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ALMOST SURE CENTRAL LIMIT THEOREM FOR BRANCHING
RANDOM WALKS IN RANDOM ENVIRONMENT

BY MAKOTO NAKASHIMA
Kyoto University

We consider the branching random walks in d-dimensional integer lattice
with time—space i.i.d. offspring distributions. Then the normalization of the
total population is a nonnegative martingale and it almost surely converges
to a certain random variable. When d > 3 and the fluctuation of environment
satisfies a certain uniform square integrability then it is nondegenerate and
we prove a central limit theorem for the density of the population in terms of
almost sure convergence.

1. Introduction. We write N = {0,1,2,...,}, N*={1,2,...,} and Z =
{£x:x € N}. For x = (x1,...,x4) € RY, |x| stands for the £'-norm: |x| =
Zflzl |x;]. For & = () czq € RZd, |E] =D eza l&x]. Let (2, F, P) be a prob-
ability space. We write E[X] = [XdP and E[X:A] = [, XdP for a random
variable X and an event A. We denote the constants by C, C;.

We consider the branching random walks in random environment. Branching
random walks have been much studied [1, 2] and a central limit theorem for the
density of the population has been proved in the nonrandom environment case [2].
Also, in the random environment case, one has been proved in the sense of “con-
vergence in probability” [20] when d > 3 and the fluctuation of environment is
well moderated by the random walk. In this article we prove a central limit the-
orem in the sense of “almost sure convergence” under the same condition as in
[20]. The time—space continuous counterpart is the branching Brownian motion in
random environment for which the central limit theorem has been proved in [15].
On the other hand, a localization property has been proved in [10] for the branch-
ing random walks in random environment if the randomness of the environment
dominates.

It has been mentioned that the branching random walks in random environ-
ment (BRWRE) have a similar structure to the directed polymers in random en-
vironment (DPRE) [3, 5, 7, 20]. Also, we will see the relation between BRWRE
and DPRE in Section 1.3. A central limit theorem has been proved for a Markov-
chain-generalization of the directed polymers in random environment [4, 6, 12, 13]
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assuming a certain square integrability. Since we use an analogy to [13], we extend
the framework to contain the branching random walks in random environment.

1.1. Branching random walks in random environment. We consider particles
in Z¢, performing random walks and branching into independent copies at each
step of the random walk:

(i) Attime ¢ = O there is one particle at the origin x = 0.

(i) When a particle is located at site x € Z4 attime 7 € N, it moves to a uniformly
chosen nearest neighbor site and is replaced at time ¢ + 1 by k-particles with
probability ¢g; x(k)(k € N),

where we assume that the offspring distributions g; x = (g x(k))keN are i.i.d. in
time—space (¢, x). This model is investigated in [3] and we call it the branching
random walks in random environment (BRWRE). Let N; , be the number of the
particles which occupy the site y € Z¢ at time ¢. Let N, be the total population

at time ¢. In this article we study the behavior of the density p;(y) = NN;,) 1(n,>0)-

We look at the branching process to give a more precise definition of the branching
random walks in random environment. First, we define V,,, n € N, Vy by

Vo={1}, Vi=®% ..., V,=@®"" forn>1,

VN = U V.
neN

Then we label all particles as follows:

(i) Attime ¢t = O there exists just one particle which we call 1 € V.

(i1) A particle which lives at time ¢ is identified with a genealogical chart y =
(I, y1,...,y) € V;. If the particle y gives birth to ky particles at time ¢, then
the children are labeled by (1, y1,...,y;, 1), ..., (1, y1, ..., Y, ky) € Vi41.

By using this naming procedure we rigorously define the branching random walks
in random environment. This definition is based on the one in [20]. Note that the
particle with name x can be located at x anywhere in Z¢. As both information
genealogy and place are usually necessary together, it is convenient to combine
them to z = (x, X); think of x and x written very closely together.

e Spatial motion. A particle at time—space location (¢, x) is supposed to jump to
some other location (¢ + 1, y) and is replaced there by its children. Therefore, the
spatial motion should be described by assigning a destination for each particle at
each time—space location (¢, x). So we are guided to the following definition. Let
the measurable space (Q2x, Fx) be the set (74 )NXZdXVN with the product o -field
and Qx> X = (X{x)(,7x’y)eNxzdva. We define Px € P(Qx, Fx) as the product
measure such that

1 .
PX(X{x:e): ﬁ» lf|e|—1’
0, if le| £ 1
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for e € Z¢ and (¢, x,y) € N x Z? x V. Here we interpret X ,y . as the step at time
t + 1 of the particle y at time—space location (¢, x).

e Offspring distribution. We set Q, = P(N)NXZd where P(N) denotes the set
of probability measure of N:

PE) = {q = (e € 10175 3 g (k) = 1}.

keN

Thus each g € Q2 is afunction (¢, x) = q; x = (g1 x (k))ken from N x 74 to P(N).
We interpret g, , as the offspring distribution for every particle occupying the
time—space location (¢, x). The set P(N) is equipped with the natural Borel o-
field introduced from that of [0, 1]. We denote by F, the product o-field on €.

We define the measurable space (Q2x, Fx) as the set NNXZXVN with the prod-
uct o-field and Qg > K = (Kty,x)(,’x’y)eNdeva. For each fixed g € 2, we define

Pz € P(Qk, Fk) as the product measure such that
PL(KY =k)=gq (k)  forall (t,x,y) € N x Z% x Viy and k € N,

We interpret K ,y , as the number of the children born from the particle y at time—
space location (¢, x).

We now define the branching random walks in random environment. We fix
a product measure Q € P(£24, F,), which describes the i.i.d. offspring distrib-
ution assigned to each time—space location. In the following we also use Q as
Q-expectation, that is, we write Q[Y] = [YdQ and Q[Y:A]= [, Y dQ for a
g-random variable Y and an F,-measurable set A. Finally, we define (€2, F) by

Q:QXXQKqu, .7'-:.7:X®f](®fq
and P?, P € P(Q, F) for g € 2, by

P1=Px QP ®34,, P=/Q(dq)Pq-

We want to look at N; y but here we investigate more detailed information. We
define Nty, . by

(1.1) Nz . = 1{the particle y is located at time—space location (, x)}

for (¢, x,y) e N x 74 x Vy. Here we set Ng .= Sé’i where § is the Dirac function
such that

al,y_ 1, ifx=0,y=1¢€V,
0.x 710, otherwise.

Then we can describe Nz . inductively by

(12) N y=> N My—-x=X,  1<y/x<Kl, .} fort>1,

xeZ4
xXeVN
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where y/x is given for X,y € Vy as follows:

k, if x=(0,x1,....,x0) €V, y=U,x1,...,x3,k) € V41
y/x= for some n € N,
00, otherwise.

Moreover, Ny, and N; can be rewritten respectively as

(1.3) Niy= Y N}, and N,=) N,
YEVN yeZd
YEVN

for t € N,y € Z¢. We remark that the total population is exactly the classical
Galton—Watson process if g; » = ¢, where ¢ € P(N) is nonrandom. For simplicity
we write (1.2) as

(1.4) Ny =Y N, APy,  fori>1,
xeZ4
XeVN
where we set
Atxy—l{y ; 1xa1<Y/X<Kt lx}

This formula is similar to the one for directed polymers in random environment
and linear stochastic evolutions. For p > 0, we write

m® = Q[m®]  withm) = kPq, (k)
keN

m=mV,  m=m.

We set
(1.5) Ny, ,=N}y/m'.  Niy=Nyy/m' and N,=N;/m'

for (t,y,y) € N x Z x Vy. We prove later that N, is a martingale with respect
to F; =0 (Ag:s <t) where A, = {Afy’f’y 1(x,Xx), (v,y) € N x Vn}. Therefore, the
following limit always exists (see Theorem 1.2):

Noo = lim Ny, P-a.s.

t—00

It is easy to see that

y/x def
ae " = o = Bl
2d2‘1(1) if [x —y|=1,y/x=k, k € N¥,
= pre
0, otherwise,
and

> z/xx_m forx € Z%,x € Vy,

yeZd yeVy
where ¢ (j) is the Q-expectation of g; x(j).
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1.2. Properties. In this section we look through the properties of BRWRE.
First we introduce an important Markov chain and represent Nz y by using it. We
define the Markov chain (S, P§) = ((S1, §%), P 52) on Z4 x Vy for z = (x,X) €
74 x VN, independent of {A,}t>1, by

P§(So=%) = Pgi" (S0 = (x, %)) = (x,x) € Z¢ x Vy
and for each x, y € Z4, x,y € Vn,
(St+1 =, VIS = (x, X))

1 >
_M’ if |x —y|=1,y/x=k € N¥,
2d m

0, otherwise.

We remark that we can regard S' and S as independent Markov chains on Z¢ and
Vi, respectively, and that S! is a simple random walk on Z¢. Here we introduce a
certain martingale which is essential to the proof of our results:

Ss

to=1 and fortr=>1 &= H &

1<S§l‘ Ss/szl

here AS. = A% and = S5/

where P zS,llS‘an aS[/Stl—Sl Stll . '

with respect to the filtration defined by H; = o (A, Sy; u <1t) as in the following
lemma where for t =0, Hy =0 (S,).

In fact, this is a martingale

LEMMA 1.1. & is a martingale with respect to H;. Moreover, we have that
(1) NYy=m'ES[Es Si= ()], P-as.forteN, (y,y) € Z¢ x Wy,

0 def 0,1

where Eg[ | denotes the expectation with respect to P Py
PROOF. Since {A;};>1 are i.i.d. random variables, it follows from the inde-
pendence of {A;};>1 and {S;};>1 that
S

A
Si— Y
EY l&Mi—1]= E} s[—11Fi—1. 51 ... Sim11E [ ’0}
as;/So

=81, Pg g-a.S.,
where Pj ¢ is the product probability measure of P and Pg and where E} ¢ de-

notes the expectatlon with respect to P} . We now prove (1 7) by induction. It is
easy to see that (1.7) holds for t = 0. If ( 1. 7) holds for ¢ > 0, then

y X
Nz—Hy Z Nt t+1xy

xeZ4 xeVy

= Z mtEg[th Sy =(x, X)]At—H x,y°

xeZ4 xeVy
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Since we have that

A
: x[ Aets
A sy =mEs X[it S 081 =y, y)],

(1.7) holds for # + 1 and the proof is complete. [J

We remark that N; , = m! Eg[{t; St1 = y]. From this lemma we obtain an im-
portant result. The following theorem means that a phase transition occurs for the
growth rate of the total population.

THEOREM 1.2. N, is a martingale with respect to F; = o (A : s <t) and
there exists the limit

(1.8) Noo = lim Ny, P-a.s.,
1—>00

and

(1.9) E[Ns]l=1 or 0.

Moreover, E[N o1 = 1 if and only if the limit (1.8) is convergent in LY(P).

Before we prove Theorem 1.2 we introduce some notations and definitions.

For (s,z,z) € N x Z% x Vy, we define NJ** = (N;yzy)(y y)ezdx vy, and N =
—75,2,Z

(N 5y (v.y)ezd x vy T € N, respectively by

NSTE 5y,§:{1, ify=z,andy=z,

0.5,y 0, otherwise,
.2, __ $,2,Z A X,¥
(1.10) Niiyy= Z NivxAgip1,y,y and
x€Z4 xeVy
x75,2,Z —t $,2,2
Niyy= Niyy-

We remark that we can regard N;"“* = {N}3%) yezdxyy as the state of the

branching random walks starting from particle z at time—space (s, z) observed at
time s 4 7.

PROOF OF THEOREM 1.2. The limit (1.8) exists by the martingale conver-

gence theorem since N, is a nonnegative martingale and ¢ e g [Noo] < 1 by Fa-
tou’s lemma. To show (1.9) we will prove that £ = 02 using the argument in [11].
With the notation (1.10) we write

~ ~Z 52
Nsyr = Z Ns,th ’

ze74,2eVy
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where W;Z is defined by (1.5) for (s, z,z) € N x 74 x Vy. Since every (s,z,2) €
N x Z4 x Vy, Nf’z’z is a_martingale with respect to F} = 0 (As4y, :u <t) and has
the same distribution as N, the limit

—=S5,2,Z .
N = lim
o0 t—00

x75:2,2

N,

exists almost surely and is identically distributed as N .. Moreover, by letting
t — 00, we have that
—_— —Z ——5,2,Z
Noo = Z NN
774 2eVyN

and hence, by Jensen’s inequality, that
E[exp(—Noo) | Fs] = exp(—E[N | Fs]) = exp(—Ny€) > exp(—Ny).

By letting s — oo in the above inequality, we obtain
exp(—ﬁoo) a.zs. exp(—Nooﬁ) > exp(—ﬁoo)

and thus Noo = N ool. By taking expectation we get £ = ¢2. Once we know (1.9),
the final statement of the theorem is standard (e.g., [9], formula (5.2), pages 257—
258). O

We refer to the case E[Noo] =1 as the regular growth phase and to the one
E[N ] =0 as the slow growth phase. The regular growth phase means that the
growth rate of the total population is the same order as its expectation m’ and
the slow growth phase means that, almost surely, the growth rate is slower than the
growth rate of its expectation.

We discuss the case of the regular growth phase in this article. The slow growth
phase is partially studied in [10]. If N, is uniformly square integrable then it is the

regular growth phase since N, is a martingale.
Here we give the main theorem in this article.

THEOREM 1.3.  Suppose that d > 3 and
Ol(my,)*1 1
_— <

(1.11) m>1, m? <oco and

’

m? g

where 14 is the return probability of a simple random walk in 7Z¢. Then for all
f € Cp(RY),

112)  lim Y f(%)ﬁ,,xzﬁoo /Rdf(x)dv(x), P-as.,
xezd

where Cp,(R?) stands for the set of bounded continuous functions on R and v is
the Gaussian measure with mean 0 and covariance matrix 51 .
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The proof of Theorem 1.3 will be given in the next section.

REMARK. From Lemma 1.1 we can rewrite (1.12) as
s!
Jt
In Lemma 2.2 we see that (1.11) is equivalent to sup,- E[(N,)?] < oo so that we
have E[Noo] = 1, that is, P(No > 0) > 0. Also, if we set p; (x) = Y2 1{N, > 0},

. . . . N[ .
we can interpret p;(x) as the density of the particles. From this observation we can

regard Theorem 1.3 as a central limit theorem for probability measures with the
density p;(+/1x) on {N oo > 0}.

(1.13) lllrgoEg[f( );t] =N00/Rdf(x)dv(x), P-as.

1.3. Relation to directed polymers in random environment. In the end of this
section we discuss the relation between BRWRE and DPRE (see [20], pages 1631—
1634, for more detailed information).

e Random walk. (S], P§,) is a simple random walk on d-dimensional lattice de-
fined on the canonical path space (g, Fg/). Py, is the unique probability measure
on (Qg, Fs) such that S| — Sy, ..., S; — S/_, are independent and

1
A 7° f = 17
Pg/(S(/):x):l, P;E/(S;_,'_I—S;:e): 2d ! |e|
0, if le] # 1,
where e € Z?. For x = 0 we write simply Pg as Pg,. We denote by E%, the Pg-
expectation. We can regard (S;, Pg,) as an independent copy of (S, P;l ).
e Random environment. n = {n; »: (t,x) € N x Z4} are R-valued i.i.d. random

variables which are nonconstant and defined on a probability space (£2,, F,,, Q")
such that

B L O lexp(Bnrx)] <oo  forall BeR.

e Polymer measure. For any t € N, define the polymer measure p; on (2g/, Fg/)
by
1
dp; = = exp(BH; —tA(B))d Py,
t
where 8 > 0 is a parameter and

t—1

H; = Z Nu,s;, and Z, = Eg/ [exp(BH; — tA(B))]
u=0

are the Hamiltonian and the partition functions. We call this system the directed
polymers in random environment.
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Coming back to BRWRE, fix the environment g = {g; x; (¢, x) € N x 74} with

msx > 0, OQ-a.s. Set exp(Bn;x) = m; x for each (#,x) e N x Z4. Then we have
from Lemma 1.1 that

EY[N, 1= EY[exp(BH, — tA(B)): S, =x] and EY[N,1=Z,

where E9[-] denotes the expectation with respect to P? since we have that

1 : .
ﬁz%—l,x(])’ if |x —y|=1,y/x=k,
=k

0, otherwise.
Here we remark that A(8) = log(m) so we can construct DPRE from BRWRE. In

[20] we find the converse, that is, how to construct i.i.d. random offspring distrib-
utions ¢; x from the environment 7; .

y,y
E1 [At,x,x =

2. Proof of Theorem 1.3.
2.1. Preparation. First we introduce some useful notations. We define w(x, %,
y,¥) for z = (x1,x2), 2= (¥1,X2), y = (1, ¥2), ¥ = (J1, ¥2) € N x Vy by

X2,¥2 4%, ¥2
E[ALXLylAl,ihil]

w(z, %,y,y) = iy
@ y ﬂ. y/%
0, if ay/ﬂawx} =0,
1, if x1 # X1, ay/za5/% # 0,
O’ lfﬂzi,YI7éyl»ay/xa§//>}?éoa
1 -1
5 T a0
2d j>min{k,l}
= .fﬂzi, yi =~§1,~
y2/X2 =k, ¥y2 /X2 =1,
EY £ 90.00) 31 90.0())]
2i=kq ) X j=19())
o X1 =X1,X2 #Xp,
y2/X2 =k, ¥y2 /X2 =1,

Ay /20y /% #0,

Ay /2053 7 0.

Let (S,, P;) be an independent copy of (S;, Ps) and P;? be the product measure

of Pg and ng for %, % € Z¢ x Vy. Then we have the following Feynmann—Kac
formula:

LEMMA 2.1. ForteN, (y,y), (3,¥) € Z¢ x Vy,

(22) EIN) N} 5= E9%es: (51, 5) = (0, ), G, )L,
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where e; is defined by

t

€r = l_[ w(Syu—1, Su—l, Su, Su)

u=1
PROOF. From Lemma 1.1 we can write that
N N5 = Ees S = 5 DIESIG: S = (7, 9)]
= EgSl68: (51,80 = (0. ¥). (5. )],

where Z; is ¢; defined by S;. It is easy to see that the P-expectation of the right-
hand side coincides with the right-hand side of (2.2) from Fubini’s theorem. [J

By using this formula we can represent the uniform square integrability of N, in
terms of the environment, that is, {g; »; (¢, x) € N x Zd}. This is the same condition
as in [20].

LEMMA 2.2.  Suppose d > 3. Then the following are equivalent.

(i) sup;>1 E[(N)?] < o0.

LGS

(i) m>1,m? < ocoand « = 7 where g is the return probability

of a simple random walk in Z2.

PROOF. (i) = (ii): From Lemma 2.1 we can write that
(2.3) E[(N)*1=E%e].
It follows from Fatou’s lemma that

Eg’%[lim infe,] < sup E[(N;)?] < oo.

5 —00 ZZI

By definition we can see that ¢, = ;41 on {St1 #* S't]} almost surely. The random
walk S! — S! is transient since it is irreducible on Z¢ for d > 3 and hence the limit
oo = lim,_, o0 €; exists P;"’S‘—almost surely. Let T be the first splitting time

(2.4) T=inf{t > 1; S; # S;}.
Then it is easy to see that

0,0 . ¢l !
ES,S'[eT’ S‘[ # S‘L’] = O

since w(x, %, y,¥) =0 when x = z and y; # y;. This implies that

(2.5) er =0, P;):g—a.s. on {S! £ 8.
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If S,% + S',%, then S,2 + 5'2 for u <t and, therefore, it is clear that w(S;, St, St+1,
S,+1) depends only on Sl Sl SZZH/S2 and Szf2+1/St2 for u <t (shift invariance).
From this we have that

(2.6) E?’;[eoo] is constant for x = (y, X2), 2= (y, X2) € Z% x Vy, X2 # X».

From (2.5), (2.6) and Markov property we can deduce that

oo>E eoo] ZE ST ST[eoo];rzk]
2.7

o0
;E %ef,r_ k|E SS[eoo]

where Ezé denotes the expectation with respect to P;z? for x = (0,x2), % =
(0,X2), X2 # X5 € Vn. In the following we use E:E in this sense.
It is easy to see that Eg’g[e,; 7 >t]=m""!. Indeed, for t = 1 we have that
EgSlerst > 11=E 3 [w(0,0, 81, 51); 51 = 1]
= EgSl(as,0)”"s $1=51]
=m~' (- (L6).

By induction we have from Markov property that

0,0 P
ESS[et,r>t]— ~[et;szSj,]:l,...,z‘]
0,0 o s 0,0 R
(2.8) = Es,S[e’*“ Si=Sj,j=1,...,t— 1]ES’§[e1; S1 =511
=m".
Also, it is easy to see that E e1, S1 # Sl] = _Z(m(z) — m). Indeed we have

that
0,0, . <
E&S[el, S1 # 811

=3 2 ELSw(0.0,%.9); 81 = (1.9, 51 = (1. 9]

Y#Y y1 €74

=m~2Y" " [max{ay0, ag 0}~ ay0az0
Y#Y y1 €24

2.9) =m—22mm{zq(j), Zq(j)}

k£t jzk j=t
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=m™2Y 2k =1 q()
k>1 j>k
=m 2 (m® —m).

From this we can calculate E [ef, T = t] as follows:

ESZS,[eT’T:t]:Eg(;[el 11 (t>1— l}E [€1§Sl75§1]]

— D2 (@ m)'
Later we will prove

(%) E?’;f,[eoo:Stl £8 teN*1=a(l —my) > 0.

These imply~that m > 1and m® < oo from (2.7). In the remainder we check (x)

and that E ?E[eoo] < oo implies that & < nl—d

We divide E ?é[eoo] according to the number of meetings of two random walks

(8!, SH.
Heco] = ZE Xeco; T¢ < 00, Typ1 = 0],

where we define 1o =0, 7y = inf{t > 7¢_1; St1 = Stl} for £ > 1 with inf @ = +o00.
We can obtain that

0,0

X3,X .
sl §1[E S oler i < o0]

R, R
E [e,l, T1<o0]=E $ 5

s.8
E 51[0‘ T] < 00]
=amn,.

To justify these equalities we first remark that w(S, LSi—1, S, S‘t) =1for2 <
t < r1 <00 P ~—a s. So we can write ez; = w(So, So, S1, Sl) P ~—a s. and we see

its P < -a.S. 1ndependence of (S1, S! ) from (2.1). Next we have that P -a.s.

Ealen]= Eg Slw(So. So. S1. 51)]

52,82 52 32
E[Xi2490.00) X2 90.0()] Xisk ¢ () X4 ())
Ke>1 2i=k g2 i=¢q()) m2
(2.11) =a.

(2.10) -

Also we know that

Pg i m < 00]= (s} =8'3r>11=PJ[S), =031 > 11=mny.

S1 S1



ALMOST SURE CLT FOR BRANCHING RW IN RANDOM ENVIRONMENT 363

These imply (). Also, it follows from Markov property that

0
Z,% _ 7% . 0 %, % . _
ES’S[eoo] = KE o(ES’S[en’ 71 < oQ]) ES,S[eom 7] = Q]

=Y (@) a(l = 7g) < oo,
=0

and therefore this implies that oy < 1.
(i) = (i) This has been proved in [20], Theorem 1.1, page 1623. [J

The next theorem means the delocalization (see the remark after the proof).

THEOREM 2.3. Suppose d > 3 and (1.11). Then there exists a constant C
such that

(2.12) Eg’%[e,; s'=81<ct?  forallt eN.

REMARK. This theorem has been already proved in [20], Proposition 1.3,
page 1624, but we prove it in this article by another way because it contains a
certain important estimate which is used in the proof of our main theorem.

PROOF OF THEOREM 2.3. From the same argument as in the proof of
Lemma 2.2, we can obtain that

t
00 . ¢l <l 0,0 . 0,0 . 1 ¢l
ES,S'[el’St :St]:ES,S'[et’t>t]+kEIES,S'[€[’T:k’ St :St]

t—1
ot —k+1  2%,% .ol 31 —1+1
=m_ + kX:I m cESj[et_k, S x=8_l+m c,

where c is the constant given by m~2(m® —m) and where in the last term we used
(2.8) and (2.9). It is clear that m " +m~"*!¢ < Cr~4/? and hence it is enough to
estimate E?:”Sf[et_k; S, =S! 1. By using 7;, j > 0, we can rewrite it as

7, Lol ol
ES’S[el‘—ka S;_k = S;_k]

=~

r—
=> E
=1

ler—k; Te =1t — k]

T Xt

=,
S,

=~

t—

g

z,% .
> Eslevn=tn—t=n,...,7%—1-1=1l

{=1t1+-+ty=t—k



364 M. NAKASHIMA

If we set a; = E??[erl; 71 = t], then it follows from Markov property and shift
invariance that

7% .
Es S[et—k, TI=H,T2—T1=h,..., Tt — Te—1 =kl =ayay - a,

if ty +---+1t, =t — k. We remark that from (2.10)

0.0 -
a :O‘Py’gl(fl :t) =cit d/2’
(2.13) Zat:E?é[en;fl <oo]=n=amy <1 and

t>1

Z Z ay, ...at[:(Eézs[erl;-L—l <OO])[=7’)€,

t>11++tg=t

where we used on the first line the fact that sup .z Pgi[S) = x] = O@¢~/?).
From these properties we prove that there exist 8 < 1 and C; > 0 such that

(2.14) Yoo aya, <C T forallt > 1.
i+ te=t
We consider the sequence {ci}x>1 satisfying that for 0 < ¢ < 1,

Cl k Ck
(1— 8)5]/2}7 + 8d/2’7’

(2.15) Chi1 =

where ¢ is given in (2.13). First we will prove for all £k > 1 the following inequality
holds:

(2.16) > ayag <ct™* forallt > 1.
et t=t

Indeed this inequality holds for £ = 1. Suppose (2.16) holds for k > 1. Then we
have the following inequality from (2.13):

E al‘] .o al‘k+]

f+ 1=t

(X aa)as

s=k “t1+-Ftp=s

52( Z a,l---a;k)a(t—s)_d/z—l— Z cxs™a,

s<et My+-ttp=s st<s<t
—d/2 —d/2
<Y T aaw)at-en e X aen Pa
S<et My+-+t=s et<s<t

—d)2 —d)2

<nfei(t —en)
dn

+ neg(et)

=Cry1l
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and hence (2.16) holds for k 4+ 1. We choose ¢ such that n < ¢4/2 < 1. Then we
have ¢, < C( ed%)k for all k£ > 1 by simple calculation and (2.14) follows. There-
fore, we obtain that

o0
E?:E[etfk; Stl_k — Stl—k] < Z Clﬂe(t . k)_d/2 <Colt— k)—d/2
=1
and from this it is easy to check (2.12). U

REMARK. We define p; and R, by

pf =max p;(x) and R, = Z ,otz(x).

xezd
xezd

p; is the density at the most populated site while R, is the probability that a given
pair of particles at time ¢ are at the same site. Clearly (p)> <R, < p. The above
theorem can be interpreted as if we suppose that d > 3 and (1.11), then

R, =0@"%?)  in P([Ns > 0)-probability.
This can be seen as follows:
1 1 —
R, = v Y N2 AN, >0b=— Y N, 1{N, >0}
I xezd t xeZ4
and lim;_,oo N; = Noo > 0, P(-|No > 0)-a.s. However, we know from Lem-
ma 2.1 and Theorem 2.3 that
2 0.0r, . ¢l _ gl —d)2
E[Z N,,x] =Elens S =5/1= 06"
xezd
and hence we have that
E| ¥ N7 N> 0] =060,
xeZd
since P(Noo > 0) > 0.
2.2. Some propositions. We now show Theorem 1.3 by using the argument in
[4]. First we introduce some notations. Let {&;};>1 be i.i.d. random variables with
values in R?. We denote by X, a random walk whose steps are given by the &/’s.

Moreover, we assume that E[exp(8 - &1)] < oo for 6 in a neighborhood of 0 in R,
We define p(0) by

(2.17) p(0) =1In E[exp(0 - &1)].
Then it is obvious that

exp(0 - X; —tp(0))
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is a martingale with respect to the filtration of the random walk.

i jon xM = x"...x" dyn _ ( d yn . (D yng
We will use standard notation x" = x}" - --x;" and (57)" = (53) Cr)

form=(ny,...,ny) € N? and x e R?, Forn = (ny,...,nq) € N the polynomial
Wha(t, x) is defined by

a n
Walt, x) = (—) exp(@ - x — 1p(9))],_o»

96

where |In| =n + - - + ng. We write

(2.18) Wat,x)= > An(, jx't.
@i, j)eNd—1xN

The coefficients Ay (i, j) depend on the derivatives of p in 0. The following lemma
gives some useful properties of Wy (¢, x).

LEMMA 2.4. For a general random walk with exp(p(0)) < oo for 6 in a
neighborhood of 0 and E[&1] = 0, we have:
(@) If|i| +2j > [n|, then An(i, j) =0.
(b) Coefficients with |i| + 2j = |n| depend only on the second derivatives of p at
0, that is, on the covariance of &.
(c) If il = n|, then An(i, 0) =i, .n,8iy.ny = * - Siging-
PROOF. We have that (a%i)(x 0 — tp(®))lo=o0 = x; and (F)i(x -6 —

1p(O))lo=0 = ~1 () (p(©)lo=o for [i] = 2 since 35-p(®)la=o = 0. (@)~(c) fol-
low from Faa di Bruno’s formula [8], Theorem 2.1, page 505, and from the fact
that Loe¥|,_o=1forallkeN. O

Wha(¢, X;) is a martingale with respect to the filtration of the random walk. Com-
ing back to Markov chain (S, Pg) we have that

(2.19) Ya(t) = EX[Wa(t, SHE/]

is an F;-martingale since ¢; is an H,;-martingale. Indeed we have that for any set
Be ft_l,

EA[ES[Wa(t, $})¢/1: Bl = ES[Wa(t, S} E[¢;: B]]
= ES[Wa(t, S})E[¢i—1: B]]
= EA[EQ[Wa(t, S})¢-11: B]
= EA[EY[Wa(t — 1,8 ¢-11: B].

PROPOSITION 2.5. Suppose d > 3 and (1.11). Then we have that for each
n € N? with |n| #0

lim ¢t~ ™72y, (t) =0, P-a.s.

11— 00
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PROOF. We show that the F;-martingale

Z, difz —|n|/2(Yn(s) —Ta(s — 1)
S= l

remains L?-bounded. This implies that Z; converges a.s. and hence Proposition 2.5
follows from Kronecker’s lemma for |n| # 0. For simplicity we write Wy (t, S}) =
Wa(t, S). It is enough to show that E[(Yn () — Yu(t — 1))?] < Ct™=4/2 Indeed it
is obvious that

(2.20) sup E[Z2] = Z “IE[(Ya(s) = Ya(s — 1))7]

t>1 _

and hence, if we show that E[(Yn(t) — Yu(t — 1))?] < Ct™=9/2then the right-
hand side of (2.20) is finite. We can write that

E[(Ya() = Yot = D))"= E[(ESIWa(t. $)¢; = Walt = 1, $)5-11)’]
= E[(ES[Wa(t, $)(& — &-1)]
+ EY[(Wa(t, $) — Walt — 1, $)z-1])°]
= E[(EQAWa(t. )@ — c-D1)’],

where we use the fact that E(S)[(Wn(t, S) — Wh(t —1,8))¢-1] =0 P-a.s. from the
observation after the proof of Lemma 2.4. Moreover, we have that

(2.21)

the right-hand side of (2.21)
= E[EQIWa(t, $)(& — &-DIEAWa(t, )& — &—1)]]

= Eg’os[Wn(t» S)Wn(t’ S)
(2.22) ’

S; S,
- ALY A
foie )G )
aSt/St—l agt/s,[_l
= EDO[Wa(t, $)Wa(t. $)(er — e DS = 5} ,1]
= Eg’%“Wn(l‘, S)|2(e[ — et—l)l{Stl,l _ 51;171}],

where we used on the last line the following facts obtained from Markov property
and (2.1):

S[ ASt

~ A S S' ~ ~
E[g,_lg,_l( LS —1)(ﬂ—1)}=e,_1(w(st_1,st_1,st,sf)—1)

a8 /Si-1 a5,/5-1
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and w(S;—1, Si—1. 8. §) =1 PY3-as.on {S; #5).

It is easy to see that |Wp(z, S)|? < C3|St1_1 |2l 4 4 from Lemma 2.4, where
C3 and C4 are constants dependent only on n and d. We have already proved that
E g’%[e,; S,1 = S‘,l] < Ct~4/2, Therefore, from (2.22) we have to estimate the values

EOO11] [2Me (S} = 5111 and E20[1S! e, 411(S! = §)1. However, we know
from Markov property that ’

0,0 o
ESSS P Mer1(s! = 5/1]

= E(S’g“stl |IPnle, 1(S) = Stl}Egtgsf[w(S[, Si. 1. S]]

m®

Smax{—z,oz
m

E0ais; Pectis =51,

where we used the fact that

- m® . ~ ~
EYlw(y,5, 51, 81)) = { e MY=RY=Y
a, if y= 5.y #7.

Therefore, it is enough to show that E(S)’%HS} 2, 1{S} = §1}] < CrIn=4/2. We
define oy for k € N by 7

oo =inf{r > 0; §; # S',} and oy =inf{t > o _1; St1 = 5}1} fork>1

with inf @ = 4+00. We remark that o9 = T where 1 is defined by (2.4). Moreover,
let xs.1y,...0. = Moo =to,01 — 00 =11, ...,0k — 0k—1 = t}. Then with a similar
argument to the proof of Theorem 2.3, we can write that

00112l . ¢l _ &17_ 001 ¢l 2|, .
Eg (IS ] e, st =581 =E¢ IS/ Mg 00 > 1]
d 0,0
) 12In
+ Z Z ES,S[|St| | IetXt(),...,tk]-
k=0to+--+tr=t
Since |St1 |2l < 2l it is clear that
0,0 cl2n|, . 2n| /1
(2.23) ES’§[|St| er; 00 >t <t“™/m

and hence we have that Eg’%[lSt1 |2le,; o > 1] < CtIMl=4/2,

In the remainder we will show that there exists a certain constant C > 0 such
that

k=0 to+---+tr=t
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If this has been shown then we complete the proof of Proposition 2.5. Since

1 1 1
ISt 1<I1S} I+Z|S -8,
it is obvious that

t
@24) Y X EQUIS PMent.n]

k=0to+--+t=t

(2.25) < Z<k + 12! Z > EgulISs, =S5 MMerx....n]
i=1ty++ix=t
t
(2.26) + 2 G+ 3 BI85, P e xig, )
k=0 to+-+it=t

By using Markov property and shift invariance we have that, for 1 <i <k,

0,0 1 2
Z E [| Sg, 1| lnletho ..... zk]
to+-- k=t

0,0 . X .
= Z ES’S[e,O,G() =t0]( 1—[ E?fg[emaal ZIJ])

to+-- =t 70,i
2.27)

% )zxz[lsl |2|n|eal;o.1 =ti]
= X mt°+lc< [l ar,-) 55085, PMegy; o1 =11],
tot-+ix=t j#0,i

where c is the constant given by ¢ = m~2m® —m). Itis easily seen from (2.10)
that

% 1,2 . % 1{2|n].
E?E[|S,| e, o :t]:E?éﬂS,l o =t
< Y EL[IS 1AM 5! =x]PALS! =x]
xezd

< Cym=d/2,

where we have used on the third line the fact that sup, .74 Pi[S} = x] = O(t~9/?)
[19]. Therefore, it follows that

the right-hand side of (2.27)

= 2 m_ch(nat.f)E§Z§[|S$,|2"'em;01=fi]

to+-- =t Jj#0,i
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< ¥ Csfo_d/z<l_[ a,j>t'“'ti_d/2

to+-- =t j#0,i
—d/2 _ — —d/2
< Z Coty / _ﬁk l(t—to—ti) dﬂ-t‘“'ti /
fo+t; <t

< Gy k1 ml=d/2,

where we use (2.14) and the fact that m " < Ctr~%/2. Since this inequality is inde-
pendent of i, we have that

o
the right-hand side of (2.25) < Y C(k + 1)*M+!1 gk=lylni=d/2
k=1

< Ctlnl—d/Z’

where C is a constant depending only on n and d. A similar argument holds for
the right-hand side of (2.26). Indeed we have that

> ENISSPexn]

to+--+tx=t

= Z E?’%US;JZIHI%; 00 = tO] 1_[ E?:é[e‘”; o1= tj]

o+t =t ’ j#0
—(to—1).,2
= Y ],
fot+--+1x=t Jj#0

<> Csty 18 — 1)

=<t
< Cofft=4/%,

where we use (2.14) and the fact that t2|“|/m’ < Cgt~9/2, Hence we can obtain
that

the right-hand side of (2.26) < Cyot ~4/?,

where Cjg is a constant depending only on n and d. From these we have that
the left-hand side of (2.24) < C¢™=4/2,

so that

k=0 to+--+tx=t

where C is a constant depending only on n and d. Hence the proof is complete.
O

Since we have proved Proposition 2.5 we can show Theorem 1.3.
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2.3. Proof of the result. From [14], Theorem 3, page 363, it is enough to show
the following proposition instead of Theorem 1.3.

PROPOSITION 2.6.  Suppose d > 3 and (1.11). Then foralln = (ny,...,ng) €
Nd
Sl
(2.28) hm ES[(\/_) {,:| NOO/ x"dv(x), P-a.s.,

where v is the Gaussian measure with mean 0 and covariance matrix %I .

PROOF. By induction it follows from Lemma 2.4(a), (c) and Proposition 2.5

that for all n € N9
Sl
w(5) 6]l <

To see this we divide Yy (¢) into three parts as follows:

do=mf(4)e]

(2.30) Y,%(t):r'“'/zEg[ > A, ])<Sl>;,} and

(2.29) sup

t>1

00, P-a.s.

[i[+2j=[n|,j>1 ‘/_
3 0 2 Sl :
no=£ ¥ Aa n(J) 3
[{+2j<|n]|
Then we can write
0 Stl " 2v1
ES[(%) g’}:f"“'/ A0
(2.31)
—¢ Inl/Z(Y y ).

We suppose that (2.29) holds for n € N? with |n| < k. From Proposition 2.5 we
have sup, t~M/21y, ()| < oo P-as. for all n € N?. It is easy to check that for

n e N¢ with |n| =k + 1,

supr M2\ Y2(1) <00 and supr~™/2|¥3 ()| < oo, P-as.
t>1 t>1

Thus (2.29) holds for all n € N¢. Therefore, we conclude that
(2.32) lim =723 (1) = P-as.,

11— 00

and hence from (2.31) and Proposition 2.5 that for |n| > 1
(2.33) lim =2y () + Y2(1)) =0,  P-as.
[—>00
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On the other hand, let Z be an R?-valued random variable with density v. Then it
can be seen that p;(6) is a polynomial of degree 2 where p1(0) is given by (2.17)
for £, = Z. Moreover, we have that for |n| > 1,

0= (%)HE[exp(Q -Z—p10))]

= E[ Y AL, j)zi},
[i[+2j<In]|
where A} (i, j) is defined by (2.18). From Lemma 2.4, A, (i, j) corresponds with
An(, j) for (i, j) with [i] + 2j = |n| and hence we can write for [n| > 1

(2.34) E[Z“ + Y A j)Zi] =0.
lil+2j=nl,j>1

Here we remark that A, (i, j) = 0 for (i, j) with |i| +2j < |n| since (%)j X
01(8)]g—=0 = 0 for j € N¢ with [j| > 3.

We know that lim;_, o Eg[g“,] = N for [n| = 0 which gives (2.28) for |n| = 0.
If (2.28) holds for all n € N¢ with |n| < k, then we have that for all n € N¢ with
n|=k+1,

2.35)  lim MY = NOOE[ > A, j)Zi], P-as.
1—00
[i|+2/=[n],
j>1
From this, (2.32) and Proposition 2.5 it follows that the right-hand side of (2.31)
converges to

—NOOE[ > A j)Zi],
li[+2j=In],
jz1
almost surely as ¢ 7 oo, so that (2.28) holds for n € N¢ with |n| = k + 1 from
(2.34). Therefore, we complete the proof of Proposition 2.6 and Theorem 1.3. [
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