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1. Introduction

The functional linear model has the appearance of being rather conventional. It
involves representing a scalar response, Y , as

Y = α+

∫

I

β X + error , (1.1)

where X denotes the function-valued explanatory variable, α is a scalar, β is
the function-valued slope parameter, and I is a known compact interval. How-
ever, estimation of β is generally a nonparametric problem, and the level of
complexity implicit in that property can carry over to the problem of predic-
tion, in which we wish to estimate α+

∫
I
β x for a given function x. Sometimes

α +
∫
I
β x can be estimated root-n consistently, where n denotes sample size,

but more commonly, estimators converge at strictly slower rates. Cai and Hall
(2006) discuss these issues, and Faraway (1997), Ferraty and Vieu (2000, 2006),
Cuevas et al. (2002), Ramsay and Silverman (2005, Chapter 12), Cardot et al.

(2006) and Cardot and Sarda (2006) address functional linear regression in more
general terms.

A standard approach to estimating α and β is to first estimate the principal
component basis from a sample of observations of (X, Y ), and then construct
an estimator of µ(x) = α +

∫
I
β x in terms of that basis, using least squares.

However, in practice the distribution of the error in (1.1) can be a functional of
the distribution of X, and the optimal choice of basis can depend significantly
on x. To address these challenges we could construct the basis so that it gave
greater emphasis to observations of X that were relatively close to x. For exam-
ple, we could restrict attention to X for which ‖X − x‖ ≤ δ, where ‖ · ‖ was a
suitable distance measure and δ played the role of bandwidth, although δ would
not necessarily be chosen to converge to zero as n increased. More subtly, the
basis could be constructed by applying kernel weights to each observation. See
Mas (2008) for theoretical results addressing problems of this type.

Although this approach is attractive, practical difficulties can arise from the
implicit reduction in sample size that is involved. An alternative method is to
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estimate the variance, σ(X)2 say, of the distribution of the error in (1.1) condi-
tional on X, and adapt prediction to the level of variability there. We suggest
solving this problem by modelling σ(x)2 as a function of α+

∫
I
β x, and using its

inverse, with x replaced by a data valueX, as a weight in the basic least-squares
problem. We then show that calculations can be simplified by computing a new
principal component basis, adapted to heteroscedasticity. While our approach
has some similarities with the weighted least squares method used for finite di-
mensional data, it differs significantly due to the intrinsic nonparametric, and
infinite dimensional, characters of functional linear regression; we quantify these
issues in theoretical terms.

In summary, this paper makes three main contributions. First, we show in
section 2 that adaptive modification of the standard principal component basis,
or a nearly-equivalent method based on weighted least-squares, can be advanta-
geous when undertaking functional linear prediction, i.e. when estimating µ(x).
Secondly, we suggest approximations to the value of σ(x)2, and we employ them
to construct a second basis, this time adapted to heteroscedasticity. Then, in
sections 3 and 4 we show that this approach can give real and effective reduc-
tions in mean squared error, even when the model we use to estimate variance
is not completely correct. Alternatively, a nonparametric approach can be used
to estimate variance. These methodologies all have analogues in cases where Y
is a multivariate response, although for simplicity and transparency we focus
only on the univariate case.

The main theoretical result in section 3 gives a concise account of the way
adaptive methods can improve the performance of estimators in functional linear
regression. In particular, we show that the advantages accrue almost equally
among all dimensions; they are not principally to be found in low-dimensional
aspects of the problem.

Previous developments of principal components analysis for functional data
play a central role in our work. Early contributions include Besse and Ramsay
(1986), Ramsay and Dalzell (1991) and Rice and Silverman (1991). From that
point a very substantial literature has developed, including but by no means
limited to the work of Silverman (1995, 1996), Brumback and Rice (1998),
Cardot et al. (1999, 2000, 2003), Cardot (2000), Girard (2000), James et al.

(2000), Boente and Fraiman (2000), He et al. (2003), Ramsay and Silverman
(2005, Chap. 8–10), Yao et al. (2005), Hall and Hosseini-Nasab (2006), and the
work of Jank and Shmueli (2006), Ocaña et al. (2007), Reiss and Ogden (2007),
Huang et al. (2008).

2. Methodology

2.1. Orthogonal series approach to inference in the linear model

The functional linear model argues that independent data pairs (X[1], Y1), . . . ,
(X[n], Yn), distributed as (X, Y ), are generated as

Y = α+

∫

I

βX + ǫ , (2.1)
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where α is a scalar, β and X are functions defined on the compact interval
I, and E(ǫ |X) = 0. Square-bracketed subscripts here distinguish the ith ob-
servation of X, X[i], from the ith principal component score, which is con-
ventionally represented by Xi. The prediction problem is that of estimating
µ(x) = E(Y |X = x) = α +

∫
I
β x with (α, β) at (2.1), where x denotes a

particular value of X and µ is a scalar functional.
A standard approach to estimating µ(x) is to introduce an orthonormal basis,

say ψ1, ψ2, . . ., and argue that β and x admit convergent expansions with respect
to this sequence, i.e.

β =

∞∑

j=1

bj ψj , x =

∞∑

j=1

xj ψj , µ(x) = α+

∞∑

j=1

bj xj , (2.2)

where bj =
∫
I
β ψj and xj =

∫
I
xψj . Estimators α̂ of α and b̂j of bj, for j ≥ 1,

are then constructed from the data by minimising

Sr(α, b1, . . . , br) =

n∑

i=1

(
Yi − α−

r∑

j=1

bj Xij

)2

, (2.3)

where Xij =
∫
X[i] ψj and r denotes the frequency cut-off, a smoothing pa-

rameter. These definitions of α̂ and b̂1, . . . , b̂r reflect the definitions of α and
β at (2.1) and, for appropriate choice of r, ensure consistency. The resulting
estimator of µ is

µ̂(x) = α̂+

r∑

j=1

b̂j xj . (2.4)

A thresholding method could also be used instead of “cut-off smoothing,” but
the difficulty of estimating the variance of b̂j makes that approach unattractive.

2.2. Principal component basis

It is common to take ψ1, ψ2, . . . to be the principal component basis, ordered so
that the corresponding eigenvalues form a decreasing sequence. Specifically, de-
fine K(s, t) = cov{X(s), X(t)} to be the covariance function of X, and construct
the spectral decomposition of K,

K(s, t) =
∞∑

j=1

θj ψj(s)ψj (t) , (2.5)

where θ1 ≥ θ2 ≥ · · · ≥ 0 and (θj , ψj) are the (eigenvalue, eigenfunction) pairs of
the transformation that takes ψ to Kψ, defined by (Kψ)(t) =

∫
I
K(s, t)ψ(s) ds.

Then the orthonormal functions ψj make up the principal component basis. The
jth uncentred principal component score of X is Xj =

∫
I
X ψj .
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In practice the principal component basis is unknown, and needs to be esti-
mated from data. To this end we define

K̂(s, t) = n−1
n∑

i=1

{X[i](s) − X̄(s)} {X[i](t) − X̄(t)} =
∞∑

j=1

θ̂j ψ̂j(s) ψ̂j(t) ,

where X̄ = n−1
∑

i X[i], K̂(s, t) is an estimator of K(s, t), (θ̂j , ψj) are (eigen-

value, eigenfunction) pairs for the transformation represented by K̂, and the

order of the indices j is chosen to ensure that θ̂1 ≥ θ̂2 ≥ · · · Then θ̂j and ψ̂j

are our estimators of θj and ψj, respectively, and we would replace (2.3) by

Ŝr(α, b1, . . . , br) =

n∑

i=1

(
Yi − α−

r∑

j=1

bj X̂ij

)2

, (2.6)

where X̂ij =
∫
I
X[i] ψ̂j , giving the obvious estimator µ̂(x) of µ(x). Equivalently,

since α̂ = Ȳ −
∫
I
β̂ X̄ then, writing X̂j = n−1

∑
i X̂ij , we can minimise

Ŝequiv
r (b1, . . . , br) =

n∑

i=1

{
Yi − Ȳ −

r∑

j=1

bj
(
X̂ij − X̂j

)}2

(2.7)

over b1, . . . , br, obtaining the same numerical values b̂1, . . . , b̂r as we do when
minimising (2.6). Then, defining x̂j =

∫
I
x ψ̂j, we take

µ̂(x) = Ȳ +

r∑

j=1

b̂j (x̂j − X̂j) (2.8)

to be our estimator of µ(x). In a slight abuse of notation, when discussing

practical implementation we shall write α̂ and b̂j for the quantities that minimise
(2.6) rather than (2.3).

2.3. Adapting to the variance of Y

The estimator µ̂ at (2.8) is conventional, but does not take into account the fact
that the errors at (2.1) are often heteroscedastic. When a significant amount
of variability is explained by that aspect of the problem, we should replace
Ŝr(α, b1, . . . , br) at (2.6) by its form where a weight, equal to an approxima-
tion to the inverse of the variance of Yi − α −

∫
I
βX[i] conditional on X[i], is

incorporated into the series at (2.6).
In conventional parametric regression, the conditional variance of the regres-

sion errors is often modelled as a function of the assumed parametric form of
E(Y |X). See for example Carroll and Ruppert (1988). In the functional data
context we propose modeling var(ǫ |X) by

σ(X)2 = g

(
α+

r∑

j=1

bj Xj

)
, (2.9)
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with g a univariate function and α, b1, . . . , br and r as in (2.6) and where Xj

is the jth principal component score. The appropriate choice of g depends on
the data at hand, but an adaptive choice that is often suitable is the “power of
the mean” model, g(u) = |c1u|

c2, where c1 and c2 are constants; or the version
of the model which includes an intercept term. See Carroll and Ruppert (1988,
pp. 5, 65).

Note that it is not necessary to have consistent estimators of the variances in
order to enjoy improved statistical performance, even in the asymptotic limit.
In particular, approximate parametric variance models can bring significant im-
provement. We shall take this point up again in section 3; see point (ii) below
the Theorem there. When a reasonable parametric model cannot be formulated,
the alternative is to use a nonparametric estimator of g. When sample sizes are
small, it is not always possible to construct an accurate nonparametric vari-
ance estimator. However, we shall show in section 4 that such techniques can
be useful.

To estimate σ2(X) we interpret the unweighted estimators α̂ and β̂ =
∑

j≤r b̂j

ψ̂j as pilot estimators of α and β =
∑

j bj ψj, respectively, and use them to cal-

culate residuals ǫ̂i = Yi − α̂ −
∑

j b̂j X̂ij. Since these quantities are already
centred then, in a parametric context where g ≡ g(·; θ) and θ denotes a vector
of parameters, we define

T̂ (θ) =

n∑

i=1

{
ǫ̂2i − g

(
α̂+

r∑

j=1

b̂j X̂ij ; θ

)}2

(2.10)

and choose θ̂ to minimise T̂ (θ). In this notation our estimator of var(Y − α−∫
I
βX |X = x) is, when x = X[i],

ŵ(X[i])
−1 = g

(
α̂+

r∑

j=1

b̂j X̂ij ; θ

)
.

We proceed similarly in the nonparametric context, but there we estimate g by
a nonparametric regression estimator applied to the data (α̂+

∑r
j=1 b̂j X̂ij , ǫ̂

2
i ),

for i = 1, . . . , n.
Next we incorporate these weights into the objective function at (2.7), ob-

taining:

Ût(b1, . . . , bt) =

n∑

i=1

{
Yi − Ȳw −

t∑

j=1

bj
(
X̂ij − X̂j,w)

}2

ŵ(X[i]) , (2.11)

where Ȳw = {
∑

i ŵ(X[i])}
−1

∑
i ŵ(X[i])Yi and X̂j,w = {

∑
i ŵ(X[i])}

−1
∑

i

ŵ(X[i]) X̂ij ; and we choose b̃w1, . . . , b̃wt to minimise Ût(b1, . . . , bt). A new es-
timator of µ(x) is given by the following analogue of (2.4), based on the new
coefficient estimators:

µ̃w(x) = Ȳw +
t∑

j=1

b̃wj (x̂j − X̂j,w) . (2.12)
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A computational advantage of defining estimators by minimising Ŝr(α, b1,

. . . , br) at (2.3), rather than Ût(b1, . . . , bt) at (2.11), is that the “ex ex transpose”

matrix in the former case is simple to invert. Indeed, by definition of X̂ij in terms

of the orthogonal functions ψ̂j , the matrix with (j, k)th term n−1
∑

i (X̂ij −

X̂j) (X̂ik − X̂k) is diagonal. The fact that this does not hold in the case of

the objective function Ût(b1, . . . , bt) reflects the fact that the orthonormal basis

functions ψ̂j are not necessarily, in this case, the natural ones. Instead we could

replace Ût(b1, . . . , bt) by

V̂s(b1, . . . , bs) =

n∑

i=1

{
Yi − Ȳw −

s∑

j=1

bj
(
X̌ij − X̌j,w)

}2

ŵ(X[i]) , (2.13)

where we define X̌ij =
∫
I
X[i] φ̂j and X̌j,w = {

∑
i ŵ(X[i])}

−1
∑

i ŵ(X[i])X̌ij ,

and where the orthonormal functions φ̂1, φ̂2, . . ., with corresponding eigenvalues
ω̂1 ≥ ω̂2 ≥ · · · , are defined by the following spectral decomposition

{ n∑

i=1

ŵ(X[i])

}−1 n∑

i=1

{X[i](s) − X̄w(s)} {X[i](t) − X̄w(t)} ŵ(X[i])

=
∞∑

j=1

ω̂j φ̂j(s) φ̂j(t).

Taking b̌w1, . . . , b̌ws to minimise V̂s(b1, . . . , bs), a competitor with µ̃w(x) at (2.12)
is given by

µ̌w(x) = Ȳw +
s∑

j=1

b̃wj

(∫

I

x φ̂j − X̌j,w

)
. (2.14)

The numerical differences between µ̃w and µ̌w are generally very small.

2.4. Practical choice of smoothing parameters

The methodology outlined in sections 2.2 and 2.3 involves two smoothing pa-
rameters: r, in the equivalent objective functions Ŝr and Ŝequiv

r at (2.6) and

(2.7), and t, in Ût at (2.11), or s, in V̂s at (2.13). We propose selecting these pa-
rameters by cross-validation, as follows. Omit the data pair (X[i], Yi) from the
sample, and, using the remaining n − 1 pairs, construct the predictor µ̌w(x)
at (2.14) for a general r and s; denote it by µ̌w,−i(x | r, s). Put W (r, s) =∑

i {Yi − µ̌w,−i(X[i] | r, s)}
2, and choose (r, s) to minimise W (r, s). The same

approach is used to select r and t for the predictor µ̃w(x) at (2.12).

3. Theoretical properties

Recall that the pair (X, Y ) is generated by the model at (2.1), where the error,
ǫ, has zero mean, and we wish to estimate µ(x) = α +

∫
I
β x for a particular
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function x. Our estimator, which is equivalent to that given at (2.12) with

w = τ (X[i])
−2, is defined by µ̄w(x) = Ȳw +

∑
j≤r b̂j (xj − X̄j,w), where Ȳw =

{
∑

i τ (X[i])
−2}−1

∑
i τ (X[i])

−2 Yi and X̄j,w = {
∑

i τ (X[i])
−2}−1

∑
i τ (X[i])

−2

Xij and b̂1, b̂2, . . . are chosen to minimise

n∑

i=1

{
Yi − Ȳw −

r∑

j=1

bj (Xij − X̄j,w)

}2
1

τ (X[i])2
. (3.1)

Since we centre the principal component scores Xij at their respective
means X̄j,w, which are consistent estimators of the respective jth components of
E{X τ (X)−2}, we may, and do, assume without loss of generality that
E{X τ (X)−2} = 0.

The eigenfunctions ψj and eigenvalues θj are defined by (2.5), and we assume
of them that:

the principal components
∫
I
X ψj are independent , (3.2)

r = r(n) → ∞ as n → ∞ and r = O
(
n−η+(1/2)

)
for some η ∈ (0, 1

2
) , (3.3)

E‖X‖k <∞ , supj≥1 θ
−k
j E

( ∫
I
X ψj

)2k
<∞ for each integer k ≥ 1 . (3.4)

Assumption (3.2) can be relaxed to a mixing condition.
We suppose too that we model the variance var(ǫ |X) = σ(X)2 as τ (X)2,

where the function τ is known but might not equal σ. That is, our model may
not actually be correct. We make simplifying assumptions that relate to this
model:

ǫ = σ(X) δ, where δ is stochastically independent of X, E(δ) = 0,
E(δ2) = 1, the functional σ is bounded, τ is bounded above zero,
and σ(X) and τ (X) depend on only a finite number of the principal
component scores Xj =

∫
I
X ψj; that is, for some t ≥ 1 and positive

integers j1, . . . , jt we can write σ(X)2 = var(ǫ |X) = h(Xj1 , . . . , Xjt
),

where h is a positive, t-variate function which is bounded away from
zero and infinity, and τ (X)2 can be represented in the same way;

(3.5)

and either:

the empirical basis ψ̂1, ψ̂2, . . . is used to construct the predictor µ̄w,
and there exist positive constants γb, γx, γθ and C such that, for all
j, |bj| ≤ C j−γb , |xj| ≤ C j−γx , C−1 j−γθ ≤ θj ≤ C j−γθ , θj − θj+1 ≥
C−1 j−γθ−1, γb > γθ + 2, γx >

1
2
, γθ > 1 and γθ + 1 > 2 γx,

(3.6)

or:

the principal component basis ψ1, ψ2, . . . is known and is used in place
of the empirical basis to construct µ̄w, and moreover,

∑
j θ

−1
j x2

j = ∞

and
∫
I
β2 <∞.

(3.7)
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Condition (3.5) can be relaxed by noting that if σ(·) is sufficiently regular, and
if the scores Xj are independent, then σ(X) can be approximated by a sequence
of functions σt(X1, . . . , Xt), for t ≥ 1, where σ(X) − σt(X1, . . . , Xt) converges
to zero as t → ∞, with a similar constraint imposed on τ (X). If we strengthen
the condition |xj| ≤ C j−γx by asking that C−1 j−γx ≤ |xj| ≤ C j−γx then the
assumption γθ + 1 > 2 γx in (3.6) implies that

∑
j θ

−1
j x2

j = ∞, which is stated
explicitly in (3.7). There is a sense in which (3.7) is unnecessary since it addresses
a case that is of only technical interest, but it permits milder assumptions on the
eigenvalue sequence θ, and the functions b and x, than does our derivation under
(3.6), and moreover our proof in the case of (3.7) is so much more transparent
that it sheds considerably more light on the argument leading to Theorem 3.1
than does the proof when (3.6) obtains. Indeed, the length of the proof in the
case of (3.6) prevents us from giving it here; it is similar to that of Theorem 2.2
of Hall and Hosseini-Nasab (2009). A proof of Theorem 3.1 under (3.7) is given
in section 5.

Write AMSE
{
µ̄w(x) − µ(x)} for the asymptotic mean squared error of the

estimator µ̄w(x). The following result describes asymptotic properties of this
quantity.

Theorem 3.1. If (3.2)–(3.5), and either (3.6) or (3.7), hold then as n and r
diverge together,

AMSE
{
µ̄w(x) − µ(x)} = n−1 E{σ(X)2 τ (X)−4}

[E{τ (X)−2}]2

r∑

j=1

θ−1
j x2

j +

( ∞∑

j=r+1

bj xj

)2

.

(3.8)

Among the implications that can be drawn from (3.8) are the following:

(i) If the model, τ2, for the variance, σ2, is essentially correct, i.e. if τ equals a
constant multiple of σ, then the factor, ρ2 ≡ E{σ(Z)2 τ (Z)−4} [E{τ (Z)−2}]−2,
outside the first term in (3.8), which represents the variance contribution to
asymptotic mean squared error, reduces to simply [E{σ(X)−2}]−1; whereas that
factor would be simply E{σ(X)2} if we were to use unweighted least-squares,
i.e. if we were to take τ (X) to be constant. The fact that, by Jensen’s inequal-
ity, [E{σ(X)−2}]−1 ≤ E{σ(X)2}, demonstrates the effectiveness of the adaptive
approach.

(ii) If the model is essentially incorrect, i.e. if τ does not equal a constant multi-
ple of σ, then the estimator remains consistent and enjoys the same convergence
rate as before, but with an inflated constant multiplier. More generally, if the
variance functional σ2 is not constant, and if the model is wrong but approxi-
mately correct (in particular, if τ (X) is sufficiently close to σ(X) for sufficiently
many values of X), then ρ2 is reduced relative to the value it would have if we
were to simply take τ ≡ 1.

(iii) The factor ρ2, defined in (i) above, is applied to each and every term in the
series

∑
j≤r θ

−1
j x2

j in (3.8); it does not reduce in size as j increases. Therefore
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the advantages of correcting for heteroscedasticity are valid with equal force for
arbitrarily large dimension; they do not relate just to low-dimensional aspects
of the problem.

(iv) As is to be expected, the effect of weighting has an impact only on the
variance contribution to asymptotic mean squared error, not on the bias com-
ponent. However, even if the problem is finite-dimensional the impact of the
variance component persists even in the asymptotic limit, and so there is al-
ways something to be gained, in asymptotic terms, by adapting the estimator
appropriately to heteroscedasticity.

(v) The result
∑

j θ
−1
j x2

j = ∞ in (3.7) implies that the estimator µ̄w(x) has
nonparametric, rather than parametric, convergence rates. It holds if we treat x
as a realisation of X, and average over all such realisations. In particular, if x is
distributed like X then the random variables θ−1

j X2
j all have unit mean, and so∑

j≥1 E(θ−1
j X2

j ) =
∑

j≥1 1 = ∞, of which a modest refinement is the assump-

tion that
∑

j≥1 E{min(θ−1
j X2

j , c)} = ∞ for some c > 0. (See Appendix (i) for

details.) The latter property implies that the assumption
∑∞

j=1 θ
−1
j x2

j = ∞ in
(3.7) holds “on average.”

4. Numerical illustrations

4.1. Real data example

We applied our method to Australian rainfall data analysed by Lavery et al.

(1992), and available at http://dss.ucar.edu/datasets/ds482.1. The data
consist of daily rainfall measurements, observed over the years from 1840 to 1990
inclusive, at 191 Australian weather stations. Our goal is to predict the rainfall
during the first week of June from the rainfall curve over the other weeks in the
year.

We considered two versions of this prediction problem. In the first, for any
given station we took Y to equal the rainfall during the first week of June
(rainfall in June is particularly variable), averaged over the years where the
station had been observed. Our predictor X(t) was measured from the second
week of June to the end of May, rainfall was averaged over the years where the
station was observed, and X(t) was computed by passing a local polynomial
smoother through discrete observations. We removed one weather station which
appeared to be an outlier. Then we applied our method to the n = 190 remaining
stations.

In the second version of the prediction problem, for any given station we took
Y to equal the total rainfall during the first week of June in a given year. (We
used the year 1987 as not all stations were operative after 1987.) Our predictor
X(t) was measured from the second week of June in the previous year (i.e. 1986)
to the end of May in the same year (i.e. 1987), and again X(t) was computed
by passing a local polynomial smoother through discrete observations. For each

http://dss.ucar.edu/datasets/ds482.1
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Fig 1. Plot of the 1000 ordered values of log(M̃SEw,b/MSEb), in the top left panel;

log( ˇMSEw,b/MSEb), top right panel; p̃w,b, bottom left panel; and p̌w,b, bottom right panel;
for the first prediction problem. Horizontal lines are for reference only.

year, some of the stations had missing values and we kept only the n = 149
stations with no missing observation from June 1986 to June 1987.

The majority of weather stations fall into one of two classes, which respec-
tively comprise most stations in southern parts of the continent (these tend to
follow a “European” rainfall pattern, where the majority of rain comes in cooler
months and summer is relatively dry), and most stations in northern regions
(these exhibit a “tropical” pattern where most rain falls in mid to late sum-
mer and the cooler months are relatively dry). Only a small number of weather
stations have more complex rainfall patterns that are not of one of these two
types, although some northern stations reflect southern rainfall patterns, and
vice versa. These features suggest that most of the data might reasonably be
assumed to come from a mixture of two populations. Those populations could
produce different error variances in the linear model, leading to heteroscedas-
ticity.

In the first prediction problem, to test our method we generated B = 1000
samples, each of size n = 95, by randomly removing half of the 190 stations.
For each of the B samples we then applied our method to predict the value
of Y for each of the 95 removed stations. To construct the weights we used
the nonparametric variance estimator described in section 2. Note that, since
these were real data, we did not know the true value of the target µ, and so
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Fig 2. Plot of the 1000 ordered values of log(M̃SEw,b/MSEb), in the top left panel;

log( ˇMSEw,b/MSEb), top right panel; p̃w,b, bottom left panel; and p̌w,b, bottom right panel;
for the second prediction problem. Horizontal lines are for reference only.

we compared the predicted value with the true value of Y . For each of the B
samples we calculated the mean squared errors for the 95 predicted stations.
That is, for b = 1, . . . , B we calculated

M̃SEw,b =
1

95

95∑

i=1

{µ̃w(X[i]) − Yi}
2, ˇMSEw,b =

1

95

95∑

i=1

{µ̌w(X[i]) − Yi}
2

and MSEb =
1

95

95∑

i=1

{µ̂(X[i]) − Yi}
2.

For each of the B samples we also calculated the proportion of the 95 predicted
stations that were better predicted by the weighted methods. In other words,
for b = 1, . . . , B we computed p̃w,b = #{[µ̃w(X[i]) − Yi]

2 < [µ̂(X[i]) − Yi]
2}/95

and p̌w,b = #{[µ̌w(X[i]) − Yi]
2 < [µ̂(X[i]) − Yi]

2}/95.
In Figure 1 we present graphs of the resulting B = 1000 ordered values of

log(M̃SEw,b/MSEb), of log( ˇMSEw,b/MSEb), of p̃w,b and of p̌w,b for the first pre-
diction problem. We see that both weighted methods gave very similar results,
and that both strongly bettered the unweighted predictor µ̂: for about 70% of
the 1000 samples, the MSE of the weighted methods was less than that for the
unweighted method. Moreover, in about 75% of cases, the proportions p̃w,b and
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p̌w,b were higher than 0.5, meaning that for a large number of the B = 1000 sam-
ples, more than half of the 95 predicted values were closer to the true Yi when
using the weighted method than when the unweighted method was employed.

We proceeded similarly in the second prediction problem, each time randomly
splitting the sample in two parts (of respective sizes 74 and 75). The results are
shown in Figure 2. They are similar to, but favour more strongly the weighted
approach, than the results in the first prediction problem: for about 70% of
the 1000 samples, the MSE of the weighted methods was less than that for the
unweighted method, and in about 95% of cases, the proportions p̃w,b and p̌w,b

were higher than 0.5.

4.2. Simulations

We also tested the weighted methods on some generated data (the advantage
here is that we know the target µ(x) = E(Y |X = x), and thus it is easier
to assess the quality of the predictors). For t ∈ [0, 365] we took X(t) to be a
smoothed version of the rainfall, averaged over the years for which the station
was in operation, at time t, at each of the 190 Australian weather stations used in
the first prediction problem of section 4.1. We generated 190 Y -values according
to the model at (2.1), where we took α = 0, β(t) = 0.02 · sin{8 − (π/20t)} and
ǫ = f(X)U where U ∼ U [−3/4, 3/4] and f(X)2 = 0.1 · {

∫
β(t)X(t) dt}2 .

We proceeded as in section 4.1 and, by randomly splitting the data (X[i], Yi)
into two parts, constructed B = 1000 samples of size n = 95, and each time
applied the method to the 95 remaining data points. We compared the results
obtained when estimating the function g at (2.9) nonparametrically, or para-
metrically using a correct model or a wrong model. More precisely we tried the
following three parametric models for g:

(i) g(u) = |c1u|
c2 (the true g);

(ii) g(u) = |c1|/(3 + |u|c2) (an approximation of the true g);
(iii) g(u) = |c1|{cos(c2u)+1} (a model that is very different from the true g).

In this case, since we knew the target µ we replaced Yi by µ(X[i]) in the

definitions of M̃SEw,b, MSEb, ˇMSEw,b, p̃w,b and p̌w,b. Figure 3 shows the results
obtained by estimating g nonparametrically or using the parametric models (i),
(ii) and (iii). The figure illustrates the improvement that can be gained by us-
ing a weighted version of the predictor when the parametric variance model is
correct or approximately correct, or when the variance is estimated nonpara-
metrically. When we are able to formulate the correct parametric model for the
variance, the parametric variance estimator can give better results than a non-
parametric estimator of g, but when we assume a parametric model for g that
is very far from the true one (case (iii)), the weighted estimator can perform
poorly, and is strongly outperformed by a nonparametric estimator of g.
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Fig 3. Plot of the 1000 ordered values of log(M̃SEw,b/MSEb), in the top left panel;

log( ˇMSEw,b/MSEb), top right panel; p̃w,b, bottom left panel; and p̌w,b, bottom right panel;
for the generated data, estimating g with a nonparametric estimator (NP) or assuming the
parametric models (i), (ii) or (iii). Horizontal lines are for reference only.

5. Proof of Theorem

We give a proof when (3.7) holds. We consider first the homoscedastic case,
where both σ and τ equal constants, and then we generalise our argument
to the heteroscedastic setting. The model (2.1) can be written equivalently as
Y = α+

∫
I
β (X−EX)+ ǫ, for the same function β but for a different scalar α,

which now equals E(Y ). We shall work with this model below. The least-squares
estimator of µ(x) is the same as before, but the corresponding estimator of α is
now simply α̂ = Ȳ . In particular, using the new model and making assumptions
(3.7) and (3.4), α̂ is root-n consistent for α:

α̂− α = Op

(
n−1/2

)
. (5.1)

The least-squares estimators b̂1, . . . , b̂r are the solutions of

Ŝ (b̂1, . . . , b̂r)
T = ŝ , (5.2)

where Ŝ = (ŝj1j2) is an r × r matrix, ŝ = (ŝ1, . . . , ŝr)
T is an r-vector,

ŝj1j2 =
1

n

n∑

i=1

(Xij1−X̄j1 ) (Xij2−X̄j2 ) , ŝj =
1

n

n∑

i=1

(Xij−X̄j) (Yi−Ȳ ) , (5.3)
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Xij =
∫
X[i] ψj , X̄j = n−1

∑
i Xij and Ȳ = n−1

∑
i Yi. Without loss of gen-

erality, each E(Xij) = 0. Put Zij = Xij θ
−1/2
j . Then the variables Zij have

zero mean and unit variance, and Zi1j1 and Zi2j2 are independent for arbitrary
i1, i2 and for j1 6= j2 (see (3.2)). In this notation, ŝj1j2 = (θj1 θj2 )

1/2 t̂j1j2 and

ŝj = θ
1/2
j t̂j , where

t̂j1j2 =
1

n

n∑

i=1

(Zij1 − Z̄j1) (Zij2 − Z̄j2 ) ,

t̂j =
1

n

n∑

i=1

(Zij − Z̄j) (Yi − Ȳ )

=
1

n

n∑

i=1

(Zij − Z̄j)

{∫

I

β (X[i] − X̄) + ǫi − ǭ

}

=
∞∑

k=1

bk θ
1/2
k t̂jk + ûj ,

ûj =
1

n

n∑

i=1

(Zij − Z̄j) (ǫi − ǭ) ,

Z̄j = n−1
∑

i Zij and ǭ = n−1
∑

i ǫi. Define too v̂j =
∑

k≥r+1 bk θ
1/2
k t̂jk, and

put T̂ = (t̂j1j2) and D = diag(θ
1/2
1 , . . . , θ

1/2
r ), denoting r × r matrices, and

û = (û1, . . . , ûr)
T, v̂ = (v̂1, . . . , v̂r)

T, b̂ = (b̂1, . . . , b̂r)
T and b = (b1, . . . , br)

T,

representing r × 1 vectors. In this notation, (5.2) is equivalent to T̂ D (b̂− b) =
û + v̂; see Appendix (ii). Define ‖A‖2 =

∑
j1

∑
j2
a2

j1j2
. We shall show shortly

that ‖A‖ → 0 in probability as n → ∞; see the paragraph containing (5.7).

Therefore the probability that T̂ = I + A is invertible converges to 1. When T̂
is invertible,

µ̄w(x)−µ(x)−(α̂−α)+

∞∑

j=r+1

bj xj =

r∑

j=1

(b̂j−bj)xj =

r∑

j=1

{
(T̂ D)−1(û+v̂)

}
j
xj .

(5.4)
Write t̂j1j2 = δj1j2 + aj1j2 , where δj1j2 denotes the Kronecker delta and A =

(aj1j2) is an r × r random matrix. Assuming that ν ≡ ‖A‖ → 0 in probability,

T̂−1 = (I + A)−1

= I −A + · · ·+ (−1)k−1 Ak−1 + (−1)k Ak
(
I − A+ A2 − · · ·

)

= I −A + · · ·+ (−1)k−1 Ak−1 + Ak Ak ,

where Ak = (ak,j1j2) denotes a random matrix and ‖Ak‖ ≤ (1−ν)−1. Therefore,

writing Ak = (a
(k)
j1j2

), and defining cr =
∑

j≤r x
2
j θ

−1
j , we have,

( r∑

j=1

[
D−1

{
T̂−1 − I +A− · · ·+ (−1)k Ak−1

}
(û+ v̂)

]

j
xj

)2
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=

[ r∑

j=1

{
D−1 Ak Ak (û+ v̂)

}
j
xj

]2

≤ cr

r∑

j=1

[{
Ak Ak (û+ v̂)

}
j

]2
(5.5)

= cr

r∑

j=1

{ r∑

j1=1

r∑

j2=1

a
(k)
jj1
ak,j1j2 (û+ v̂)j2

}2

≤ cr

{ r∑

j=1

r∑

j1=1

(
a
(k)
jj1

)2
} r∑

j1=1

{ r∑

j2=1

ak,j1j2 (û+ v̂)j2

}2

≤ cr
∥∥Ak

∥∥2
‖Ak‖

2
r∑

j=1

{(û+ v̂)j}
2 . (5.6)

Assumptions (3.2) and (3.4) imply that, for each integer ℓ ≥ 1,

sup
1≤j1,j2≤r

E
(
a2ℓ

j1j2

)
= O

(
n−ℓ

)
. (5.7)

Therefore, E(‖Ak‖2) = O{(r2/n)k}, and so, since (3.3) implies that r/n1/2 → 0,
we have ν → 0 in probability. The property r/n1/2 → 0 also entails ‖Ak‖ =
Op(1). Furthermore, E(û2

j ) = O(n−1) uniformly in j ≥ 1 (see Appendix (iii)),

and if 1 ≤ j ≤ r then |v̂j| = |
∑

k≥r+1 bk θ
1/2
k ajk|. The latter result, (3.4),

(5.7) and the fact that (
∑

j |bj| θ
1/2
j )2 ≤ (

∑
j b

2
j) (

∑
j θj) < ∞ imply that

E(v̂2
j ) = O(n−1), uniformly in 1 ≤ j ≤ r. (Note that, in view of the second part

of (3.7),
∑

j b
2
j <∞, and by (3.4), E‖X‖2 =

∑
j θj <∞.)

Combining these results we deduce that the right hand side of (5.6) equals

Op

{
cr

(
r2

/
n
)k
r n−1

}
= Op

(
cr r

2k+1n−(k+1)
)
.

Hence, by (5.4) and (5.6),

µ̄w(x) − µ(x) − (α̂− α) (5.8)

=

r∑

j=1

θ
−1/2
j xj

[{
I −A + · · ·+ (−1)k−1Ak−1

}
(û+ v̂)

]

j

−

∞∑

j=r+1

bj xj + Op

(
c1/2
r rk+(1/2)n−(k+1)/2

)
. (5.9)

Using the fact that r2/n → 0 it can be shown by direct calculation that, for
each integer k ≥ 1,

E

[ r∑

j=1

θ
−1/2
j xj

{
Ak (û+ v̂)

}
j

]2

= o
(
cr n

−1
)
. (5.10)
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Taking k arbitrarily large, and using (5.9), (5.10) and the fact that r =
O(n−η+(1/2)) for some η > 0 (see (3.3)), we deduce that,

µ̄w(x) − µ(x) − (α̂− α) = V −

∞∑

j=r+1

bj xj + o
(
c1/2
r n−1/2

)
, (5.11)

where V =
∑

j≤r θ
−1/2
j xj (û + v̂)j.

Note too that, since we are addressing the homoscedastic case,

E
(
V 2

)
=

r∑

j1=1

r∑

j2=1

(θj1 θj2)
−1/2 xj1 xj2

{
σ2 E(t̂j1j2) + E(v̂j1 v̂j2)

}
. (5.12)

Now, E(t̂j1j2) = n−1 (1 − n−1) δj1j2 and, recalling that each E(Zij) = 0,

nE(t̂j1k1
t̂j2k2

) = E
{

(Z1j1 − Z̄j1) (Z1k1
− Z̄k1

) (Z1j2 − Z̄j2) (Z1k2
− Z̄k2

)
}

=
(
1 − n−1

)2
E(Z1j1 Z1k1

Z1j2 Z1k2
)

=
(
1 − n−1

)2
δj1j2 δk1k2

,

using the properties j1, j2 ≤ r and k1, k2 ≥ r+ 1, and the fact that the Zijs are
independent. Hence,

E(v̂j1 v̂j2) =

∞∑

k1=r+1

∞∑

k2=r+1

bk1
bk2

(θk1
θk1

)1/2E(t̂j1k1
t̂j2k2

)

= n−1
(
1 − n−1

)2
δj1j2 dr , (5.13)

where dr =
∑

k≥r+1 b
2
k θk. Using (5.12), (5.13) and the fact that dr → 0 as

r → ∞, we deduce that, as r and n diverge together,

E
(
V 2

)
=

1

n

r∑

j=1

θ−1
j x2

j

{
(1 − n−1)σ2 + (1 − n−1)2 dr

}
∼ σ2 cr n

−1 . (5.14)

In view of the first part of (3.7), cr → ∞ as r → ∞. Formula (3.8), but
with [E{σ(X)−2}]−1 replaced by σ2, follows from this property, (5.1), (5.11)
and (5.14).

Next we outline the argument that extends this result to the heteroscedastic
setting. First we discuss a version of the theorem in an artificial problem where
the error variance is a function of Z, say, which is independent of (X, Y ) but
is observed along with that pair. That is, the model (2.1) now has the form
Y = α+

∫
I
β X+σ(Z) δ, where the perturbation δ is independent ofX and Z and

has zero mean and unit variance. The appropriately weighted criterion function
is that at (3.1) but with τ (X[i]) replaced by τ (Zi). In this case the proof above is
easily re-worked, in particular with the factor τ (Zi)

−2 included in both series at
(5.3) and in subsequent series, to show that the asymptotic mean squared error of
µ̄w(x) continues to be given by (3.8) but withE{σ(X)2 τ (X)−4} [E{τ (X)−2}]−2
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replaced by E{σ(Z)2 τ (Z)−4} [E{τ (Z)−2}]−2. To appreciate the origins of this
result, note that in the simpler model where β vanishes and Y = α + σ(Z) δ,
the variance of the weighted least-squares estimator of α is exactly ρ(n)2 ≡
E[{

∑
i σ(Zi)

2 τ (Zi)
−4} {

∑
i τ (Zi)

−2}−2]; and, under the assumption in (3.5)
that σ(z) is bounded and τ (z) is bounded away from zero,

ρ(n)2 ∼ n−1E{σ(Z)2 τ (Z)−4} [E{τ (Z)−2}]−2.

This result continues to hold when σ and τ are functions of X rather than Z,
and depend on only a finite number of principal component scores. The proof
proceeds by noting first that if var(ǫ |X) = h(Xj1 , . . . , Xjt

), as in (3.5), and if
we assume that the components with indices j1, . . . , jt are known and therefore
do not need to be estimated, then we are in exactly the position addressed in the
previous paragraph; we can take Z to be (Xj1 , . . . , Xjt

) and replace X by the
expansion

∑′
j Xj ψj where the summation

∑′
j is over only those indices j not

included among j1, . . . , jt. Moreover, the asymptotic mean squared error formula
is unaffected if we eliminate the components corresponding to j = j1, . . . , jt, or
if we take those components to be known.

Appendix

Appendix (i)

Here we prove that if it holds that

(i) E

{∑

j

min(θ−1
j X2

j , c)

}
= ∞ for some c > 0,

then
(ii)

∑

j

θ−1
j X2

j = ∞ with probability one.

Suppose that (i) holds, and note that, by Kolmogorov’s three-series theorem, and
since we assumed (see (3.2)) that the principal components Xj are independent,
then

∑
j θ

−1
j X2

j < ∞ if and only if there exists c > 0 such that (a) P (Uj >

c) <∞, (b)
∑

j E(Vj) < ∞ and (c)
∑

j var(Vj) <∞, where Uj = θ−1
j X2

j and
Vj = Uj if Uj ≤ c and Vj = 0 otherwise. From this result, and the fact that, by
the zero-one law,

∑
j Uj either converges almost everywhere or diverges almost

everywhere, we see that if (ii) fails then (a), (b) and (c) must all be true for
some c > 0. Now, (a) and (b) together imply that

∑
j E{min(Uj , c)} < ∞,

from which it follows directly that
∑

j E{min(Uj , C)} < ∞ for all C ∈ (0, c].
Moreover,

∑
j E{min(Uj , C)} < ∞ also holds for C > c, since in that case,

E{min(Uj , C)} ≤ max(C, 1)E{min(Uj , c)}.
Therefore, if (ii) fails then E{

∑
j min(θ−1

j X2
j , c)} < ∞ for all c > 0. Con-

sequently, E{
∑

j min(θ−1
j X2

j , c)} = ∞ for some c > 0 (or equivalently, (i))
implies (ii).



A. Delaigle et al./Functional linear regression 883

Appendix (ii)

Here we prove that T̂ D (b̂ − b) = û + v̂. Observe from the definitions of D,

Ŝ and T̂ that T̂ D = D−1D T̂ D = D−1 Ŝ. Since, by (5.2), Ŝ b̂ = ŝ, then

T̂ D b̂ = D−1 Ŝ b̂ = D−1 ŝ, and therefore

(
T̂ D b̂

)
j

= θ
−1/2
j ŝj . (A.1)

Using the relation Zij = Xij θ
−1/2
j we deduce that

θ
−1/2
j ŝj =

1

n

n∑

i=1

(Zij − Z̄j) (Yi − Ȳ ) = t̂j =
∞∑

k=1

bk θ
1/2
k t̂jk + ûj . (A.2)

(The final identity in this string of identities was derived in section 5.) Combin-
ing (A.1) and (A.2) we deduce that

(
T̂ D b̂

)
j

=

∞∑

k=1

bk θ
1/2
k t̂jk + ûj . (A.3)

Additionally, (T̂ D b)j =
∑

1≤k≤r t̂jk θ
1/2
k bk. Subtracting this formula from

(A.3) we deduce that

(
T̂ D (b̂− b)

)
j

=

∞∑

k=r+1

bk θ
1/2
k t̂jk + ûj = v̂j + ûj ,

which is the desired result.

Appendix (iii)

It can be proved from the definition of ûj , and the fact that E(δ2) = 1, that

1
2 n θj E(û2

j) ≤ E
{
(X1j − X̄j)

2 σ(X[1])
2
}

+
1

n2

n∑

i=1

E
{
(X1j − X̄j)

2 σ(X[i])
2
}
.

(A.4)
The fact that the function h, in assumption (3.5), is bounded means that σ is
also bounded, so we may assume that (0 <)σ ≤ B1, say. Therefore, using (A.4),

nE
(
û2

j

)
≤ 4 θ−1

j B2
1 E

{
(X1j − X̄j)

2
}
. (A.5)

Property (3.4) implies that, for some B2 > 0, E{(X1j − X̄j)
2} ≤ B2 θj for all j,

and hence, by (A.5), nE(û2
j) ≤ 4B2

1 B2, as had to be shown.
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Paris Sér. I 330, 501–504. MR1756966
Cardot, H., Ferraty, F. and Sarda, P. (2003). Spline estimators for the

functional linear model. Statist. Sinica 13, 571–591. MR1997162
Cardot, H. and Sarda, P. (2006). Linear regression models for functional

data. In: The Art of Semiparametrics Eds. S. Sperlich, W. Härdle and G.
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