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Abstract: Suitable sequentially rejective multiple test procedures allow to
“zoom in” on clusters of relevant variables in high-dimensional regression
(Meinshausen [7]), or on regions of interest in some search space (Heinrich et
al. [3]; Meinshausen et al. [8]). As a common framework for these schemes we
propose to consider multiple testing along a tree of hypotheses together with
a “keep rejecting until first acceptance” rule. Particular topics addressed in
this note are control of the familywise error, and some variants and basic
properties of the procedure.
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1. Introduction

Often in statistical applications heavy multiple testing is carried out leaving two
major questions:
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Q1: Where are significant departures from null-hypotheses?
Q2: What can be said about the overall error probability of the test procedure?

In regard to Q2, the classical approach is to control the familywise error, i.e.,
to require that the probability of any false rejection is ≤ α, for some α fixed in
advance. Such may be achieved using the Bonferroni inequality or, e.g., closed
or sequential test procedures and variants thereof (Marcus et al. [6], Holm [4],
Goeman & Mansmann [2]). Particularly when the number of tested hypotheses
is large, the desire to avoid any error of the first kind has to be paid by a low
test power. Therefore, as an alternative it has been suggested to control instead
the false discovery rate [FDR], i.e., to bound the expected proportion of false
rejections among all rejections (Benjamini & Hochberg [1]). While test power
generally is improved with this approach, it does not allow to pin down those
tests for which the hypothesis can be safely rejected. Thus when using FDR
control one only gets a vague answer to Q1.

There are cases, however, where a few tests have very small p-values, sug-
gesting a massive violation of the null-hypothesis. Naturally then, one would
like to be able to reject precisely those null-hypotheses with guaranteed con-
fidence. A corresponding multiple test procedure has recently been introduced
by Meinshausen [7], in the context of testing for variable importance in a high-
dimensional linear regression setting. Clusters of highly correlated regressors
are tested for their joint influence on the dependent variable, and get subdi-
vided until the test result indicates irrelevance. Meinshausen showed that the
familywise error of the test procedure can be controlled by suitably adjusting
the p-values of the single tests; moreover, that considerable gains in power are
attainable with this scheme compared to other multiple test procedures.

Virtually the same procedure, though for a different purpose, has been pro-
posed by Heinrich et al. [3] under the name Conquer and Divide [CaD]. It was
devised for detecting regions of potential interest (in regard to time, frequency,
and space [viz. electrode]) in neurophysiological recordings such as the EEG.
CaD proceeds by successively subdividing the se arch space and continues test-
ing along each search path until first acceptance of a null-hypothesis, thereby
taking advantage of instances where some of the individual tests’ p-values are
very small. Another closely related scheme is the “blind search” algorithm of
Meinshausen et al. [8]: regions of interest are successively narrowed down to
the “needle(s) in the haystack,” i.e., to a few instances of massively violated
hypotheses amongst a huge number of true (no effect) null-hypotheses. The fo-
cus in that paper is on computational cost and its reduction by means of an
optimal search strategy. All these procedures work from coarse to fine resolution
levels within the search space. Treelets, introduced by Lee et al. [5] as a fully
adaptive alternative to principal components analysis, follow the converse path.
The single variables are grouped into clusters represented by newly constructed
variables that together with their residuals form a sparse orthonormal basis via
a kind of multi-resolution scheme.

A common feature of all these procedures is that they operate on an underly-
ing tree structure. The purpose of this note is to present the scheme underlying
Meinshausen’s [7] and Heinrich et al.’s [3] procedures in the general setting of
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multiple testing along a tree of hypotheses. We prove control of the family-
wise error of the procedure under a suitable local Bonferroni condition (Section
2), discuss a few of its extensions and basic properties (Section 3), present an
illustrative example (Section 4), and end with some conclusions (Section 5).

2. Testing along a tree of hypotheses

Consider a rooted tree with vertex set V . For definiteness, the tree is supposed
to be hanging upside-down, with the root v0 ∈ V on top. Thus following a branch
“downward/upward the tree” ultimately leads to its leaves/its root, respectively.
Each vertex v gives rise to its children vertices, imagined as lying one layer
below v. Let c(v) ⊂ V denote the children of v, the number (≥ 1) of which may
differ across vertices. Ramification stops at the L-th step (L ≥ 1), such that the
vertices of V come in L layers below the (0-th) root layer. In particular, the tree
has depth L and is supposed to be complete in the sense that all branches end at
the bottom layer. (The completeness assumption is made only for convenience
of presentation and can be dropped; cf. Remark 2.2 below.)

With each vertex (a “location in search space”) is associated a testing prob-
lem: at every v ∈ V a test of a certain null-hypothesis H0(v) is carried out
whose probability of rejection under H0(v) is ≤ α(v). Any such multiple testing
problem will be called a tree testing problem. Let us write α = α(v0) for the test
level at the root v0. The test levels are assumed to satisfy the following local
Bonferroni condition.

(LB) For every vertex v ∈ V above the L-th layer one has
∑

v′∈ c(v) α(v
′) ≤ α(v).

The proposed multiple test procedure by successive subdivision may now be
described as follows. As in Heinrich et al. [3] we dub it Conquer and Divide.

[CaD] Starting at the root v0, keep testing downward each branch of the tree
(“search path”) as long as the respective null-hypothesis is rejected: stop testing
upon first acceptance of a null-hypothesis, and reject all null-hypotheses that
have been rejected so far.

The familywise error, or probability of an error of the first kind of the pro-
cedure CaD, equals the probability π1 that among the hypotheses rejected by
CaD there is at least one true (hence falsely rejected) hypothesis. We will show
that the familywise error of the CaD procedure does not exceed α. A closely
related result pertaining to hierarchical variable selection is due to Meinshausen
[7, Theorem 1].

Theorem 2.1. Under condition (LB) one has π1 ≤ α.

Remark 2.2. The theorem immediately extends to the case where one has a
collection of rooted trees, not necessarily with identical depths, provided the
test levels at the respective roots are controlled by Bonferroni. Incomplete trees
with branches ending in a leaf strictly above the bottom layer can be completed
trivially: any branch ending in a leaf v at a layer ℓ < L is prolonged to a branch
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ending at layer L by letting the local testing problem at any newly added vertex
be an identical copy (regarding hypothesis, test procedure, and outcome) of the
testing problem at vertex v.

Remark 2.3. The familywise error controls other common error criteria, too.
Thus domination by the familywise error is guaranteed for any criterion repre-
sentable as the expected value of an (unobservable) random variable with values
in [0, 1] that assumes the value 0 whenever there is no false rejection. Examples
include the false discovery rate and the per comparison error rate (Benjamini &
Hochberg [1, p. 291]). Note that no assumption is required here about the joint
distribution of the test statistics.

Proof of Theorem 2.1. Let P denote the probability measure underlying the
observations. Given P, the hypothesis H0(v) at vertex v is either true or false.
Thus given P, we get a valued tree by assigning vertex v the truth value t(v) = 0
if H0(v) is false, and t(v) = 1 otherwise. For any vertex v let U(v) denote the
set of all vertices v′ ∈ V that lie on the (unique) path leading from v up to
v0, except for v itself which is excluded. Let the set F consist of all vertices at
which the null-hypothesis is true for the first time, ‘first’ in top-down direction.
That is, F comprises all vertices v ∈ V with the following two properties: (i)
t(v′) = 0 for every v′ ∈ U(v); (ii) t(v) = 1. (F = {v0} if t(v0) = 1.)

The significance of the set F is the following: (*) if (the application of) CaD
happens to produce any error of the first kind (hereafter: type I error), then
it also produces a type I error at some vertex v ∈ F. For suppose that CaD
produces a type I error at vertex v∗ ∈ V , say. If v∗ ∈ F, we are done. If v∗ /∈ F,
then since t(v∗) = 1, there exists a first vertex v on the path from v0 down to
v∗ with t(v) = 1, that is, there exists v ∈ U(v∗) ∩ F. Moreover, the test at v
rejects H0(v) because otherwise the procedure would have stopped at v, leaving
no occasion for a type I error to occur at v∗. Consequently, a type I error occurs
at v ∈ F, and (*) is proven. But (*) implies

π1 = P [H0(v) is rejected for at least one v ∈ F ] (1)

≤
∑

v∈F
P [H0(v) is rejected ]

≤
∑

v∈F
α(v),

whence it suffices to show that
∑

v∈F
α(v) ≤ α. (2)

For any complete subtree U of V let ρU denote its root vertex. Then (2) is a
consequence of the following more general claim:

For every complete subtree U of V , SU :=
∑

v∈F∩U α(v) ≤ α(ρU ). (3)

We argue by induction on the depth ℓ of U (0 ≤ ℓ ≤ L). The case ℓ = 0 is trivial
(since U then consists of its root only), so let 1 ≤ ℓ (≤ L) and suppose that (3)
holds for every complete subtree of depth ℓ−1. Let U be a complete subtree of
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depth ℓ. If F ∩ U is empty or equals {ρU}, there is nothing to prove. Otherwise
let us decompose U : each descendant v of ρU represents the root of a complete
subtree U(v) of U of depth ℓ−1. Since the vertex sets of all these subtrees are
pairwise disjoint, and ρU /∈ F if F ∩ U 6= {ρU}, the induction hypothesis and
condition (LB) imply

SU =
∑

v∈c(ρU )
SU(v) ≤

∑
v∈c(ρU )

α(v) ≤ α(ρU ).

Thus (3) holds for any complete subtree of depth ℓ, and the proof is complete.

3. Extensions

3.1. Strict testing problems

Thus far null-hypotheses could be true or false without any restriction. Often,
however, restrictions result from logical dependencies between hypotheses (Shaf-
fer [9]). In such cases the conditions imposed on the individual test levels can
be relaxed, and gains in test power achieved. This possibility was elaborated by
Meinshausen [7] under the heading Shaffer improvement. Of particular interest
here is strict logical dependency.

Definition 3.1. A tree testing problem is called strict if for every false hypothe-
sis H0(v) above the bottom layer, at least one of the hypotheses H0(v

′), v′ ∈ c(v)
is false, too.

Corollary 3.2. Consider a strict tree testing problem such that for any parent-
child pair v, v′ ∈ V with v′ a leaf of V (i.e. v′ is a vertex at the bottom layer L,
and v′ ∈ c(v)) one has

α(v′) ≤ α(v)
|c(v)|−1 (if |c(v)| ≥ 2 ; α(v′) = 1 otherwise),

whereas for all other vertices (i.e., children vertices at layers < L) condition
(LB) is satisfied. (This modification of condition (LB) is referred to as condition
(LBs).) Then π1 ≤ α.

Proof. The proof of Theorem 2.1 applies up to the following modification. Con-
sider any vertex v′ at the bottom layer, with parent vertex v. If v′ /∈ F then
it does not contribute to π1, so suppose v′ ∈ F. By the definition of F and
strictness one has t(v′) = 1, t(v) = 0, and t(v′′) = 0 for at least one v′′ ∈ c(v),
so that (|c(v)| ≥ 2 and) at most |c(v)| − 1 vertices in c(v) belong to F, i.e.,
can contribute to π1. Thus by (LBs), the probability of a false rejection at any
v′ ∈ c(v) is controlled by α(v), and the proof is complete.

Remark 3.3. The strictness condition generally is satisfied in the tree test-
ing problems envisaged here. Suppose that x(t), t ∈ T is a stochastic process
with mean m(t) = Ex(t) and we wish to learn where m(t) deviates (sub-
stantially) from zero. With CaD, such regions may be searched for by suc-
cessively bisecting T into smaller intervals I down to a certain level, and test-
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ing H0(I) : m(t) = 0 (t ∈ I) along each subdivision branch until first ac-
ceptance. Evidently, the corresponding tree testing problem is strict. It re-
mains so also if the null-hypothesis at vertex I is less rigid than above, say
H0(I) :

∫
I
m(t) dt = 0. However, in the latter case a hypothesis can be true

with both its children hypotheses being false.

Remark 3.4. (Optimality) In the common case of a binary tree V and uniform
distribution of errors across the two children, condition (LB) means that test
levels have to be halved from layer to layer (downwards V), so that α(v) = α2−ℓ

for any vertex v at the ℓ-th layer. Under condition (LBs) the last halving step
can be omitted, and one may choose α(v) = α2−(L−1) for every vertex v at the
bottom layer (Meinshausen [7]). Can one further relax the conditions imposed
on the test levels α(v)? The following argument shows that at least for small α
sizable improvemens beyond condition (LBs) are not possible in general.

Let us assume that the individual test levels are identical within each layer,
and let αℓ denote their common value at the ℓ-th layer. It will be shown that,
essentially, the αℓ cannot be chosen larger than indicated above. We consider
two cases. First, suppose there is a branch v0, v1, . . . , vL reaching from the root
to the bottom layer of V such that all hypotheses H0(vℓ), 0 ≤ ℓ ≤ L are false,
while for the respective sibling v′ℓ of vℓ (sharing the same parent) the hypothesis
H0(v

′
ℓ) is true (1 ≤ ℓ ≤ L). Suppose further that every H0(vℓ), 0 ≤ ℓ < L is

rejected with probability close to 1, say equal to 1. Then every sibling hypothesis
H0(v

′
ℓ), 1 ≤ ℓ ≤ L gets tested, and the probability of any error occurring thereby

can be estimated by, and assumed to be not much less than1
∑L

ℓ=1 αℓ =: ǫ1.
Thus, π1 & ǫ1. Secondly, fix a layer ℓ ≥ 1 and suppose that for each pair
of siblings at this layer one of the null-hypotheses is false and the other one
is true; furthermore, that all hypotheses at layers strictly above ℓ are false;
and finally, that these false hypotheses are rejected with high probability, say
1. Then similarly as in the first case, the probability of any false rejection at
layer ℓ can be assumed to be approximable by 2ℓ−1αℓ. This holds for every ℓ,
so π1 & max1≤ℓ≤L 2ℓ−1αℓ =: ǫ2. Consequently, ǫ1, ǫ2 have to be ≤ α if the
procedure is to control the familywise error.

Naturally, one would like to maximize the smallest test level, which under the
constraint ǫ2 ≤ α amounts to setting αL = α21−L. If one then puts αℓ = α2−ℓ

for 0 ≤ ℓ < L as in condition (LBs), then the approximate lower bound ǫ1 to π1

already attains the maximally allowed value α,

ǫ1 =
∑L

ℓ=1
αℓ = α

(∑L−1

ℓ=1
2−ℓ + 21−L

)
= α,

showing that no room is left for substantial improvements beyond condition
(LBs).

Similar considerations apply to q-nary trees where each vertex has q children
(q > 2). In this case condition (LBs) amounts to setting α(v) = αq−ℓ or α(v) =
αq1−L/(q − 1), respectively, according as vertex v lies above or at the bottom

1Such is the case if the test statistics are independent and the test levels are small.
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(L-th) layer. Arguments entirely analogous to the case q = 2 show that, again,
sizable improvements beyond this choice are not possible.

3.2. Nested multiple testing

With CaD, the probability of any false rejection at the children v′ ∈ c(v) of a
vertex v ∈ V is controlled by (local) Bonferroni type estimates. A natural idea
is, then, to apply instead a more sophisticated multiple testing procedure to
the children hypotheses H0(v

′), v′ ∈ c(v). Any tree testing problem in the sense
of Section 2 may likewise be conceived as a nested testing problem: with any
vertex v (strictly) above the bottom layer L one associates the local problem
M(v) consisting of the hypotheses H0(v

′), v′ ∈ c(v)2 along with an associated
multiple test procedure. The quantity α(v) then has to be interpreted as the
familywise error of that local test procedure.

For definiteness, suppose the m = |c(v)| children hypothesesH0(v
′), v′ ∈ c(v)

are tested at the level α(v) using Holm’s [4] sequential test procedure. (Any
multiple test procedure other than Holm’s that controls the familywise error
locally at every M(v) could be applied as well.) At the next layer, M(v) splits
into m children problems M(v′), v′ ∈ c(v), where each M(v′) corresponds to
a subdivision of the single hypothesis H0(v

′) into m′ = |c(v′)| further null-
hypotheses which, again, are tested using Holm’s procedure. The nested CaD
procedure [nCaD] stops at vertex v if the local procedure associated with M(v)
accepts at least one of the single hypotheses H0(v

′), v′ ∈ c(v). Otherwise it
continues at all children problems M(v′), v′ ∈ c(v). The familywise error π1

of nCaD is defined as the probability that any of the local test procedures
M(v), v ∈ V produces a false rejection, which equals the probability that any
of the single null-hypotheses H0(v

′), v′ ∈ c(v), v ∈ V is falsely rejected.
Although above nCaD was developed starting out from a tree testing prob-

lem in the sense of Section 2, such an ascription is not necessary. The single
hypotheses making up the local multiple testing problem M(v1) generally need
not have any relationship to those making up M(v2) (v1 6= v2).

Corollary 3.5. Under condition (LB) nCaD satisfies π1 ≤ α.

Proof. It suffices to assign truth values as follows: t(v) = 1 if any of the single
hypotheses H0(v

′), v′ ∈ c(v) is true, and t(v) = 0 otherwise. The correspond-
ingly defined set F then retains its original meaning: one readily verifies that if
nCaD produces a false rejection in the local testing problem M(v∗), then there
is a vertex v ∈ F ∩ U(v∗) such that the procedure produces a false rejection
in the local testing problem M(v). The remainder of the proof is analogous to
that of Theorem 2.1.

Towards a comparison of CaD and nCaD in the case of a binary tree testing
problem, suppose that nCaD is implemented using Holm’s procedure. Let p̂(v)
denote the p-value of the test of hypothesis H0(v). Then nCaD rejects none or at

2Note that even though the single hypotheses making up M(v) are located at layer ℓ+ 1
if v belongs to layer ℓ, M(v) is considered as being located at layer ℓ in the nested version.
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least one of the two children hypotheses of vertex v according as minv′∈c(v) p̂(v
′)

is > α(v)/2 or ≤ α(v)/2, respectively, and in the latter case it rejects both if
in addition maxv′∈c(v) p̂(v

′) ≤ α(v). For comparison, CaD rejects hypothesis
H0(v

′) if p̂(v′) ≤ α(v)/2 (separately for both v′ ∈ c(v)). Therefore, individual
test levels are more restrictive with CaD. This does not imply that CaD is less
powerful, however, because in return nCaD has a more restrictive stopping rule.
In fact, if nCaD stops at vertex v in some branch of V , then CaD (i) does
not stop earlier than at the children v′ ∈ c(v) (i.e., not earlier than nCaD;
see footnote 2); (ii) may continue testing further downward the tree, namely if
minv′∈c(v) p̂(v

′) ≤ α(v)/2—whereas nCaD will stop at v if maxv′∈c(v) p̂(v
′) >

α(v). Thus in general none of the two procedures dominates the other one.

4. Application

For illustration let us consider a signal plus noise model

x(ti) = f(ti) + ǫ(ti), ti = (i− 1/2)/n, 1 ≤ i ≤ n (4)

with i.i.d. Gaussian noise rv’s having mean 0 and (known) variance σ2. One
wants to know whether f(ti) = Ex(ti) 6= 0 for some ti, and if so, at which
ti. When (n)CaD is applied with a bisection strategy the vertices of the search
tree V correspond to dyadic intervals. Starting at the root v0 = [0, 1), continued
bisection yields 2ℓ vertices of the form v = [k2−ℓ, (k + 1)2−ℓ), 0 ≤ k < 2ℓ

at the ℓ-th layer. The testing problem at vertex v involves the null-hypothesis
H0(v) : f(ti) = 0 ∀ ti ∈ v along with some test that rejects H0(v) if, e.g.,

T1(v) = #{ti ∈ v}−1

∣∣∣∣
∑

ti∈v
x(ti)/σ

∣∣∣∣ or T2(v) =
∑

ti∈v
(x(ti)/σ)

2

is too large. Since these test statistics have known distributions under H0(v), all
elements required for running the (n)CaD procedure are specified. Simulation
results are presented below.

For the electroencephalographic (EEG) applications considered in Heinrich
et al. [3], x may be thought of as representing the difference of two event-related
potentials (ERP) recorded at time points ti under different experimental condi-
tions.3 In this case the i.i.d. assumption on the noise variables is inappropriate,
and the above tests are not applicable. Feasible valid tests can easily be ob-
tained, however, using randomized assignment of the single trials to the two
experimental conditions. Apart from that the model (4) captures the basic situ-
ation encountered when looking for ERP-components (significant deflections of
the difference-ERP from the null-line) in EEG studies.

We demonstrate the performance of CaD and nCaD for the case indicated
above, with a signal f mimicking a typical ERP shape, noise level σ = 0.7, n =

3An ERP is an average of short segments, called “trials,” of a continuously recorded EEG
trace that are temporally aligned to certain periodically recurring events such as the onset of
a stimulus.
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210, and α = .05; bisection continues to layer L = 5. The signal f is a linear
combination of shift-scale versions ga,b(t) = g((t − b)/a) (a > 0, b ∈ R) of the
smoothed indicator function

g(t) = 1 (|t| ≤ 1/2), = 0 (|t| ≥ 3/2), = cos2((|t|−1/2)π/2) (1/2 < |t| < 3/2).

The blue and red lines in Fig. 1 represent rejection profiles for CaD and nCaD,
respectively, which are obtained as follows. For every ti the ordinate of the profile
is computed as the relative frequency, among 104 Monte Carlo simulations of
(4), of the event that hypothesis H0(v) is rejected for each v ∈ V containing ti.
A rejection profile thus is a step function constant on the dyadic intervals at
the finest resolution level.

0 0.2 0.4 0.6 0.8 1
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0
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Fig 1. Rejection profiles (see text) of CaD (blue) and nCaD (red) procedures, for test statistics
T1 (left) and T2 (right). Black: signal f ; greenish: sample noisy versions of f.

The example shows that at least for the test statistics of type T1 neither
CaD nor nCaD completely dominates the other procedure in regard to power
as measured by the rejection profile. When varying the parameters defining f
we often found that CaD performed better than nCaD particularly where f
oscillates heavily or deviates strongly from zero on small temporal regions, as
for .05 < t < .25 in our example. By contrast, nCaD can be more sensitive
against consistent, less localized deviations; compare the two rejection profiles
for 1

4 < t < 1
2 in the left-hand plot. The low performance of CaD in this case is

due to the fact that the null-hypothesis at the root v0 = [0, 1) is only sligthly
violated because the normalized mean deviation,

√
n/σ times the average of

all f(ti)s, has a rather moderate value of about 1.2. Therefore the test at the
root v0 accepts H0(v0) fairly often and the CaD procedure (applied with the
T1-type tests) stops already at v0. In contrast, nCaD starts testing the two
hypotheses H0(v

′) (conceived as a multiple test problem) corresponding to the
intervals v′ = [0, 1/2) and v′ = [1/2, 1), respectively, which are both strongly
violated, hence let nCaD continue with high probability. Afterwards, however,
nCaD tends to stop earlier than CaD, namely when there is no sizeable deflection
in one of the two subdivision intervals.
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Concerning familywise errors the procedures were strongly conservative, for
both test types. With an overall level of α = .05 one would expect that an error
of the first kind (familywise) occurs in about 500 among the 104 simulated trials.
However, with CaD such an error occurred only in 9 (T1), respectively 82 (T2)
trials; with nCaD these figures were 160 (T1) and 174 (T2), respectively.

Subdivision into disjoint intervals can be disadvantageous if deviations of
interest happen to occur in small vicinities of the subdivision points. It may
then be meaningful to allow for some overlap, e.g., divide [0, 1) into [0, 1/2+ δ)
and [1/2 − δ, 1) for some δ ∈ (0, 1/2), and similarly at finer resolution levels.
Note that there is no need for subdividing the search space into disjoint portions
since the testing problems at the vertices of the tree may be entirely arbitrary in
general. When analyzing images in 2 (or 3) dimensions rather than time courses,
successive triangulation or subdivision into 4 (or 8) subregions, perhaps with
overlap, may be appropriate, yielding more strongly ramified trees.

5. Conclusions

Multiple testing problems for hypotheses that can be arranged in a tree struc-
ture have important applications in statistics. As a particular feature of the
procedures studied here, the significance levels of the tests are moderate ini-
tially, and become restrictive only downward the tree (toward finer resolution
levels). This increases the chance of rejecting hyotheses at the upper layers of
the tree (coarser levels), and thus to get some rough information where to look
more closely. By contrast, with bottom-up sequential procedures such as Holm’s
[4], the most restrictive test is carried out first, implying an increased risk that
the procedure stops immediately and yields no information at all.

Much of the present work is already contained in Meinshausen [7]. In partic-
ular, Meinshausen proposed a multiple test procedure equivalent to CaD (Con-
quer and Divide; Heinrich et al. [3]) and proved that it controls the familywise
error; furthermore, that it is amenable to Shaffer improvement (cf. Section 3.1).
However, this material was stated in a somewhat special context, hierarchical
testing for variable importance. Our main purpose here was to present the ba-
sic problem and procedure in the general, context-free form of multiple testing
along a tree of hypotheses, which covers a wide range of search and selection
problems including those considered by Meinshausen [7] and Heinrich et al. [3].

Some further extensions and results, mostly straightforward but useful, in-
clude the following. First, test levels at the children vertices in the local Bon-
ferroni conditions need not be balanced. This allows to allocate test power se-
lectively, for instance when regions of interest are known. Secondly, arbitrary
trees are covered: the number of children may vary from vertex to vertex, and
branches need not all have identical lenghts. Third, the Shaffer-improved CaD
procedure has a certain (approximate) optimality property: subject to fami-
lywise error control the individual test levels cannot in general be relaxed to
a sizable degree (Remark 3.4). Finally, nested multiple testing along with a
generalized CaD procedure, nCaD, was introduced, where the individual test
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problem at a vertex v may be a multiple test problem itself. Depending on
the type of tests used nCaD sometimes can dominate CaD on broad regions in
search space showing consistent deviations from the null-hypothesis (Figure 1,
left). Our simulation results and heuristic considerations indicate, however, that
CaD may often be superior to nCaD, particularly for hypotheses corresponding
to sparse, narrowly localized deflections.
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