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ALMOST SURE CENTRAL LIMIT THEOREM FOR BRANCHING
RANDOM WALKS IN RANDOM ENVIRONMENT

BY MAKOTO NAKASHIMA

Kyoto University

We consider the branching random walks in d-dimensional integer lattice
with time–space i.i.d. offspring distributions. Then the normalization of the
total population is a nonnegative martingale and it almost surely converges
to a certain random variable. When d ≥ 3 and the fluctuation of environment
satisfies a certain uniform square integrability then it is nondegenerate and
we prove a central limit theorem for the density of the population in terms of
almost sure convergence.

1. Introduction. We write N = {0,1,2, . . . , }, N
∗ = {1,2, . . . , } and Z =

{±x :x ∈ N}. For x = (x1, . . . , xd) ∈ R
d , |x| stands for the �1-norm: |x| =∑d

i=1 |xi |. For ξ = (ξx)x∈Zd ∈ R
Z

d
, |ξ | = ∑

x∈Zd |ξx |. Let (�, F ,P ) be a prob-
ability space. We write E[X] = ∫

X dP and E[X :A] = ∫
A X dP for a random

variable X and an event A. We denote the constants by C,Ci .
We consider the branching random walks in random environment. Branching

random walks have been much studied [1, 2] and a central limit theorem for the
density of the population has been proved in the nonrandom environment case [2].
Also, in the random environment case, one has been proved in the sense of “con-
vergence in probability” [20] when d ≥ 3 and the fluctuation of environment is
well moderated by the random walk. In this article we prove a central limit the-
orem in the sense of “almost sure convergence” under the same condition as in
[20]. The time–space continuous counterpart is the branching Brownian motion in
random environment for which the central limit theorem has been proved in [15].
On the other hand, a localization property has been proved in [10] for the branch-
ing random walks in random environment if the randomness of the environment
dominates.

It has been mentioned that the branching random walks in random environ-
ment (BRWRE) have a similar structure to the directed polymers in random en-
vironment (DPRE) [3, 5, 7, 20]. Also, we will see the relation between BRWRE
and DPRE in Section 1.3. A central limit theorem has been proved for a Markov-
chain-generalization of the directed polymers in random environment [4, 6, 12, 13]
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assuming a certain square integrability. Since we use an analogy to [13], we extend
the framework to contain the branching random walks in random environment.

1.1. Branching random walks in random environment. We consider particles
in Z

d , performing random walks and branching into independent copies at each
step of the random walk:

(i) At time t = 0 there is one particle at the origin x = 0.
(ii) When a particle is located at site x ∈ Z

d at time t ∈ N, it moves to a uniformly
chosen nearest neighbor site and is replaced at time t + 1 by k-particles with
probability qt,x(k)(k ∈ N),

where we assume that the offspring distributions qt,x = (qt,x(k))k∈N are i.i.d. in
time–space (t, x). This model is investigated in [3] and we call it the branching
random walks in random environment (BRWRE). Let Nt,y be the number of the
particles which occupy the site y ∈ Z

d at time t . Let Nt be the total population
at time t . In this article we study the behavior of the density ρt(y) = Nt,y

Nt
1{Nt>0}.

We look at the branching process to give a more precise definition of the branching
random walks in random environment. First, we define Vn,n ∈ N, VN by

V0 = {1}, V1 = (N∗)2, . . . , Vn = (N∗)n+1 for n ≥ 1,

VN = ⋃
n∈N

Vn.

Then we label all particles as follows:

(i) At time t = 0 there exists just one particle which we call 1 ∈ V0.
(ii) A particle which lives at time t is identified with a genealogical chart y =

(1, y1, . . . , yt ) ∈ Vt . If the particle y gives birth to ky particles at time t , then
the children are labeled by (1, y1, . . . , yt ,1), . . . , (1, y1, . . . , yt , ky) ∈ Vt+1.

By using this naming procedure we rigorously define the branching random walks
in random environment. This definition is based on the one in [20]. Note that the
particle with name x can be located at x anywhere in Z

d . As both information
genealogy and place are usually necessary together, it is convenient to combine
them to x = (x,x); think of x and x written very closely together.

• Spatial motion. A particle at time–space location (t, x) is supposed to jump to
some other location (t + 1, y) and is replaced there by its children. Therefore, the
spatial motion should be described by assigning a destination for each particle at
each time–space location (t, x). So we are guided to the following definition. Let
the measurable space (�X, FX) be the set (Zd)N×Z

d×VN with the product σ -field
and �X � X = (X

y
t,x)(t,x,y)∈N×Zd×VN

. We define PX ∈ P(�X, FX) as the product
measure such that

PX(X
y
t,x = e) =

⎧⎨
⎩

1

2d
, if |e| = 1,

0, if |e| �= 1
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for e ∈ Z
d and (t, x,y) ∈ N × Z

d × VN. Here we interpret X
y
t,x as the step at time

t + 1 of the particle y at time–space location (t, x).
• Offspring distribution. We set �q = P(N)N×Z

d
where P(N) denotes the set

of probability measure of N:

P(N) =
{
q = (q(k))k∈N ∈ [0,1]N; ∑

k∈N

q(k) = 1
}
.

Thus each q ∈ �q is a function (t, x) �→ qt,x = (qt,x(k))k∈N from N×Z
d to P(N).

We interpret qt,x as the offspring distribution for every particle occupying the
time–space location (t, x). The set P(N) is equipped with the natural Borel σ -
field introduced from that of [0,1]N. We denote by Fq the product σ -field on �q .

We define the measurable space (�K, FK) as the set N
N×Z

d×VN with the prod-
uct σ -field and �K � K = (K

y
t,x)(t,x,y)∈N×Zd×VN

. For each fixed q ∈ �q we define
P

q
K ∈ P(�K, FK) as the product measure such that

P
q
K(K

y
t,x = k) = qt,x(k) for all (t, x,y) ∈ N × Z

d × VN and k ∈ N.

We interpret K
y
t,x as the number of the children born from the particle y at time–

space location (t, x).
We now define the branching random walks in random environment. We fix

a product measure Q ∈ P(�q, Fq), which describes the i.i.d. offspring distrib-
ution assigned to each time–space location. In the following we also use Q as
Q-expectation, that is, we write Q[Y ] = ∫

Y dQ and Q[Y :A] = ∫
A Y dQ for a

q-random variable Y and an Fq -measurable set A. Finally, we define (�, F ) by

� = �X × �K × �q, F = FX ⊗ FK ⊗ Fq

and P q,P ∈ P(�, F ) for q ∈ �q by

P q = PX ⊗ P
q
K ⊗ δq, P =

∫
Q(dq)P q.

We want to look at Nt,y but here we investigate more detailed information. We
define N

y
t,x by

N
y
t,x = 1{the particle y is located at time–space location (t, x)}(1.1)

for (t, x,y) ∈ N × Z
d × VN. Here we set N

y
0,x = δ

1,y
0,x where δ is the Dirac function

such that

δ
1,y
0,x =

{
1, if x = 0,y = 1 ∈ V0,
0, otherwise.

Then we can describe N
y
t,x inductively by

N
y
t,y = ∑

x∈Zd

x∈VN

Nx
t−1,x1{y − x = Xx

t−1,x,1 ≤ y/x ≤ Kx
t−1,x} for t ≥ 1,(1.2)
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where y/x is given for x,y ∈ VN as follows:

y/x =
⎧⎨
⎩

k, if x = (1, x1, . . . , xn) ∈ Vn,y = (1, x1, . . . , xn, k) ∈ Vn+1
for some n ∈ N,

∞, otherwise.
Moreover, Nt,y and Nt can be rewritten respectively as

Nt,y = ∑
y∈VN

N
y
t,y and Nt = ∑

y∈Zd

y∈VN

N
y
t,y(1.3)

for t ∈ N, y ∈ Z
d . We remark that the total population is exactly the classical

Galton–Watson process if qt,x ≡ q , where q ∈ P(N) is nonrandom. For simplicity
we write (1.2) as

N
y
t,y = ∑

x∈Zd

x∈VN

Nx
t−1,xA

x,y
t,x,y for t ≥ 1,(1.4)

where we set

A
x,y
t,x,y = 1{y − x = Xx

t−1,x,1 ≤ y/x ≤ Kx
t−1,x}.

This formula is similar to the one for directed polymers in random environment
and linear stochastic evolutions. For p > 0, we write

m(p) = Q
[
m

(p)
t,x

]
with m

(p)
t,x = ∑

k∈N

kpqt,x(k),

m = m(1), mt,x = m
(1)
t,x .

We set

N
y
t,y = N

y
t,y/mt , Nt,y = Nt,y/mt and Nt = Nt/mt(1.5)

for (t, y,y) ∈ N × Z
d × VN. We prove later that Nt is a martingale with respect

to Ft = σ(As : s ≤ t) where At = {Ax,y
t,x,y : (x,x), (y,y) ∈ N × VN}. Therefore, the

following limit always exists (see Theorem 1.2):

N∞ = lim
t→∞Nt, P -a.s.

It is easy to see that

ay/x = a
y/x
y−x

def= E[Ax,y
1,x,y]

(1.6)

=
⎧⎪⎨
⎪⎩

1

2d

∑
j≥k

q(j), if |x − y| = 1,y/x = k, k ∈ N
∗,

0, otherwise,
and ∑

y∈Zd ,y∈VN

a
y/x
y−x = m for x ∈ Z

d,x ∈ VN,

where q(j) is the Q-expectation of qt,x(j).
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1.2. Properties. In this section we look through the properties of BRWRE.
First we introduce an important Markov chain and represent N

y
t,y by using it. We

define the Markov chain (S,P x
S ) = ((S1, S2),P

x,x
S1,S2) on Z

d × VN for x = (x,x) ∈
Z

d × VN, independent of {At }t≥1, by

P x
S (S0 = x) = P

x,x
S1,S2

(
S0 = (x,x)

) = 1, (x,x) ∈ Z
d × VN

and for each x, y ∈ Z
d,x,y ∈ VN,

PS

(
St+1 = (y,y)|St = (x,x)

)

=
⎧⎨
⎩

1

2d

∑
j≥k q(j)

m
, if |x − y| = 1,y/x = k ∈ N

∗,

0, otherwise.

We remark that we can regard S1 and S2 as independent Markov chains on Z
d and

VN, respectively, and that S1 is a simple random walk on Z
d . Here we introduce a

certain martingale which is essential to the proof of our results:

ζ0 = 1 and for t ≥ 1 ζt = ∏
1≤s≤t

A
Ss

s,Ss−1

aSs/Ss−1

,

where A
St

t,St−1
= A

S2
t−1,S

2
t

t,S1
t−1,S

1
t

and aSt/St−1 = a
S2

t /S2
t−1

S1
t −S1

t−1
. In fact, this is a martingale

with respect to the filtration defined by Ht = σ(Au,Su;u ≤ t) as in the following
lemma where for t = 0, H0 = σ(So).

LEMMA 1.1. ζt is a martingale with respect to Ht . Moreover, we have that

N
y
t,y = mtE0

S[ζt ;St = (y,y)], P -a.s. for t ∈ N, (y,y) ∈ Z
d × VN,(1.7)

where E0
S[·] denotes the expectation with respect to P 0

S

def= P
0,1
S .

PROOF. Since {At }t≥1 are i.i.d. random variables, it follows from the inde-
pendence of {At }t≥1 and {St }t≥1 that

E0
A,S[ζt |Ht−1] = E0

A,S[ζt−1|Ft−1, S1, . . . , St−1]ESt−1
A,S

[
A

S1
t,S0

aS1/S0

]

= ζt−1, P 0
A,S-a.s.,

where P x
A,S is the product probability measure of P and P x

S and where Ex
A,S de-

notes the expectation with respect to P x
A,S . We now prove (1.7) by induction. It is

easy to see that (1.7) holds for t = 0. If (1.7) holds for t ≥ 0, then

N
y
t+1,y = ∑

x∈Zd ,x∈VN

Nx
t,xA

x,y
t+1,x,y

= ∑
x∈Zd ,x∈VN

mtE0
S[ζt ;St = (x,x)]Ax,y

t+1,x,y.
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Since we have that

A
x,y
t+1,x,y = mE

x,x
S

[A
S1
t+1,S0

aS1/S0

;S1 = (y,y)

]
,

(1.7) holds for t + 1 and the proof is complete. �

We remark that Nt,y = mtE0
S[ζt ;S1

t = y]. From this lemma we obtain an im-
portant result. The following theorem means that a phase transition occurs for the
growth rate of the total population.

THEOREM 1.2. Nt is a martingale with respect to Ft = σ(As : s ≤ t) and
there exists the limit

N∞ = lim
t→∞Nt, P -a.s.,(1.8)

and

E[N∞] = 1 or 0.(1.9)

Moreover, E[N∞] = 1 if and only if the limit (1.8) is convergent in L1(P ).

Before we prove Theorem 1.2 we introduce some notations and definitions.
For (s, z, z) ∈ N × Z

d × VN, we define N
s,z,z
t = (N

s,z,z
t,y,y)(y,y)∈Zd×VN

and N
s,z,z
t =

(N
s,z,z
t,y,y)(y,y)∈Zd×VN

, t ∈ N, respectively by

N
s,z,z
0,y,y = δy,z

y,z =
{

1, if y = z, and y = z,
0, otherwise,

N
s,z,z
t+1,y,y = ∑

x∈Zd ,x∈VN

N
s,z,z
t,x,xA

x,y
s+t+1,x,y and(1.10)

N
s,z,z
t,y,y = m−tN

s,z,z
t,y,y.

We remark that we can regard N
s,z,z
t = {Ns,z,z

s,y,y}(y,y)∈Zd×VN
as the state of the

branching random walks starting from particle z at time–space (s, z) observed at
time s + t .

PROOF OF THEOREM 1.2. The limit (1.8) exists by the martingale conver-

gence theorem since Nt is a nonnegative martingale and �
def= E[N∞] ≤ 1 by Fa-

tou’s lemma. To show (1.9) we will prove that � = �2 using the argument in [11].
With the notation (1.10) we write

Ns+t = ∑
z∈Zd ,z∈VN

N
z
s,zN

s,z,z
t ,
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where N
z
s,z is defined by (1.5) for (s, z, z) ∈ N × Z

d × VN. Since every (s, z, z) ∈
N × Z

d × VN, N
s,z,z
t is a martingale with respect to F s

t = σ(As+u :u ≤ t) and has
the same distribution as Nt , the limit

N
s,z,z
∞ = lim

t→∞N
s,z,z
t

exists almost surely and is identically distributed as N∞. Moreover, by letting
t → ∞, we have that

N∞ = ∑
z∈Zd ,z∈VN

N
z
s,zN

s,z,z
∞

and hence, by Jensen’s inequality, that

E[exp(−N∞)|Fs] ≥ exp(−E[N∞|Fs]) = exp(−Ns�) ≥ exp(−Ns).

By letting s → ∞ in the above inequality, we obtain

exp(−N∞)
a.s.≥ exp(−N∞�) ≥ exp(−N∞)

and thus N∞ a.s.= N∞�. By taking expectation we get � = �2. Once we know (1.9),
the final statement of the theorem is standard (e.g., [9], formula (5.2), pages 257–
258). �

We refer to the case E[N∞] = 1 as the regular growth phase and to the one
E[N∞] = 0 as the slow growth phase. The regular growth phase means that the
growth rate of the total population is the same order as its expectation mt and
the slow growth phase means that, almost surely, the growth rate is slower than the
growth rate of its expectation.

We discuss the case of the regular growth phase in this article. The slow growth
phase is partially studied in [10]. If Nt is uniformly square integrable then it is the
regular growth phase since Nt is a martingale.

Here we give the main theorem in this article.

THEOREM 1.3. Suppose that d ≥ 3 and

m > 1, m(2) < ∞ and
Q[(mt,x)

2]
m2 <

1

πd

,(1.11)

where πd is the return probability of a simple random walk in Z
d . Then for all

f ∈ Cb(R
d),

lim
t→∞

∑
x∈Zd

f

(
x√
t

)
Nt,x = N∞

∫
Rd

f (x) dν(x), P -a.s.,(1.12)

where Cb(R
d) stands for the set of bounded continuous functions on R

d and ν is
the Gaussian measure with mean 0 and covariance matrix 1

d
I .
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The proof of Theorem 1.3 will be given in the next section.

REMARK. From Lemma 1.1 we can rewrite (1.12) as

lim
t→∞E0

S

[
f

(
S1

t√
t

)
ζt

]
= N∞

∫
Rd

f (x) dν(x), P -a.s.(1.13)

In Lemma 2.2 we see that (1.11) is equivalent to supt≥1 E[(Nt)
2] < ∞ so that we

have E[N∞] = 1, that is, P(N∞ > 0) > 0. Also, if we set ρt(x) = Nt,x

Nt
1{Nt > 0},

we can interpret ρt (x) as the density of the particles. From this observation we can
regard Theorem 1.3 as a central limit theorem for probability measures with the
density ρt (

√
t x) on {N∞ > 0}.

1.3. Relation to directed polymers in random environment. In the end of this
section we discuss the relation between BRWRE and DPRE (see [20], pages 1631–
1634, for more detailed information).

• Random walk. (S′
t , P

x
S′) is a simple random walk on d-dimensional lattice de-

fined on the canonical path space (�S′, FS′). P x
S′ is the unique probability measure

on (�S′, FS′) such that S′
1 − S′

0, . . . , S
′
t − S′

t−1 are independent and

P x
S′(S′

0 = x) = 1, P x
S′(S′

t+1 − S′
t = e) =

⎧⎨
⎩

1

2d
, if |e| = 1,

0, if |e| �= 1,

where e ∈ Z
d . For x = 0 we write simply PS′ as P 0

S′ . We denote by Ex
S′ the P x

S′-
expectation. We can regard (S′

t , P
x
S′) as an independent copy of (S1

t , P x
S1).

• Random environment. η = {ηt,x : (t, x) ∈ N × Z
d} are R-valued i.i.d. random

variables which are nonconstant and defined on a probability space (�η, Fη,Q
′)

such that

eλ(β) def= Q′[exp(βηt,x)] < ∞ for all β ∈ R.

• Polymer measure. For any t ∈ N, define the polymer measure μt on (�S′, FS′)
by

dμt = 1

Zt

exp
(
βHt − tλ(β)

)
dPS′,

where β > 0 is a parameter and

Ht =
t−1∑
u=0

ηu,S′
u

and Zt = E0
S′

[
exp

(
βHt − tλ(β)

)]

are the Hamiltonian and the partition functions. We call this system the directed
polymers in random environment.
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Coming back to BRWRE, fix the environment q = {qt,x; (t, x) ∈ N × Z
d} with

mt,x > 0, Q-a.s. Set exp(βηt,x) = mt,x for each (t, x) ∈ N × Z
d . Then we have

from Lemma 1.1 that

Eq [Nt,x] = E0
S′

[
exp

(
βHt − tλ(β)

)
:S′

t = x
]

and Eq[Nt ] = Zt,

where Eq[·] denotes the expectation with respect to P q since we have that

Eq[Ay,y
t,x,x] =

⎧⎪⎨
⎪⎩

1

2d

∑
j≥k

qt−1,x(j), if |x − y| = 1,y/x = k,

0, otherwise.

Here we remark that λ(β) = log(m) so we can construct DPRE from BRWRE. In
[20] we find the converse, that is, how to construct i.i.d. random offspring distrib-
utions qt,x from the environment ηt,x .

2. Proof of Theorem 1.3.

2.1. Preparation. First we introduce some useful notations. We define w(x, x̃,
y, ỹ) for x = (x1,x2), x̃ = (x̃1, x̃2),y = (y1,y2), ỹ = (ỹ1, ỹ2) ∈ N × VN by

w(x, x̃,y, ỹ) = E[Ax2,y2
1,x1,y1

A
x̃2,ỹ2
1,x̃1,ỹ1

]
ay/xaỹ/x̃

(2.1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if ay/xaỹ/x̃ = 0,

1, if x1 �= x̃1, ay/xaỹ/x̃ �= 0,

0, if x = x̃, y1 �= ỹ1, ay/xaỹ/x̃ �= 0,[
1

2d

∑
j≥min{k,l}

q(j)

]−1

if
x = x̃, y1 = ỹ1,

y2/x2 = k, ỹ2/x̃2 = l,
ay/xaỹ/x̃ �= 0,

E[∑i≥k q0,0(i)
∑

j≥l q0,0(j)]∑
i≥k q(i)

∑
j≥l q(j)

if
x1 = x̃1,x2 �= x̃2,

y2/x2 = k, ỹ2/x̃2 = l,
ay/xaỹ/x̃ �= 0.

Let (S̃t , PS̃
) be an independent copy of (St ,PS) and P

x,x̃
S,S̃

be the product measure

of P x
S and P x̃

S̃
for x, x̃ ∈ Z

d × VN. Then we have the following Feynmann–Kac
formula:

LEMMA 2.1. For t ∈ N, (y,y), (ỹ, ỹ) ∈ Z
d × VN,

E[Ny
t,yN

ỹ
t,ỹ] = E

0,0
S,S̃

[et ; (St , S̃t ) = ((y,y), (ỹ, ỹ))],(2.2)
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where et is defined by

et =
t∏

u=1

w(Su−1, S̃u−1, Su, S̃u).

PROOF. From Lemma 1.1 we can write that

N
y
t,yN

ỹ
t,ỹ = E0

S[ζt ;St = (y,y)]E0
S[ζt ;St = (ỹ, ỹ)]

= E
0,0
S,S̃

[ζt ζ̃t ; (St , S̃t ) = ((y,y), (ỹ, ỹ))],
where ζ̃t is ζt defined by S̃t . It is easy to see that the P -expectation of the right-
hand side coincides with the right-hand side of (2.2) from Fubini’s theorem. �

By using this formula we can represent the uniform square integrability of Nt in
terms of the environment, that is, {qt,x; (t, x) ∈ N×Z

d}. This is the same condition
as in [20].

LEMMA 2.2. Suppose d ≥ 3. Then the following are equivalent.

(i) supt≥1 E[(Nt)
2] < ∞.

(ii) m > 1,m(2) < ∞and α = Q[(mt,x)2]
m2 < 1

πd
where πd is the return probability

of a simple random walk in Z
d .

PROOF. (i) ⇒ (ii): From Lemma 2.1 we can write that

E[(Nt)
2] = E

0,0
S,S̃

[et ].(2.3)

It follows from Fatou’s lemma that

E
0,0
S,S̃

[
lim inf
t→∞ et

]
≤ sup

t≥1
E[(Nt)

2] < ∞.

By definition we can see that et = et+1 on {S1
t �= S̃1

t } almost surely. The random
walk S1

t − S̃1
t is transient since it is irreducible on Z

d for d ≥ 3 and hence the limit

e∞ = limt→∞ et exists P
x,x̃
S,S̃

-almost surely. Let τ be the first splitting time

τ = inf{t ≥ 1;St �= S̃t }.(2.4)

Then it is easy to see that

E
0,0
S,S̃

[eτ ;S1
τ �= S̃1

τ ] = 0

since w(x, x̃,y, ỹ) = 0 when x = x̃ and y1 �= ỹ1. This implies that

eτ = 0, P
0,0
S,S̃

-a.s. on {S1
τ �= S̃1

τ }.(2.5)
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If S2
u �= S̃2

u , then S2
t �= S̃2

t for u ≤ t and, therefore, it is clear that w(St , S̃t , St+1,

S̃t+1) depends only on S1
t − S̃1

t , S2
t+1/S

2
t and S̃2

t+1/S̃
2
t for u ≤ t (shift invariance).

From this we have that

E
x,x̃
S,S̃

[e∞] is constant for x = (y,x2), x̃ = (y, x̃2) ∈ Z
d × VN,x2 �= x̃2.(2.6)

From (2.5), (2.6) and Markov property we can deduce that

∞ > E
0,0
S,S̃

[e∞] =
∞∑

k=1

E
0,0
S,S̃

[
eτE

Sτ ,S̃τ

S,S̃
[e∞]; τ = k

]
(2.7)

=
∞∑

k=1

E
0,0
S,S̃

[
eτ ; τ = k

]
E

x,x̃
S,S̃

[e∞],

where E
x,x̃
S,S̃

denotes the expectation with respect to P
x,x̃
S,S̃

for x = (0,x2), x̃ =
(0, x̃2), x2 �= x̃2 ∈ VN. In the following we use E

x,x̃
S,S̃

in this sense.

It is easy to see that E
0,0
S,S̃

[et ; τ > t] = m−t . Indeed, for t = 1 we have that

E
0,0
S,S̃

[e1; τ > 1] = E
0,0
S,S̃

[w(0,0, S1, S̃1);S1 = S̃1]
= E

0,0
S,S̃

[(aS1/0)
−1;S1 = S̃1]

= m−1 (∵ (1.6)).

By induction we have from Markov property that

E
0,0
S,S̃

[et ; τ > t] = E
0,0
S,S̃

[et ;Sj = S̃j , j = 1, . . . , t]
= E

0,0
S,S̃

[et−1;Sj = S̃j , j = 1, . . . , t − 1]E0,0
S,S̃

[e1;S1 = S̃1](2.8)

= m−t .

Also, it is easy to see that E
0,0
S,S̃

[e1;S1 �= S̃1] = m−2(m(2) − m). Indeed we have
that

E
0,0
S,S̃

[e1;S1 �= S̃1]
= ∑

y�=ỹ

∑
y1∈Zd

E
0,0
S,S̃

[w(0,0,y, ỹ);S1 = (y1,y), S̃1 = (y1, ỹ)]

= m−2
∑
y�=ỹ

∑
y1∈Zd

[max{ay/0, aỹ/0}]−1ay/0aỹ/0

= m−2
∑
k �=�

min
{∑

j≥k

q(j),
∑
j≥�

q(j)

}
(2.9)
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= m−2
∑
k≥1

2(k − 1)
∑
j≥k

q(j)

= m−2(
m(2) − m

)
.

From this we can calculate E
0,0
S,S̃

[eτ ; τ = t] as follows:

E
0,0
S,S̃

[eτ ; τ = t] = E
0,0
S,S̃

[
et−11{τ>t−1}E0,0

S,S̃
[e1;S1 �= S̃1]]

= m−(t−1)m−2(
m(2) − m

)
.

Later we will prove

E
x,x̃
S,S̃

[e∞ :S1
t �= S̃1

t , t ∈ N
∗] = α(1 − πd) > 0.(∗)

These imply that m > 1 and m(2) < ∞ from (2.7). In the remainder we check (∗)
and that E

x,x̃
S,S̃

[e∞] < ∞ implies that α < 1
πd

.

We divide E
x,x̃
S,S̃

[e∞] according to the number of meetings of two random walks

(S1
t , S̃1

t ).

E
x,x̃
S,S̃

[e∞] =
∞∑

�=0

E
x,x̃
S,S̃

[e∞; τ� < ∞, τ�+1 = ∞],

where we define τ0 = 0, τ� = inf{t > τ�−1;S1
t = S̃1

t } for � ≥ 1 with inf ∅ = +∞.
We can obtain that

E
x,x̃
S,S̃

[eτ1; τ1 < ∞] = E
0,0
S1,S̃1

[
E

x2,x̃2

S2,S̃2[eτ1]; τ1 < ∞]

= E
0,0
S1,S̃1[α; τ1 < ∞]

= απd.

To justify these equalities we first remark that w(St−1, S̃t−1, St , S̃t ) = 1 for 2 ≤
t ≤ τ1 ≤ ∞ P

x,x̃
S,S̃

-a.s. So we can write eτ1 = w(S0, S̃0, S1, S̃1) P
x,x̃
S,S̃

-a.s. and we see

its P
x,x̃
S1,S̃1 -a.s. independence of (S1, S̃1) from (2.1). Next we have that P

x,x

S1,S̃1 -a.s.

E
x2,x̃2

S2,S̃2[eτ1] = E
x2,x̃2

S2,S̃2[w(S0, S̃0, S1, S̃1)]

= ∑
k,�≥1

E[∑i≥k q0,0(i)
∑

j≥� q0,0(j)]∑
i≥k q(i)

∑
j≥� q(j)

∑
i≥k q(i)

∑
j≥� q(j)

m2(2.10)

= α.(2.11)

Also we know that

P
x,x

S1,S̃1[τ1 < ∞] = P
x,x

S1,S̃1[S1
t = S̃1

t ,∃ t ≥ 1] = P 0
S [S1

2t = 0,∃ t ≥ 1] = πd.
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These imply (∗). Also, it follows from Markov property that

E
x,x̃
S,S̃

[e∞] =
∞∑

�=0

(E
x,x̃
S,S̃

[eτ1; τ1 < ∞])�Ex,x̃
S,S̃

[e∞; τ1 = ∞]

=
∞∑

�=0

(απd)�α(1 − πd) < ∞,

and therefore this implies that απd < 1.
(ii) ⇒ (i) This has been proved in [20], Theorem 1.1, page 1623. �

The next theorem means the delocalization (see the remark after the proof).

THEOREM 2.3. Suppose d ≥ 3 and (1.11). Then there exists a constant C

such that

E
0,0
S,S̃

[et ;S1
t = S̃1

t ] ≤ Ct−d/2 for all t ∈ N.(2.12)

REMARK. This theorem has been already proved in [20], Proposition 1.3,
page 1624, but we prove it in this article by another way because it contains a
certain important estimate which is used in the proof of our main theorem.

PROOF OF THEOREM 2.3. From the same argument as in the proof of
Lemma 2.2, we can obtain that

E
0,0
S,S̃

[et ;S1
t = S̃1

t ] = E
0,0
S,S̃

[et ; τ > t] +
t∑

k=1

E
0,0
S,S̃

[et ; τ = k, S1
t = S̃1

t ]

= m−t +
t−1∑
k=1

m−k+1cE
x,x̃
S,S̃

[et−k;S1
t−k = S̃1

t−k] + m−t+1c,

where c is the constant given by m−2(m(2) −m) and where in the last term we used
(2.8) and (2.9). It is clear that m−t + m−t+1c ≤ Ct−d/2 and hence it is enough to
estimate E

x,x̃
S,S̃

[et−k;S1
t−k = S̃1

t−k]. By using τj , j ≥ 0, we can rewrite it as

E
x,x̃
S,S̃

[et−k;S1
t−k = S̃1

t−k]

=
t−k∑
�=1

E
x,x̃
S,S̃

[et−k; τ� = t − k]

=
t−k∑
�=1

∑
t1+···+t�=t−k

E
x,x̃
S,S̃

[et−k; τ1 = t1, τ2 − τ1 = t2, . . . , τ� − τ�−1 = t�].
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If we set at = E
x,x̃
S,S̃

[eτ1; τ1 = t], then it follows from Markov property and shift
invariance that

E
x,x̃
S,S̃

[et−k; τ1 = t1, τ2 − τ1 = t2, . . . , τ� − τ�−1 = t�] = at1at2 · · ·at�,

if t1 + · · · + t� = t − k. We remark that from (2.10)

at = αP
0,0
S1,S̃1(τ1 = t) ≤ c1t

−d/2,

∑
t≥1

at = E
x,x̃
S,S̃

[eτ1; τ1 < ∞] = η = απd < 1 and(2.13)

∑
t≥1

∑
t1+···+t�=t

at1 · · ·at� = (E
x,x̃
S,S̃

[eτ1; τ1 < ∞])� = η�,

where we used on the first line the fact that supx∈Zd PS1[S1
t = x] = O(t−d/2).

From these properties we prove that there exist β < 1 and C1 > 0 such that∑
t1+···+t�=t

at1 · · ·at� ≤ C1β
�t−d/2 for all t ≥ 1.(2.14)

We consider the sequence {ck}k≥1 satisfying that for 0 < ε < 1,

ck+1 = c1

(1 − ε)d/2 ηk + ck

εd/2 η,(2.15)

where c1 is given in (2.13). First we will prove for all k ≥ 1 the following inequality
holds: ∑

t1+···+tk=t

at1 · · ·atk ≤ ckt
−d/2 for all t ≥ 1.(2.16)

Indeed this inequality holds for k = 1. Suppose (2.16) holds for k ≥ 1. Then we
have the following inequality from (2.13):∑

t1+···+tk+1=t

at1 · · ·atk+1

=
t−1∑
s=k

( ∑
t1+···+tk=s

at1 · · ·atk

)
at−s

≤ ∑
s≤εt

( ∑
t1+···+tk=s

at1 · · ·atk

)
c1(t − s)−d/2 + ∑

εt≤s≤t

cks
−d/2at−s

≤ ∑
s≤εt

( ∑
t1+···+tk=s

at1 · · ·atk

)
c1(t − εt)−d/2 + ∑

εt≤s≤t

ck(εt)
−d/2at−s

≤ ηkc1(t − εt)−d/2 + ηck(εt)
−d/2

= ck+1t
−d/2
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and hence (2.16) holds for k + 1. We choose ε such that η < εd/2 < 1. Then we
have ck ≤ C(

η

εd/2 )k for all k ≥ 1 by simple calculation and (2.14) follows. There-
fore, we obtain that

E
x,x̃
S,S̃

[et−k;S1
t−k = S̃1

t−k] ≤
∞∑

�=1

C1β
�(t − k)−d/2 ≤ C2(t − k)−d/2

and from this it is easy to check (2.12). �

REMARK. We define ρ∗
t and Rt by

ρ∗
t = max

x∈Zd
ρt (x) and Rt = ∑

x∈Zd

ρ2
t (x).

ρ∗
t is the density at the most populated site while Rt is the probability that a given

pair of particles at time t are at the same site. Clearly (ρ∗
t )2 ≤ Rt ≤ ρ∗

t . The above
theorem can be interpreted as if we suppose that d ≥ 3 and (1.11), then

Rt = O(t−d/2) in P(·|N∞ > 0)-probability.

This can be seen as follows:

Rt = 1

N2
t

∑
x∈Zd

N2
t,x1{Nt > 0} = 1

N
2
t

∑
x∈Zd

N
2
t,x1{Nt > 0}

and limt→∞ Nt = N∞ > 0, P (·|N∞ > 0)-a.s. However, we know from Lem-
ma 2.1 and Theorem 2.3 that

E

[ ∑
x∈Zd

N
2
t,x

]
= E

0,0
S,S̃

[et ;S1
t = S̃1

t ] = O(t−d/2)

and hence we have that

E

[ ∑
x∈Zd

N
2
t,x

∣∣N∞ > 0
]

= O(t−d/2),

since P(N∞ > 0) > 0.

2.2. Some propositions. We now show Theorem 1.3 by using the argument in
[4]. First we introduce some notations. Let {ξt }t≥1 be i.i.d. random variables with
values in R

d . We denote by Xt a random walk whose steps are given by the ξ ′
t ’s.

Moreover, we assume that E[exp(θ · ξ1)] < ∞ for θ in a neighborhood of 0 in R
d .

We define ρ(θ) by

ρ(θ) = lnE[exp(θ · ξ1)].(2.17)

Then it is obvious that

exp
(
θ · Xt − tρ(θ)

)
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is a martingale with respect to the filtration of the random walk.
We will use standard notation xn = x

n1
1 · · ·xnd

d and ( ∂
∂x

)n = ( ∂
∂x1

)n1 · · · ( ∂
∂xd

)nd

for n = (n1, . . . , nd) ∈ N
d and x ∈ R

d . For n = (n1, . . . , nd) ∈ N
d the polynomial

Wn(t, x) is defined by

Wn(t, x) =
(

∂

∂θ

)n
exp

(
θ · x − tρ(θ)

)∣∣
θ=0,

where |n| = n1 + · · · + nd . We write

Wn(t, x) = ∑
(i,j)∈Nd−1×N

An(i, j)xitj .(2.18)

The coefficients An(i, j) depend on the derivatives of ρ in 0. The following lemma
gives some useful properties of Wn(t, x).

LEMMA 2.4. For a general random walk with exp(ρ(θ)) < ∞ for θ in a
neighborhood of 0 and E[ξ1] = 0, we have:

(a) If |i| + 2j > |n|, then An(i, j) = 0.
(b) Coefficients with |i| + 2j = |n| depend only on the second derivatives of ρ at

0, that is, on the covariance of ξ1.
(c) If |i| = |n|, then An(i,0) = δi1,n1δi2,n2 · · · δid ,nd

.

PROOF. We have that ( ∂
∂θi

)(x · θ − tρ(θ))|θ=0 = xi and ( ∂
∂θ

)i(x · θ −
tρ(θ))|θ=0 = −t ( ∂

∂θ
)i(ρ(θ))|θ=0 for |i| ≥ 2 since ∂

∂θj
ρ(θ)|θ=0 = 0. (a)–(c) fol-

low from Faà di Bruno’s formula [8], Theorem 2.1, page 505, and from the fact
that dk

dxk e
x |x=0 = 1 for all k ∈ N. �

Wn(t,Xt) is a martingale with respect to the filtration of the random walk. Com-
ing back to Markov chain (S,P x

S ) we have that

Yn(t) = E0
S[Wn(t, S1

t )ζt ](2.19)

is an Ft -martingale since ζt is an Ht -martingale. Indeed we have that for any set
B ∈ Ft−1,

EA[E0
S[Wn(t, S1

t )ζt ] :B] = E0
S[Wn(t, S1

t )E[ζt :B]]
= E0

S[Wn(t, S1
t )E[ζt−1 :B]]

= EA[E0
S[Wn(t, S1

t )ζt−1] :B]
= EA

[
E0

S[Wn(t − 1, S1
t−1)ζt−1] :B

]
.

PROPOSITION 2.5. Suppose d ≥ 3 and (1.11). Then we have that for each
n ∈ N

d with |n| �= 0

lim
t→∞ t−|n|/2Yn(t) = 0, P -a.s.
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PROOF. We show that the Ft -martingale

Zt
def=

t∑
s=1

s−|n|/2(
Yn(s) − Yn(s − 1)

)

remains L2-bounded. This implies that Zt converges a.s. and hence Proposition 2.5
follows from Kronecker’s lemma for |n| �= 0. For simplicity we write Wn(t, S1

t ) =
Wn(t, S). It is enough to show that E[(Yn(t) − Yn(t − 1))2] ≤ Ct |n|−d/2. Indeed it
is obvious that

sup
t≥1

E[Z2
t ] =

∞∑
s=1

s−|n|E
[(

Yn(s) − Yn(s − 1)
)2]

(2.20)

and hence, if we show that E[(Yn(t) − Yn(t − 1))2] ≤ Ct |n|−d/2, then the right-
hand side of (2.20) is finite. We can write that

E
[(

Yn(t) − Yn(t − 1)
)2] = E

[(
E0

S[Wn(t, S)ζt − Wn(t − 1, S)ζt−1])2]
= E

[(
E0

S[Wn(t, S)(ζt − ζt−1)]
(2.21)

+ E0
S

[(
Wn(t, S) − Wn(t − 1, S)

)
ζt−1

])2]

= E
[(

E0
S[Wn(t, S)(ζt − ζt−1)])2]

,

where we use the fact that E0
S[(Wn(t, S) − Wn(t − 1, S))ζt−1] = 0 P -a.s. from the

observation after the proof of Lemma 2.4. Moreover, we have that

the right-hand side of (2.21)

= E
[
E0

S[Wn(t, S)(ζt − ζt−1)]E0
S̃
[Wn(t, S̃)(ζ̃t − ζ̃t−1)]]

= E
0,0
S,S̃

[
Wn(t, S)Wn(t, S̃)

(2.22)

× E

[
ζt−1ζ̃t−1

( A
St

t,St−1

aSt/St−1

− 1
)( A

S̃t

t,S̃t−1

a
S̃t /S̃t−1

− 1
)]]

= E
0,0
S,S̃

[Wn(t, S)Wn(t, S̃)(et − et−1)1{S1
t−1 = S̃1

t−1}]
= E

0,0
S,S̃

[|Wn(t, S)|2(et − et−1)1{S1
t−1 = S̃1

t−1}],
where we used on the last line the following facts obtained from Markov property
and (2.1):

E

[
ζt−1ζ̃t−1

( A
St

t,St−1

aSt /St−1

− 1
)( A

S̃t

t,S̃t−1

a
S̃t /S̃t−1

− 1
)]

= et−1
(
w(St−1, S̃t−1, St , S̃t ) − 1

)
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and w(St−1, S̃t−1, St , S̃t ) = 1 P
0,0
S,S̃

-a.s. on {S1
t−1 �= S̃1

t−1}.
It is easy to see that |Wn(t, S)|2 ≤ C3|S1

t−1|2|n| +C4t
|n| from Lemma 2.4, where

C3 and C4 are constants dependent only on n and d . We have already proved that
E

0,0
S,S̃

[et ;S1
t = S̃1

t ] ≤ Ct−d/2. Therefore, from (2.22) we have to estimate the values

E
0,0
S,S̃

[|S1
t |2|n|et1{S1

t = S̃1
t }] and E

0,0
S,S̃

[|S1
t |2|n|et+11{S1

t = S̃1
t }]. However, we know

from Markov property that

E
0,0
S,S̃

[|S1
t |2|n|et+11{S1

t = S̃1
t }]

= E
0,0
S,S̃

[|S1
t ||2n|et1{S1

t = S̃1
t }ESt ,S̃t

S,S̃
[w(St , S̃t , St+1, S̃t+1)]]

≤ max
{
m(2)

m2 , α

}
E

0,0
S,S̃

[|S1
t |2|n|et1{S1

t = S̃1
t }],

where we used the fact that

E
y,ỹ
S,S̃

[w(y, ỹ, S1, S̃1)] =
⎧⎨
⎩

m(2)

m2 , if y = ỹ,y = ỹ,

α, if y = ỹ,y �= ỹ.

Therefore, it is enough to show that E
0,0
S,S̃

[|S1
t |2|n|et1{S1

t = S̃1
t }] ≤ Ct |n|−d/2. We

define σk for k ∈ N by

σ0 = inf{t ≥ 0;St �= S̃t } and σk = inf{t > σk−1;S1
t = S̃1

t } for k ≥ 1

with inf ∅ = +∞. We remark that σ0 = τ where τ is defined by (2.4). Moreover,
let χt0,t1,...,tk = 1{σ0 = t0, σ1 − σ0 = t1, . . . , σk − σk−1 = tk}. Then with a similar
argument to the proof of Theorem 2.3, we can write that

E
0,0
S,S̃

[|S1
t |2|n|et ;S1

t = S̃1
t

] = E
0,0
S,S̃

[|S1
t |2|n|et ;σ0 > t

]

+
t∑

k=0

∑
t0+···+tk=t

E
0,0
S,S̃

[|S1
t |2|n|etχt0,...,tk

]
.

Since |S1
t |2|n| ≤ t2|n|, it is clear that

E
0,0
S,S̃

[|S1
t |2|n|et ;σ0 > t

] ≤ t2|n|/mt(2.23)

and hence we have that E
0,0
S,S̃

[|S1
t |2|n|et ;σ0 > t] ≤ Ct |n|−d/2.

In the remainder we will show that there exists a certain constant C > 0 such
that

t∑
k=0

∑
t0+···+tk=t

E
0,0
S,S̃

[|S1
t |2|n|etχt0,...,tk

] ≤ Ct |n|−d/2.
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If this has been shown then we complete the proof of Proposition 2.5. Since

|S1
σk

| ≤ |S1
σ0

| +
k∑

�=1

|S1
σ�

− S1
σ�−1

|,

it is obvious that
t∑

k=0

∑
t0+···+tk=t

E
0,0
S,S̃

[|S1
t |2|n|etχt0,...,tk

]
(2.24)

≤
t∑

k=0

(k + 1)2|n|
k∑

i=1

∑
t0+···+tk=t

E
0,0
S,S̃

[|S1
σi

− S1
σi−1

|2|n|etχt0,...,tk

]
(2.25)

+
t∑

k=0

(k + 1)2|n| ∑
t0+···+tk=t

E
0,0
S,S̃

[|S1
σ0

|2|n|etχt0,...,tk

]
.(2.26)

By using Markov property and shift invariance we have that, for 1 ≤ i ≤ k,

∑
t0+···+tk=t

E
0,0
S,S̃

[|S1
σi

− S1
σi−1

|2|n|etχt0,...,tk

]

= ∑
t0+···+tk=t

E
0,0
S,S̃

[et0;σ0 = t0]
( ∏

j �=0,i

E
x,x̃
S,S̃

[eσ1;σ1 = tj ]
)

(2.27)
× E

x,x̃
S,S̃

[|S1
σ1

|2|n|eσ1;σ1 = ti
]

≤ ∑
t0+···+tk=t

m−t0+1c

( ∏
j �=0,i

atj

)
E

x,x̃
S,S̃

[|S1
σ1

|2|n|eσ1;σ1 = ti
]
,

where c is the constant given by c = m−2(m(2) − m). It is easily seen from (2.10)
that

E
x,x̃
S,S̃

[|S1
t |2|n|et ;σ1 = t

] = E
x,x̃
S,S̃

[|S1
t |2|n|;σ1 = t

]
α

≤ ∑
x∈Zd

E0
S1

[|S1
t |2|n|;S1

t = x
]
P 0

S1[S1
t = x]

≤ Ct |n|−d/2,

where we have used on the third line the fact that supx∈Zd PS1[S1
t = x] = O(t−d/2)

[19]. Therefore, it follows that

the right-hand side of (2.27)

= ∑
t0+···+tk=t

m−t0+1c

( ∏
j �=0,i

atj

)
E

x,x̃
S,S̃

[|S1
σ1

|2|n|eσ1;σ1 = ti
]
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≤ ∑
t0+···+tk=t

C5t
−d/2
0

( ∏
j �=0,i

atj

)
t |n|t−d/2

i

≤ ∑
t0+ti<t

C6t
−d/2
0 · βk−1(t − t0 − ti)

−d/2 · t |n|t−d/2
i

≤ C7β
k−1t |n|−d/2,

where we use (2.14) and the fact that m−t ≤ Ct−d/2. Since this inequality is inde-
pendent of i, we have that

the right-hand side of (2.25) ≤
∞∑

k=1

C(k + 1)2|n|+1βk−1t |n|−d/2

≤ Ct |n|−d/2,

where C is a constant depending only on n and d . A similar argument holds for
the right-hand side of (2.26). Indeed we have that∑

t0+···+tk=t

E
0,0
S,S̃

[|S1
σ0

|2|n|etχt0,...,tk

]

= ∑
t0+···+tk=t

E
0,0
S,S̃

[|S1
t0
|2|n|et0;σ0 = t0

] ∏
j �=0

E
x,x̃
S,S̃

[
eσ1;σ1 = tj

]

≤ ∑
t0+···+tk=t

cm−(t0−1)t
2|n|
0

∏
j �=0

atj

≤ ∑
t0≤t

C8t
−d/2
0 C1β

k(t − t0)
−d/2

≤ C9β
kt−d/2,

where we use (2.14) and the fact that t2|n|/mt ≤ C8t
−d/2. Hence we can obtain

that

the right-hand side of (2.26) ≤ C10t
−d/2,

where C10 is a constant depending only on n and d . From these we have that

the left-hand side of (2.24) ≤ Ct |n|−d/2,

so that
t∑

k=0

∑
t0+···+tk=t

E
0,0
S,S̃

[|S1
t |2|n|etχt0,...,tk

] ≤ Ct |n|−d/2,

where C is a constant depending only on n and d . Hence the proof is complete.
�

Since we have proved Proposition 2.5 we can show Theorem 1.3.
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2.3. Proof of the result. From [14], Theorem 3, page 363, it is enough to show
the following proposition instead of Theorem 1.3.

PROPOSITION 2.6. Suppose d ≥ 3 and (1.11). Then for all n = (n1, . . . , nd) ∈
N

d

lim
t→∞E0

S

[(
S1

t√
t

)n
ζt

]
= N∞

∫
Rd

xn dν(x), P -a.s.,(2.28)

where ν is the Gaussian measure with mean 0 and covariance matrix 1
d
I .

PROOF. By induction it follows from Lemma 2.4(a), (c) and Proposition 2.5
that for all n ∈ N

d

sup
t≥1

∣∣∣∣E0
S

[(
S1

t√
t

)n
ζt

]∣∣∣∣ < ∞, P -a.s.(2.29)

To see this we divide Yn(t) into three parts as follows:

Y 1
n (t) = t |n|/2E0

S

[(
S1

t√
t

)n
ζt

]
,

Y 2
n (t) = t |n|/2E0

S

[ ∑
|i|+2j=|n|,j≥1

An(i, j)

(
S1

t√
t

)i
ζt

]
and(2.30)

Y 3
n (t) = E0

S

[ ∑
|i|+2j<|n|

t |i|/2+jAn(i, j)

(
S1

t√
t

)i
ζt

]
.

Then we can write

E0
S

[(
S1

t√
t

)n
ζt

]
= t−|n|/2Y 1

n (t)

(2.31)
= t−|n|/2(Yn − Y 2

n − Y 3
n ).

We suppose that (2.29) holds for n ∈ N
d with |n| ≤ k. From Proposition 2.5 we

have supt≥1 t−|n|/2|Yn(t)| < ∞ P -a.s. for all n ∈ N
d . It is easy to check that for

n ∈ N
d with |n| = k + 1,

sup
t≥1

t−|n|/2|Y 2
n (t)| < ∞ and sup

t≥1
t−|n|/2|Y 3

n (t)| < ∞, P -a.s.

Thus (2.29) holds for all n ∈ N
d . Therefore, we conclude that

lim
t→∞ t−|n|/2Y 3

n (t) = 0, P -a.s.,(2.32)

and hence from (2.31) and Proposition 2.5 that for |n| ≥ 1

lim
t→∞ t−|n|/2(

Y 1
n (t) + Y 2

n (t)
) = 0, P -a.s.(2.33)
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On the other hand, let Z be an R
d -valued random variable with density ν. Then it

can be seen that ρ1(θ) is a polynomial of degree 2 where ρ1(θ) is given by (2.17)
for ξ1 = Z. Moreover, we have that for |n| ≥ 1,

0 =
(

∂

∂θ

)n
E

[
exp

(
θ · Z − ρ1(θ)

)]

= E

[ ∑
|i|+2j≤|n|

A′
n(i, j)Zi

]
,

where A′
n(i, j) is defined by (2.18). From Lemma 2.4, A′

n(i, j) corresponds with
An(i, j) for (i, j) with |i| + 2j = |n| and hence we can write for |n| ≥ 1

E

[
Zn + ∑

|i|+2j=|n|,j≥1

An(i, j)Zi
]

= 0.(2.34)

Here we remark that A′
n(i, j) = 0 for (i, j) with |i| + 2j < |n| since ( ∂

∂θ
)j ×

ρ1(θ)|θ=0 = 0 for j ∈ N
d with |j| ≥ 3.

We know that limt→∞ E0
S[ζt ] = N∞ for |n| = 0 which gives (2.28) for |n| = 0.

If (2.28) holds for all n ∈ N
d with |n| ≤ k, then we have that for all n ∈ N

d with
|n| = k + 1,

lim
t→∞ t−|n|/2Y 2

n (t) = N∞E

[ ∑
|i|+2j=|n|,

j≥1

An(i, j)Zi
]
, P -a.s.(2.35)

From this, (2.32) and Proposition 2.5 it follows that the right-hand side of (2.31)
converges to

−N∞E

[ ∑
|i|+2j=|n|,

j≥1

An(i, j)Zi
]
,

almost surely as t ↗ ∞, so that (2.28) holds for n ∈ N
d with |n| = k + 1 from

(2.34). Therefore, we complete the proof of Proposition 2.6 and Theorem 1.3. �
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