squares of the basis functions as series of basis
functions. We will denote by dki(tn) the linearization coefficients in the expansion

ψnk(x)2 =
2k∑
i=0

dki(tn)ψni(x).(4.6)

Where distinction is necessary, the linearization coefficients corresponding to the
four families in Table 2 will be written as dP

ki(tn), dG
ki(tn), dPa

ki (tn) and dM
ki (tn),

respectively. The same superscripts will adorn other quantities to distinguish the
four cases, namely, the Meixner, Poisson, Gamma and Pascal process as in Table 2.

Among these processes, the Meixner process has the most significance in appli-
cations. Clearly, a financial model will impose geometric Meixner dynamics (as in
Proposition 3) rather than the linear process which may become negative. But then
a convergence analysis in the spirit of Glasserman and Yu [14] is impossible with
polynomial basis functions as the geometric Meixner process does not have finite
moments of all orders. Instead, we propose to use basis functions of logarithmic
growth,

ψ
M,log
nk (x) = Pk(logx; tn, ζ ).(4.7)

Then our convergence result for the Meixner process (Theorem 4 below) can be
applied. Similarly, models based on the geometric Poisson ([24], Section 112.7.1)
or geometric Pascal processes can be reduced to the linear case by modifying their
respective basis functions analogously.

5. Unbounded state space: The single-period problem.

5.1. Main result and first steps of the proof. We now state our main result
about the single-period problem where our option has the exercise times 0 = t0 <

t1 < t2. As noted above, the geometric Meixner model is contained in this result
by modifying the basis functions according to (4.7).

THEOREM 4. Suppose m = 2, that St is a Meixner process and that the ba-
sis functions are as in the first line of Table 2. Put (u, v) = (8,8). If the number
N of paths and the number K of basis functions satisfy N ≥ K(u+ε)K for some
positive ε, then

lim
N→∞ sup

|β|=1
E[|β − β̂|2] = 0.

If N ≤ K(v−ε)K , then

lim
N→∞ sup

|β|=1
E[|β − β̂|2] = ∞.

For the standard Poisson, Gamma and Pascal processes, with their respective basis
functions from Table 2, the same holds if (u, v) is replaced by (10,4), (8,8) and
(11,7), respectively.
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The announced critical rate logN/ log logN in Table 1 then follows from the
fact that the solution of N = KcK satisfies K ∼ c−1 logN/ log logN (see, e.g., de
Bruijn [6]).

Looking at (3.4) and (3.5) we begin the proof of Theorem 4 by bounding ‖�1‖
and ‖�−1

1 ‖, defined by (3.1) and Table 2. As in Section 2, the letter c denotes
various positive constants whose value is irrelevant.

LEMMA 5. As K → ∞, the values ‖�1‖ and ‖�−1
1 ‖ grow at most expo-

nentially in all four cases (Meixner, Poisson, Gamma and Pascal), except for
‖�P

1 ‖ ≤ cKKK and ‖�Pa
1 ‖ ≤ cKK2K .

PROOF. The estimates for the Meixner, Poisson and Pascal cases are easy con-
sequences of the orthogonality relations (4.2)–(4.5) and Stirling’s formula. It re-
mains to deal with the Gamma case. The parameter t −1 in the martingale property
(4.1) is not quite compatible with the orthogonality relation (4.3) of the Laguerre
polynomials. But by the formula [26]

L
(α−1)
k (x) = L

(α)
k (x) − L

(α)
k−1(x)

we obtain

E[ψG
1k(Gt1)ψ

G
1l (Gt1)] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(

k + t1
k

)
, k = l − 1,

2k + t1

k + t1

(
k + t1

k

)
, k = l,

−
(

k + t1 − 1
k − 1

)
, k = l + 1,

0, |k − l| ≥ 2,

(5.1)

hence, �G
1 is tridiagonal. Since (5.1) grows only polynomially in k, it is clear that

so does ‖�G
1 ‖. As for the inverse, note that �G

1 is diagonally dominant so that
it suffices to bound the diagonal elements of (�G

1 )−1 (see Nabben [19], Theo-
rem 3.1); note that the τk from that theorem are all equal to 1 in our situation.) The
diagonal elements ek of (�G

1 )−1 can be computed recursively by [19]

eKK = K

K + t1

(
K + t1 − 1

K − 1

)−1
≤ cK

and

ek−1,k−1 = k + t1

k

(
2k + t1

k + t1
ek,k − ek+1,k+1

)
, 1 ≤ k < K.

A straightforward backward induction shows that this implies

|ekk| ≤ (
4(t1 + 1)

)K−k+1
eKK, 0 ≤ k < K,

hence, ‖(�G
1 )−1‖ grows at most exponentially too. �
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We proceed to bound the fourth order moments appearing in (3.4). Using (4.6)
and the martingale relation (3.3), we obtain

E[ψ2j (St2)
2ψ1k(St1)

2]

= E

[ 2j∑
i=0

dji(t2)ψ2i (St2) ×
2k∑

s=0

dks(t1)ψ1s(St1)

]

(5.2)

=
2j∑
i=0

2k∑
s=0

dji(t2)dks(t1)E[E[ψ2i(St2) | St1]ψ1s(St1)]

=
2j∑
i=0

2k∑
s=0

dji(t2)dks(t1)E[ψ1i(St1)ψ1s(St1)].

The linearization coefficients dki from the expansion (4.6) are well-studied objects
for various families of orthogonal polynomials. They have combinatorial interpre-
tations in terms of (generalized) derangements, rook polynomials and matching
polynomials. See Zeng [27] for on overview of these properties, explicit formulas
and many references. Paraphrasing some of these formulas ([27], Corollary 2) we
have

dP
ki(tn) = t2k−i

n k!2i!∑
s≥0

t sn

(s − k)!2(s − i)!(2k + i − 2s)! ,(5.3)

dG
ki(tn) = 22k+ik!2i!∑

s≥0

(tn − 1)s

4s(s − k)!2(s − i)!(2k + i − 2s)! ,(5.4)

dPa
ki (tn) = (1 + q)2k+ik!2i!(tn)

2
k

(tn)i

∑
s≥0

(tn)s(1 + q)−2sq−s

(s − k)!2(s − i)!(2k + i − 2s)! ,(5.5)

dM
ki (tn) = (−2 cot ζ )2k+ik!2i!∑

s≥0

(tn)s(1 + (cot ζ )−2)s

4s(s − k)!2(s − i)!(2k + i − 2s)! .(5.6)

Here it is understood that 1/n! = 0 for n a negative integer, as is natural when
extending the factorial by the Gamma function. Therefore, the sums in (5.3)–(5.6)
run from s = max{i, k} to s = k + �i/2�.

5.2. Moment bounds in the Poisson case. By (4.2), (5.2) and (5.3), the sum on
the right-hand side of (3.4) can be estimated by

K∑
j=0

K∑
k=0

E[ψP
2j (St2)

2ψP
1k(St1)

2]
(5.7)

≤ cK
K∑

j=0

K∑
k=0

2 min{k,j}∑
i=0

i!
(∑

s≥0

bP
jis

)(∑
s≥0

bP
kis

)
,
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where

bP
kis := k!2i!

(s − k)!2(s − i)!(2k + i − 2s)! .

It is easy to see that bP
k+1,i,k+l+1/b

P
k,i,k+l > 1 for i ≥ 1, 0 ≤ l ≤ i/2 and k ≥ i − l,

hence, bP
k,i,k+l increases in k under these conditions. From this we deduce that the

s-sums in (5.7) increase in j , respectively, k:

k+�i/2�∑
s=max{i,k}

bP
kis =

�i/2�∑
l=max{i−k,0}

bP
k,i,k+l

≤
�i/2�∑

l=max{i−k,0}
bP
k+1,i,k+l+1

=
k+�i/2�+1∑

s=max{i,k}+1

bP
k+1,i,s

≤
k+�i/2�+1∑

s=max{i,k+1}
bP
k+1,i,s .

Using this in (5.7) yields (recall that c may change its value in each occurrence)

K∑
j=0

K∑
k=0

E[ψP
2j (St2)

2ψP
1k(St1)

2]
(5.8)

≤ cKK!4
2K∑
i=0

(K+�i/2�∑
s=K

i!3/2

(s − K)!2(s − i)!(2K + i − 2s)!
)2

.

It is plain that the summand increases in i for K ≥ 0, 0 ≤ i ≤ K and K ≤ s ≤
K + i/2. Hence, we find that the portion

∑K
i=0 of the i-sum in (5.8) can be bounded

from above by

(K + 1)K!3
(�3K/2�∑

s=K

1

(s − K)!3(3K − 2s)!
)2

(5.9)
≤ cKK5K.

To see the last inequality, note that the summand in (5.9) is unimodal with mode at
s = K + K2/3 − 4

3K1/3 + O(1). Estimating this maximal summand, by Stirling’s
formula and some easy manipulations, shows that the sum in (5.9) is smaller than
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FIG. 1. The summation range of the first sum in (5.10).

cKKK . The remaining part
∑2K

i=K+1 of the i-sum in (5.8) can be estimated by

2K∑
i=K+1

i!
(K+�i/2�∑

s=i

i!s!
(s − K)!2(s − i)!(2K + i − 2s)!

)2

≤ cK
2K∑

i=K+1

i!
(

i!(K + �i/2�)!
�i/2�!2(K + �i/2� − i)!(i − 2�i/2�)!

)2

(5.10)

≤ cK
2K∑

i=K+1

i!(K + �i/2�)!2
(K + �i/2� − i)!2 ≤ cKK6K.

Note that in the first line we have introduced the new factor s! in the numerator.
This makes the summand increasing w.r.t. the substitution i → i + 1, s → s + 1.
Hence, it suffices to keep only the summands of the s-sum with s = K + �i/2�
(the thick dots in Figure 1) which shows the first inequality. As for the second
inequality, note that the factor i!/�i/2�!2 of the summand grows only exponentially
and that the factor (i − 2�i/2�)! in the denominator is clearly negligible. Finally,
the last sum in (5.10) has increasing summands which, together with Stirling’s
formula, implies the last inequality. By (5.8), the estimates (5.9) and (5.10) show
that

K∑
j=0

K∑
k=0

E[ψP
2j (St2)

2ψP
1k(St1)

2] ≤ cKK10K.

In light of (3.4) and Lemma 5, the value u = 10 for the Poisson process in Theo-
rem 4 is established.

As for the second assertion about the Poisson process in Theorem 4, note that,
from (5.2),

E[ψ2K(St2)
2ψ1k(St1)

2] =
2K∑
i=0

2k∑
s=0

dKi(t2)dks(t1)E[ψ1i (St1)ψ1s(St1)].
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The orthogonality property (4.2) and formula (5.3) yield

K∑
k=0

E[ψP
2K(St2)

2ψP
1k(St1)

2] ≥ cK
K∑

k=0

2k∑
i=0

dP
Ki(t2)d

P
ki(t1)i!

≥ cKdP
K,2K(t2)d

P
K,2K(t1)(2K)!

≥ cK(2K)!3 ≥ cKK6K.

The second inequality follows from retaining only the summand k = K , i = 2K .
This makes the sum in (5.3) collapse to the summand s = 2K , hence, the third
inequality. Appealing to (3.5) and Lemma 5 completes the proof of the Poisson part
of Theorem 4. Note that the preceding estimates can presumably be improved. This
seems not worthwhile though; since our estimate of ‖�P

1 ‖ in Lemma 5 is sharp,
we will not obtain equal values u = v in Theorem 4 anyway, unless at least one of
the bounds (3.4) and (3.5) was improved too.

5.3. Moment bounds in the Meixner case. The proofs in the remaining three
cases are very similar to the Poisson case. In the Meixner case, we have

K∑
j=0

K∑
k=0

E[ψM
2j (St2)

2ψM
1k(St1)

2]
(5.11)

≤ cK
K∑

j=0

K∑
k=0

2 min{k,j}∑
i=0

i!2
(∑

s≥0

bM
jis

)(∑
s≥0

bM
kis

)
,

where

bM
kis := k!2s!

(s − k)!2(s − i)!(2k + i − 2s)! .

Again, bM
k,i,k+l increases in k and the remaining steps to show the upper bound

are completely analogous to the Poisson case. This time the numerator factor s! in
the analogue of (5.10) appears naturally and is not introduced artificially to force
some monotonicity. Moreover, the lower bound uses the same summands as in the
Poisson case. Both resulting bounds are of the form cKK8K , hence, u = v = 8 in
Theorem 4.

5.4. Moment bounds in the Pascal case. We can reuse the values bM
kis and the

estimate that we just sketched:

K∑
j=0

K∑
k=0

E[ψPa
2j (St2)

2ψPa
1k (St1)

2]

≤ cK
K∑

j=0

K∑
k=0

2 min{k,j}∑
i=0

i!3k!
(∑

s≥0

bM
jis

)(∑
s≥0

bM
kis

)
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≤ cKK!(2K)!
K∑

j=0

K∑
k=0

2 min{k,j}∑
i=0

i!2
(∑

s≥0

bM
jis

)(∑
s≥0

bM
kis

)

≤ cKK!(2K)!K8K ≤ cKK11K.

The lower bound poses no new difficulties either.

5.5. Moment bounds in the Gamma case. This part is only slightly more in-
volved. Due to (5.1), we have three i-sums instead of one in the analogue of (5.8).
The right-hand side of (5.1) can be replaced by cK in each of these. Then one of
the three i-sums equals the i-sum in (5.11) and the other two differ only in an
index shift bM

k,i±1,s which can be easily bounded by polynomial factors. Thus the
resulting growth rate is cKK8K , as for the Meixner case. The proof of Theorem 4
is complete.

5.6. Side remark: The Bachelier model. We finish this section with a remark
about Brownian motion. If this is the underlying process St , then appropriate basis
functions can be built from Hermite polynomials in such a way that ‖�1‖, ‖�−1

1 ‖
and the analogue of (4.2) grow only exponentially [14]. This is in line with the
corresponding growth orders in the Gamma and Meixner cases (and in the Poisson
and Pascal cases, if we renormalize our basis functions there by 1/

√
k! and 1/k!,

resp.). What makes the Gaussian case peculiar is that the linearization coefficients
of the Hermite polynomials induce only exponential growth too when plugged
into (5.2), whereas the linearization coefficients in the four cases we treat in this
paper grow faster.

6. Unbounded state space: The multi-period problem. In this section we
extend the main result of the preceding section (Theorem 4) to the multi-period
problem, that is, to m + 1 exercise dates 0 = t0 < · · · < tm. We know from the
single-period problem that the critical rate cannot be larger than logN/ log logN ,
so we will be done if we can show that there is an upper bound for the mean square
error of the form KcK for some positive c. Fortunately, this can be deduced with
little effort from a result of Glasserman and Yu [14] and the estimates from the
preceding section about the single-period problem. Following [14], we assume that
a representation analogous to (3.2) holds at time tm and that the payoff functions
do not grow too fast in the following sense.

THEOREM 6. Suppose that the payoff functions satisfy the growth constraint

E[hn(Stn)
4] ≤ max

ν

(
tν+1

tν

)2K

max
ν,k

E[ψνk(Stν )
4], 0 ≤ n ≤ m.

Then the mean square error of the estimated coefficients satisfies

sup
|βm−1|=1

E[|βn − β̂n|2] ≤ N−1cKK(m−n+1)uK, 1 ≤ n < m,



606 S. GERHOLD

where u takes on the same values as in Theorem 4, that is, 8,10,8,11 for St , the
Meixner, standard Poisson, Gamma and Pascal process, respectively.

PROOF. By results of Glasserman and Yu [14], Theorem 3 and the last formula
before (18) on page 2096 and Jensen’s inequality, we have

sup
|βm−1|=1

E[|βn − β̂n|2]

≤ cK

N
max

1≤ν<m
‖�−1

ν ‖3 max
ν,k

E[ψνk(Stν )
4]m−n max

ν,k
E[ψνk(Stν )

2]2

≤ cK

N
max

1≤ν<m
‖�−1

ν ‖3 max
ν,k

E[ψνk(Stν )
4]m−n+1.

Note that Glasserman and Yu [14] assume that the moments E[ψnk(Stν )
2] and

E[ψnk(Stν )
4] are increasing in n and k and formulate their Theorem 3 with

E[ψ2(4)
mK ] instead of maxν,k E[ψ2(4)

νk ]. But an inspection of their proof quickly
shows that taking the max in the above estimate gets rid of the monotonicity as-
sumption. Now note that ‖�−1

ν ‖ ≤ cK in all our four cases by Lemma 5 and that

max
ν,k

E[ψνk(Stν )
4] ≤ max

ν

K∑
j=0

K∑
k=0

E[ψνj (Stν )
2ψνk(Stν )

2] ≤ cKKuK,

where the double sum has been estimated in the proof of Theorem 4. �

We have thus seen that Table 1 correctly describes the general (i.e., multi-
period) situation.

7. Conclusion. Stentoft [25] and Glasserman and Yu [14] obtained apparently
contradictory results about the convergence of the Longstaff–Schwartz algorithm.
The main difference between their respective assumptions is the (un-)boundedness
of the support of the underlying at the exercise dates. In this light the pessimistic
results of Glasserman and Yu (and our Theorems 4 and 6) turn out to stem from
the tails of the distribution of the underlying.

The present paper shows that Stentoft’s result can be applied to Lévy models un-
der mild assumptions and extends Glasserman and Yu’s [14] results to several con-
crete processes. Thus we provide some evidence that Glasserman and Yu [14] were
right to conjecture that their results for Brownian motion and geometric Brownian
motion extend to other models.

Concerning Stentoft [25] and our Section 2: although the boundedness of the
underlying induces a nice (polynomial) relation between the number of basis func-
tions and the necessary number of Monte Carlo paths, it seems not yet completely
clear that it is a harmless assumption in practice. A natural question for future
research is how strongly the size of the truncation intervals influences the conver-
gence speed of the calculated prices.
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