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Abstract: Let (Yi, Zi)i≥1 be a sequence of independent, identically dis-

tributed (i.i.d.) random vectors taking values in R
k ×R

d, for some integers
k and d. Given z ∈ Rd, we provide a nonstandard functional limit law for
the sequence of functional increments of the compound empirical process,
namely

∆n,c(hn, z, ·) :=
1

nhn

n
∑

i=1

1[0,·)

(Zi − z

hn
1/d

)

Yi.

Provided that nhn ∼ c logn as n → ∞, we obtain, under some natural
conditions on the conditional exponential moments of Y | Z = z, that

∆n,c(hn, z, ·) Γ almost surely,

where  denotes the clustering process under the sup norm on [0, 1)d.
Here, Γ is a compact set that is related to the large deviations of certain
compound Poisson processes.
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1. Introduction and statement of the results

Let (Yi, Zi)i≥1 be a sequence of independent, identically distributed (i.i.d.)
random vectors taking values in R

k × R
d, for some integers k and d. Given

s, t ∈ R
d with respective coordinates s1, . . . , sd and t1, . . . , td, we shall write

[s, t] := [s1, t1]× · · · × [sd, td], [s, t) := [s1, t1)× · · · × [sd, td) and given a ∈ R we
set [a, t] := [a, t1] × · · · × [a, td]. For each integer n ≥ 1, define the compound
empirical distribution function as:

Un,c(s) :=
1

n

n∑

i=1

1(−∞,s](Zi)Yi, s ∈ R
d. (1.1)

Here the letter c stands for “compound”. In this paper, we are concerned with
the asymptotic behaviour of the functional increments of Un,c, namely, for fixed
h > 0 and z ∈ R

d,

∆n,c(h, z, s) :=
1

nh

n∑

i=1

1[0,s)

(Zi − z

h1/d

)
Yi, s ∈ [0, 1)d. (1.2)

Note that, in the particular case where k = 1 and Y1 ≡ 1, the ∆n,c(h, z, ·) are
no more than the functional increments of the empirical distribution function,
which have been intensively investigated in the literature (see, e.g., [4, 5, 10,
11]). Among these investigations, Deheuvels and Mason ([4, 5]) have established
nonstandard functional limit laws for the ∆n,c(h, z, ·) when k = 1, d = 1,
Y1 ≡ 1 and Z1 is uniformly distributed on [0, 1). To cite their results, we need
to introduce some further notations. We shall write

|| s ||k:= max{| s1 |, . . . , | sk |}

for s ∈ R
k, and we define Bk([0, 1)

d) as the space of all mappings from [0, 1)d

to R
k that are bounded. We shall endow Bk([0, 1)

d) with the usual sup-norm,
namely | g |k:= sups∈[0,1)d | g(s) |k . Given a convex real function h on R

k,

we define the following functional on Bk([0, 1)
d): whenever a function g satisfies

g(0) = 0 and admits a derivative g′ with respect to the Lebesgue measure, set

Jh(g) :=

∫

[0,1)d
h(g′(s))ds, (1.3)

and set Jh(g) := ∞ if it is not the case. We also write, for any c > 0,

Γh(c) :=
{
g ∈ Bk([0, 1)

d), Jh(g) ≤ c
}
. (1.4)

Now define the following (Chernoff) function on [0,∞):

h1(x) :=






x log x− x+ 1, for x > 0;
1, for x = 0;
∞, for x < 0.

(1.5)
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A sequence (fn) in a metric space (E, ρ), is said to be relatively compact with
limit set equal to K when K is (non void) compact and the following assertions
are true

lim
n→∞

inf
f∈K

d(fn, f) = 0, (1.6)

∀ f ∈ K, lim inf
n→∞

d(fn, f) = 0. (1.7)

We shall write this property xn  K.
Throughout this article, we shall consider a sequence of constants (hn)n≥1

satisfying the so called local nonstandard conditions, namely, as n → ∞,

(HV) 0 < hn < 1, hn ↓ 0, nhn ↑ ∞, nhn/ log2 n → c ∈ (0,∞).

Here we have set log2 n := log(log(n∨ 3)), with the notation a∨ b := max{a, b}.
In a pioneering work, Deheuvels and Mason [4] established a nonstandard func-
tional law of the iterated logarithm for a single functional increment of the
empirical distribution function. With the notation of the present paper, their
theorem can be stated as follows.

Fact 1.1 (Deheuvels and Mason, 1990). Let (hn)n≥1 be a sequence satisfying
(HV) for some constant c > 0. Assume that k = 1, d = 1, Y1 ≡ 1, and that Z1

is uniformly distributed on [0, 1). Then, given z ∈ [0, 1), we have almost surely

∆n,c(hn, z, ·)  Γh1
(1/c).

Later, Deheuvels and Mason [6] extended the just mentioned result to a more
general setting, where d > 1 and with fewer assumptions on the law of the Zi,
considering the ∆n,c(hn, z, ·) as random measures indexed by a class of sets. The
aim of the present paper is to extend the above mentioned results to the case
where the random vectors Yi are not constant, but do satisfy some assumptions
on their conditional exponential moments given Z = z. From now on < ·, · >
will always denote the Euclidian scalar product on R

k and λ stands for the
Lebesgue measure. Define C as the class of each C ⊂ R

d which is the union of d
hypercubes of Rd, and with λ(C) > 0. The two key assumptions that we shall
make upon the law of (Y1, Z1) are stated as follows.

(HL1) There exists a constant f(z) > 0 satisfying, for each C ∈ C
lim
h→0

h−1
P(Z1 ∈ z + h1/dC) = λ(C)f(z).

(HL2) There exist two mappings LY : Rk 7→ [0,∞) and L|Y |k : R 7→ [0,∞)
such that, for each t ∈ R

k and t′ ∈ R and C ∈ C, we have

lim
h→0

E(exp(< t, Y1 >)|Z1 ∈ z + h1/dC) = LY (t),

lim
h→0

E(exp(t′ | Y1 |k)|Z1 ∈ z + h1/dC) = L|Y |k(t
′).

Remark 1.1. Assumptions (HL1) and (HL2) seem to be the weakest that we
can afford in this context, in regard to the methods we make use of in this
paper. Note that (HL2) implies that LY is infinitely differentiable on R

k. Some
straightforward analysis shows that these assumptions are fulfilled when the Yi
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are bounded by a constant and when Zi admit a (version of) density f which is
continuous at z. Another interesting case where (HL1) and (HL2) are fulfilled
is a general semi parametric setting which appears in the following proposition.

Proposition 1.1. Assume that there exist a σ-finite measure v on R
k and an

application fY from R
k × R

d to [0,∞), such that

1. There exists a neighborhood V of z such that, for each z′ ∈ V, the law of
Y | Z ′ = z is dominated by v, with density fY (·, z′).

2. For v-almost all y, the function z → fY (y, z) is continuous on V.
3. For each z′ ∈ V, and each t ∈ R

k we have

∫

Rk

exp
(
< t, u >

)
fY (u, z

′)dv(u) < ∞.

4. Z has a version of density (with respect to the Lebesgue measure λ) which
is continuous on V.

Then the random vector (Y, Z) fulfills (HL1) and (HL2).

Proof. The proof is a straightforward application of Schéffé’s lemma.

Remark 1.2. Roughly speaking, assumption (HL2) imposes that the Laplace
transform of the law Y | Z = z is finite on R

k. One could argue that this
assumption could be weakened. However, it seems that, when this assumption
is dropped, Theorem 1 (see below) does not hold anymore under the strong
norm || · ||k. A close look at the works of Deheuvels [3] and Borovkov [2] on
the functional increments of random walks leads to the conjecture that the
appropriate topology when L is finite only on a neighborhood of 0 seems to
be the usually called weak star topology (see, e.g. [3]). This topic is however
beyond the scope of this article, and shall be investigated in future works.

Notice that LY and L|Y |k are positive convex functions when they exist. We
now introduce hY (resp. h|Y |k), which is defined as the Legendre transform of
LY − 1 (resp. L|Y |k − 1), namely:

hY (u) := sup
t∈Rk

< t, u > −
(
LY (t)− 1

)
, u ∈ R

k, (1.8)

h|Y |k(x) := sup
t′∈R

t′x−
(
L|Y |(t)− 1

)
, x ∈ R. (1.9)

Recall that the constant c > 0 appears in assumption (HV) and that ΓhY (1/c(z))
has been defined by (1.4) and (1.8). Our result can be stated as follows.

Theorem 1. Under assumptions (HV), (HL1) and (HL2), we have almost
surely

f(z)−1∆n,c(z, hn, ·)  ΓhY (1/cf(z)).

A consequence of this result is the following unconsistency result, for which
no proof has been yet provided to the best of our knowledge: let K be real
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function on R
d with bounded variation and compact support. The Nadaraya-

Watson regression estimator of r(z) := E(Y | Z = z) is defined as:

rn(z) :=

n∑

i=1

K
(

Zi−z

h
1/d
n

)

n∑
j=1

K
(

Zj−z

h
1/d
n

)Yj , z ∈ R
d.

Theorem 1 entails that, under (HV), (HL1) and (HL2), the pointwise strong
consistency of rn does not hold.

Corollary 1.1. Under (HV), (HL1) and (HL2), and assuming that Y 6≡ 0, we
have almost surely

lim sup
n→∞

| rn(z)− r(z) |k> 0.

Proof. We may assume without loss of generality thatK vanishes outside [0, 1)d.

Consider the random vectors Ỹi := (Yi, 1), taking values in R
k+1. Some straight-

forward computations show that Ỹ , Z satisfy (HL1) and (HL2), and that, writ-
ing m := ∇LỸ (0), we have

hỸ (m) = 0. (1.10)

Moreover, assuming without loss of generality that Y has a second moment
matrix which is strictly positive, we have ∇2LỸ > 0 (strictly positive matrix)
on R

k+1, which ensures that

t0 7→ ∇LỸ (t)
∣∣∣
t=t0

is a C1 diffeomorphism from R
k+1 to an open set O ∋ m. And hence admits an

inverse that we write ∇L−1

Ỹ
. We deduce that

hỸ (x) =< x,∇L−1

Ỹ
(x) > −

(
LỸ

(
∇L−1

Ỹ
(x)
)
− 1
)

is continuous in x, which implies, that, for ǫ > 0 small enough we have

sup
x∈Rk

||x−m||k<ǫ/f(z)

| hỸ (x) |1<
1

cf(z)
. (1.11)

For g ∈ Bk+1([0, 1)
d), we shall write g = (gk, gk+1), where gk+1 denotes the last

coordinate of g and gk ∈ Bk([0, 1)
d) is equal to g without its last coordinate.

We shall also write, for a Borel set A and for ℓ = (ℓ1, . . . , ℓk) ∈ Bk([0, 1)
d)

ℓ(A) :=
(∫

Rd

1Adℓ1, . . . ,

∫

Rd

1Adℓk

)
. (1.12)

which is well defined as soon as either 1A or each gi has bounded variations on
R

d. Consider the following mappings:



M. Maumy and D. Varron/Non standard functional limit laws 1329

Ψ :
(
Bk+1([0, 1)

d), || · ||k
)

7→ R
k+1

g →
(∫

s∈[0,1)d gk([s, 1])dK(s),

∫
s∈[0,1)d gk+1([s, 1])dK(s)

)
,

Ψ′ :
(
Bk+1([0, 1)

d), || · ||k
)

7→ R
k+1

g →
(∫

s∈[0,1)d

∫
[s,1]

ġk(u)dλ(u)dK(s),

∫
s∈[0,1)d

∫
[s,1] ġk+1(u)dλ(u)dK(s)

)
,

T : R
k × (R− {0}) 7→ R

k

(x1, . . . , xk, xk+1) → 1
xk+1

(
x1, . . . , xk).

Also consider

Γ̃hỸ
(1/cf(z)) :=

{
g ∈ L2([0, 1)d)k+1,

∫

[0,1)d
hỸ (g) ≤ 1/c

}
.

We obviously have Ψ(f(z)ΓhỸ
(1/cf(z))) = Ψ′(f(z)Γ̃hỸ

(1/cf(z))). As K has
bounded variations, Ψ is continuous and so is T ◦ Ψ. Applying Theorem 1, we
then deduce that, almost surely

rn(z) = T ◦Ψ
(
∆n,c

)
 T ◦Ψ

(
f(z)ΓhỸ

(1/cf(z))
)

⊃ T ◦Ψ′
(
f(z)Γ̃hỸ

(1/cf(z)) ∩Bk+1([0, 1)
d)
)
.

It hence remains to show that T ◦Ψ′(f(z)Γ̃hỸ
(1/cf(z))∩Bk+1([0, 1)

d)) has non
empty interior, which shall obviously imply that, almost surely, rn(z) 6→ r(z)
as n → ∞. It is well known that, as Ψ′ is continuous, surjective and linear from
the Banach space (Bk+1([0, 1)

d), || · ||k) to R
k+1, Ψ′(O) is open for every open

set O. Hence, it is sufficient to show that f(z)Γ̃hỸ
(1/cf(z)) ∩Bk+1([0, 1)

d) has

nonempty interior in (Bk+1([0, 1)
d), || · ||k). Consider ǫ > 0 that appears in

(1.11). Writing gm :≡ m ∈ Bk+1([0, 1)
d), we have, by (1.11)

|| f(z)g − f(z)gm ||k< ǫ ⇒
∫

[0,1)d
hỸ (g) ≤ 1/c(z),

which concludes the proof.

The remainder of our paper is organised as follows. In §2, we introduce an
almost sure approximation of ∆n,c(z, hn, ·) by a sum of compound Poisson pro-
cesses. This approximation is largely inspired by a lemma of Deheuvels and
Mason [6]. We then focus on these “poissonised” processes and provide some
exponential inequalities on their modulus of continuity. In §3, we establish a
Large Deviation Principle (LDP). Then §4 and §5 are devoted to proving points
(1.6) and (1.7) of Theorem 1 respectively.
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2. A Poisson approximation

Recall that z ∈ R
d is fixed once for all in our problem. For ease of notation we

write

∆n,c(z, h, s) :=
1

nhf(z)

n∑

i=1

1[0,s)

(Zi − z

h1/d

)
Yi, s ∈ [0, 1)d, h > 0. (2.1)

Throughout this article, we shall refer to a generic stochastic process U , usually
called compound Poisson process. It is defined as follows: consider an infinite
i.i.d array (Yij ,Zij)i≥1, j≥1 having the same law as (Y1, Z1), as well as a Poisson
random variable with expectation equal to 1 fulfilling η ⊥⊥ (Yij ,Zij)i≥1, j≥1 (here
⊥⊥ denotes stochastic independence). Now define

U(s) :=

η∑

j=1

1[0,s)
(
Zij − z

)
Yij . (2.2)

Note that the law of U is entirely determined by the following property:

For each p ≥ 1 and for each partition A1, . . . , Ap of [0, 1)d we have:

E

(
exp

( p∑

j=1

< tj , U(Aj) >
))

= exp
( p∑

j=1

P(Z − z ∈ Aj)
(
LY |Aj

(tj)− 1
))

,
(
t1, . . . , tp

)
∈
(
R

k
)p

(2.3)

where LY |Aj
(t) := E(exp(< t, Y > |Z − z ∈ Aj), j = 1, . . . , p, t ∈ R

k. Recall
the expression U(A) is understood according to (1.12). The following propo-
sition enables to switch the study of the almost behaviour of the sequence
(∆n,c(z, hn, ·))n≥1 to that of a sequence with the following generic term

∆Πn,c(h, s) :=
1

nhf(z)

n∑

i=1

Ui(h
1/ds), s ∈ [0, 1)d, n ≥ 1, (2.4)

where the Ui are suitably built independent copies of U . This result is in the
spirit of Deheuvels and Mason (see [6], Lemma 2.1, or [4], Proposition 2.1).

Proposition 2.1. On a probability space rich enough (Ω,A, IP) we can con-
struct an i.i.d. sequence of processes (Ui)i≥1 having the same law as U and an
sequence (Yi1, Zi1)i≥1 having the same law as (Yi, Zi)i≥1 such that, considering
the ∆n,c(z, hn, ·) as built with the sequence (Yi1, Zi1)i≥1 we have almost surely

lim sup
n→∞

(nhn) || ∆n,c(z, hn, ·)−∆Πn,c

(
hn, ·

)
||k< ∞, (2.5)

with ∆Πn,c(·, ·) defined in (2.4).
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Proof. Denote by U a process having the same law as in (2.2). Set Vi := z +

h
1/d
i [0, 1)d, pi = P(Z1 ∈ Vi), and let (Y

(1)
ij , Z

(1)
ij )i≥1, j≥1, (Y

(2)
ij , Z

(2)
ij )i≥1, j≥1,

(bi)i≥1, (U
∗
i (·))i≥1 and (vi)i≥1 be families of random elements such that

(a) P((Y
(1)
ij , Z

(1)
ij ) ∈ B) = P((Y1, Z1) ∈ B|Z1 ∈ Vi), B Borel set, i, j ≥ 1.

(b) P((Y
(2)
ij , Z

(2)
ij ) ∈ B) = P((Y1, Z1) ∈ B|Z1 /∈ Vi), B Borel set, i, j ≥ 1.

(c) For each i ≥ 1 we have P(vi = 0) = 1 − p−1
i (1 − e−pi) and P(vi = k) =

(k!)−1pk−1
i e−pi , k = 1, 2, . . . .

(d) P(bi = 1) = 1− P(bi = 0) = pi, i ≥ 1.
(e) The U∗

i are independent copies of U defined in (2.2).
(f) The union of these five families of random elements is a stochastically

independent family.

In (e), equality in law is understood as an equality with respect to the σ-algebra
T0 of (Bk([0, 1)

d), || · ||k) spawned by the open balls. In (f), stochastic inde-
pendence is understood with respect to a suitably chosen product σ-algebra
where each factor is either T0, the Borel σ-algebra of Rk × R

d, or the subsets
of {0, 1, 2, . . .}. First, notice that η∗i := vibi is a Poisson random variable with
expectation pi for each i ≥ 1, and that

∀i ≥ 1, P
(
η∗i = bi

)
≥ 1− p2i . (2.6)

In fact, η∗i and bi are a coupling of a Poisson and Bernouilli random variables
(η,b) with expectation pi such that the probability P(η = b) is maximal. Sec-
ond, notice that the following random vectors

(
Yij , Zij

)
:= 1bi=1

(
Y

(1)
ij , Z

(1)
ij

)
+ 1bi=0

(
Y

(2)
ij , Z

(2)
ij

)
, i ≥ 1, j ≥ 1, (2.7)

are i.i.d. with common law equal to (Y1, Z1). Moreover, the following assertions
are true with probability one, for each i ≥ 1:

∀s ∈ [0, 1)d, 1[0,s)

(Zij − z

h
1/d
i

)
Yij =

bi∑

j=1

1[0,s)

(Z(1)
ij − z

h
1/d
i

)
Y

(1)
ij . (2.8)

We now define, for each i ≥ 1,

Ui(s) := U∗
i

(
[0, s) ∩ {Vi − z}C

)
+

η∗

i∑

j=1

1[0,s)
(
Z

(1)
ij − z

)
Y

(1)
ij . (2.9)

Here, VC denotes the complement of a given set V ⊂ R
d. Some usual com-

putations on characteristic functions show that the processes Ui(·) fulfill (2.3),
and hence are distributed like U . Moreover since h

1/d
i+p[0, 1)

d ⊂ h
1/d
i [0, 1)d for

i ≥ 1, q ≥ 0, we have almost surely

Ui

(
h
1/d
i+qs

)
=

η∗

i∑

j=1

1[0,s)

(Z(1)
ij − z

hi+q
1/d

)
Y

(1)
ij , s ∈ [0, 1)d. (2.10)
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It follows from (2.6), (2.8) and (2.10) that, for each i ≥ 1,

P

(
Ui

(
h
1/d
i+q ·

)
≡ 1[0,·)

(Zi − z

h
1/d
i+q

)
Yi1 for each q ≥ 0

)
≥ P

(
η∗i = bi

)
≥ 1− p2i .

(2.11)

Since pn = f(z)hn(1 + o(1)) as n → ∞, and by assumption (HV), we have∑
p2i < ∞, which entails, by making use of the Borel-Cantelli lemma, that (2.5)

is true with respect to our construction.

By Proposition 2.1, proving Theorem 1 is equivalent to proving a version of
Theorem 1 with the process ∆n,c(z, hn, ·) replaced by their Poisson approxia-
tions ∆Πn,c(h, ·). This will be the aim of §3, §4 and §5. In each of these three
sections, we shall require the following exponential inequality for the absolute
oscillations of ∆Πn,c, which are defined as the oscillations of the following pro-
cess:

∆Πn,c(h, s) :=
1

nhf(z)

n∑

i=1

ηi∑

j=1

1[0,s)

(Zij − z

h1/d

)
| Yij |k, s ∈ [0, 1)d, n ≥ 1.

(2.12)
Recall that h|Y |k has been defined by (1.9).

Lemma 2.1. Given δ ∈ (0,
√
2 − 1] and x ≥ 0, there exists hx > 0 such that,

for each 0 < h < hx and for each n ≥ 1, we have

P

(
sup

s,s′∈[0,1)d

|s′−s|d≤δ

∣∣∣∆Πn,c

(
h, s
)
−∆Πn,c

(
h, s′

)∣∣∣
1
≥ 2dδx

)

≤
(10
δ

)d
exp

(
− dδnhf(z)h|Y |k(x)

)
, (2.13)

P

(
∆Πn,c(h, 1) ≥ x

)
≤ exp

(
− nhf(z)h|Y |k(x)

)
. (2.14)

Proof. Given s and s′ ∈ [0, 1)d, we write s ≺ s′ whenever each coordinate of s
is lesser than the corresponding coordinate of s′. Obviously, the ∆Πn,c(h, s) are
almost surely increasing in each coordinate of s. First fix δ > 0 and set

M := 1 +

[
3

(
√
2− 1)δ

]
. (2.15)

We then discretise [0, 1)d into the following finite grid:

si :=
1

M
i, i ∈ {0, 1, . . . ,M − 1}d. (2.16)

By construction, for each s and s′ with | s′ − s |d≤ δ, there exists is ∈
{0, 1, . . . ,M − 1}d fulfilling sis ≺ s and | s − sis |d≤ 1/M , which entails
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| s′ − sis |≤ 1/M + δ. Hence we can write

P

(
sup

s,s′∈[0,1)d

|s′−s|d≤δ

∣∣∣∆Πn,c

(
h, s
)
−∆Πn,c

(
h, s′

)∣∣∣
1
≥ 2dδx

)

≤ P

(
⋃

i∈{0,1,...,M−1}d

{
sup
si≺s′,

|s′−si|d≤δ+1/M

∣∣∣∆Πn,c

(
h, s′

)
−∆Πn,c

(
h, si

)∣∣∣
1
≥ 2dδx

})

≤ Md max
i∈{0,1,...,M−1}d

P

(
sup
si≺s′,

|s′−si|d≤δ+1/M

∣∣∣∆Πn,c

(
h, s′

)
−∆Πn,c

(
h, si

)∣∣∣
k
≥ 2dδx

)
.

Now notice that, for each n ≥ 1, we have

(
∆Πn,c(h, s)

)
s∈[0,1)d

=L

(
1

nhf(z)

ηn∑

i=1

1[0,s)

(Zi − z

h1/d

)
| Yi |k

)

s∈[0,1)d
, (2.17)

where ηn is a Poisson random variable with expectation n and independent of
(Yi, Zi)i≥1 (here =L stands for the equality in law for processes). For a Borel
set B ⊂ [0, 1)d, write

∆Πn,c(h,B) :=

∫

[0,1)d
1B(s)d∆Πn,c(h, s)

=
1

nhf(z)

ηn∑

i=1

1B

(Zi − z

h1/d

)
| Yi |k . (2.18)

By the triangle inequality we have almost surely

sup
si≺s′,

|s′−si|d≤δ+1/M

∣∣∣∆Πn,c

(
h, s′

)
−∆Πn,c

(
h, si

)∣∣∣
1

≤ sup
si≺s′,

|s′−si|d≤δ+1/M

1

nhf(z)

ηn∑

i=1

(
1[0,s′) − 1[0,si)

)(Zi − z

h1/d

)
| Yi |k

≤ 1

nhf(z)

ηn∑

i=1

(
1[0,s+

i
) − 1[0,si)

)(Zi − z

h1/d

)
| Yi |k, (2.19)

where s+i is defined by adding M−1([Mδ] + 2) to each coordinate of si. Line
(2.19) is a consequence of the fact that, if si ≺ s′ and | s′ − s |d≤ δ+1/M , then
si ≺ s′ ≺ si+ . We shall now write Bi := [0, s+i ) − [0, si). Now choose t = t(x)
fulfilling

tx−
(
L|Y |(t)− 1

)
≥ 1

2
h|Y |k(x). (2.20)
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By Markov’s inequality we have

P

(
1

nhf(z)

ηn∑

i=1

(
1[0,s+

i
) − 1[0,si)

)(Zi − z

h1/d

)
| Yi |k≥ 2dδx

)

≤ exp
(
− 2dδnhf(z)tx

)
E

[
exp

(
t

ηn∑

i=1

1Bi

(Zi − z

h1/d

)
| Yi |k

)]

≤ exp
(
− 2dδnhf(z)tx

)
exp

(
n
(
Lh,i(t)− 1

))
, (2.21)

with

Lh,i(t) := E

[
exp

(
t1Bi

(Z1 − z

h1/d

)
| Y1 |k

)]
.

Note that (2.21) has been obtained by conditioning with respect to ηn. Now, by
conditioning with respect to Ei,h := {h−1/d(Z1 − z) ∈ Bi}, and writing

L′
h,i(t) := E

[
exp

(
t | Y1 |k

)∣∣∣Ei,h

]
, (2.22)

we obtain

Lh,i(t)− 1 = P
(
Ei,h

)
L′
h,i(t) +

(
1− P

(
Ei,h

))
− 1

= P(Ei,h)
(
L′
h,i(t)− 1

)
. (2.23)

Note that assumptions (HL1) and (HL2) readily entail

lim
h→0

max
i∈{0,...,M−1}d

∣∣∣
P(Ei,h)

(
L2,h,i(t)− 1

)

f(z)λ(Bi)h
(
L|Y |k(t)− 1

) − 1
∣∣∣ = 0. (2.24)

Choose hx > 0 small enough so that the quantity involved in (2.24) is lesser that√
2−1 and notice that for each i we have λ(Bi) ≤ d(δ+1/M) ≤

√
2dδ by (2.15).

By combining (2.19), (2.21) and (2.23), we conclude that, for all 0 < h < hx,

max
i∈{0,1,...,M−1}d

P

(
sup
si≺s′,

|s′−si|d≤δ+1/M

∣∣∣∆Πn,c

(
h, s′

)
−∆Πn,c

(
h, si

)∣∣∣
k
≥ 2dδx

)

≤ exp
(
− 2dδnhf(z)

(
tx− L|Y |k(t) + 1

))
, (2.25)

whence, by (2.20) we get

P

(
sup

s,s′∈[0,1)d

|s′−s|d≤δ

∣∣∣∆Πn,c

(
h, s
)
−∆Πn,c

(
h, s′

)∣∣∣
k
≥ 2dδx

)

≤ Md exp
(
− dδnhf(z)h|Y |k(x)

)

≤
(
1 +

3

(
√
2− 1)δ

)d
exp

(
− dδnhf(z)h|Y |k(x)

)

≤
(10
δ

)d
exp

(
− dδnhf(z)h|Y |k(x)

)
.

This concludes the proof of Lemma 2.1.



M. Maumy and D. Varron/Non standard functional limit laws 1335

3. Large deviations for ∆Πn,c(hn, ·)

In this section, we establish a Large Deviation Principle (LDP) for the sequence
of processes ∆Πn,c(hn, ·). For the definition of large deviations for sequences
for bounded stochastic processes and of a (good) rate function, we refer to
Arcones [1].

3.1. Some tools in large deviation theory

We begin this subsection with some well known properties (see, e.g., [3], Lemma
2.1, or Borovkov [2] just above the main Theorem) of hY and h|Y |k given in (1.8)
and (1.9) respectively.

Fact 3.1. The functions hY and h|Y |k are positive convex. Moreover, since LY

is finite on R
k, we have

lim
|u|k→∞

hY (u)

| u |k
= ∞,

lim
|x|→∞

h|Yk|(x)

| x | = ∞.

Arcones (see [1], Theorem 3.1) has established a very useful criterion to es-
tablish a LDP for processes in Bk([0, 1)

d) (actually only with k = 1 but the
extension of his results to k > 1 is straightforward). We cannot make a di-
rect use of his Theorem 3.1 and shall make use of a slight modification of it.
To state this modification, we shall introduce some more notations. For each
integer p ≥ 1, consider a finite grid

Sp =
{
sj,p, j ∈ {1, . . . , 2p}d

}

:=
{
2−pj, j ∈ {1, . . . , 2p}d

}
. (3.1)

and consider its associated partition of [0, 1)d into hypercubes, namely

Cj,p :=
[
2−p(j− 1), 2−pj

)
, j ∈ {1, . . . , 2p}d. (3.2)

Here we have written j − 1 = (j1 − 1, . . . , jd − 1). Now for each integer p ≥ 1
and for each g ∈ Bk([0, 1)

d) write

g(p)(s) := g(sj,p), s ∈ Cj,p, j ∈ {1, . . . , 2p}d. (3.3)

The following proposition is a straightforward variation of Theorem 1 of Arcones
[1], and is written according to the notation of that theorem (in particular, we
refer to [1] for a definition of the outer probability P

∗).

Proposition 3.1. Let (Xn)n≥1 be a sequence of stochastic processes and let
(ǫn)n≥1 be a sequence of constants fulfilling ǫn > 0, n ≥ 1 and ǫn → 0 as
n → ∞. Assume that the following conditions are satisfied.
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1. The sequence of stochastic processes (X
(p)
n )n≥1 satisfies the LDP for (ǫ−1

n )n≥1

and for a rate function Jp on (Bk([0, 1)
d), || · ||k).

2. For each τ > 0 and M > 0 there exists an integer p ≥ 1 satisfying

lim sup
n→∞

ǫn log
(
P
∗
(

max
j∈{1,...,2p}d

sup
s∈Cj,p

| Xn(s)−Xn(sj,p) |k≥ τ
))

≤ −M.

Then (Xn)n≥1 satisfies the LDP for (ǫ−1
n )n≥1 and for the following rate function.

J(g) := sup
p≥1

Jp

(
g(p)

)
, g ∈ Bk([0, 1)

d).

Proof. The proof follows the same lines as in the proof of Theorem 3.1 of Arcones
[1]. We omit details for sake of briefness.

For g = (g1, . . . , gk) ∈ Bk([0, 1)
d) and A Borel set, we shall write

g(A) :=

(∫

[0,1)d
1A(s)dg1(s), . . . ,

∫

[0,1)d
1A(s)dgk(s)

)
, (3.4)

which is valid as long as 1A or each gl have bounded variations. We shall now
consider the following (rate) functions on (Bk([0, 1)

d), || · ||k) that will play the
role of successive approximations of JhY : given p ≥ 1 and g ∈ Bk([0, 1)

d) we set

J
(p)
hY

(g) :=
∑

j∈{1,...,2p}d

λ(Cj,p)hY

(
λ(Cj,p)

−1g(Cj,p)
)
. (3.5)

The following fact is a straightforward extension to the multivariate case of
Proposition 2.1 in [12]. Recall that JhY has been defined through (1.3) and (1.8).

Fact 3.2. For any g ∈ Bk([0, 1)
d) we have

JhY (g) = lim
p→∞

J
(p)
hY

(g). (3.6)

As a consequence, JhY is lower semicontinuous on Bk([0, 1)
d).

Our next lemma states that the function JhY (recall (1.3)) is a “rate” func-
tion.

Lemma 3.1. The sets ΓJhY
(a), a ≥ 0 are compact subsets of (Bk([0, 1)

d),

|| · ||k). In other words, JhY is a rate function in (Bk([0, 1)
d), || · ||k).

Proof. By Fact 3.1 we have | x |k≤| x |k 1|x|k≤M ∧ JhY for some M > 0 and
for each x. Hence, for any g ∈ ΓJhY

(a) we have (recall that λ stands for the
Lebesgue measure)

∫

[0,1)d
| g′ |k dλ =

∫

|g′|k≤M

| g′ |k dλ+

∫

|g′|k>M

JhY

(
g′
)
dλ (3.7)

≤ M + a, (3.8)

from where we conclude that ΓJhY
is relatively compact in Bk([0, 1)

d). It is

also closed in Bk([0, 1)
d) by a combination of Fact 3.2 and (3.8), which proves

Lemma 3.1.



M. Maumy and D. Varron/Non standard functional limit laws 1337

3.2. A large deviation principle

In this subsection, we state and prove a large deviation principle that will play
a crucial role in the sequel of our proof of Theorem 1. This LDP is stated as
follows:

Proposition 3.2. Under assumptions (HV ), (HL1) − (HL2), the sequence
(∆Πn,c(hn, ·))n≥1 satisfies the LDP in Bk([0, 1)

d) for (ǫ−1
n )n≥1 = ((nhnf(z))

−1)n≥1

and for the rate function JhY .

Proof. As we shall make use of Proposition 3.1, we have to check conditions 1
and 2 of that proposition, which will be the aim of the following lemmas. Notice
that, almost surely, we have

∆Πn,c(h,C) :=
1

nhf(z)

n∑

i=1

ηi∑

j=1

1C

(Zi,j − z

h1/d

)
Yi,j , C Borel ,

with ∆Πn,c(h,C) defined according to (1.12). Our proof is divided in two steps,
where we shall respectively verify conditions 1 and 2 of Proposition 3.1.

Step 1 : To check condition 2 of Proposition 3.1, we shall make use of Lemma 2.1,
which readily entails, for fixed p ≥ 1 and τ > 0, and for all n ≥ n(p, τ):

P

(
max

j∈{1,...,2p}d
sup

s∈Cj,p

| ∆Πn,c(hn, s)−∆Πn,c(hn, sj,p) |k≥ τ
)

≤ 10d2pd exp
(
− d2−pnhnf(z)h|Y |k

(
d−12p−1τ

))
.

Now fix M > 0 and τ > 0. By Fact (3.1), we have, for all large p:

h|Y |k

(
d−12p−1τ

)

d−12p−1τ
> 4Mτ,

which implies that condition 2 of Proposition 3.1 is verified.

Step 2 : To check condition 1 of Proposition 3.1, we shall require the following
preliminary lemma.

Lemma 3.2. For any sequence (hn)n≥1 fulfilling hn → 0 and nhn → ∞, and

for any fixed p ≥ 1, the sequence of random vectors of Rk2
p

(
∆Πn,c(hn, Cj), j ∈ {1, . . . , 2p}d

)

n≥1
(3.9)

satisfies the LDP for the sequence (ǫ−1
n )n≥1 := ((nhnf(z))

−1)n≥1 and the fol-
lowing rate function

J (p) : (Rk)
2p 7→ R

x 7→
p∑

j∈{1,...,2p}d

λ(Cj,p)hY

(
λ(Cj,p)

−1xj

)
.

Here we write x = (xj, j ∈ {1, . . . , 2p}d), with xj ∈ R
k for each j ∈ {1, . . . , 2p}d.
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Proof. The proof of Lemma 3.2 is divided into three steps. The two first steps
deal with a single component of the random vectors written in (3.9).

Step 1 : In our first step, we make an additional assumption on LY , which allows
us to make a full use of the Gärtner-Ellis theorem (see, e.g., [7], p. 44).

(H0) : ∀x ∈ R
k fulfilling hY (x) < ∞, ∃η ∈ R

k, x = ∇LY (η).

Lemma 3.3. Assume that (H0) is true in addition to the assumptions of The-
orem 1. Then, for each p ≥ 1 and j ∈ {1, . . . , 2p}d, the sequence

(
∆Πn,c(hn, Cj,p)

)

n≥1

satisfies the LDP for the sequence (nhnf(z))
−1 and the rate function

λ(Cj,p)hY (λ(Cj,p)
−1·).

Proof of Lemma 3.3. We shall first show that, for each t ∈ R
k, we have

lim
n→∞

1

nhnf(z)
log

(
E

(
exp < t, nhnf(z)∆Πn,c(Cj,p, hn) >

))

= λ
(
Cj,p

)(
LY

(
λ
(
Cj,p

)−1
t
))

. (3.10)

To show this, we start from the equality (2.17) to obtain by convolution:

log

(
E

(
exp < t, nhnf(z)∆Πn,c(Cj,p, hn) >

))

= n log

(
E

(
exp < t, nhnf(z)U

(
h1/d
n Cj,p

)
>
))

.

Recall that U has been defined in (2.2). Next, we use the characterisation (2.3),

which is applied to the simple partition (h
1/d
n Cj,p, [0, 1)

d−h
1/d
n Cj,p). Using that

relation with t1 = t and t2 = 0, we obtain

log

(
E

(
exp < t, nhnf(z)∆Πn,c(Cj,p, hn) >

))

= nP
(
Z − z ∈ h1/d

n Cj,p

)
E

(
exp

(
< t, Y >

)∣∣∣Z − z ∈ hn ∈ z + h1/d
n Cj,p

))
− 1
)
.

Hence (3.10) follows from assumptions (HL1)− (HL2).
By Lemma 2.3.9 in [7], p 46, we know that (H0) implies that the set of exposed

points of hY is equal to {x ∈ R
k, h(x) < ∞}, from where the proof of Lemma

3.3 is concluded by an application of the Gärtner-Ellis theorem (see, e.g., [7],
p. 44).

Step 2 : In our second step, we shall get rid of assumption (H0), which is unfor-
tunately not verified in all situations (for example, take k = 1, Y ≡ 1, which
leads to LY (t) = exp(t), t ∈ R and hY (0) = 1, but (H0) is not satisfied for
x = 0).
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Lemma 3.4. Lemma 3.3 is true without making assumption (H0).

Proof of Lemma 3.4. First notice that the “closed sets” part of the LDP stated
in Lemma 3.3 can be proved by making use of the Gärtner-Ellis theorem, with-
out making assumption (H0). Only the “open sets” part of Lemma 3.3 needs
assumption (H0), since it implies that the set of exposed points of hY is equal to
{x ∈ R

k, hY (x) < ∞}. We only need to prove that, without assumption (H0),
for any open set O ⊂ R

k with hY (O) < ∞ (nontrivial case), we have

lim inf
n→∞

1

nhnf(z)
log

(
P

(
∆Πn,c

(
Cj,p, hn

)
∈ O

))
≥ −hY (O). (3.11)

To achieve this goal, we shall slightly modify the Yi,j by adding small Gaussian
random vectors. Fix O ⊂ R

k open, with hY (O) < ∞, and δ > 0. There exists
x ∈ O and δ1 ∈ (0, δ) such that B(x, 2δ1) ⊂ O and hY (O) ≤ hY (B(x, 2δ1)) ≤
hY (x) ≤ hY (O) + δ < δ−1

1 . Here B(x, ǫ) denotes the open ball with centre x
and radius ǫ. Now introduce an array (ζij)i,j≥1 of Rk valued standard random
vectors, that are independent of the array (Yi,j , Zi,j)i,j∈N. Also define

∆Π′
n,c

(
Cj,p, hn

)
:=

1

nhnf(z)

n∑

i=1

ηi∑

j=1

1Cj,p

(Zij − z

h
1/d
n

)
ζij ,

∆Π′′
n,c

(
Cj,p, hn

)
:=

1

nhnf(z)

n∑

i=1

ηi∑

j=1

1Cj,p

(Zij − z

h
1/d
n

)(
Yij + δ21ζij

)

= ∆Πn,c

(
Cj,p, hn

)
+ δ21∆Π′

n,c

(
Cj,p, hn

)
.

We shall first show that the vector Y + ζ fulfills assumptions (H0). To prove
this first notice that LY +ζ = LY Lζ , which holds since Y and ζ are independent
conditionally to Z. Obviously we have, since ζ⊥⊥Z,

Lζ(t) = exp
(1
2
| t |2k

)
,

which shows that ζ fulfills (H0). Moreover, by Jensen’s inequality we have

LY (t) ≥ exp
(
< mY , t >

)
, t ∈ R

k,

where mY = E(Y |Z = z), which leads to

LY+δ2
1
ζ(t) ≥ exp

(
< mY , t > +

δ41
2

| t |2k
)
. (3.12)

Now consider x ∈ R
k, and define the function g(t) =< x, t > −(LY+δ2

1
ζ(t)− 1).

By (3.12) we have g(t) → −∞ as | t |k→ ∞. Hence, the continuous and
differentiable function g admits a maximum at some η ∈ R

k fulfilling 0 =
∇g(η) = y −∇LY +ζ(x). This proves that the vector ζ fulfills (H0) and hence,



M. Maumy and D. Varron/Non standard functional limit laws 1340

by Lemma 3.3 we have:

lim inf
n→∞

1

nhnf(z)
log

(
P

(
∆Π′′

n,c

(
Cj,p, hn

)
∈ O

))
≥ − hY+δ2

1
ζ(O), (3.13)

lim sup
n→∞

1

nhnf(z)
log

(
P

(∣∣∣
∣∣∣∆Π′

n,c

(
Cj,p, hn

)∣∣∣
∣∣∣
k
≥ δ−1

1

))
≤ − inf

||x||k≥δ−1

1

hζ(x)

≤ − δ−1
1 . (3.14)

The last inequality holds for δ1 > 0 small enough, by Fact 3.1, replacing Y by
ζ. Hence, by the triangle inequality, we have for all large n:

P

(
∆Πn,c(Cj,p, hn) ∈ O

)

≥ P

(∣∣∣
∣∣∣∆Πn,c(Cj,p, hn)− x

∣∣∣
∣∣∣
k
< 2δ1

)

≥ P

((∣∣∣
∣∣∣∆Π′′

n,c(Cj,p, hn)− x
∣∣∣
∣∣∣
k
< δ1

)
− P

(
δ21

∣∣∣
∣∣∣∆Π′

n,c(Cj,p, hn)
∣∣∣
∣∣∣
k
> δ1

)

≥ exp

(
− nhnf(z)

(
δ + hY +ζ

(
B(x, δ1)

)))
− exp

(
− nhnf(z)δ

−1
1

)

≥ exp

(
− nhnf(z)

(
δ + hY (x)

))
− exp

(
− nhnf(z)δ

−1
1

)
(3.15)

≥ 1

2
exp

(
− nhnf(z)

(
2δ + hY (O)

))
. (3.16)

Note that (3.15) is a consequence hY +ζ ≤ hY , which follows directly from Lζ ≥
1. Also, (3.16) is a consequence of hY (x) ≤ hY (O) + δ together with δ−1

1 >
hY (O) + 2δ, which is true by the choice of δ1. The proof of Lemma 3.4 is then
concluded since O and δ are arbitrary.

Step 3 : The proof of Lemma 3.2 by a tensorisation argument brought by Lynch
an Sethuraman. Since, for each n, the collection

∆Πn,c(hn, Cj), j ∈ {1, . . . , 2p}d

is independent, and since each sequence (∆Πn,c(hn, Cj))n≥1 satisfies the LDP
with the rate function λ(Cj,p)hY (λ(Cj,p)

−1·). Then Lemma 3.2 is proved by
applying Lemma 2.8 in [9].

A direct consequence of Lemma 3.2 is that condition 1 of Proposition 3.1 is
satisfied, as shows our next lemma.

Lemma 3.5. If hn → 0 and nhn → ∞, then the sequence of processes

(
∆Π

(p)
n,c(hn, ·)

)

n≥1

satisfies the LDP for ǫn := (nhnf(z))
−1. and for the rate function J

(p)
hY

.
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Proof. The proof is a straightforward application of the contraction principle
(see, e.g., [1], Theorem 2.1), considering, for fixed p, the following application,

from R
k2

pd

to (Bk([0, 1)
d); || · ||k) (here we write x = (xj, j ∈ {1, . . . , 2p}d),

with each xj belonging to R
k)

Rp(x) : [0, 1)
d 7→ [0,∞)
s → ∑

Cj,p⊂[0,s1]×···×[0,sp]

xi.

We conclude the proof of Proposition 3.2 by combining Step 1 and Step 2 with
Proposition 3.1.

4. Proof of point (1.6) of Theorem 1

We shall make use of some usual blocking arguments along the following subse-
quence:

nk :=

[
exp

(
k exp

(
−
√
log k

))]
, (4.1)

with associated blocks Nk := {nk−1 + 1, . . . , nk}. Here, [u] denotes the only
integer fulfilling [u] ≤ u ≤ [u] + 1. We point out two key properties of (nk)k≥1:

lim
k→∞

nk

nk−1
= 1, lim

k→∞

log2 nk

log k
= 1. (4.2)

For any ǫ > 0 and A ⊂ Bk([0, 1)
d), we shall write:

Aǫ :=
{
g ∈ Bk([0, 1)

d), inf
g′∈A

|| g − g′ ||k< ǫ
}
. (4.3)

Now, recalling the definition of ∆Πn,c in (2.4), we define the following normalised
Poisson processes that will play a crucial role in our blocking arguments.

Hn(s) :=
1

nkhnk
f(z)

n∑

i=1

Ui(hnk
s), k ≥ 1, n ∈ Nk, s ∈ [0, 1)d. (4.4)

Fix ǫ > 0. We shall proceed in two steps: first, we will prove that, we have
almost surely, ultimately as n → ∞,

Hn ∈ ΓJhY
(1/cf(z))

2ǫ
, (4.5)

then we shall show that almost surely:

lim
k→∞

max
n∈Nk

|| Hn(·)−∆Πnk,c(hnk
, ·) ||k≤ 3ǫ. (4.6)

Step 1 : We first prove (4.5). In order to make use of usual blocking arguments
along the blocks Nk we shall first show that

lim
k→∞

max
n∈Nk

P

(
|| Hn(·)−∆Πnk,c(hnk

, ·) ||k> ǫ
)
= 0. (4.7)
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To prove this, choose k ≥ 1 and n ∈ Nk arbitrarily. A rough upper bound gives
(excluding the trivial case where n = nk).

Pn,1 := P

(
|| Hn(·)−∆Πnk,c(hnk

, ·) ||k> ǫ
)

≤ P

( nk−n∑

i=1

ηi∑

j=1

| Yi,j |k> ǫ
nk

nk − n
(nk − n)hnk

f(z)
)

= P

(
∆Πnk−n,c(hnk

, ·) > ǫ
nk

nk − n

)
(4.8)

Now making use of point (2.14) of Proposition 2.1 with x := ǫnk/(nk − n) we
get, for all large k and for each n ∈ Nk with n 6= nk,

Pn ≤ exp
(
− ǫnkhnk

f(z)
nk − n

ǫnk
h|Y |k

( ǫnk

nk − n

))
. (4.9)

Now, as nk − n ≥ nk − nk−1, nk/(nk − nk−1) → ∞ and by Fact 3.1 we readily
infer (4.7).

We are now able to make use of a well known maximal inequality (see, e.g.,
Deheuvels and Mason [5], Lemma 3.4) to conclude that, for all large k,

Pk,2 := P

( ⋃

n∈Nk

Hn /∈ Γ2ǫ
JhY

)

≤ 2P
(
Hnk

/∈ Γǫ
JhY

)

= 2P
(
∆Πnk,c(hnk

, ·) /∈ Γǫ
JhY

)
. (4.10)

Applying proposition 3.2 to the closed set F := Bk([0, 1)
d) − (ΓJhY

)
ǫ
, which

satisfies JhY (F ) ≥ (1 + 3α)/cf(z) for some α > 0 (by lower semi continuity of
JhY ) we get, ultimately as k → ∞,

Pk,2 ≤ 2 exp
(
− nkhnk

(1 + 2α)

cf(z)

)

≤ exp
(
− (1 + α) log lognk

)
, (4.11)

where (4.11) is a consequence of assumption (HV ). By (4.2), we conclude that
(Pk,2)k≥1 is summable, which proves (4.5) by making use of the Borel-Cantelli
lemma.

Step 2 : To prove (4.6) we shall make use of the following almost sure equality

∆Πn,c(hn, s) :=
nkhnk

nhn
Hn

(hnk

hn
s
)
. (4.12)

By (4.2) together with (HV ) we straightforwardly infer that

lim
k→∞

max
n∈Nk

∣∣∣
nkhnk

nhn
− 1
∣∣∣ = 0, lim

k→∞
max
n∈Nk

hnk

hn
= 1. (4.13)
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Moreover, making use of (3.8), we infer that

lim
T→1, ρ↑1

sup
g∈ΓJhY

|| Tg(ρ·)− g(·) ||k= 0. (4.14)

Hence, (4.6) follows from a combination of (4.13), (4.14) and (4.5) together with
the triangle inequality.

The proof of point (1.6) of Theorem 1 is concluded by combining (4.5) and
(4.6) and recalling that ǫ > 0 was arbitrary.

5. Proof of point (1.7) of Theorem 1

We introduce the following subsequence

nk := k2k, k ≥ 1.

Obviously, nk satisfies the following properties:

log2 nk = log k + log2 k + log 2, nk/nk−1 = e−2k−2(1 + o(1)). (5.1)

we also shall write vk := nk − nk−1. Now define the sequence

H′
k :=

1

vkhnk
f(z)

nk∑

nk−1+1

1[0,·]

(Zi − z

h
1/d
nk

)
Yi.

Now choose ǫ > 0 and g ∈ ΓhY (1/cf(z)) arbitrarily. We shall prove that, with
probability one

lim sup
n→∞

∣∣∣
∣∣∣H′

k − g
∣∣∣
∣∣∣ ≤ 2ǫ, (5.2)

which would conclude the proof of point (1.7) of Theorem 1 by a classical com-
pactness argument. Obviously g satisfies

lim
ρ→1

|| g(ρ·)− g(·) ||k= 0. (5.3)

Some routine analysis also shows that, for some α > 0 we have J(gǫ) < (1 −
2α)/cf(z). By (5.1) we have vkhnk

→ ∞ as k → ∞. Hence, by Proposition
(3.2), which we apply to the open ball gǫ we obtain, for all large k

P

(
H′

k ∈ gǫ
)
≥ exp

(
− vkhnk

f(z)(1− 2α)

cf(z)

)

≥ exp
(
− log k + log2 k + log 2

)
,

where the last inequality is a consequence of (5.1). As the (H′
k)k≥1 are indepen-

dent, the Borel-Cantelli lemma entails, almost surely,

|| H′
k − g ||k≤ ǫ for all large k. (5.4)
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To conclude the proof, notice that

H′
k =

vk
nk

H′
k +

1

nkhnk
f(z)

nk−1∑

i=1

1[0,·]

(Zi − z

h
1/d
nk

)
Yi

=:
vk
nk

H′
k + ζk. (5.5)

Hence, if we show that || ζk ||k→ 0 almost surely, then (5.2) will follow by
noticing that vk/nk → 1 and applying both (5.3) and (5.4). Noticing that

|| ζk ||k≤
nk−1

nk
∆Πnk−1,c(hnk

, 1),

we readily infer, by (5.1) and point (2.14) of Lemma 2.1, that P(|| ζk ||k> δ) =
O(k−2) for any δ > 0. This concludes the proof of point (1.7) of Theorem 1.
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