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Abstract: Network engineering for quality-of-service (QoS) of Internet
voice communication (VoIP) can benefit substantially from simulation study
of the VoIP packet traffic on a network of routers. This requires accurate
statistical models for the packet arrivals to the network from a gateway. The
arrival point process is the superposition, or statistical multiplexing, of the
arrival processes of packets of individual calls. The packets of each call form
a transient point process with on-intervals of transmission and off-intervals
of silence. This article presents the development and validation of models
for the multiplexed process based on statistical analyses of VoIP traffic from
the Global Crossing (GBLX) international network: 48 hr of VoIP arrival
times and headers of 1.315 billion packets from 332018 calls. Statistical
models and methods involve point processes and their superposition; time
series autocorrelations and power spectra; long-range dependence; random
effects and hierarchical modeling; bootstrapping; robust estimation; mod-
eling independence and identical distribution; and visualization methods
for model building. The result is two models validated by the analyses that
can generate accurate synthetic multiplexed packet traffic. One is a semi-
empirical model: empirical data are a part of the model. The second is
a mathematical model: the components are parametric statistical models.
This is the first comprehensive modeling of VoIP traffic based on data from
a service provider carrying a full range of VoIP applications. The models
can be used for simulation of any IP network architecture, wireline or wire-
less, because the modeling is for the IP-inbound traffic to an IP network.
This is achieved because the GBLX data, collected on an IP link, are very
close to their properties when they entered the GBLX network.
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1. Introduction
1.1. Voice over the Internet (VoIP)

Voice is increasingly being transmitted over the Internet. It is migrating from
the Public Switched Telephone Network (PSTN), the traditional voice phone
network that 25 years ago carried nearly all voice traffic (Peterson and Davie,
1999). The technology for the Internet is referred to as the Internet Protocol
(IP), and voice over the Internet is VoIP. Two widely used sets of VoIP protocols
are SIP-RTP (Rosenberg et al., 2002; Schulzrinne et al., 2003), which is the set
for the VoIP data reported in this article, and Skype (Baset and Schulzrinne,
2006; Suh et al., 2006).

A VoIP communication starts with a signal, a waveform, that is sampled at
rates typically from 5.3 kilobits/sec to 64 kilobits/sec depending on the imple-
mentation. An increasing rate produces better signal reproduction. The cap-
tured bits are accumulated over intervals of 20 ms or 30 ms. At the end of each
interval, the bits become a packet of information that is transmitted over the
Internet. If the capture rate is 64 kilobits/sec and the interval is 20 ms, as it is
for our data, then the size of the packet information is (64 kilobits/sec)/(0.002
sec) = 1280 bits = 160 bytes. Added to each packet are headers that Internet
protocols must read to carry out their tasks of getting the packet to its destina-
tion and reforming the signal. The device that carries out this IP packetization
is the IP-inbound gateway.

Each call has packets in two directions: caller host to callee host and callee
host to caller host. The packets in each direction are a semi-call. For our data,
the headers are 40 bytes, so each packet is 200 bytes = 1600 bits. A packet
is released for transmission to the destination as soon as it is formed, so for a
semi-call this happens at intervals of 20 ms or 30 ms.
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Packets of a semi-call are routed across the Internet. They move from one
router to the next over a transmission link. A router has input links and output
links, and each link can carry the packets of other Internet communication
connections. These can be other VoIP calls. They can be connections in which
files are transferred by the Internet protocol TCP; one example is the transfer
of a Web page from a server host to a client host. For such data connections,
files are also broken up into packets that carry up to 1460 bytes = 11680 bits
of the file. Such data traffic using TCP is referred to as best-effort traffic.

An output link has a speed in bits/sec at which the equipment can “write”
the bits of a packet onto the link. The link from which our measurements come
is 100 megabits/sec. (Once on the link, a bit travels down it at the speed of
light.) The combined VoIP traffic using the link has a packet arrival rate which
we can average over any interval of time such as 5 minutes to get a rate in
packets/sec. Each packet is 1600 bits, so the VoIP traffic rate in bits/sec is the
packet rate times 1600 bits/packet. For the link from which our measurements
come, 5 minute traffic rates vary over about 2-11 megabits/sec.

1.2. Quality of Service (QoS) for VoIP

The link transmission start times of the packets of any semi-call, the times that
the first bits of the packets are put on the link, form a transient point process.
The start times of the packets of all semi-calls using the link are superposed, or
statistically multiplexed, on the link. (Interestingly, statisticians and probabilists
use the term superposition, but network researchers use the term statistical
multiplexing.)

Only one packet at a time can be transmitted over the link. If a packet arrives
for transmission on an output link that is not in use, transmission begins nearly
immediately. Otherwise, the packet is put into a queue to await transmission.
If the queue buffer has no space available, the packet is dropped; this happens
when the traffic bit-rate exceeds the link speed for a while, the traffic backs up,
and the queue fills to capacity. If there is space in the queue, the packet is just
delayed. The service time for a packet is the transmission time of the packet,
which is the time it takes the router interface to write the packet bits on the
output link. The link speed for the link from which we collected our data is 100
megabits/sec. The transmission time of a 1600-bit VoIP packet at 108 bits/sec
is 16 us.

Network quality of service (QoS) for a VoIP semi-call, how well the speech
sounds at the destination, is determined by the transit of the packets across the
Internet from the source host to the destination host. Queueing delays at the
routers have a major impact on quality. The quality can be very well character-
ized by two QoS criteria (Karapantazis and Pavlidou, 2009). The first criterion
is packet travel time from source to destination (mouth to ear); the upper bound
beyond which degradation begins to appear is about 150 ms. The more time
a packet spends in queues, the longer the travel time. A second criterion gov-
erns the inter-arrival times of the packets of the semi-call at the destination.
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At the source, VoIP packets are sent every 20 ms or 30 ms, according to the
accumulation interval. VoIP protocols at the receiving end must feed speech to
a listener at a constant rate. Varying delays for the packets of a semi-call in a
queue causes jitter: deviations of the destination semi-call packet inter-arrivals
from their original 20 ms or 30 ms. The protocols can compensate to some ex-
tent by buffering the speech, but in general more jitter results in lower speech
quality. A QoS criterion for the mean absolute jitter is 30 ms.

VoIP traffic also contains connections that are machine-to-machine transac-
tions such as faxes, point-of-sale credit card charge verifications, and computer
connections to the Internet (Karapantazis and Pavlidou, 2009). These connec-
tions occur in VoIP traffic because they are carried out on lines used for voice.
Quality of service (QoS) requirements for voice are more stringent than for the
other applications. Voice is a real-time application. Speech, to be intelligible,
needs special treatment. So QoS standards for VoIP traffic are set for voice.

1.3. Network engineering for efficiency and QoS

VoIP network engineering has two parts: VoIP traffic engineering and VoIP
protocol implementation engineering. The goals are to operate the network as
efficiently as possible while assuring QoS. Traffic engineering practices determine
the topological design of an IP network, its link speeds, and the amount of
traffic sent over the links. Implementation engineering involves choosing VoIP
implementation factors such as the signal capture bit-rate and the duration
of the accumulation interval. Some practices reduce traffic and others reduce
queueing delay.

Network traffic engineering

The queueing in a router buffer is affected by the arrival bit-rate of the sta-
tistically multiplexed VoIP traffic on the link, and the speed, or bit-rate, of
the link. A higher traffic rate increases the queueing distribution, and a higher
link speed reduces the service time and therefore decreases the queueing dis-
tribution (Kesidis, 2007; Rolls et al., 2005). The link utilization, u, is the mean
traffic rate divided by the link speed. The goal is to find the QoS utilization:
the maximum utilization uqes that satisfies the QoS criteria for delay and jitter.
Over-provisioning, which means operating at v < uqes, Wastes resources.

Network implementation engineering

One implementation engineering practice, silence suppression, operates on the
packets of a semi-call at the IP-inbound gateway. An algorithm listens to what
is being sent, determines that there is silence, and stops the sending of packets
from the gateway. Transmission starts up again when the algorithm hears a
signal. During the silence period, the gateway sends a packet to start the silence
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interval, and keep-alive packets every 2 sec to let the destination host know
that the connection has not been severed. When silence suppression is used, the
semi-call consists of a sequence of alternating transmission and silence intervals
whose lengths form an on-off process.

Another practice is priority queueing. If no action is taken, VoIP packets
must wait in the queue for the transmission of best-effort traffic packets such as
Web page transfers. However, a VoIP semi-call has much more stringent QoS
requirements, and typically has much less traffic volume overall. The practice is
to move an arriving VoIP packet ahead of all best-effort packets in the queue.

Other implementation engineering factors are the signal capture rate, com-
pression of the packet contents, and the accumulation interval. The first two
change the traffic rate, and the third keeps the traffic rate constant but changes
the packet size and the time interval between packets of each semi-call.

2. Justification and overview of the work presented here
2.1. Statistics and Internet traffic engineering

Network engineering for VoIP QoS is challenging because the statistical proper-
ties of the multiplexed VoIP arrival process and the effect of network engineering
factors on them are very complex, as they are for all types of Internet traffic.
When the semi-call rate increases, the multivariate distribution of any fixed
number of consecutive inter-arrivals can change in complex ways because of the
increased multiplexing of packets of different semi-calls (Cox and Isham, 1992).
Furthermore, characterizations of the queueing delay distributions are typically
not tractable, although there has been much work in approximated tail behavior
(Massoulie and Simonian (1999); Choe and Shroff (1999)).

What typically does not apply is simple network speed-up (SNP) (Rolls et al.,
2005). Suppose the call arrival process is stationary. Suppose the call arrival rate
and the link speed are increased by the factor f > 1. Then the traffic bit-rate
and the expected number of active calls are always increased by the factor f. If
SNP applied, the finite sample distributions of the inter-arrival times as a time
sequence, and the distributions of the delays as a time sequence would change
only by the scale factor 1/f. In other words, SNP behaves as if we filmed the
original system and speeded up the film by the factor f.

SNP would apply if the packet arrivals were Poisson. VoIP arrivals, and In-
ternet traffic arrivals generally, are not Poisson, but rather tend toward Poisson
in a certain sense (Cao et al., 2002). This complex change in the arrival process
changes the queueing distribution in complex ways, not simply by the factor 1/ f.
It is for this reason that finding the QoS utilization, us, for traffic engineering
is fundamentally a statistical problem (Belottia et al., 2008).

To get comprehensive answers to the effect of changing engineering factors of
Qo8, it is necessary to run statistical multi-factor simulation experiments that
recreate network transmission and queueing for one or more routers, and vary
the engineering factors (Shin and Schulzrinne, 2009). The queueing properties
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are themselves mathematically complex, typically intractable if the goal is to
characterize the entire distributions of delay and jitter. The stochastic properties
can be guided by theory, but the simulated queueing process creates another set
of data that typically need to be studied empirically using statistical methods.
Rolls et al. (2005) discuss this issue in detail and put forward a number of useful
tools.

However, to insure the validity of simulation study of queueing, it is criti-
cal that the model used to generate the multiplexed packet traffic accurately
reproduce the statistical properties of live multiplexed traffic (Fraleigh et al.,
2003b). Furthermore, the modeling must be for the IP-inbound packet traffic
from a gateway. If we attempt comprehensive simulation, then we must start
with traffic as it is when first seen on the network. The models can then be
used for simulation of any IP network architecture, wireline or wireless. If the
modeling is carried out with measurements of multiplexed traffic that has un-
dergone more than very light network processing, then the statistical properties
will have been altered in ways that make their use as IP-inbound traffic invalid.

2.2. The modeling

This paper presents detailed analyses of multiplexed packet-level VoIP traffic
that lead to models for the packet arrival process of the inbound IP traffic from
an [P gateway. The analyses provide validated models: the statistical properties
of the resulting traffic is a good approximation of the live traffic for the purpose
of QoS traffic engineering.

The modeling is done to provide generation of multiplexed VoIP traffic for
valid network QoS simulation as described above. Because of our approach, the
simulation can be for a fully wireline network or one with wireless links. There
are two statistical models. One is a mathematical, parametric model. The second
is a semi-empirical model, which means that a subset of the measurements are
a part of the model.

To carry out the modeling, we collected VoIP packet timestamps and headers
for 48 hr in both directions on a link of the Global Crossing international net-
work; there are 332018 calls and 1.315 billion packets. Modeling is based on anal-
yses of the marginal distributions and time dependencies of call-level properties
(semi-call arrivals, durations, bit-rates, and transmission-silence intervals), and
packet-level properties (timestamp accuracy, jitter, and 20-ms packet-counts).

There are two models. Both use a mathematical parametric model for call
arrival times; each arrival time becomes the time of the first packet of a semi-
call. The two models then depart in modeling the semi-call packet inter-arrival
times. One is a semi-empirical semi-call model, and the other a mathematical
model. In the semi-empirical model, the inter-arrivals are those of a semi-call
randomly sampled from 277540 semi-calls from the Global Crossing dataset. In
the mathematical semi-call model, the semi-call inter-arrivals are generated by
the following:

e a call duration is generated
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e alternating transmission and silence interval lengths are generated by a
model of the transmission-silence interval process until their sum reaches
(closely) the call duration

e packet arrivals are inserted every 20 ms into each transmission interval
beginning with the start time of the interval

e silence packets are inserted every 2 sec into each silence interval beginning
with the start time of the interval.

Then for both models, the packets of the semi-calls are superimposed to form
the multiplexed VoIP traffic, just as packets of the semi-calls are multiplexed on
the live network. Different multiplexed traffic bit-rates are achieved by different
semi-call arrival rates.

This modeling at the semi-call level is far simpler than directly modeling the
multiplexed packet traffic arrivals, which would require models that change with
the expected semi-call rate. Also, the semi-call modeling allows extensibility to
different VoIP implementation factors from those of the measured traffic. For
example, we could investigate the effect of silence suppression by eliminating
the silence intervals in the semi-call models, using only the durations in the
modeling.

One critical task in the semi-call modeling is establishing the validity of cer-
tain assumptions about independence and identical distribution of the modeled
semi-call random variables for both the semi-empirical model and the mathe-
matical model. These variables model the semi-call durations and the lengths
of the alternating transmission-silence intervals.

Another critical task, for reasons discussed above, is to establish that our
measured traffic has, to an excellent approximation, the statistical properties of
gateway IP-inbound arrivals. Our measured traffic begins as IP-inbound traffic,
but does undergo some router queueing before arriving at our monitored link.
We demonstrate that the effect of the network processing on the arrival times
is negligible.

Setting the goal of the analysis as QoS study affects the modeling results.
The impact is aptly characterized by Box (1976): “All models are wrong, but
some are useful.” Statistical effects in the data that are insignificant to QoS
issues do not need to be modeled. In particular, it is not necessary to account
for unique properties of a subset of semi-calls that have a negligible packet rate.
Because we have so much data, we can clearly see that no assumption in our
modeling is true. Model selection is based on judgments about whether obvious
deviations are likely to have negligible impact on delay and jitter.

Multiplexed best-effort Internet packet traffic arrivals, discussed in Section
1, are a long-range dependent point process (Leland et al., 1994). Inter-arrivals
have an autocorrelation function that has a polynomial decay as the lag in-
creases, which means that dependencies continue for long periods. The outcome
is much larger queueing delays than other arrival processes with the same ar-
rival rate, such as Poisson (Erramilli et al., 1996). The long delays are a major
factor in QoS for best-effort traffic and have had a substantial impact on the en-
gineering of the Internet (Paxson and Floyd, 1995). Here, after establishing the
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models, we investigate the time dependence of multiplexed VoIP traffic, both
the modeled traffic and the measured traffic. This provides additional model
checking, but also gives qualitative insight into VoIP queueing processes.

2.3. Contents of the sections

Section 3 describes the VoIP traffic collection, data processing, and certain bit-
rate properties. The collected data are a large, complex dataset. Section 4 de-
scribes our approach, methods, and computational environments for the analysis
of large datasets, which enables comprehensive, detailed analysis of the data.
Section 5 is an overview of previous work. Section 6 discusses two bit-rates of
importance for the modeling, the multiplexed traffic bit-rate and the cumulative
bit-rate. Section 7 demonstrates that the Global Crossing data are an excellent
approximation of IP-inbound traffic. Section 8 sets the stage for the two models
developed in the paper: the semi-empirical model and the mathematical para-
metric model. The basic structure of the models is described. Section 9 begins
the study of the semi-call properties with an analysis and modeling of the semi-
call arrival times. Section 10 describes the analysis and modeling of the semi-call
durations. Section 11 analyzes semi-call transmission and silence intervals and
develops models for them. Section 12 analyzes semi-call bit-rate; even though
this variable is not modeled directly, it provides important added model check-
ing. Section 13 is an analysis of the time dependence of VoIP multiplexed traffic,
both the observed traffic and traffic generated from the semi-empirical model.
Section 14 presents and discusses the final model assumptions.

3. Traffic collection and processing
3.1. Collection

We collected the VoIP packet timestamps and headers of multiplexed calls on
a link of the Global Crossing (GBLX) network in Newark, New Jersey. The
principal application in the traffic is voice calls, but the traffic also contains other
applications such as faxes, point-of-sale terminals (e.g., credit card processing),
and computer connections to the Internet. Nevertheless we use the term “call”
for each connection.

On the GBLX network the caller signal and the callee signal both originate
in the Public Switched Telephone Network (PSTN), the traditional telephone
network that developed starting in the 19th century. Each signal arrives at a
gateway where it is converted to VoIP packets. The signal is sampled at a rate
of 64 kilobits/sec, the accumulation interval is 20 ms, and silence suppression
is employed. For the caller, packets emerging from the gateway are transmitted
over an IP link to a first IP router, travel across the GBLX IP network, and exit
to the PSTN through another PSTN-IP gateway that converts the packets back
to a PSTN signal. The signal continues on to the callee over the PSTN. The
signal from the callee has a similar path but in the other direction, entering the
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PSTN| < |Gateway| <—

/]\

Fiac 1. Global Crossing location in Newark New Jersey. A monitor with an Endace card
collected packet headers and timestamps of both directions of calls using a link between an
IP-PSTN gateway and an IP network edge router.

IP network at the second gateway used by caller, and leaving the IP network
through the first gateway to travel over the PSTN to the caller.

Collection was carried out on a 100 megabit/sec link between a gateway in
Newark, New Jersey and an edge router of the GBLX IP network. Figure 1
shows the architecture. The data are packet headers and timestamps for both
directions of each call using the link — the caller-to-callee semi-call and callee-to-
caller semi-call. The caller semi-call conversion at Newark is either PSTN-to-IP
or IP-to-PSTN, and the callee semi-call is the other. Data were collected by a 100
megabit/sec Endace DAG 3.5E card installed in a workstation. The hardware
timestamps have been reported to be accurate to 100 ns (Arlos and Fiedler,
2003). The header fields used in our analyses are the source and destination
IP addresses and port numbers, and a flag that indicates whether a packet
has transmission information or is a silence-suppression control packet. We will
describe time of day by 24-hour notation, denoting the beginning of a day by
00:00:00 and the beginning of the last second of a day by 23:59:59. Collection
began on 12:05:00 on calendar day 1 and lasted 47 hr 55 min 30 sec through
12:00:30 on calendar day 3. All three calendar days were workdays.

We also obtained data for the first 23 hr 55 min of the collection period from
a PSTN call-detail database. The variables collected are call start and end times
as seen by the PSTN, whether the caller was PSTN-to-IP or IP-to-PSTN on
the Newark link, and whether the call was an attempt or a connected call that
was answered.

3.2. Processing

Analysis of different statistical properties used different subsets of the data,
created by successive deletion of calls. There are 5 such subsets described next
whose names are the following: full, processed, arrival, complete-call, and detail-
augmented. Each data subset of the list is a subset of the preceding.

The full data are the packet header fields and timestamps of all calls. There
are 1.315 billion packets from 332018 calls. A call has packets in each direction,
caller-to-callee and callee-to-caller. Each direction is a semi-call, so there are
664036 semi-calls. A silence suppression algorithm is used by GBLX for VolP;
each semi-call has transmission (on) intervals alternating with silence (off) inter-
vals. Start and end times of the on and off intervals are calculated and become a
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fundamental part of the data. During silence periods, keep-alive control packets
are sent every 2 sec.

The processed data eliminate calls that are small, and calls with large gaps. A
large fraction of the calls are extremely small: 20 or fewer callee packets and 20 or
fewer caller packets, all lasting less than 400 ms. They represent calls that ended
almost as soon as setup began either through communication problems or caller
actions. Very small calls and their frequency has been discussed in detail by
Bolotin (1994) who writes that their number on the PSTN is “radically larger”
than the number of calls lasting more than a few sec. In addition, there are 19
gap calls that have very large time gaps with no packets. Packets for a single
call are determined by a 4-tuple: the source and destination IP addresses and
port numbers of the two participating gateways. It is possible but improbable to
have two calls with the same 4-tuple. The small and gap calls add a negligible
amount to the traffic bit-rate in each of the 1150 5-min inbound and outbound
time intervals of the collection period (not including the last 30 sec). In only 3
intervals did they contribute more than 1% of the traffic, and in only 8 intervals
did it exceed 0.7%. We deleted the extremely small and the gap calls because
their bit-rate is inconsequential to network QoS, and as we will see in Section
9, they add needless complexity to the call arrival process. The processed data
consist of the 144185 remaining calls.

The arrival data are the calls of the processed data that arrived during the
measurement period. Eliminated are calls in progress at the beginning of the
measurement period. A call arrival is measured by the arrival time of the first
packet of the call from either direction. During the measurement period of 2875
min = 172500 sec there are 144046 arrivals, which is a call-rate of 0.835 calls/sec
and an inter-arrival time of 1.20 sec.

The complete-call data are the calls of the arrival data that finish during the
measurement period with an estimated probability of 0.9999. These are used
to study call-level statistical properties such as call duration and call bit-rates
for callers and callees. Call duration is measured by the time of the last packet
of a call from either direction minus the call arrival time. With just the packet
traces, we cannot determine precisely the end of a call. However, the call-detail
records have durations for calls ending during the first 23 hr 55 min of collection.
The 0.9999-quantile of these durations is 9111 sec = 2.53 hr. From this we take
any call of the arrival data to be in the complete-call data if its arrival time is
more than 2.53 hr before the end of the measurement period of 47 hr 55 min.
The number of semi-calls is 277540, and we take the duration of each to be the
duration of the call of which it is a part.

The detail-augmented data are the 78050 calls of the complete-call data for
which we have call-detail information. The additional information allows us to
determine which semi-call of a call is caller-to-callee and which is callee-to-caller,
and whether the call is an attempt or a connect.
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4. Divide and recombine for large datasets

Our collected data, which consist of timestamps and headers for 1.315 billion
packets, constitute a large, complex dataset. The challenge in analyzing such
datasets is to maintain the comprehensiveness of analysis that we can achieve
with small datasets, ensuring that important information in the data is not
missed. Recent work addressing this goal has resulted in moderate progress,
making feasible comprehensive analysis of many datasets that would have been
infeasible even a short time ago (Guha et al., 2009). The general approach begins
by partitioning the dataset into small subsets in one or more ways, and applying
numeric methods or visualization methods to each of the subsets of a sample,
analyzing some in great detail. The sampling frame can vary from one analysis
method to the next. It is common to have numeric methods applied to more
subsets than visualization methods. In some cases, sampling can be exhaustive,
all subsets, particularly for numeric methods.

Two non-exhaustive sampling methods are representative and regional. In
representative sampling, survey variables are defined that measure properties
of the subsets. A subset sampling frame is chosen to encompass the multidi-
mensional space of the survey variables in a uniform way by some definition. In
regional sampling, samples have values of the survey variables lying in a region
of the multidimensional space that is important to the analysis. For example, in
Section 11 we present the analysis of a representative sample of 2000 semi-calls.

Partitioning can be carried out in many different ways. Often, we start with
a core partition that arises naturally from the structure of the raw data. This is
a soft concept but useful nevertheless. The subsets of the core are often further
partitioned or combined by variables other than those that define the core. For
the VoIP data there is one very natural core partition that we used extensively: a
breakup into semi-calls. As we proceed through the analyses in coming sections
here, the samples of the subsets analyzed vary.

Partitioning leads to embarrassingly parallel computation. Large amounts
of time can be saved by distributed computing environments. One is RHIPE
(Guha, S.), a recent merging of the R interactive environment for data analy-
sis (www.R-project.org) and the Hadoop distributed file system and compute
engine (hadoop.apache.org). It allows work to proceed fully within R, but to
distribute computation across many processors in a cluster, which has vastly
reduced run time in many of our applications.

Nothing serves comprehensive analysis better than data visualization. This
principle has been accepted and practiced for decades (Daniel and Wood, 1971;
Anscombe, 1973). For a large, complex dataset this requires making a large
number of displays many of which can have a large number of pages and many
panels per page. The total number of pages might be measured in thousands
or tens of thousands in this visualization database, or VDB (Guha et al., 2009).
For the analysis of the 2000 semi-calls of Section 11, we made a number of
displays with 1000 pages each. Our extraordinary human visual system can
readily process very large displays by methods of viewing not utilized for the
single-page display. One is rapid scanning. It is possible to click at a fast rate
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through the pages of a document with the same display method replicated across
the panels and pages, one subset per panel. But for this to succeed, it must
involve the assessment of a gestalt: a pattern that forms effortlessly without
attentive search of basic elements of the display. The pattern “hits you between
the eyes.” When there are two or more gestalts to assess, it is best to scan
through pages assessing one at a time. Attempting simultaneous assessment
slows down the process remarkably because a cognitive shift of assessment is time
consuming. Using these concepts in the VoIP analysis we were able to design the
1000-page displays so that rapid scanning approaching animation was achieved.

5. Previous work and the approach of this article
5.1. Best-effort vs. VoIP

The Internet research literature contains many analyses of packet traces of mul-
tiplexed traffic on operational links carrying the full spectrum of Internet ap-
plications, which in the beginning was mostly data traffic (Leland et al., 1994;
Paxson and Floyd, 1995; Crovella and Bestavros, 1997; Willinger et al., 1997;
Riedi et al., 1999; Fraleigh et al., 2003a; Cao et al., 2002, 2001). Analyses of
such live traffic are vital because they convey the realities of traffic; the proper-
ties of the traffic are very dependent on (1) the mix of applications and (2) the
properties of the transferred information. Laboratory testing of traffic can be
very informative, but study of live traffic is essential to building validated traffic
models, which are a basis for not just network engineering, but the development
of the technology of the Internet. The development of models based on early
studies of traffic was a major factor in the development of Internet technology
(de Pereira et al., 2002).

However for VoIP, there have been very few studies in the literature that
report on the analysis of live VoIP packet traces on operational links carrying
a cross-section of the voice and machine-to-machine applications used in VoIP.
Such studies are needed if validated models for VoIP engineering study are to
be developed. Birke et al. (2007) appear to have been the first to publish such
a study: “Traffic monitoring and characterization have always been seen as a
key methodology to understand telecommunication technology and operation,
and the complexity of the Internet has attracted many researchers to face traffic
measurements since the pioneering times. Data traffic has hogged the majority
of this effort, while the attention toward VoIP traffic measurements only recently
increased. ... In this paper, we present the first extended set of measurement
results collected via passive monitoring of real-world VoIP traffic.”

5.2. Analyses of VoIP traffic from large operational networks

Birke et al. (2007) and Ciullo et al. (2008) report on packet traces collected on
FastWeb, a network of an Italian ISP that provides end-to-end VoIP for cus-
tomers. The VoIP service is carried on links with data applications such as
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HTTP, and with television transmissions. The VoIP capture rate is 64 kilo-
bits/sec and the accumulation interval is 20 ms. There is no priority queueing
for VoIP and no silence suppression. Packet traces were collected in both di-
rections on two links. Collection was carried out for approximately 3 weeks on
a link with a two-way average load of 100 megabits/sec and peaks up to 380
megabits/sec and for approximately two weeks on a link with a two-way average
load of 500 megabits/sec and peaks up to 900 megabits/sec. The VoIP traffic is
a small fraction of the total traffic and appears, given the available information,
to have multiplexed bit-rates ranging from very small to about 9 megabits/sec,
quite similar to the bit-rates of our VoIP packet traces.

Zhang et al. (2007) collected packet traces of aggregate traffic in both direc-
tions on 3 links within 3 provinces of China that contain VoIP traffic. They
report the details of their analyses of one of the links, which is part of a
metropolitan area network of China Telecom, a large ISP. On this link they
collected 525x10? packets in two directions over a period of about 25 days.
A classification algorithm divides the traffic into 7 categories, one of which is
VoIP. About 10% of the packets are VoIP so the average VoIP bit-rate is about
0.6 megabits/sec. No information is given about the VoIP implementation. The
principal goal is to investigate the long-range dependence of the traffic through
estimation of the Hurst parameter. Their conclusion is that the aggregated VoIP
traffic is not long-range dependent based on the observation that no estimate
was above 0.17.

Dang et al. (2004) obtained call detail records from a corporate VoIP net-
work with nearly 800 VoIP phones from November 2002 to July 2003. The call
arrival process was fitted by a Poisson process and the call duration distribu-
tion by a generalized Pareto distribution with parameter values indicating finite
variances. The silence and transmission durations were fitted by a generalized
Pareto distribution as well.

5.3. Direct measurement of QoS criteria

A number of research projects report on direct QoS study of operational net-
works by sending probe packets across the network that imitate certain prop-
erties of VoIP packets. QoS metrics are collected from the probes. Tobagi et al.
(2002); Markopoulou et al. (2003) sent constant probes, one set every 100 ms
and a second set every 10 ms, over 43 backbone paths for 17 days. Packet loss
rate and end-to-end delay were measured from the probes, but not jitter. The
results were used to evaluate whether at that time, the backbone networks were
ready for VoIP deployment.

In this last study, probe packets did not have interarrivals that are the same
as that of common implementations of the VoIP protocol. One can use common
accumulation intervals and then add jitter measurements to the QoS metrics.
Avaya ExpertNet has a general probing tool that distributes a number of linux
machines over strategic points of a network. The machines inject probe packets
with different accumulation intervals. One-way delay, jitter and packet loss rate
are gathered and used to evaluate whether a network is ready for VoIP.
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In one experiment, Agrawal et al. (2006, 2007) set up two host machines in
Bangalore, India, and in Murray Hill, New Jersey. The two machines established
connections between them using the SIP protocol, and exchanged RTP probe
packets with the rate of 50 VoIP calls. During part of the experimental period,
background traffic was also sent between the hosts. One-way and round-trip de-
lay, jitter, loss, call set-up time, and call tear-down time were measured from the
synthetic traffic. The results showed that VoIP packets mixed with background
data traffic experienced service quality degradation.

Toral-Cruz and Torres-Roman (2005) generated synthetic VoIP traffic be-
tween two local area networks in Guadalajara, Mexico. The probe traffic had
different packet accumulation intervals and imitated silence suppression. One-
way delay, jitter, and loss were measured from the probe packets. Large ac-
cumulation intervals and silence suppression were recommended for efficient
utilization of network resources.

While probe methods can give valuable information about the performance of
VoIP on a live network, it is difficult to carry out controlled experiments whose
designs systematically study the effect of the engineering factors on QoS for
which there are interactions. It can be far more effective to run simulations of
the queueing processes, either a single queue or a series of queues. An example
is Shin and Schulzrinne (2009), who measured VoIP traffic in a wireless IEEE
802.11 testbed and drew many interesting conclusions just from the empirical
study. They went on to run simulations, which provided substantial information
about important engineering factors for wireless.

5.4. Call-level properties

A non-homogeneous Poisson arrival process and independent exponential dura-
tion were established in the early days of telephony as a model for telephone
voice calls (Babu and Hayes, 2004; Brown et al., 2005). But current VoIP traf-
fic contains applications other than voice that can change these properties since
machine-to-machine transactions and other factors in modern telephone net-
works can potentially create bursts of arrivals (Bolotin, 1994), as well as call
durations with longer tails than the exponential (Bolotin, 1994; Dang et al.,
2004).

The study of talk-spurts and silence-gaps in two-way conversations has a very
long history in connection with the design of the PSTN, going back to at least 70
years (Norwine and Murphy, 1938; Brady, 1969; Lee and Un, 1986). This work
provides useful background, but for the purpose of modeling VoIP, studies in
the context of current VoIP technology are far more relevant. There are two rea-
sons. First, current codecs have configurable parameters that can affect onsets
of transmission and silence (Jiang and Schulzrinne, 2000). Second, as the termi-
nology “talk-spurts” and “silence-gaps” indicates, the traditional work was for
speech, but today VoIP carries machine-to-machine connections that have the
potential to change the statistical properties. One approach to the study of on
and off intervals is to record a semi-call, play it through a VoIP codec, and an-
alyze the statistical properties of the resulting on-off duration process. This has
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been done in a number of papers with interesting results (Jiang and Schulzrinne,
2000; Casilari et al., 2002; Biernacki, 2006). This approach does miss variability
that arises from the many different types of calls that occur in the live traffic
on an operational VoIP network, but the results of these investigations are very
helpful to the overall validation of our modeling.

5.5. Relationship of past work and this article

The past work in the statistical properties of VoIP traffic collectively provides
useful information for our goal of building validated models of the multiplexed
packet-level traffic for QoS study. The earliest papers address a much simpler
call population, which has become more complex with time due to an increase
in the number of applications of telephone communications, and to associated
technologies such as automated repeat dialing. No single past work, nor all
collectively, have the range of investigations of statistical properties or data to
support validated complete modeling.

The range of the statistical investigations and the VoIP traffic measurements
presented here support complete modeling and validation. Because the measured
traffic underwent little network processing, the models apply to IP-inbound
traffic exiting a gateway that converts call signals to IP packets.

The models have a number of new statistical components since standard
model components cannot describe the complexity of the live multiplexed VoIP
packet traffic. For example, simple, standard distributions such as Weibull,
gamma, and log normal are inadequate for many aspects of the modeling; the
data require more complex models with random-effects and piece-wise linear
components. Still, observed traffic properties of past work described in com-
ing sections are consistent with our results when increased complexity is taken
into consideration; this both supports the modeling and suggests that it can be
extended to links other than the one we measured.

6. Multiplexed traffic, cumulative, and semi-call bit-rates

There are three types of bit-rate of importance to VoIP traffic engineering, traffic
analyses, and traffic model building. In this section we introduce all, and discuss
the first two. In Section 12, we discuss the third.

The first is the bit-rate of the VoIP multiplexed packet traffic on a link. The
multiplexed traffic has a packet arrival rate. To measure it, we can average over
any interval of time to get a packet-rate in packets/sec over the interval. Each
packet is 1600 bits, so the bit-rate in bits/sec is the packet rate times 1600
bits/packet. As discussed in Section 1, the major goal of traffic engineering is to
determine the QoS utilization, uq.s: the largest multiplexed traffic bit-rate that
satisfies QoS delay and jitter criteria for the link, divided by the link speed. In
addition, certain of the statistical analyses must take account of the changing
rate.
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The second bit-rate is the cumulative sum of the bits of all semi-calls less
than or equal to a duration, from the smallest duration to the largest. This
gives us a sense of the durations that are important for traffic engineering.
Semi-calls with short durations that carry a very small fraction of the traffic are
not critical for traffic engineering. This guides the modeling; deviations from
model assumptions for such short semi-calls are less important than for the
longer semi-calls.

The third is the bit-rates of the two semi-calls of each call: the numbers of bits
of each semi-call divided by the duration. The purpose of silence suppression
is to reduce the semi-call bit-rate. This then reduces the collective multiplexed
packet bit-rate/semi-call, resulting in greater efficiency. We do not model this
semi-call bit-rate directly, but its analysis does constitute an important part of
the model validation.

6.1. Multiplexed traffic bit-rate

Bit-rates of the multiplexed traffic of the processed data in 1150 5-min intervals
of the collection period, 575 inbound intervals and 575 outbound, are displayed
in Figure 2. There are strong diurnal patterns in the bit-rate resulting from
diurnal patterns in the call-arrival rate. The bit-rates range from about 2 to 11
megabits/sec (1250 to 6875 packets/sec). In Section 12 we show that the average
bit-rate of a semi-call is 0.04465 megabits/sec. Thus for 11 megabits/sec, the
expected number of active calls is 11/0.04465 = 246 calls, and for 2 megabits/sec,
the number is 45 calls.

6.2. Cumulative traffic bit-rate

It is instructive to study cumulative sums of semi-call bits as a function of
duration for the complete-call data. We order the semi-calls by the durations. At
each value of duration we compute the sum of the bits of all calls whose durations
are less than or equal to the selected duration. We divide the cumulative sums by
the total bits for all semi-calls. Figure 3 is a graph of the fractional cumulative
bit sum against log base 2 of duration. The vertical lines show 5 quantiles of
duration — 0.05, 0.25, 0.5, 0.75, and 0.95. The plot is quite striking. We can see
that about 50% of the calls, those above the median of 39.35 sec, account for
97.15% of the bits; and those above 128 sec account for only 16.50% of the calls
and 87.90% of the bits. Because our focus is on QoS, we could have deleted the
smallest 50% of the calls as we did for the extremely small calls. We did not do so
because the information about them provides subsidiary information about VoIP
call properties of general interest. However, it does allow us to tolerate more
readily deviations of the data from model assumptions for calls with durations
less than 30-128 sec. This forms an important part of our assessment of the i-id
properties of the semi-calls.
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7. Verification of semi-call measurements as IP-inbound traffic
7.1. General issues

The overall goal of this work is packet-level modeling of the VoIP traffic emerging
from a source that packetizes many in-progress semi-call signals for forwarding
to a first IP link. The packets coming to an IP link from the gateway, and the
times when the packets have finished their conversion, are the IP-inbound traffic.
This offered load has not been altered by the many delay mechanisms that can
occur during transmission across the network. To build a model that accurately
reflects the IP-inbound traffic, it is important that the network processing for
the measured traffic has resulted in negligible change from the traffic in its
offered state.

Our measured link connects a gateway to an IP edge router of the GBLX
network. The PSTN-to-IP semi-call packets coming from the gateway onto the
IP link are subjected to only one queue, that for the link itself. The IP-to-
PSTN semi-call packets coming from the edge router onto the link arrive from
worldwide sources, and many semi-calls have experienced numerous network
mechanisms. However, the network traffic engineering on the GBLX network
at the time of measurement provided both priority queueing for VoIP packets
and small VoIP traffic loads on links. For example, we have seen in Figure 2
that the maximum 5-min traffic rate in each direction of the 100 megabits/sec
measured link is about 11 megabits/sec, a utilization of only 11%. This leads to
the hypothesis that the measured load is close to the offered. In the next two
sub-sections, methods of statistical analysis provide a check of this hypothesis.

7.2. Time stamp accuracy

The first critical matter is the accuracy of a packet timestamp written by the
collection hardware that records when the first bit of the packet is put on the
link. For the measurements to reflect the offered load, the timestamps must be
accurate. Hardware lab tests for the Endace card used in the collection show
timestamp accuracy to be £0.1us (Arlos and Fiedler, 2003), far better than our
accuracy requirements. However, we can check accuracy to a level needed for
our QoS study: +0.5us. A VoIP packet is 200 bytes plus another 38 bytes of
Ethernet encapsulation, so the number of bits is 1904. The link speed of the
GBLX measured link is 100 megabits/sec, so the transmission, or service, time
is 19.04 ps. Suppose while packet k is in service, packet k + 1 arrives. The
arrival time of k is the time when k begins transmission. Packet k 4+ 1 begins
transmission at the moment packet k£ has finished transmission, so its arrival
time is 19.04 us after that of packet k. The inter-arrival time between k and
k41 1is 19.04 ps, and no true inter-arrival time can be less than this value.

To verify the timestamp accuracy using our data we rounded the arrival
times of all packets in the full data to the nearest us, our accuracy requirement,
and computed the inter-arrival times. The minimum is 19 us, which verifies the
requisite accuracy.
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7.3. Jitter

A powerful way to study the validity of using the measured traffic as the offered
load is to analyze jitter. The packets of a semi-call are divided into transmission
intervals separated by silence intervals. During a transmission interval there is a
sequence of arrivals whose initial inter-arrivals at the time of packetization are
intended to be 20 ms with a very small allowable error. The measured jitter of
semi-call packets on a link are the absolute values of the measured inter-arrivals
of the packets inside the transmission intervals minus 20 ms. Network processing
in the form of queueing delay creates jitter because packets of a semi-call are
delayed by varying amounts.

As discussed above, the PSTN-to-IP traffic coming out of the local GBLX
gateway onto the measured link encounters much less network processing than
the IP-to-PSTN traffic. For this reason one expects, a priori, to see more jitter for
the ITP-to-PSTN semi-call traffic than the PSTN-to-IP. In addition, one expects
the jitter to increase with the multiplexed traffic bit-rate on the measured link
because an increase creates more delay, and therefore jitter, in the link queues.

We studied jitter for the 288370 semi-calls of the processed data. We broke
the measurement period into 575 5-min intervals as in Figure 2, which graphs
1150 5-min multiplexed traffic bit-rates against time, 575 for the IP-to-PSTN
semi-calls and 575 for the PSTN-to-IP semi-calls. Each semi-call has a collection
of values of jitter. Each 5-min interval is assigned the values of jitter for packet
pairs whose first packet arrives in the interval. The 5-min intervals are broken
up into six groups according to the 1150 multiplexed traffic bit-rates. The six
groups are formed from six equally-spaced intervals from the minimum of the
1150 5-min multiplexed bit-rates to the maximum. Then 12 distributions of
jitter are formed, grouped by the 12 combinations of values of two variables: the
two values of PSTN-to-IP and IP-to-PSTN, and the six groups of intervals.

Figure 4 graphs six quantiles of the 12 jitter distributions against the mid-
points of the six bit-rate intervals, with “4+” for the PSTN-to-IP distributions
and “0” for the IP-to-PSTN. The frequencies of the quantiles are shown in the
strip labels. Figure 4 shows that overall, the jitter is small, with all but the
very highest quantile less than 0.25 ms. (The end-to-end standard is 30 ms.)
Each jitter quantile tends to increase with the multiplexed traffic bit-rate, as
expected. The quantiles for IP-to-PSTN are either somewhat smaller or about
the same as those for PSTN-to-IP except for quantile 0.999 where the IP-to-
PSTN values are larger. A priori, as explained above, one expects a consistently
higher distribution of jitter for IP-to-PSTN. We addressed this anomaly, and
found an explanation, described next.

We studied jitter for each semi-call as a sequence in time order, and discovered
a periodic component with a period of 1 cycle per 9 jitter values, which is 180
ms. Figure 5 graphs jitter for a portion of one transmission interval of one call;
the cycle is very apparent. The statistical properties of the cycle were studied
over sufficiently long transmission intervals to get good estimates. We selected
calls both of whose two semi-calls had at least 25 transmission intervals, each
with at least 180 jitter measurements, which is at least 20 cycles of the periodic
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component. The result was 7278 calls, with 532968 transmission intervals for the
PSTN-to-IP semi-calls and 546723 transmission intervals for the IP-to-PSTN
semi-calls.

Analysis began by fitting a regression model to the jitter of each semi-
call as a waveform function of the index, the order of occurrence k of the
jitter values. The 9 explanatory variables of the waveform are cosinusoids:
cos(2mwkj/9),7 = 0,...,4, and sin(27kj/9),5 = 1,...,4. Initial fitting to each
transmission interval of a semi-call independently together with regression di-
agnostics within and across intervals, revealed that all terms contribute to the
fitted waveform, the phase of the cycle is not maintained from one transmission
interval to the next for a single semi-call, and the errors have a symmetric and
long-tailed error distribution. Because of the error distribution, each transmis-
sion interval regression was carried out using the bisquare robust estimator with
a constant of 6 (Andrews et al., 1972).
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TABLE 1
0.05, 0.5, and 0.95 quantiles of the estimated jitter-cycle magnitude for 6 categories:
IP-to-PSTN by PSTN-to-IP by three intervals of sample sizes

[ Sample Size | Gateway In-Out | Number of Intervals | 0.05 (ms) | 0.5 (ms) [ 0.95(ms)

All IP-to-PSTN 546723 0.184 0.275 0.315
> 825 IP-to-PSTN 25836 0.185 0.275 0.308
< 185 IP-to-PSTN 25304 0.183 0.273 0.319
All PSTN-to-IP 532968 0.262 0.298 0.319
> 825 PSTN-to-IP 21196 0.270 0.297 0.311
< 185 PSTN-to-IP 24558 0.259 0.298 0.323

We cannot readily draw statistical inferences about the variability of the am-
plitude of the waveform fit for each transmission interval individually because
the error terms have complex correlations due to the jitter time process. How-
ever, we can assess variability by studying amplitude estimates as the sample
size changes, that is, the number of jitter values in an interval. Table 1 shows
this. For both IP-to-PSTN and PSTN-to-IP there are three collections of trans-
mission intervals: all intervals, intervals with 825 or more observations, and
intervals with 185 or fewer observations. For the resulting 6 categories, the last
four columns show the number of intervals and three quantiles of the amplitudes:
0.05-quantile, median = 0.5-quantile, and 0.95-quantile.

For IP-to-PSTN and PSTN-to-IP separately, the quantiles do not depend
on sample size. This suggests that sampling variability is small and different
transmission intervals have different amplitudes. There are differences between
the IP-to-PSTN and PSTN-to-IP quantiles, but they are relatively small except
for the 0.05-quantile. However, they are close enough to suggest a common
mechanism producing the jitter cycling.

The only plausible explanation for the cycle is the gateway packetization
algorithm. All gateway devices on the GBLX network at the time of measure-
ment were the same model from one company, and presumably configuration
was the same; this explains the similar magnitudes in both the IP-to-PSTN and
PSTN-to-IP directions. The offered load is itself not pristine, but rather just
very-nearly-pristine.

The fitted waveforms of the regressions are the variation due to the cycle in
the offered load, and the residuals are the variation due to network induced jitter.
Figure 6 is the same display method as in Figure 4, but uses the residuals of
the regressions. The network-induced jitter distribution is substantially smaller
than the total jitter variation of Figure 4 due to the removal of the offered load
cycle, and the anomaly of greater PSTN-to-IP jitter is no longer present; IP-to-
PSTN and PSTN-to-IP jitter are now very close for all but the 0.999-quantile
where the IP-to-PSTN is greater.

These results and the high timestamp accuracy show that it is entirely rea-
sonable to consider our measured multiplexed packet traffic as an excellent ap-
proximation of the IP-inbound traffic.



B. Xi et al./VoIP: Analysis and modeling 80

4 6 8 10 4 6 8 10 4 6 8 10
| | | | | | | | | | | | | | | | | | | | |
0.25 0.5 0.75 0.95 0.99 0.999

0.4 | .
— ° o]
(2] o
£ 03 o o L
9]
o
=
; L +
o 0.2 ? -
[%2]
=3 ®@ o & °
ie] 5 )
<

+ 4
0.1 - Lt E oo B
o o]
+ 4
+ 5 Er) o O
00 ds & 0 b b oop s BB EC L

4 6 8 10 4 6 8 10 4 6 8 10

Traffic Bit—-Rate (megabits/sec)

Fic 6. Jitter Residual Quantiles.

8. Specification of basic model structures

This section sets the stage for the two models developed in the paper: the semi-
empirical model and the mathematical model. The semi-empirical model uses
empirical observations as part of its modeling, and the mathematical model con-
sists of parametric statistical specifications of mathematical components. Next,
the basic model structures are described through showing how each model gen-
erates multiplexed packet traffic, and then specifying the assumption of inde-
pendence and identical distribution of the models.
The semi-empirical model generates traffic in the following way.

e A non-homogeneous Poisson semi-call arrival model generates the semi-call
arrival times for a sequence of generated semi-calls. In applications the rate
is likely to be stable on the order of 5-15 minutes and can be modeled as
a deterministic or slowly varying process. We do not specify the changing
rate in our modeling since it depends on the specific network being studied.
For many network studies, a simulation interval with constant rate suffices.

e Semi-calls are randomly sampled from the 277540 semi-calls of the complete-
call data, with one semi-call assigned to each semi-call arrival.

e The generated arrival time for the first packet for the generated semi-call
is the generated semi-call arrival time.

e The arrival times for the subsequent packets of the generated semi-call are
the generated time of the first packet plus the empirical packet inter-arrival
times of the sampled semi-call.

e The generated multiplexed packet traffic arrival times are the superposi-
tion of the packet arrival times of the generated semi-calls.
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The mathematical parametric model generates traffic in the following way.

The same Poisson semi-call arrival process for the semi-empirical model
generates the times of the first packets of a sequence of generated semi-
calls.

Each semi-call duration is generated from a parametric semi-call duration
distribution that is piece-wise Weibull.

The marginal distribution of the on-off (transmission-silence) interval
lengths of each generated semi-call is a square-root gamma with a bi-
variate parameter: log shape and log scale.

The bivariate parameter for the transmission lengths of a generated semi-
call is generated from a transmission-interval bivariate normal. The trans-
mission lengths are generated from the square-root gamma with this gener-
ated bivariate parameter. Each semi-call has its own generated parameter.
The bivariate parameter for the silence lengths of a generated semi-call
are generated from a silence-interval bivariate normal. Silence lengths are
generated from the square-root gamma with this generated bivariate pa-
rameter. Each semi-call has its own generated parameter.

Transmission and silence lengths are generated until their sum equals,
approximately, the generated duration.

Packets for a transmission interval begin at the start of the interval, occur
every 20 ms, and end when there is less than 20 ms remaining.

Packets for a silence interval begin at the start of the interval, occur every
2 sec, and end when there is less than 2 sec remaining.

The generated multiplexed traffic packet arrival times are the superposi-
tion of the packet arrival times of the generated semi-calls.

The following assumptions of independence and identical distribution (i-id)
form parts of the two above models. For clarity, the list entries below are re-
dundant and overlap with some of the assumptions for the two models above.

The bivariate parameters for the transmission lengths of the semi-calls are
ii.d., the bivariate parameters for the silence intervals are i.i.d., and the
bivariate silence parameters are independent of the bivariate transmission
parameters.

Durations are i.i.d. and are independent of the bivariate transmission and
silence parameters.

Given the bivariate parameter of the transmission intervals of a semi-call,
the transmission lengths are i.i.d.

Given the bivariate parameter of the silence lengths of a semi-call, the
silence lengths are i.i.d.

Given the bivariate parameters of the on-off processes of all semi-calls,
there is joint independence of all transmission-silence lengths and semi-
call durations.
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9. Modeling the call arrival process
9.1. The data and their adjustment

A call arrival is measured by the arrival time of the first packet of the call from
either semi-call. During the measurement period of 2875 min = 172500 sec there
are 144046 arrivals, so the call-rate is 0.835 calls/sec, which corresponds to a
mean inter-arrival time of 1.20 sec. Let a; be the time of the k-th call arrival for
positive integer k and and let t;, = agy1 — ay be the k-th inter-arrival time. We
partitioned the measurement period into 191 consecutive 15-min intervals and
a final interval of 10 min, and analyzed each interval separately. The number of
arrivals ranges from 142 to 1847 across the 192 intervals.

The call-rate is stable over 15 min for most intervals, but for a small number,
there can be a smooth drift in the rate. We corrected for drift in each interval by
the following method. Let £5, = log,(tx), where log, is log base 2. ¢}, is smoothed
as a function of the index k using the loess method with a span of 2/3 and local
quadratic fitting (Cleveland and Devlin, 1988). This results in fitted values
that estimate the local log rate. We then compute the residuals rp, = £, — ék
and study their statistical properties. The equivalent degrees of freedom of the
fit is 1.8, very small compared with the sample sizes, so the use of the residuals
for model building is reasonable.

Weibull quantile plots of the log-scale 7, for the 192 intervals show the em-
pirical distributions are well-approximated by the Weibull. Figure 7 shows the
plot for 6 intervals. On each panel, the ith largest rj in the interval is graphed
against the log base 2 of the quantile of the unit exponential with probability
(1 — 0.5)/n. The oblique line on the plot is drawn through the upper and lower
quartile points of the empirical distribution and the theoretical distribution.
The horizontal lines show the 0.01, 0.05, 0.25, 0.75, 0.95 and 0.99 empirical
quantiles. The 6 intervals shown in Figure 7 were chosen to summarize how well
the Weibull fits across the 192 intervals. For each of the 192 plots, we computed
the mean absolute deviation of the points of each plot from the oblique line on
the plot, and ordered from smallest to largest to form empirical quantiles of the
deviations of orders (k — 0.5)/n for k = 1 to 192. The 6 panels of Figure 7 show
intervals whose deviations are closest to the quantiles of orders 0.25, 0.40, 0.55,
0.70, 0.85, and 0.99, respectively, which are shown in the strip labels. The first
quantile of order 0.25 is that for which the plotted points are very close to the
oblique line for intervals with smaller deviations, but where the fit starts to have
an increasing systematic departure for larger deviations. So for about 25% of
the intervals, the Weibull fit is very close. As the deviation measure increases
beyond the 0.25 quantile, a departure occurs in the lower tail of the distribution.
Overall the departure from Weibull is minor; where it occurs on the log base
2 ms scale, the differences are quite small on the ms scale compared with the
overall variation in the empirical values in ms.

Independence of the call inter-arrivals was assessed by computing and plot-
ting autocorrelations of the 7, at lags 1 to 50 for each interval. There was no
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Fic 7. Log Weibull quantile plot for 6 intervals of residual semi-call inter-arrivals.

indication of significant correlation across the intervals. The lack of autocorre-
lation is a reasonable indicator of independence since the rj, while not normal,
do not depart grossly from normal.

The shape parameter of the Weibull was estimated by maximum likelihood
from the values of 2"+ for each interval. Figure 8 is a cumulative frequency
quantile plot of the 192 estimates. The k-th largest estimate is graphed against
its empirical cumulative frequency, (k — 0.5)/192. The horizontal lines show
quantiles of frequencies 0.01, 0.05, 0.25, 0.75, 0.95, and 0.99. The results suggest
a true shape slightly bigger than the shape of 1 of the exponential, but so close
that the exponential is a good approximation of the true distribution.

9.2. Previous work

While the Poisson result is both simple and traditional, its background is more
complex. A non-homogeneous Poisson process was established in the early days
of telephony as a model for telephone voice call arrivals (Babu and Hayes, 2004;
Brown et al., 2005). But as discussed in Section 3, networks carrying voice have
gotten more complex due to rapid dialing and other technology advances. Our
Poisson property holds for the arrival data, which result from deleting, among
other calls, the very small calls of the full data. In fact, with the very small
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Fic 8. Quantile plot of 192 maximum likelihood estimates of the Weibull shape parameter.

calls present, the process is not Poisson, but rather is bursty: positively auto-
correlated inter-arrivals, which has also been observed by Bolotin (1994). Thus
removing the small calls, unnecessary for QoS studies because of their very small
multiplexed traffic bit-rate, leads to a much simpler semi-call arrival model.

9.3. Modeling results

Our analysis has shown that the inter-arrivals adjusted for a changing rate are
independent and have a marginal distribution that is well approximated by the
exponential. This means that locally, the semi-call arrivals are a Poisson process,
and globally are a non-homogeneous Poisson process. This then is the first step
in our modeling of the multiplexed VoIP packet traffic.

10. Modeling semi-call duration

This section describes analyses that lead to a parametric model for the marginal
distribution of call duration that is part of the multiplexed traffic mathematical
model. The analyses also address the i.i.d. assumption for call duration that
is part of the overall set of i-id assumptions about independence and identical
distribution. The i-id assumptions are critical to both the mathematical model
and the semi-empirical model.
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10.1. Marginal distribution

Call duration is measured by the time of the last packet of a call from either
direction minus the time of the call arrival, which is the time of the first packet
from either direction. The durations of the two semi-calls of the call are taken
to be the same as the call duration. To study the statistical properties of the
durations, we analyzed the durations and start times of the 138770 calls of the
complete-call data, as well as the 78050 calls of the detail-augmented data when
we needed information about caller-to-callee and callee-to-caller or attempt and
connect.

Let ¢ be the duration of the kth call, let D be its cumulative distribution
function, and let d(c) be its density. We studied the marginal distribution of our
measurements, ¢, using quantile plots. Figure 9 is a Pareto quantile plot. The
i-th largest of the n = 138770 values of logs(cy) is the empirical quantile of the
log durations of frequency (i — 0.5)/n. It is graphed against the quantile of the
unit exponential with probability (¢ —0.5)/n. The horizontal lines show the 0.01,
0.05, 0.25, 0.75, 0.95, and 0.99 quantiles. The oblique line is drawn through the
upper and lower quartile points of the empirical distribution and the theoretical
distribution. If the pattern of the points were linear, the distribution would be
Pareto but it clearly is not, showing a faster rate of decay in the upper tail.

Figure 10 is a Weibull quantile plot. It is the same as Figure 9 except that the
horizontal scale is now the log of the exponential quantile. The pattern of the
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Fic 9. Pareto quantile plot of 138770 call durations of the complete-call data.
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Fic 10. Weibull quantile plot of 138770 call durations of complete-call data.

points in Figure 10 is a piecewise linear continuous function with about 6 pieces.
The tail is heavier than that of a Weibull in the sense that the slope is steeper
than the Weibull distribution as defined by the pattern of the points fitted by
the line through the lower and upper quartiles. It is highly likely that these
different pieces result from a mixture of different types of calls. We are not able
to differentiate different applications, voice and the various machine-to-machine
transactions, because we do not collect the packet payload. But the 78050 calls
of the detail-augmented data do provide information about call type: attempt
or connect. There are 33361 attempts and 44689 connects; the frequency of
connects is 0.573, an estimate of p.

Figure 11 has Weibull quantile plots (red dots) of the attempts (top panel)
and the connects (bottom panel); most data points of the plot are obscured by a
close fit (blue lines) to the distributions that will be described shortly. The con-
nect distribution has two distinct duration regions. The lower likely has many
machine-to-machine connections, and the upper is likely mostly voice calls and
computer connections. Figure 12 shows nonparametric density estimates of at-
tempts and connects using the ed method with 20-gaps smoothed by local cubic
fitting and a span chosen to optimize the fits (Hafen and Cleveland, 2009). The
connect and attempt distributions are complex; no simple, standard parametric
family will provide an adequate fit.

We will model duration by a mixture of attempts and connects. log,(c) is
modeled separately for attempts and for connects by a piecewise linear contin-
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Fic 11. Weibull quantile plots (red) of 33361 attempt call durations (top panel) and 44689
connect durations (bottom panel) from the detail-augmented data. The line segments on each
panel (blue) are a piecewise linear continuous fit with 20 intervals.
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Fic 12. Ed nonparametric density estimates of 33361 attempt durations (black curve) and
44689 connect durations (red curve) from the detail-augmented data.

uous function of log Weibull quantiles with 18 interior line segments, and two
outer rays to make the fit defined for all real values. The result is shown by the
blue oblique line segments in Figure 11. Log duration is divided into 20 equally
spaced intervals from the 0.001-quantile to the 0.999-quantile of log,(cy). Let
vj for 7 =1,...,21 be the endpoints. Let f; for j = 1,...,21 be the fraction
of log,(ck) less than or equal to v;. The fj-quantile of the unit exponential is
—log(1 — f;) where log is the natural log. Let x; = logy(—log(1 — f;)). Let ¢,
be the slope and ¢; the intercept of the line through (x;,v;) and (xj+1,vj+1),
for 7 = 1,...20. The fitted function has the following: a line segment with slope
1, and intercept ¢; from (x;,v;) to (xj4+1,v;41) for j =2,...,19; a ray to the
right from (20, v20) with slope 9y and intercept ¢o0; and a ray to the left from
(x2,v2) with slope 9 and intercept ¢;.

The generation of a log, connect duration, v, uses the information in the
left panel of Table 2. A uniform random variable f on (0,1) is generated and
X = logy(—log(1l — f)) is computed. Then v = a;x + 3; where the slope and
intercept are those in the row for which f falls in the interval of column 1.
The generation of a log, attempt duration is similar and uses the right panel of
Table 2. To generate v unconditional on connect or attempt, a Bernoulli variable
is generated with probability p for the value connect and 1 — p for attempt,
determining which log call distribution to sample. p can be altered to reflect
network conditions. For the calls of the detail-augmented data, the fraction of
connects is 0.573.

10.2. i-id assumptions

The basic assumptions of the multiplexed traffic modeling are discussed in Sec-
tion 8. A critical part of the assumptions prescribe independence and identical
distribution the modeled semi-call random variables for both the semi-empirical
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TABLE 2
Piecewise Weibull distributions for connect and attempt calls

Connect Attempt

Quantile Interval | Intercept Slope Quantile Interval | Intercept Slope
(0.0000 , 0.0052) 4.3697 | 0.2186 (0.0000 , 0.0028) 1.6218 | 0.2721
(0.0052 , 0.0212) 4.6630 | 0.2573 (0.0028 , 0.0036) 8.5912 | 1.0935
(0.0212, 0.0618) 5.0811 | 0.3328 (0.0036 , 0.0047) 8.1294 | 1.0366
(0.0618 , 0.1238) 5.7342 | 0.4972 (0.0047 , 0.0103) 2.8594 | 0.3546
(0.1238 , 0.2142) 6.0426 | 0.6029 (0.0103 , 0.0174) 3.9976 | 0.5273
(0.2142 , 0.3129) 6.4860 | 0.8189 (0.0174 , 0.0244) 5.7412 | 0.8264
(0.3129 , 0.4617) 6.3511 | 0.7235 (0.0244 , 0.0326) 6.4035 | 0.9504
(0.4617 , 0.6591) 6.3044 | 0.6559 (0.0326 , 0.0492) 4.9776 | 0.6605
(0.6591 , 0.7253) 6.1642 | 1.9809 (0.0492 , 0.0977) 3.8246 | 0.3928
(0.7253 |, 0.7658) 5.7470 | 3.1095 (0.0977 , 0.1510) 4.5052 | 0.6001
(0.7658 , 0.8018) 5.6278 | 3.3312 (0.1510 , 0.2240) 4.6033 | 0.6377

) ( )

) ( )

) ( )

) ( )

) ( )

) ( )

) ( )

) ( )

) ( )

(0.8018 , 0.8372 5.7434 | 3.1647 0.2240 , 0.3391 4.4672 | 0.5690
(0.8372 , 0.8720 5.9646 | 2.9075 0.3391 , 0.4362 4.8370 | 0.8597
(0.8720 , 0.9066 6.3477 | 2.5391 0.4362 , 0.5276 4.9798 | 1.0375
(0.9066 , 0.9382 6.6932 | 2.2617 0.5276 , 0.6380 4.9306 | 0.9190
(0.9382 , 0.9631 6.8805 | 2.1349 0.6380 , 0.7588 4.9326 | 0.8304
(0.9631 , 0.9816 7.3085 | 1.8863 0.7588 , 0.8523 4.8758 | 0.9422
(0.9816 , 0.9922 7.3326 | 1.8742 0.8523 , 0.9734 5.3489 | 0.4366
(0.9922 , 0.9970 7.0965 | 1.9779 0.9734 , 0.9849 2.6056 | 1.9131
(0.9970 , 1.0000 6.7227 | 2.1249 0.9849 , 1.0000 5.4053 | 0.5596

model and the mathematical model. Next we consider the i-id assumptions for
duration: durations of semi-calls appearing on one direction of a link are are
independent and identically distributed.

By our definitions, the two semi-calls of a single call, caller-to-callee and
callee-to-caller, have the same duration: the time between the first packet from
either direction and the last packet from either direction. Our analyses show
that if we change the semi-call durations to make each semi-call have a duration
defined by its own packets, the resulting durations for the two semi-calls change
by a negligible amount. This means, obviously, that for the complete call data,
the assumption of identical duration distributions for the caller-to-callee semi-
calls and the callee-to-caller semi-calls is an excellent approximation.

Obviously the durations of the two semi-calls of a single call are not indepen-
dent because we can (by definition) predict one from the other exactly. However,
both directions are almost never multiplexed on a single direction of a link. Note
that in Section 8, the semi-call sampling frame does not select both semi-calls
of single call.

We also investigated the assumptions of independence and identical distri-
bution of call duration through time as a function of the start time of a call.
Violations of these assumptions can come through callers starting connections
with certain patterns. Callers can have a tendency to use certain applications
more at one time of day and less at others, which would change distributions. It
is also possible for individual callers to have a burst of applications of the same
type such as sending many short faxes, which would create autocorrelation. Be-
cause the most likely cause of deviations from assumptions is caller behavior,
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we study the duration assumptions using two subsets of the detail-augmented
data. The first subset is the calls in which the caller packets travel PSTN-to-IP,
and the second subset is those in which the caller packets travel IP-to-PSTN.

We checked for a changing duration distribution through time by computing
quantiles of the call durations of frequencies 0.01, 0.05, 0.25, 0.75, 0.95, and
0.99 for each of the 192 15 min intervals of the detail-augmented data, one set
of quantiles for PSTN-to-IP and one set for IP-to-PSTN. We did the same for
the mean duration. We did find minor changes in the distribution with time of
day, and further investigations showed that most of the change was due to a
decrease in frequency of short calls from about 10 p.m. to 6 a.m., which is a
time of day when multiplexed bit-rate tends to be small. The change involves
just calls with small duration whose cumulative multiplexed bit-rates are small,
so we ignore this effect in the modeling and assume duration to be identically
distributed.

The change in distribution also induces autocorrelations in each of the two log
duration sequences in each 15 minute interval — positive values at lags up to 500,
but always less in absolute value than 0.018 for the PSTN-to-IP direction and
0.06 in the IP-to-PSTN direction. The different magnitudes reflect the different
sample sizes of the two link directions. A loess fit with a span of 0.2 for each 15
minute interval is quite smooth, is small in magnitude, and results in residuals
with positive and negative autocorrelations whose absolute values at lags up to
500 are not more than about 0.01 for PSTN-to-IP and 0.04 for IP-to-PSTN.
This confirmed that the effect of the distribution change is minor, and that
there does not appear to be short-term burstiness in the durations. The latter is
also commensurate with the non-homogeneous call arrival process of Section 9,
which suggests that the calls arise from many different unrelated sources.

10.3. Modeling results

The work of this section results in a parametric distribution for call duration
— the mixture of piecewise Weibull distributions described in Table 2. This
distribution is used in the mathematical model for semi-calls. The work also
verified the assumption that the call durations are i.i.d. This is important for
both the mathematical and semi-empirical models. In particular it implies that
we do not need to consider semi-call direction, callee-to-caller and caller-to-
callee, in the modeling and therefore in simulation studies. The same is true of
time-of-day effects.

11. Modeling the silence suppression on-off process

This section describes analyses of the statistical properties of the lengths of the
on-off, or transmission-silence, intervals for the 156100 semi-calls of the detail-
augmented data. A parametric model for the on-off process is developed that is
part of the multiplexed traffic mathematical model. We verify certain of the i-id
assumptions made in both the semi-empirical and mathematical models.
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We use the term “on-off” for convenience, but in fact the off intervals are not
fully off, sending an initial silence packet 5 ms after the last transmission packet,
which signals the start of the silence interval, and sending connection keep-
alive packets every 2 sec. We altered the on-off intervals slightly by imposing
a holdover of transmission when a silence interval was less than 25 ms. This
removed only a small fraction of silence intervals which otherwise could be as
small as 5 ms.

Let w; be the lengths of intervals of a semi-call where k indexes the order
of occurrence. The intervals alternate between transmission and silence starting
with a transmission interval. Let ¢, = ts,_1 be the transmission lengths, and
$p = g, be the silence lengths. The minimum length is 25 ms for $, and 80 ms
for £,; this means that the origin for each random variable is not 0, which makes
parametric modeling more complex. One remedy is to subtract the minima, but
it is convenient to take logs for certain purposes, and a 0 origin would lead to
distortions at the bottom ends of the distributions. Instead, we subtract 60 ms
from the %,, taking ¢, = t, — 60, and 15 ms from the §,, taking s, = §, — 15.
This is sufficient for parametric modeling with a 0 origin, and allows the taking
of the logarithm.

We study ¢, and s, for individual semi-calls as a bivariate time series in 7,
considering the marginal distributions of each, the autocorrelations of each, and
the cross-correlations of the two. We do not model jointly the intervals of the
two semi-calls of a single call; this is not needed for QoS study because the
two semi-calls are not multiplexed with one another on an operational network.
Understanding the silence suppression mechanism as a whole, independent of
QoS issues, would require joint modeling.

11.1. 1000 semi-call samples: Introduction, trend, and independence

We analyzed semi-calls with larger durations so that sample sizes of the trans-
mission intervals and silence intervals would be larger. This is important because
random effects modeling is used, necessitating identification of random-effects
distributions, which is greatly enhanced by reduced sampling variability.

Here we report on one subset analysis: 1000 samples of both directions, caller-
to-callee and callee-to-caller, of the 44689 connected calls in the detail-augmented
data. Each call has four sets of interval lengths: ¢, and s,., each for caller-to-
callee and callee-to-caller, so there are 4000 sets of lengths. Sampled calls had
the following properties: call durations from 2% sec to 2'2 sec; call durations as
nearly equally spaced as possible on a log scale; and each of the four sets of
interval lengths for a call have at least 80 values. The medians and the maxima
of the numbers of intervals for the four sets are the following: ¢, caller-to-callee
(331, 1861); t, callee-to-caller (370, 2341); s, caller-to-callee (330, 1859); s,
callee-to-caller (369, 2341).

t, and s, have low-frequency trends for many calls. Figure 13 shows one
example. log(t,) for a caller-to-callee semi-call is graphed against the index
r; the curve is a loess fit with locally quadratic fitting and a span of 2/3
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Fic 13. 1189 log base 2 transmission interval lengths are plotted against order of occurrence.

(Cleveland and Devlin, 1988). With a very small number of exceptions, the
magnitudes of the trends are small compared with the overall variability in
log lengths, but result in a number of small positive autocorrelations that is
much larger than expected. However, the estimated autocorrelations from the
residuals of the loess fit are small, and vary as expected for true autocorrelations
of 0. The cross-correlations of the residuals also are consistent with values of 0.
In our analysis below we study interval lengths on the original scale corrected
for the minor trends. The corrected intervals are 2 to the power of the mean of
the loess fitted values plus the residuals. With an abuse of notation we will let ¢,
and s, be the corrected values. The end result is ¢, and s,. that are uncorrelated
bivariate time series. We take this to imply independence as well since the log
lengths, while not exactly a Gaussian process, are not too far off.

11.2. 1000 semi-call samples: Marginal distributions

The ¢, and s, to be modeled consist of 4000 sets of interval lengths of varying
sample sizes. These come from 1000 calls each with 4 categories of semi-calls:
transmission and silence by caller-to-callee and callee-to-caller. To study the
marginal distributions, we made 4000 quantile plots for each parametric distri-
bution whose ability to fit the empirical distributions was checked. We found
that the square-root lengths, v/¢, and /s, are well approximated by the gamma
distribution, so ¢, and s, are a square-root gamma distribution. ¢,, and s, on the
original scale have tails too long for the Weibull and gamma distributions, and
too short for the log normal. This is illustrated in Figure 14, which has log nor-
mal, square-root gamma, and Weibull quantile plots, for callee off lengths. For
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quantiles for callee off lengths by the log normal (top), square-root gamma (middle), and
Weibull (bottom) distributions.
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each parametric distribution there are log quantile plots for 6 semi-calls. The
six chosen semi-calls for each parametric distribution summarize the behavior
of a large number of displays as described next.

On each plot of Figure 14, the empirical log quantiles of orders /100 for
i = 1 to 99 are graphed against the quantiles of orders i/100 of a parametric
distribution; from the top set of 6 to the bottom set, the distributions are normal,
log square-root gamma, and log exponential. Parameters for the square-root
gamma plot are estimated by maximum likelihood. The log normal and Weibull
do not need parameter estimation because on the log scale, the quantiles are
linear in the two unknown parameters. The horizontal lines show 6 empirical
quantiles of log length — 0.01, 0.05, 0.25, 0.75, 0.95, and 0.99. The oblique
lines go through the 0.25 and 0.75 quartiles. The plots were made from the 460
callee semi-calls out of 1000 that had at least 400 off intervals. For each of the
460 plots and each parametric distribution, we computed the mean absolute
deviation of the points of the plot from the oblique line on the plot. We ordered
the resulting 460 deviations for each parametric distribution from smallest to
largest to form empirical quantiles of orders (k — 0.5)/460 for k = 1 to 460.
We computed deviation quantiles of orders 0.25, 0.40, 0.55, 0.70, 0.85, and 0.99
from the 460 values using linear interpolation. Then we found the 6 semi-calls of
the 460 whose deviations were the closest to the 6 interpolated quantiles. Each
set of 6 quantile plots in Figure 7 for a parametric distribution display the 6
semi-calls chosen for the distribution by this process.

For /t, and /s, there are 4000 pairs of maximum likelihood estimates of the
gamma shape and scale. Let o denote the log base 2 of the shape of a gamma
distribution and let 8 be the log base 2 of the scale. Let & and /3 be the logs of
the maximum likelihood estimates. The 1000 pairs of values of these estimates
for the 4 categories are shown by boxplots in Figure 15. The four marginal
distributions of the shape are centered at very similar values, but the variability
is much smaller for silence than transmission. The scale distributions for silence
are shifted toward lower values. This is to be expected because we reported
that the overall bit-rate of the semi-calls of the detail-augmented data is 45.17
kilobits/sec, more than half the full bit-rate of 80 kilobits/sec, which means
that transmission intervals are longer, taking into account that the bit-rate of
a transmission interval is 80 kilobits/sec and that of a silence interval is about
0.8 kilobits/sec. The marginal distributions for caller-to-callee and callee-to-
caller are very close; this provides strong support for the on-off process marginal
distributions being identically distributed across call direction, part of the semi-
call i-id assumptions.

Variability in the & and B comes from two sources. One is the sampling
variability arising from finite samples, and the other is potential changes in the
value of a parameter from one semi-call to the next. We used the bootstrap
to assess the sampling variability. For each of the 4000 estimations of the two
parameters, we took 1000 bootstrap samples, resulting in 1000 bootstrapped
estimates of the pair of parameters. For each of the 4000 bootstrap simulations,
we made a normal quantile plot of the 1000 log shape bootstrap estimates, a
normal quantile plot of the 1000 log scale estimates, and a scatterplot of the 1000
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Fic 15. Bozplots of estimates of log gamma shape and scale estimates, 1000 per boxplot.

log shape estimates against the 1000 log scale estimates. The displays show that
the bivariate bootstrap distribution is well approximated by the bivariate normal
except for a small number of the smaller samples where there was slight skewness
in the marginals. They also show substantial correlation of the estimates. For
each estimate we computed the bootstrap variances and covariance.

Because the distributions of the estimates of & and B are nearly the same
for callee-to-caller and caller-to-callee, we proceed next by merging the two so
that we now have two categories, transmission and silence, with 2000 pairs of
estimates for each category. Let &; and B for k = 1 to 2000 be estimates for
either category. The estimates can be decomposed into two components:

G = ak—l—ek(a)

By = Br+e(B)

ay and B, are independent random samples from a bivariate distribution, F, gy,
with means p(a) and u(B), variances o2(a) and o2(f3), covariance ¢(a, 8), and
correlation p(«, 8). oy and B model true changes in the gamma parameters.
er(a) and €x(B) are bivariate normal random variables with mean 0, and vari-
ances and covariance o2(a)k, 02(8)k, and ce(a, B)x from the bootstrap sample
for call k; the variances and covariance are assumed fixed and known. e, () and
ex(B) model sampling variability in the estimates with assumptions based on
our analysis of the bootstrap samples.

The sample mean, [i(a), of the dj is an estimate of p(«); we define fi(/3)
similarly. Let 6%(&) be the sample variance of the dj. Let 62(a) be the sample
mean of the o2(a)y. An estimate of o%(a) is

52(a) = 6%(a) — 52(a).
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TABLE 3
Statistics for the random effects modeling of log shape and log scale for /s, and \/t,

statistic | notation | transmission | silence

sample mean of shape estimates a 1.3307 | 1.3938

sample mean of scale estimates B -1.1940 | -1.5675

sample variance of shape estimates 52(&) 0.3144 | 0.0973

sample variance of scale estimates 52(B) 0.3546 | 0.4078

sample covariance of shape & scale estimates é(&, B) -0.2928 | -0.1649

mean of bootstrap variances of shape estimates 52 (a) 0.0151 | 0.0131

mean of bootstrap variances of scale estimates 52(B) 0.0176 | 0.0173

mean of bootstrap covariances of shape & scale estimates | é(a, ) -0.0147 | -0.0135
estimate of variance of shape random effect 52 (a) 0.2993 | 0.0842

estimate of variance of scale random effect 52(B) 0.3370 | 0.3905

estimate of covariance of scale & shape random effects | é(c, 3) -0.2781(-0.1514
estimate of correlation of scale & shape random effects | p(a, 8) -0.8756 | -0.8347

Similar notation and formulas hold for a 62(3). Finally, let &(&, B) be the sample
covariance of &y and B, and let ¢e(c, B) be the sample mean of the c.(a, 8)k.
Then an estimate of ¢(«, ) is

é(avﬂ) = é(dvﬁ) - Ee(avﬂ)'

The estimates 62(a), 62(3), and ¢é(a, 3) provide an estimate p(a, 8) of p(a, ),
the correlation of o and 3. We carried out diagnostic checking for the bivariate
distribution of oy and Si and found that the bivariate distribution is well ap-
proximated by the normal. The estimates of the parameters of this distribution
and other information are given in Table 3.

The bootstrap statistics in the table have much smaller values than the cor-
responding random effects distributions, which means the variability of the es-
timates is mostly due to the random effects. Still, we used a method to check
the bivariate normality of the random-effect distributions that takes the sam-
pling error into account. We generated 1000 independent bivariate normals with
variances and a covariance equal to the random effects estimates in the table.
We added to these values a sample of 1000 normal random variables with mean
0 and different variances equal to the bootstrap variances. We sorted the sums
from smallest to largest to create order statistics. This was done 10000 times,
and the order-statistic means computed. These values were compared with the
order statistics of the estimated values by a variety of visualization tools such as
scatterplots and probability plots. The displays showed that the bivariate nor-
mal is a reasonable approximation to the random effect bivariate distribution.
We have chosen to characterize the distributions of logs shape, «, and logs scale,
5, because the logarithms improve the approximation by bivariate normality.

To generate the transmission intervals for a call, values of o and 3 are gener-
ated by the bivariate normal distribution described in Table 3 for transmission.
The shape and scale for the gamma distribution used to generate the /%, are
& = 2% and B = 28 respectively. These generated values are squared and 60
ms added, the amount subtracted at the outset of the analysis. Their expected
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value is 60 ms plus the second moment of the generating gamma, dBQ(l + a).
Silence intervals are generated in a similar manner.

11.3. Previous results

Past studies of transmission and silence interval lengths are for the most part
consistent with the modeling shown here when we take the increased complexity
of the intervals as we observe them into account. This complexity arises because
the interval properties change from one call to the next. This has not been fully
appreciated in the past, since study has not been carried out on live traffic from
an operational network carrying a rich set of VoIP applications.

A very early study, about 80 years ago, reported on the empirical cumulative
distribution and density of talk spurts (transmission) and silence gaps (silence)
of speech (Norwine and Murphy, 1938). Statistical modeling began later. Brady
(1968, 1969) developed a model for the talk spurts and silence gaps based on
analysis of both directions of a call that can be applied to a single direction, a
semi-call. The model has independent exponentials for all interval lengths. For
talk spurts, the origin is 0 ms, and the mean is 0.902, 1.125, or 1.311 sec depend-
ing on the detection algorithm parameters. For silence gaps, the origin is 200 ms,
carried out by preventing silence gaps less than that amount in the algorithm;
and the mean is 1.664, 1.695, or 1.721 sec. Gruber (1982) and Lee and Un (1986)
continued work along these lines, with exponential talk spurts, and a single ex-
ponential or a mixture of exponentials to model silence gaps and accommodate
small gaps.

When studies for VoIP call properties began, it became clear that the inde-
pendent exponential model was inadequate. Jiang and Schulzrinne (2000) write:
“Previous studies on the performance of voice traffic multiplexers assume that
the length of spurts and gaps follow an exponential distribution. Since most of
these speech measurements are based on either analog or simple digital silence
detectors, we suspected that the spurts/gaps produced by modern voice codecs
and silence detectors will no longer fit well to the exponential model, which
may in turn affect the packet loss rate at the same utilization.” Their findings
verified this; they found that the distributions of transmission and silence in-
terval lengths for six monitored calls were consistently heavier-tailed than the
exponential. Following up on this work were Casilari et al. (2002) who modeled
transmission and silence by the log normal distributions using 10 hours of point-
to-point video conferencing, and Biernacki (2006) who modeled by mixtures of
exponentials based on 10 hours of VoIP semi-calls. Casilari et al. (2002) also
found the small but consistently positive autocorrelation described above; the
likely cause, as in our case, is the low-frequency trend that we observed.

These analyses of VoIP traffic are overall consistent with our results. We found
the log normal provided a fit that is not an exceedingly poor approximation,
but rather is not as good a fit as the square-root gamma. However, our work
departs in showing that the wide diversity of calls of our detail-augmented data
requires varying distributions, modeled by changing parameters of the square-
root gamma in a random effects model. In other words, individual semi-calls
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admit of a description by a simple parametric distribution, but with changing
parameters.

11.4. i-id assumptions

One critical task in the semi-call modeling is establishing the validity of the i-id
assumptions described in Section 8. We now discuss assumptions related to the
on-off process.

Earlier in this section we showed that the bivariate distributions of the log
shape and log scale square-root gamma distribution for transmission interval
lengths are nearly the same for caller-to-callee semi-calls and callee-to-caller
semi-calls. This means that the identical-distribution assumption holds across
call direction. The same is true for the silence intervals. We have also verified
that within a semi-call, the on-off interval lengths can be taken as independent
of time to a good approximation.

We assume in our modeling that the bivariate random variable of the two
log parameters of the on intervals are independent and identically distributed
across semi-calls. We investigated this assumption in the same manner as the
call duration in Section 10. For each log parameter we made four plots of the
5 quantiles in 15 minute intervals. The four plots are the four combinations
of caller-to-callee and callee-to-caller crossed with IP-to-PSTN and PSTN-to-
IP. We did the same with autocorrelations. No significant effects were found.
We carried this out for the 15220 semi-calls of the 7610 calls with the same
properties as those that defined the 1000 sampled calls studied in this section,
but not limiting to 1000 calls.

In our modeling we assume that the on-off process random variables are
independent of the call duration. We checked this also using the above 15220
semi-calls. For each log parameter we made a four scatterplots against log call
duration. The four plots are the four combinations of caller-to-callee and callee-
to-caller crossed with on and off. No relationship was detected. Further checking
of this assumption is given in Section 12.

It is important to emphasize that this checking can only be carried with
the longer calls because short calls have too few observations to get reliable
estimates of the two log parameters. However, as discussed in Section 6, the
short calls have little effect on QoS.

11.5. Modeling results

The results of this section include further development of the mathematical
model. The on-off process of alternating transmission and silence intervals lengths
of a semi-call is modeled. All interval lengths of a semi-call are independent. The
marginal distribution of the transmission lengths is a square root gamma distri-
bution. The log shape and log scale of the gamma for the transmission intervals
of a single semi-call are a random sample from a bivariate normal distribu-
tion. The same is true of the silence intervals but with different parameters for
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the bivariate normal. For each semi-call, a call duration is generated that is
independent of the on-off process random variables; then interval lengths of a
realization of the on-off process are generated until the sum of the lengths is
nearly the same as the call duration.

12. Semi-call bit-rate

The bit-rate of a semi-call is the sum of the total bits of all packets in the semi-
call divided by the call duration. The mean bit-rate across the 277540 semi-calls
of the complete-call data, which is the sum of the bits of all semi-calls divided by
the sum of their durations, is 44.65 kilobits/sec. Without silence suppression,
the bit-rate would be 80 kilobits/sec, so suppression reduces the multiplexed
call bit-rate to 55.8% of the rate without silence suppression.

The marginal distribution of the semi-call bit-rates is shown in the cumulative
frequency quantile plot of Figure 16. On the plot, a semi-call bit-rate value is
graphed against its empirical cumulative frequency, which is the fraction of
semi-calls whose bit-rates are less than or equal to the value. The horizontal
lines show quantiles of frequencies 0.01, 0.05, 0.25, 0.75, 0.95, and 0.99. The
oblique line is drawn through the upper and lower quartile points. The bit-rates
range from nearly 0 kilobits/sec to 80 kilobits/sec, and are close to uniformly
distributed from the 0.2 to the 0.8 quantiles.

We do not model bit-rate directly, but in this section we analyze the semi-call
bit-rates to further assess the i-id assumptions of the modeling. Specifically, we
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Fic 16. Cumulative frequency quantile plot of semi-call bit-rates.
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check the 277540 semi-calls of the complete-call data to see if we can detect
either a difference of the semi-call bit-rate marginal distribution or a correlation
in semi-call bit-rate for the following: (1) across the call direction (caller-to-callee
and callee-to-caller), or (2) across time (time of day).

Each semi-call bit-rate is a summary statistic for the on-off process of a semi-
call. The transmission intervals have 1600-bit packets every 20 ms, which is 80
kilobits/sec. The silence intervals have 1600-bit packets every 2000 ms, which
is 0.8 kilobits/sec, 100 times less. Thus the semi-call bit rate is very nearly 80
kilobits/sec times the sum of the transmission interval lengths of the semi-call
divided by the semi-call duration.

12.1. i-id assumptions

For each call, we subtracted the bit-rate of the callee-to-caller semi-call from the
bit-rate of the caller-to-callee semi-call. We formed three groups of differences
based on three intervals of the call duration: 0-32 sec, 32-128 sec, and 128- sec.
Figure 17 has three cumulative frequency quantile plots for the three groups,
each drawn using the same visualization method as Figure 16. For the 128- sec
interval, the largest durations, the distribution of the differences is centered on 0,
and the differences are very close to a symmetric distribution; the callee-to-caller
and caller-to-callee bit-rate distributions are nearly the same. For the 32-128 sec
interval, there are small differences, but overall the callee-to-caller and caller-
to-callee bit-rate distributions are similar. For interval 0-32 sec, slightly more
that 75% of the callee-to-caller bit-rates are larger, so the distributions differ.
More insight is provided by Figure 18 which shows 10 nonparametric density
estimates using the ed method with 20-gaps smoothed by local cubic fitting and
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Fic 17. Cumulative frequency quantile plots of call direction bit-rate differences, caller-to-
callee - callee-to-caller, for 3 intervals of duration.
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a span chosen to optimize the fits (Hafen and Cleveland, 2009). There are 12
categories of semi-call bit-rates — 2 directions (caller-to-callee and callee-to-
caller) by 2 semi-call types (attempt and connect) by the 3 duration intervals.
The figure shows estimates for 10 categories, omitting the two estimates for 128-
sec and attempt, which have very few calls. For attempts, the callee-to-caller
density is lower than the caller-to-callee at low bit-rates and higher at high
bit-rates, and overall callee-to-caller has more bits. The reason is that during
the ring period, the VoIP transmission protocol sends more packets callee-to-
caller than caller-to-callee. For connects in interval 0-32sec, callee-to-caller also
has more bits; the ring period makes up a significant fraction of the call time,
and many calls are likely point-of-sale calls for which the callee-to-caller also
sends more bits. For connects in interval 32-128 sec, the caller-to-callee density
is lower than the callee-to-caller at low bit-rates and higher at high bit-rates,
and the caller-to-callee sends more bits; many calls are likely faxes for which
the caller-to-callee sends more bits. This effect, however, is minor. For connects
in interval 128-sec, the densities are nearly the same; most calls are likely voice,
and across calls, caller-to-callee and callee-to-caller have similar patterns.

We have detected caller-to-callee and callee-to-caller bit-rate distributional
differences, but with more than very minor effects only for the interval 0-32sec,
which, as shown in Figure 3 has a very small fraction of the total traffic bits.
For the remaining calls, the bit-rate distributions for callee-to-caller and caller-
to-callee are very nearly the same. This is reflected in the overall bit-rates. For
all semi-calls in the detail-augmented data, the combined caller-to-callee and
callee-to-caller bit-rate is 43.96 kilobits/sec. For callee-to-caller the overall bit-
rate is 45.17 kilobits/sec, and for caller-to-callee it is 42.74, a small difference.
Thus the detected differences in semi-call bit-rates are not significant for our
modeling because of its QoS goal.



B. Xi et al./VoIP: Analysis and modeling 102

We also studied whether the semi-call bit-rate, separately for caller-to-callee
and for callee-to-caller, was identically distributed through time, and whether
there was correlation in bit-rate as a time sequence. Our methods were the same
as that for study of time characteristics of the two log parameters of the on and
off intervals of caller-to-callee and callee-to-caller in Section 11. In no case did
we find more than minor efforts for the changing quantiles through time, and
there was no significant time autocorrelation.

12.2. Modeling results

i-id assumptions, critical to the mathematical model and the semi-empirical
model, have been further verified in the sense that departures appear only for
semi-calls with short durations that have overall low multiplexed traffic bit-
rates. Specifically the results are consistent with the following assumptions: the
semi-call on-off process random variables are independent given the bivariate
parameters and are independent of call duration; the length random variables of
individual semi-calls are independent; the off lengths of individual semi-calls are
identically distributed; and the on lengths of individual semi-calls are identically
distributed.

13. Statistical properties of the multiplexed packet traffic
13.1. Long-range dependence

The decay of the autocovariance function depends on the tail of the distribution
D. If the density is d(c) = e~ ¢, a unit exponential distribution, then p(7) =
O fTOO ce °dec — Te™T), so there is an exponential decay of the autocovariance.
If the density is d(c) = 2(£)7"~! where v > 1 and ¢ > s, a Pareto distribution,

S

then p(7) = CSVJ:lV for v > 1, so there is a polynomial decay. If 1 < v < 2,
then the traffic is long-range dependent because > p(7) = oo (Cox, 1984).

Best-effort Internet traffic — the data traffic on the Internet such as Web
page downloads (protocol HT'TP), email (protocol SMTP), and interactive en-
crypted logins (protocol SSH) — is long-range dependent because transferred
file sizes have a distribution whose upper tail is well approximated by the Pareto
(Paxson and Floyd, 1995; Barford and Crovella, 1998). Queueing delays can be
substantially greater for long-range dependent traffic than for traffic for which
p(7) decays exponentially which has had a major impact in the engineering of the
Internet (Erramilli et al., 1996). Historically, telephone call duration was mod-
eled by an exponential in an era when telephone calls were voice only (Bolotin,
1994; Brown et al., 2005).

The analysis and modeling of D in Section 10 leads to the conclusion that the
VoIP traffic is not formally long-range dependent since the duration distribution
does not have a tail that would lead to this. Later in this section, the autocor-
relation properties of the multiplexed packet arrivals are analyzed directly to
provide further verification. Other duration modeling work has also resulted
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in specifications that also do not lead to long-range dependence. Bolotin (1994)
models duration by a statistical mixture of log normal distributions, rather than
isolating attempts and connects, but the motivation is the same — that the du-
ration distribution is too complex for a single, simple parametric family. Our
duration distribution appears even more complex, the reason for our mixture
of piecewise Weibull distributions. Dang et al. (2004) are led to the conclusion
that the call distribution for VoIP on a local network of 800 VoIP phones is a
generalized Pareto distribution with a shape parameter, using our notation, of
v = 2.56, which means the traffic is not long-range dependent because v > 2.

13.2. 20 ms packet counts: Power spectrum and variance-time plot

To understand the statistical properties of the multiplexed packet process of the
processed data, we analyzed IP-to-PSTN and PSTN-to-IP packet arrival counts
in 20-ms intervals, two time series of length 8.625 x 10%. The process is non-
stationary because of the change in the packet arrival rate, shown in Figure 2.
While the process is overall non-stationary, the IP-to-PSTN and the PSTN-to-
IP 20-ms counts are stationary within almost all of the 575 5-min intervals that
make up the measurement period of 47 hr 55 min. There are significant trends
in only a small fraction of the intervals.

Guided by theory, we used the near-stationarity within the 5-min intervals
to explore certain statistical properties of the counts. In each interval the 20-ms
counts can be thought of, theoretically, as the multiplexing of the packets of
v independent and identical source processes, each with mean g and variance
02, because the traffic is made up of many independent calls. Therefore, the
multiplexed process has mean vy and variance vo?, so the variance is propor-
tional to the mean as v changes. In addition, as v increases, the counts tend
to normality by the central limit theorem. If v remains constant, the 20-ms
counts are a stationary time series with an autocorrelation function. However,
the autocorrelation does not depend on v.

We made 575 normal quantile plots of the PSTN-to-IP 20-ms counts in each
5-min interval, and 575 normal quantile plots for the IP-to-PSTN counts. The
empirical marginal distributions are well approximated by the normal. We com-
puted 1150 means and variances of the 20-ms counts for the PSTN-to-IP and
IP-to-PSTN counts in the 5-min intervals. Figure 19 graphs the log variance
against the log mean. The oblique line is the best least-squares fit with slope 1.
All but about 5% of the points follow the line, strongly supporting the above
theoretical proportionality. The deviations, large variances, are those intervals
with trends in the rates that while small in magnitude, inflate the variance,
rendering the theory inapplicable.

The proportionality suggests a method of adjusting the counts for mean and
variance nonstationarity that allows for a continuous instantaneous change in
the traffic rate with time. The changing vu is estimated by a loess fit to the
20-ms counts with a span of 0.0644, which is 180 minutes, and locally quadratic
fitting (Cleveland and Devlin, 1988). The packet counts are adjusted by sub-
tracting the loess fit and dividing by its square root. This does not necessarily
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Log Variance (log base 2 squared counts/20 ms)

Log Mean (log base 2 counts/20 ms)

F1Gc 19. Log variance is graphed against log mean for 20-ms packet counts in 1150 5-min
intervals. The oblique line is the best least-squares fit with slope 1.

eliminate covariance nonstationarity for nonzero lags, but does provide insight
into dependence properties, and appears, as we shall see, to provide an excellent
estimate of the above stationary autocorrelation function.

We also analyzed a stationary VoIP process, a synthetic multiplexed packet
series generated by the semi-empirical model whose specifications are described
in Sections 8 and 14. The call arrival rate was set to make the expected traffic
bit-rate 3 mbps, which lies in the range of the observed 5-min traffic bit-rates
of the live data. The duration of the synthetic run was 96 hr, about twice the
duration of the processed data of 47 hr 55 min. The time series of synthetic
20-ms packets counts has 17.28 x 10° values.

We estimated the power spectra of three series: the loess adjusted IP-to-
PSTN and PSTN-to-IP 20-ms counts, and the synthetic 20-ms counts. The
details of the estimation procedure are given at the end of this section. The
three spectra are nearly identical, so the loess adjustment of the counts has
resulted in a good estimate of the spectrum of the stationary process. The
red curve in Figure 20 shows the synthetic spectrum estimate (red) in decibels
graphed against frequency f. The plotted points (black) are the logs of means
of the periodogram values in blocks of 6.

Two sets of narrow band peaks appear in the spectrum estimate. The first
set is at a fundamental frequency of 0.111 (period = 180 ms) and its three
harmonics. This is the cycle in the gateway packetization algorithm described
in Section 7. The second is a periodic effect at a fundamental frequency of 0.01



B. Xi et al./VoIP: Analysis and modeling 105

40 - i =

10 Log Base 10 Spectrum (decibels)

T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Frequency (cycles per 20ms)

Fic 20. The estimate of the log power spectrum is graphed against frequency by the curve
(red). The plotted points (black) are the logs of averages of 6 periodogram values.

cycles per 20 ms (period = 2 sec). The effect is caused by the sending of packets
every 2 sec during silence periods. Interestingly, the peak at the fundamental
does not appear, presumably because of leakage due to the strong rise near the
origin, but all harmonics do appear.

The salient feature of the log spectrum estimate is the substantial rise as
the frequency decreases, starting at about f = 0.01 (period = 2 sec). The
rise reflects the high positive persistence in the calls due to the highly skewed
distribution of the call durations demonstrated in Section 10. More information
about the rise is shown in Figure 21, which graphs the log power spectrum
against £ = 10log;,(f), where log;, is log base 10. The vertical and horizontal
scales have the same number of units per cm so the physical slopes are same
as the slopes in data units. The vertical lines are drawn at frequencies ¢ with
periods 1 hr, 1 min, and 1 sec. For £ < —10 the pattern is piecewise linear,
shown by the four line segments (red). The breakpoints are at values of ¢ that
have periods of 2.52 sec/cycle, 25.2 sec/cycle, and 75 min/cycle. The four slopes,
for decreasing ¢, are —1.44, —0.67, —1.36, and 0 decibels/(10 log;,(cycles per 20
ms)). If the 20-ms counts were formally long-range dependent, the slope near
the origin would be constant and equal to —2d, where 0 < d < 0.5 is the Hosking
fractional difference power (Hosking, 1981). This value would be greater than
—1. Two of the estimated slopes are less than —1, but very close to the origin
the slope is 0.
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Fic 21. The plotted points (black) are the logs of averages of 6 periodogram values plotted
against log frequency. The oblique line segments (red) describe the pattern of the log spectrum.

Figures 22 and 23 explore the persistence further. The first is a variance-
time plot (Leland et al., 1994): for m = 1,...,20, the 224 counts are partitioned
into 224~™*1 intervals each with 2™~! observations, and the log base 2 of the
variance of the interval means, or m-aggregates, is graphed against log base
2 of m. The second is the variance-time slope plot: each of the 19 slopes of
the line segments in the variance-time plot is graphed against the midpoints
of the horizontal coordinates of the segment endpoints. If the counts were
independent, the slope of the variance-time plot would be —1. If the data were
long-range dependent, the slope would tend to 2d — 1 as m increases, where d is
the above Hosking parameter (Beran, 1994). Best-effort Internet traffic tends to
have a variance-time plot that is decreasing and convex, and with a slope that
increases to 2d — 1 as m increases. d is typically close to 0.45; furthermore the
slope for the smallest m can be close to —1 for higher traffic bit-rates indicating
near independence at small time scales and a growing dependence as the time
scale increases. Figures 22 and 23 show a very different behavior. The pattern is
concave with small absolute slopes that persist through about 10 min and then
decrease to —1 indicating an eventual independence.
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Fia 22. The variance-time plot graphs the log variance of m-aggregates against log m. The
vertical lines are at values of log m corresponding to 1 hr, 1 min, and 1 sec.
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Fic 23. The slopes of the line segments in the variance-time plot are graphed against the

midpoints of the segment endpoints. The vertical lines are at values of log m corresponding
to 1 hr, 1 min, and 1 sec.
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1-Minute Mean Packet Counts (counts per 20 ms)

Time (hr)

Fic 24. 1 minute means of the synthetic 20-ms counts are graphed against time, broken into
two intervals, with a loess fit superimposed. The horizontal lines are at the overall mean of
the 20-ms counts.

The conclusion then from the duration distribution, the power spectrum,
and the variance-time plot is that the VoIP traffic is not formally long-range
dependent. This departs from best-effort Internet traffic where the connection
durations are well approximated by a Pareto distribution, which results in long-
range dependence (Willinger et al., 1997).

Still, the VoIP traffic is highly persistent over time scales that can be ex-
pected to have a major impact on the queueing process. The spectrum suggests
the persistence extends to about 75 min/cycle, the period at which the power
spectrum becomes flat. 75 min is the 0.998-quantile of the durations of the
complete-call data. It is at a lag of about 75 min that autocorrelations become
close to 0. By 75 min, the variance-time plot is close to independence. In fact,
we can see this period of dependence, although not with the same precision, in a
plot of the data. Figure 24 displays 5760 1 minute means of the synthetic 20-ms
counts against time, broken into two intervals, with a loess fit superimposed
with locally quadratic fitting and a span of 2/96. The horizontal lines are at
the overall mean of the 20-ms counts. There are sojourns of the means above or
below the overall mean lasting up to about 75 min.

Analyses of the multiplexed VoIP traffic of Zhang et al. (2007) and of Ciullo
et al. (2008) also lead to conclusions that the multiplexed packet traffic is not
long-range dependent. Dang et al. (2004) ran a simulation using durations of
their fitted model, and inserted sampled transmission and silence intervals into
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each call from their packet trace collection on a corporate VoIP network. Their
plot of the log periodogram against log frequency has a pattern much like that
of Figure 21, with a decrease in slope to 0 as the frequency gets small, also
suggesting a lack of long-range dependence. This, of course, is to be expected
given their modeled duration distribution.

The following describes the estimation of the power spectra. For the IP-to-
PSTN and PSTN-to-IP data, the first n = 223 counts were used, and for the
synthetic data, the first n = 22* counts, conducive to the fast Fourier trans-
form and variance-time plots to come below. For each, the sample mean was
subtracted and the resultant divided by the sample standard deviation. The
periodogram was computed at the Fourier frequencies, k/n,k = 0,...,n/2. The
first 30 frequencies of the IP-to-PSTN and PSTN-to-IP counts were deleted
because testing with white noise showed the frequency response function of
the high-pass loess adjustment method begins its consequential low-frequency
attenuation at the largest of these frequencies. For the synthetic data, the peri-
odogram at frequency 0 was deleted since its value is 0 due to subtracting the
mean. Means of the resulting periodogram values were taken in non-overlapping
blocks of size 6. The process starts at the lowest available frequency and ends
when there are fewer than 6 frequencies available. Each periodogram mean has
a frequency equal to the mean of the 6 frequencies of its averaged periodogram
values. The power spectra were estimated by smoothing the log of the averaged
periodogram values using loess with locally quadratic fitting and with a span of
0.01 (Cleveland and Devlin, 1988).

14. Specification of the models and discussion

The previous sections have provided the first comprehensive analysis and mod-
eling of the statistical properties of multiplexed IP-inbound VoIP packet traffic
on a large operational network carrying a wide range of VoIP applications such
as voice calls and fax transmissions. The data analyzed were collected on a
link of the Global Crossing international network. A VoIP call consists of two
semi-calls, callee-to-caller and caller-to-callee. Semi-call signals arrive at a gate-
way where they are converted to packets and sent out over a single direction of
link to a first IP router. The IP-inbound traffic consists of the multiplexing, or
superposition, of the packets of the semi-calls on the link.

The analyses result in two validated models for the multiplexed IP-inbound
packet traffic arrival process. A semi-empirical model uses empirical observa-
tions as part of its modeling. A mathematical model consists of parametric sta-
tistical specifications of mathematical components. Modeling is at the semi-call
level: specification of the semi-call arrival times and packet inter-arrival times
of arriving semi-calls.

The purpose of the modeling is generation of IP-inbound traffic as inputs for
simulations of the queueing of VoIP traffic on a network of routers. Simulations
are carried out to investigate the effect on delay and jitter of VoIP implementa-
tion factors — e.g., priority queueing, silence suppression, signal capture rate,
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compression, and accumulation interval — and traffic engineering factors —
e.g., link speeds and multiplexed traffic bit-rates.

In this section we provide full specifications of the models and discuss their
use in practice. Specifications are given by describing how the models are used
to generate the IP-inbound multiplexed packet arrivals, and then describing
assumptions made about independence and identical distribution. Notation will
be used in the descriptions. Let a; be the semi-call arrival time of the k-th
generated semi-call, let ¢, be its duration, and let tpr and S, for r =1,2,...
be the lengths of the sequences of transmission (on) and silence (off) intervals,
respectively, of the kth call.

14.1. The semi-call arrival process

The aj are a non-homogeneous Poisson process with rate A in arrivals/sec;
the arrivals provide the times of the first packets of the semi-calls. Both the
semi-empirical model and the mathematical model use this model for the semi-
call arrivals. The changing A is not specified since this depends on the specific
network to which the model applies. However, one often carries out traffic en-
gineering to accommodate a sustained peak traffic load, so simulation with a
fixed A is quite relevant to practice.

A determines the average VoIP multiplexed traffic bit-rate. Let ¢ be the
average semi-call bit rate, and let d be the average semi-call duration. Then the
multiplexed traffic bit-rate is A¢d. For example, the average bit-rate across all
semi-calls of the complete-call data, which is the sum of the bits of all semi-calls
divided by sum of their durations, is ¢ = 0.04465 megabits/sec. The average
duration of all semi-calls is d = 165.24 sec. To generate the multiplexed packet
traffic with a bit-rate of 3 megabits/sec in Section 13, A was taken to be 0.4066
arrivals per sec.

14.2. The semi-empirical model

The semi-empirical model generates traffic in the following way.

e Semi-call arrival times aj are generated by the above non-homogeneous
Poisson process.

e Empirical semi-call k for arrival ay is randomly sampled from the 277540
semi-calls of the complete-call data. Its packet arrival times are translated
so that the time for the first packet is 0.

e The packet arrival times for the kth generated semi-call are aj plus the
translated empirical times of empirical semi-call k.

e The generated multiplexed traffic packet arrival times are the superposi-
tion of the packet arrival times of the generated semi-calls.

There are a number of possibilities for the sampling frame for the semi-calls of
the semi-empirical model. To follow the independence assumptions of the model,
verified from our analyses, we need to have the vector of random variables cy,
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tgr, and s for r = 1,2,... be independent from one semi-call k to the next.
We can insure this by randomly choosing one of the two empirical semi-calls
of each empirical call (caller-to-callee or callee-to-caller), and then sampling
without replacement from these semi-calls. This sampling frame does not allow
a semi-call to appear more than once, and does not allow both semi-calls of a
single call to appear. The two semi-calls of a single call are associated because
the durations are the same, and when one side is transmitting the other side
tends not to. Of course, sampling a semi-call two or more times also results in
dependence between different semi-calls.

However, random sampling with replacement, desirable because it can serve
simulations of long time periods, is unlikely to create a dependency that has
more than minor effects on the statistical properties of the multiplexed traf-
fic process. The on-off intervals have no significant synchronized behavior and
the on and off intervals very quickly become out of phase. So in generation, a
sampled semi-call followed by itself or by the other semi-call of the same call,
would not cause significant positive or negative correlations unless the second
call appeared almost simultaneously with the first. This is highly unlikely. The
semi-call arrival rate that would result in 100 megabits/sec of multiplexed traf-
fic, a large load for a simulation study, has 13.55 arrivals per second, and there
are 277540 semi-calls in the complete-call data.

14.3. The mathematical semi-call model

The mathematical model generates traffic in the following way.

1. Semi-call arrival times aj are generated by the above non-homogeneous
Poisson process.

2. For the kth semi-call, generate a semi-call duration c¢; from the mixture
of piece-wise Weibull distributions specified in Table 2.

3. Generate a log base 2 shape parameter, ay, and a log base 2 scale parame-
ter, Bx, from the bivariate normal distribution for the parameters of /%,
described in Table 3.

4. Form aj = 2% and 3 = 28k the shape and scale parameters for the

Lo

5. Generate values of v/fx, from a gamma distribution with parameters aj
and J;, square to get i, and add 60 ms to get trr, the sequence of on
lengths for the kth semi-call.

6. Carry out steps, similar to 3 to 5, to generate values of S, the sequence
of silence durations, but with 60 ms replaced by 15 ms.

7. The values of iy, and $x,- alternate; generation stops when their sum is
approximately cg.

8. Packets for a transmission interval begin at the start of the interval, occur
every 20 ms, and end when there is less than 20 ms remaining.

9. Packets for a silence interval begin at the start of the interval, occur every
2 sec, and end when there is less than 2 sec remaining.
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10. The generated multiplexed traffic packet arrival times are the superposi-
tion of the packet arrival times of the generated semi-calls.

14.4. Strengths and weaknesses

The strength of the mathematical model is that it reproduces statistical effects
in the data reasonably well and is far more parsimonious than the semi-empirical
model. The weakness is more assumptions and less verisimilitude; for example,
the low-frequency trends in transmission and silence intervals are not modeled,
although this is likely not critical since the magnitudes of the trend variations
are small. The semi-empirical model is more robust, not as dependent on model
assumptions; for example, there is no modeling of durations and the on-off pro-
cess beyond establishing assumptions of independence and identical distribution.
The weakness is that it is not parsimonious, requiring the values of the complete-
call data. One way to check the accuracy of the mathematical model for QoS
studies, beyond the scope of this work, would be to use the semi-empirical and
the mathematical models for queueing simulations in test runs, and compare
the resulting delay and jitter.
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