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This paper studies sparse density estimation via ¢| penalization
(SPADES). We focus on estimation in high-dimensional mixture models
and nonparametric adaptive density estimation. We show, respectively, that
SPADES can recover, with high probability, the unknown components of a
mixture of probability densities and that it yields minimax adaptive density
estimates. These results are based on a general sparsity oracle inequality that
the SPADES estimates satisty. We offer a data driven method for the choice
of the tuning parameter used in the construction of SPADES. The method
uses the generalized bisection method first introduced in [10]. The suggested
procedure bypasses the need for a grid search and offers substantial computa-
tional savings. We complement our theoretical results with a simulation study
that employs this method for approximations of one and two-dimensional
densities with mixtures. The numerical results strongly support our theoreti-
cal findings.

1. Introduction. Let X1, ..., X, be independent random variables with com-
mon unknown density f in RY. Let {f1,..., fu} be a finite set of functions with
fi€ LyRY), j=1,..., M, called a dictionary. We consider estimators of f that
belong to the linear span of { fi, ..., fir}. We will be particularly interested in the
case where M > n. Denote by f, the linear combinations

M
R =D 2ifjx),  A=(p,....Ay) R,
j=1

Let us mention some examples where such estimates are of importance:
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e Estimation in sparse mixture models. Assume that the density f can be repre-
sented as a finite mixture f = fy« where f; are known probability densities and
A* is a vector of mixture probabilities. The number M can be very large, much
larger than the sample size n, but we believe that the representation is sparse,
that is, that very few coordinates of A* are nonzero, with indices corresponding
toaset I* C {1,..., M}. Our goal is to estimate the weight vector A* by a vector
7 that adapts to this unknown sparsity and to identify 7*, with high probability.

e Adaptive nonparametric density estimation. Assume that the density f is a
smooth function, and {f1,..., fi} are the first M functions from a basis in
Lz(Rd). If the basis is orthonormal, a natural idea is to estimate f by an or-
thogonal series estimator which has the form f; with 2 having the coordinates
x j=n —lyn —1 fj(Xi). However, it is well known that such estimators are very
sensitive to the choice of M, and a data-driven selection of M or thresholding
is needed to achieve adaptivity (cf., e.g., [6, 27, 37]); moreover, these methods
have been applied with M < n. We would like to cover more general problems
where the system { f;} is not necessarily orthonormal, even not necessarily a
basis, M is not necessarily smaller than », but an estimate of the form f; still
achieves, adaptively, the optimal rates of convergence.

e Aggregation of density estimators. Assume now that f1, ..., fys are some pre-
liminary estimators of f constructed from a training sample independent of
(X1,...,Xn), and we would like to aggregate f1, ..., fir. This means that we
would like to construct a new estimator, the aggregate, which is approximately
as good as the best among f1, ..., fa or approximately as good as the best lin-
ear or convex combination of fi,..., far. General notions of aggregation and
optimal rates are introduced in [33, 40]. Aggregation of density estimators is
discussed in [35, 36, 38] and more recently in [5] where one can find further
references. The aggregates that we have in mind here are of the form f; with
suitably chosen weights A = A(X1, ..., X,) € RM.

In this paper we suggest a data-driven choice of X that can be used in all the
examples mentioned above and also more generally. We define A as a minimizer
of an £(-penalized criterion, that we call SPADES (SPArse density EStimation).
This method was introduced in [14]. The idea of £|-penalized estimation is widely
used in the statistical literature, mainly in linear regression where it is usually re-
ferred to as the Lasso criterion [16, 19, 24, 32, 39]. For Gaussian sequence models
or for regression with an orthogonal design matrix the Lasso is equivalent to soft
thresholding [18, 30]. Model selection consistency of the Lasso type linear re-
gression estimators is treated in many papers including [31, 32, 46-48]. Recently,
£1-penalized methods have been extended to nonparametric regression with gen-
eral fixed or random design [4, 11-13], as well as to some classification and other
more general prediction type models [8, 28, 29, 42].

In this paper we show that £1-penalized techniques can also be successfully
used in density estimation. In Section 2 we give the construction of the SPADES



SPADES AND MIXTURE MODELS 2527

estimates and we show that they satisfy general oracle inequalities in Section 3.
In the remainder of the paper we discuss the implications of these results for two
particular problems, identification of mixture components and adaptive nonpara-
metric density estimation. For the application of SPADES in aggregation problems
we refer to [14].

Section 4 is devoted to mixture models. A vast amount of literature exists on es-
timation in mixture models, especially when the number of components is known;
see, for example, [43] for examples involving the EM algorithm. The literature on
determining the number of mixture components is still developing, and we will
focus on this aspect here. Recent works on the selection of the number of com-
ponents (mixture complexity) are [2, 26]. A consistent selection procedure spe-
cialized to Gaussian mixtures is suggested in [26]. The method of [26] relies on
comparing a nonparametric kernel density estimator with the best parametric fit of
various given mixture complexities. Nonparametric estimators based on the com-
binatorial density method (see [17]) are studied in [2, 3]. These can be applied to
estimating consistently the number of mixture components, when the components
have known functional form. Both [2, 26] can become computationally infeasible
when M, the number of candidate components, is large. The method proposed here
bridges this gap and guarantees correct identification of the mixture components
with probability close to 1.

In Section 4 we begin by giving conditions under which the mixture weights
can be estimated accurately, with probability close to 1. This is an intermediate
result that allows us to obtain the main result of Section 4, correct identification
of the mixture components. We show that in identifiable mixture models, if the
mixture weights are above the noise level, then the components of the mixture
can be recovered with probability larger than 1 — ¢, for any given small ¢. Our
results are nonasymptotic, they hold for any M and n. Since the emphasis here is
on correct component selection, rather than optimal density estimation, the tuning
sequence that accompanies the £1 penalty needs to be slightly larger than the one
used for good prediction. The same phenomenon has been noted for £;-penalized
estimation in linear and generalized regression models; see, for example, [8].

Section 5 uses the oracle inequalities of Section 3 to show that SPADES esti-
mates adaptively achieve optimal rates of convergence (up to a logarithmic factor)
simultaneously on a large scale of functional classes, such as Hélder, Sobolev or
Besov classes, as well as on the classes of sparse densities, that is, densities having
only a finite, but unknown, number of nonzero wavelet coefficients.

Section 6.1 offers an algorithm for computing the SPADES. Our procedure
is based on coordinate descent optimization, recently suggested by [20]. In Sec-
tion 6.2 we use this algorithm together with a tuning parameter chosen in a data
adaptive manner. This choice employs the generalized bisection method first intro-
duced in [10], a computationally efficient method for constructing candidate tuning
parameters without performing a grid search. The final tuning parameter is chosen
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from the list of computed candidates by using a 10-fold cross-validated dimension-
regularized criterion. The combined procedure works very well in practice, and we
present a simulation study in Section 6.3.

2. Definition of SPADES. Consider the Lz(Rd ) norm

12
let = ([, £wdx)

associated with the inner product
(g.h) = [ gh()dx
R4

for g,h € L>(R%). Note that if the density f belongs to L>(R9) and X has the
same distribution as X;, we have, for any g € L»,

(g, f) =Eg(X),

where the expectation is taken under f. Moreover,

Q1 Nf—glP=1f17+1lgl* —2(g, f) = I fI* + llgl* — 2Eg(X).

In view of identity (2.1), minimizing ||f, — f||% in A is the same as minimizing
y () = =2E.(X) + IIfi 1%,

The function y (1) depends on f but can be approximated by its empirical coun-
terpart

2 n
(2.2) 70y =—=3 H(X) + 7

i=l

This motivates the use of ¥ = (1) as the empirical criterion; see, for instance, [6,
37, 44].
We define the penalty

M
2.3) pen(A) =2 ;A
j=1

with weights w; to be specified later, and we propose the following data-driven
choice of A:

% = argmin{7 (%) -+ pen()}
2.4) reR

[ 2y <
= argmin ——fo(Xi)-i-||fx||2+2zwj|)¥j| :
reRM 3 Jj=1
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Our estimator of density f that we will further call the SPADES estimator is de-
fined by

f’(x) =fr(x) vx e R4,

It is easy to see that, for an orthonormal system { f;}, the SPADES estimator co-
incides with the soft thresholding estimator whose components are of the form
nj=(1—wj/IAjl)1h; where A; =n~' Y| f;(X;) and x4 = max(0, x). We
see that in this case w; is the threshold for the jth component of a preliminary
estimator A = (Xl, e XM).

The SPADES estimate can be easily computed by convex programming even if
M > n. We present an algorithm in Section 6 below. SPADES retains the desir-
able theoretical properties of other density estimators, the computation of which
may become problematic for M > n. We refer to [17] for a thorough overview on
combinatorial methods in density estimation, to [41] for density estimation using
support vector machines and to [6] for density estimates using penalties propor-
tional to the dimension.

3. Oracle inequalities for SPADES.

3.1. Preliminaries. Forany A € RM let
J)={jefl,....M}:1; #0}

be the set of indices corresponding to nonzero components of A and

M
MO =[JW)] =D 1{x;#0)

j=1
its cardinality. Here /{-} denotes the indicator function. Furthermore, set
o =Var(fj(X1),  Lj=Ifillco

for 1 < j < M, where Var(¢) denotes the variance of random variable ¢ and | - ||
is the Loo(R?) norm.

We will prove sparsity oracle inequalities for the estimator r=rw1,...,om),
provided the weights w; are chosen large enough. We first consider a simple
choice:

(3.1) wj=4L;r(8/2),

where 0 < § < 1 is a user-specified parameter and

(3.2) r(8)=r(M,n,8)=‘/10g(%.
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The oracle inequalities that we prove below hold with a probability of at least 1 —§
and are nonasymptotic: they are valid for all integers M and n. The first of these
inequalities is established under a coherence condition on the “correlations”

(fis [5)
A1

For » € RM | we define a local coherence number (called maximal local coherence)
by

pm (i, j) = ij=1,....,M.

A) = max max i, 1),
pA) Ja, mas lom (i, J)|
and we also define

oy 4L ;
F(A) = max —————— = max
jedw r /DI fill T jel £l
and
r@/DIfill £l
X ———"— = max ——

G= .
1<j<M oy I<j<M 4L;

3.2. Main results.

THEOREM 1. Assume that L;j < o0 for 1 < j < M. Then with probability at
least 1 — 8 for all » € RM that satisfy

(3.3) 16GF(M)p(M)M(O) <1

and all « > 1, we have the following oracle inequality:

If*=f17+ 5 1)Zw,|,\

o+ 82 5
<a—||f 2 — fII? + F ¥ /M M).

Note that only a condition on the local coherence (3.3) is required to obtain the
result of Theorem 1. However, even this condition can be too strong, because the
bound on “correlations” should be uniform over j € J()),i # j; cf. the definition
of p(1). For example, this excludes the cases where the “correlations” can be rel-
atively large for a small number of pairs (i, j) and almost zero for otherwise. To
account for this situation, we suggest below another version of Theorem 1. Instead
of maximal local coherence, we introduce cumulative local coherence defined by

o) = > > lpm G, .

iced (V) j>i
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THEOREM 2. Assume that L;j < o0 for 1 < j < M. Then with probability at
least 1 — 8 for all . € RM that satzsfy

3.4) 16F(M)Gpx(MHvVM(A) <1

and all o > 1, we have the following oracle inequality:

If®— 17 +r—= 1) Zw,u

o+ 8a2 2
<a—||f = fI? + F Mr2@/2MR).

Theorem 2 is useful when we deal with sparse Gram matrices Wy = ({f;,
fiD1<i,j<m that have only a small number N of nonzero off-diagonal entries.
This number will be called a sparsity index of matrix Wy, and is defined as

N=Gj):i,je{l,....M},i > jand ¥y (i, j) #0}|,
where ¥y (7, j) is the (i, j)th entry of Wy, and |A| denotes the cardinality of a
set A. Clearly, N < M(M + 1)/2. We therefore obtain the following immediate
corollary of Theorem 2.

COROLLARY 1. Let Wys be a Gram matrix with sparsity index N. Then the
assertion of Theorem 2 holds if we replace there (3.4) by the condition

(3.5) 16F(M)NVM((A) <1.

We finally give an oracle inequality, which is valid under the assumption that
the Gram matrix Wy, is positive definite. It is simpler to use than the above re-
sults when the dictionary is orthonormal or forms a frame. Note that the coherence
assumptions considered above do not necessarily imply the positive definiteness
of Wy,. Vice versa, the positive definiteness of W, does not imply these assump-
tions.

THEOREM 3. Assume that Lj < o for 1 < j < M and that the Gram matrix
Wy is positive definite with minimal eigenvalue larger than or equal to kpr > 0.
Then, with probability at least 1 — 8, for all « > 1 and all ». € R™, we have

M
o ~
If® = 117+ —— 2 wjlay = A
j=1
(3.6) !

a+1 8a2 \ G(1)
E—Ilfx—fllz-%( ) :
a—1 a—1/) nky

where
161log(2M/§)

GWE Y wf=——""""" 3 L%

eI n jel)
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We can consider some other choices for w; without affecting the previous re-
sults. For instance,

(3.7) w; =2+20;r(8/2) + 8L ,;r%(8/2)
or

(3.8) w; =232T;r(8/2) + 31,2 (8/2)
with

2 n
T? = - 2 F(Xi) +2L5r%(8/2)
1=

yield the same conclusions. These modifications of (3.1) prove useful, for example,
for situations where f; are wavelet basis functions; cf. Section 5. The choice (3.8)
of w; has an advantage of being completely data-driven.

THEOREM 4. Theorems 1-3 and Corollary 1 hold with the choices (3.7) or
(3.8) for the weights w; without changing the assertions. They also remain valid if
we replace these w; by any a); such that a); > wj.

If w; is chosen as in (3.8), our bounds on the risk of SPADES estimator involve

the random variables (1/n) 37, f J-Z(X i). These can be replaced in the bounds by
deterministic values using the following lemma.

LEMMA 1. Assume that Lj < oo for j=1,...,M.Then

1 & 4 .
(3.9) P(;gsz(X,-) <2Ef(X1) + gL§r2(3/2),v] = 1,...,M> >1-268/2.

From Theorem 4 and Lemma 1 we find that, for the choice of w; as in (3.8), the
oracle inequalities of Theorems 1-3 and Corollary 1 remain valid with probability
at least 1 — 38/2 if we replace the w; in these inequalities by the expressions

23/2T;r(8/2) + (8/3)Ljr*(8/2) where Tj = (2[Efj2(X1) + (4/3)L§r2(5/2))‘/2.

3.3. Proofs. We first prove the following preliminary lemma. Define the ran-
dom variables

1 n
Vi=— Y fi(X) —Efj(Xi)
i=1

and the event
M

(3.10) A= 2V <o)
j=1
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LEMMA 2. Assume that Lj < oo for j=1,..., M. Then for all 1 € RM we
have that, on the event A,

M
GAD = fIP+ Yok =2 <M= fIP+4 Y o[k — Al
j=1 JjeJ®)

PROOF. By the definition of x
2 n M . 2 n M
—;Zfﬁxiw||fx||2+22wj|xj|s—;meiH||fx||2+22w,-|x,-|
i=1 j=1 i=1 j=1

for all A € RM. We rewrite this inequality as

2 n
If® = FIP < I — FIP=2(f, f* =) + - Y (f* = f(X)

i=1

M M .
+2) wilhj| =2) " ikl
j=1 j=1

M 1 n N
= |Ifx —f||2+22(52f,-(x,-) —Ef,-(x,-))uj — )

j=1\"i=1

M M R
+2> wjlhjl =2 wjli;l.
Jj=1 Jj=1
Then, on the event A,
M _ M M _
If® = FIP <= FIP+ D wilhj =21 +2) w)lrjl =2 wjlkjl.
j=1 Jj=1 j=1
Add ) w; x j — Aj| to both sides of the inequality to obtain

M
Lf® = FIP+ D wjh; — Al

j=1

M M M
<l = FIP+2) 0l =21 +2) 0l =2 okl
j=1 j=1 j=1

M
SU = FIP+2 Y wjlhj =21 +2) wjlrjl—2 > ol
jel () j=1 jel ()

<It=FIP+4 Y wjlh;—al,
JEJ(X)
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where we used that A; =0 for j ¢ J()) and the triangle inequality. []

For the choice (3.1) for w;, we find by Hoeffding’s inequality for sums of inde-
pendent random variables ¢;; = f;(X;) — E f;(X;) with |§;;] < 2L that

2nw? /4>

M M
P(A) <Y PRIV)| > o} §2Zexp<— e
j

j=1 j=1
R PROOF OF THEOREM 1. Inview of Lemma 2, we need to bound }_ ;¢ ;) @ X

[A; —Aj]. Set

M
uj=»~xj—Axj, U= Yy lujllifill, U= lujllfilir=r/2).
el j=1

Then, by the definition of F(}),

Z wjlhj— x| <rFOYUQ).

JEJ(X)
Since
DO Sin fiduiuj =0,
i,jEJ (L)
we obtain
Yo AP =1 =007 = D0 wiugl i f5)
JeJ () i,jgJ(A)
=23 > wiulfi )= YLD wiu{fi, fi)
ig¢J(L) je(A) i,jeJ(X),i#]
(3.12) <If* =t +200) D lwlllfill D lujllfill
i¢J(\) JEJ)
+ M) DY fuillu £
i,jeJ()

=1 f* =12+ 200U WU — p(HU ().

The left-hand side can be bounded by 3" ;¢ j ) 5[l filI* = U?(1)/M (1) using the
Cauchy-Schwarz inequality, and we obtain that

U0 < [ f® = 6IPMO) + 20 (WM G)U (WU,
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which immediately implies
(3.13) UG <2p(MMMU +VMM)| f* -1
Hence, by Lemma 2, we have, with probability at least 1 — &,
M o~
Lf® = FIP 4+ Y o)k — 4]
j=1
<l —fIP+4 D ol — 2l
jed ()
<ty = fI* +4r FOOU )
<ty = fIP +4r FO){20(0OM MU + VM M) f* — 1211}
M -~
<ty = FI* +8F(Mp(MMMG Y wjlhj — Al
j=1
+4rFOOVMMW)| f* —1ll.
For all A € RM that satisfy relation (3.3), we find that, with probability exceeding
1-34,
, 1E
If® = FIP 45 D0k =1
j=1
<l = FIP+4r FOOVMMD)| f* =l
<t = FIF +2{2r FOOVM )} £* = £
+2{2r FQ)VM M) }IfL — fI-

After applying the inequality 2xy < x?/a + ay® (x, y € R, a > 0) for each of the

last two summands, we easily find the claim. [

PROOF OF THEOREM 2. The proof is similar to that of Theorem 1. With

U0 = | Y uslfill?,
JEJ(M)

we obtain now the following analogue of (3.12):

UZ) < I1f*® =67+ 2.0 max  Ju|l fillluj ] £
ieJ(X),j>i

M
< [f* =617 + 20U D JujllL £
j=1

=1 f*® = 211> + 20 MU, (W) U.
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Hence, as in the proof of Theorem 1, we have
Us(M) < 20.(MU + || f* =1,

and using the inequality Uy (A) > U (A)/+/ M (A), we find

(3.14) U <20 O0WVMMU +VMO) | f* =1l

Note that (3.14) differs from (3.13) only in the fact that the factor 2p(A) M (1) on
the right-hand side is now replaced by 2p..(1)+/M (1). Up to this modification, the
rest of the proof is identical to that of Theorem 1. [J

PROOF OF THEOREM 3. By the assumption on Wj;, we have
2 2
0P = 3 aids [, o fdx zien Y 03
I<i,j=M JeJ )
By the Cauchy—Schwarz inequality, we find

4 3" wjlhj =l
jel ()

<4] 3 ob| 3 B

jesoy \jesm

2

Yjesoy @i\
s4(—liil—i> TN

nK )

Combination with Lemma 2 yields that, with probability at least 1 — §,

M
If® = FIP+ > wjlhj —Ajl

j=1

If* —foll

Y iesoy @\ 12
(3.15) snu—fW+4(JE@Ll>
nK

<y — FIZ+BUF* = FIl+ I — £,

where b =4,/3ic;0) a)?/a/nKM. Applying the inequality 2xy < x2/a + ay?
(x,y € R,a > 0) for each of the last two summands in (3.15), we get the result.
Il

PROOF OF THEOREM 4. Write 0; = 2«/§ajr(8/2) + (8/3)Ljr2(8/2) for the
choice of w; in (3.7). Using Bernstein’s exponential inequality for sums of inde-
pendent random variables ¢;; = f;(X;) — Ef;(X;) with |{;;| < 2L;, we obtain
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that
M
P(AS) =P (U 2|V|>w,)
M
<> PQ2IVj| >}
(3.16) =l
M nw2/4
S )
= 2Var(f;j(X1))+2L;jw;/3

< Mexp(—nr*(8/2)) = 8/2.
Let now w; be defined by (3.8). Then, using (3.16), we can write

M
IP’(AC)zP(U{2|Vj| >w,})

j=1

M M
(3.17) <Y PRIVj|>d}+ Y Pld; > ;)
j=1 j=1

M
<38/2+ ) Ploj > w;}.
j=1
Define
. Ef7}(X1)log(2M/8)
TTTEAX)

and note that
n

2 2 2
=1

Then
P{@; > wj} =P{Var(f;(X1)) > T})

2 n
< P{Eff(xo >~ X+ t,-}
i=1

- <_n{Ef,-2(X1) +1)?
=P\ RE A o)

nthEsz(Xl)
= Xp<_ 2EfH(X1) )

since (x + y)? > 4xy,

2537

) using Proposition 2.6 in [45]
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which is less than §/(2M). Plugging this in (3.17) concludes the proof. [
PROOF OF LEMMA 1. Using Bernstein’s exponential inequality for sums of

independent random variables f jz(X )—Ef jz (X;) and the fact that E f;.‘ (X <
L3Ef7(X1), we find

1 4
P(; Y fHX) = 2B (X)) + 5L§r2<5/2>>
i=1

1 & 4
- P(; ; XD —Ef7 (X)) =Ef7 (X)) + gL§r2<6/2))
n(Ef7(X1) +4/3L3r*(5/2))?
< —
- exP( 2EFH(X1) +4/3LHESF(X1) + 4/3L§r2(5/2)})

< expl(~nr?(/2) = 51—

which implies the lemma. [J

4. Sparse estimation in mixture models. In this section we assume that the
true density f can be represented as a finite mixture

f =3 Ajpj),

jer*

where I* C {1, ..., M}is unknown, p ;j are known probability densities and X i>0
for all j € I'*. We focus in this section on model selection, that is, on the correct
identification of the set I*. It will be convenient for us to normalize the densities
p;j by their Ly norms and to write the model in the form

f@) =) M fi),
JEI*
where I* C {1, ..., M} is unknown, f; = p;/||p;|l are known functions and )ﬁ/f >
O forall j e I*. We set A* = (A}, ..., A},), where )»j‘- =0,j¢TI*
For clarity of exposition, we consider a simplified version of the general setup

introduced above. We compute the estimates of A* via (2.4), with weights defined
by [cf. (3.1)]:

wj=4Lr for all j,

where r > 0 is a constant that we specify below, and for clarity of exposition we
replaced all L; = || f}|lo by an upper bound L on maxj<;<u L ;. Recall that, by
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construction, || f;|| = 1 for all j. Under these assumptions condition (3.3) takes the
form

4.1 A) < .

4.1) p(A) = 16M (0

We state (4.1) for the true vector A* in the following form:

CONDITION (A).

1
16k*’
where k* = |I*| = M(A*) and p* = p(1*).

p* <

Similar conditions are quite standard in the literature on sparse regression es-
timation and compressed sensing; cf., for example, [4, 8, 11, 13, 19, 47]. The
difference is that those papers use the empirical version of the correlation p* and
the numerical constant in the inequality is, in general, different from 1/16. Note
that Condition (A) is quite intuitive. Indeed, the sparsity index k* can be viewed as
the effective dimension of the problem. When k* increases the problem becomes
harder, so that we need stronger conditions (smaller correlations p*) in order to
obtain our results. The interesting case that we have in mind is when the effective
dimension k* is small, that is, the model is sparse.

The results of Section 3 are valid for any r larger or equal to r(§/2) =
{log(2M/8)/n}'/?. They give bounds on the predictive performance of SPADES.
As noted in, for example, [8], for £;-penalized model selection in regression, the
tuning sequence w; required for correct selection is typically larger than the one
that yields good prediction. We show below that the same is true for selecting the
components of a mixture of densities. Specifically, in this section we will take the
value

2
(4.2) r=r(M,n,5/2M)) Z‘/W'

We will use the following corollary of Theorem 1, obtained for o = +/2.

COROLLARY 2. Assume that Condition (A) holds. Then with probability at
least 1 — 5/ M, we have

M
~ 42 . log(2M?/8)
43 Aj =A< ——kF -
(4.3) DI =A== -
j=1
Inequality (4.3) guarantees that the estimate X is close to the true A* in £; norm,
if the number of mixture components k* is substantially smaller than \/n. We re-

gard this as an intermediate step for the next result that deals with the identification
of I*.
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4.1. Correct identification of the mixture components. We now show that I*
can be identified with probability close to 1 by our procedure. Let T=J(@) be
the set of indices of the nonzero components of x given by (2.4). In what follows
we investigate when P(T: I*) > 1 — ¢ for a given 0 < & < 1. Our results are
nonasymptotic, they hold for any fixed M and n.

We need two conditions to ensure that correct recovery of I* is possible. The
first one is the identifiability of the model, as quantified by Condition (A) above.
The second condition requires that the weights of the mixture are above the noise
level, quantified by r. We state it as follows:

CONDITION (B).

min |A%] > 4(v2+ 1)rL,
jer*
where L = max(l/ﬁ, maxi<;<p L;) and r is given in (4.2).

THEOREM 5. Let 0 < § < 1/2 be a given number. Assume that Conditions (A)
and (B) hold. Then P(I =1*) > 1—-28(1+1/M).

REMARK. Since all Aj are nonnegative, it seems reasonable to restrict the
minimization in (2.4) to A with nonnegative components. Inspection of the proofs
shows that all the results of this section remain valid for such a modified estima-
tor. However, in practice, the nonnegativity issue is not so important. Indeed, the
estimators of the weights are quite close to the true values and turn out to be pos-
itive for positive A*%. For example, this was the case in our simulations discussed
in Section 6 below. On the other hand, adding the nonnegativity constraint in (2.4)
introduces some extra burden on the numerical algorithm. More generally, it is
trivial to note that the results of this and previous sections extend verbatim to the
setting where A € A with A being any subset of R™. Then the minimization in
(2.4) should be performed on A, in the theorems of Section 3 we should replace
A € RM by A € A and in this section A* should be supposed to belong to A.

PROOF OF THEOREM 5. We begin by noticing that
P #1M <PU* ¢ D +PA L 1),

and we control each of the probabilities on the right-hand side separately.
Control of P(I* € I). By the definitions of the sets 7 and I'*, we have

P(I* ¢ T) < P(hx =0 for some k € I*)
< k*maxP(a; = 0).
kel*

We control the last probability by using the characterization (A.1) of x given in
Lemma 3 of the Appendix. We also recall that Efi (X1) = > ¢+ Aj(fk, fi) =
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?’Izl kj( fi, fj), since we assumed that the density of X is the mixture f* =
Zje,* )»j‘- fj- We therefore obtain, for k € I*,

IP(XFO):PO ka(X)—ZA (fis fi)| <4rL; xk_o)
i=1 j=1
1 n
=P(';ka(x,->—Efk(X1)
—Z(x NS fi) s4rL;Xk=0)

{

1 n
AL fell? + - > fiuX) —Efe(X1)
i=1

=30 = XD{f5 fi)

< 4rL>

JFk
AF 2
(4.4) < (' ka<x ) — E fi(X, )‘ % —2rL>
i=1
R )\* 2
4.5) +IP>< PRI fk)‘ > % — 2rL).

J#k
To bound (4.4), we use Hoeffding’s inequality, as in the course of Lemma 2.
We first recall that || fy|| = 1 for all k and that, by Condition (B), mingej+ |A}]| >

4(v/24 1)Lr, with r = r(8/(2M)) = {log(2M?/8)/n}'/?. Therefore,

(z g

1< 8
< P(‘; Y X)) —Efi(XD)| = 2ﬁrL) <5
i=1
To bound (4.5), notice that, by Conditions (A) and (B),

P(|S -t g > Pl i)

JFk

M M
< P(Z Aj — A5 = 32ﬁrLk*) < IP’(Z [Aj— A=
j=l1

j=1

Ikl

kaor ) —Efie(X1)| >

i=1

(4.6)

’

- M

4ﬁrk*) F)
L <

where the penultimate inequality holds since, by definition, L2 > 1/3 and the last
inequality holds by Corollary 2.
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Combining the above results, we obtain
P gD <k 11l <2 4y
M? M~ M
Control of P(I  I*). Let
2

2 n

@D hw === i fi X+ | D0 wifi| +8rL Y -
i1 jerr jer* jer*

Let

4.8) f=argminh(u).

weRK*

Consider the random event

(4.9) B= () !

ke I*

1 n
—= D X+ Y ilfs fi)

i=1 jerx

§4Lr}.

Let j1 € RM be the vector that has the components of /i given by (4.8) in positions
corresponding to the index set 7* and zero components elsewhere. By the first part
of Lemma 3 in the Appendix, we have that ji € RM is a solution of (2.4) on the
event B. Recall that A is also a solution of (2.4). By the definition of the set T,
we have that Ax # 0 for k € I. By construction, jix 7 0 for some subset S C I*,
By the second part of Lemma 3 in the Appendix, any two solutions have nonzero
elements in the same positions. Therefore, I=S C I* on B. Thus,

P(T € I*) < P(B)

1 n
=93 P{’——ka(xi) + > (S fe) Z4rL}
kg1 n i=1 jer*
(4.10) )
=X P(ll Y fiuX) — Efi(X1)| = 2f2rL)
kers iz
+ 2 P(Z =250 fo)l = (4—2«/§)rL>.
k¢ l* jer*
Reasoning as in (4.6) above, we find
1 s
2. P( . > fieX) — Efi(X1)| = 2ﬁrL> <o
kgr* i=1

To bound the last sum in (4.10), we first notice that Theorem 1 [if we replace
there r(5/2) by the larger value r(5/(2M)); cf. Theorem 4] applies to [t given
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by (4.8). In particular,
N 442 8

(5 = ) <

jer*

Therefore, by Condition (A), we have

> B(( X 1~ #5110 Al = @~ 20D

kel* Njel*
<>y ]P’(Z |ij — 131 = 32(4 - zfz)k*rL)
ke¢I*  Njel*
s 44/2
= Y B(X - Tk ) <0,
kgl*  Njel*

which holds since L? > 1/3. Collecting all the bounds above, we obtain
P(I#1%) <28+ 2
M
which concludes the proof. [J

4.2. Example: Identifying true components in mixtures of Gaussian densities.
Consider an ensemble of M Gaussian densities p;’s in R? with means p j and co-
variance matrices 7;Iz, where I is the unit d x d matrix. In what follows we show
that Condition (A) holds if the means of the Gaussian densities are well separated
and we make this precise below. Therefore, in this case, Theorem 5 guarantees that
if the weights of the mixture are above the threshold given in Condition (B), we
can recover the true mixture components with high probability via our procedure.
The densities are

Ix — ||%)
i(x)=————exp|l ——*—=),
Pit) (27'rr,-2)d/2 p( Zr}
where | -]l denotes the Euclidean norm. Consequently, f; = p;/lp;ll with

Ipjll = (4 r})*d/“. Recall that Condition (A) requires

16p° =16, max |(fi. f;)| < 1/K"

iel*,j

2 . 2 . .
Let Tmax = maxi<;j<p 7j and D, = mingx; [|ug — ujll5. Via simple algebra, we

obtain
D2

Tmax
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Therefore, Condition (A) holds if
4.11) D2, > 41>

min = 7 “max

log(16k™).

Using this and Theorem 5, we see that SPADES identifies the true components in
a mixture of Gaussian densities if the square Euclidean distance between any two
means is large enough as compared to the largest variance of the components in
the mixture.

Note that Condition (B) on the size of the mixture weights involves the con-
stant L, which in this example can be taken as

= _— ; = _— ) /4
L max< 3 ,énjeg(M ||f]||oo> max< 3 , (rTan) ),
where Tpin =minj<j<py ;.

REMARK. Often both the location and scale parameters are unknown. In this
situation, as suggested by the Associate Editor, the SPADES procedure can be ap-
plied to a family of densities with both scale and location parameters chosen from
an appropriate grid. By Theorem 1, the resulting estimate will be a good approx-
imation of the unknown target density. An immediate modification of Theorem 5,
as in [9], further guarantees that SPADES identifies correctly the important com-
ponents of this approximation.

5. SPADES for adaptive nonparametric density estimation. We assume in
this section that the density f is defined on a bounded interval of R that we take
without loss of generality to be the interval [0, 1]. Consider a countable system
of functions {yyx,l = —1,k € V(I)} in L,, where the set of indices V (/) satis-
fies [V(=1)| < C, 2! < V()| < C2',1 >0, for some constant C, and where the
functions ¥ satisfy

S.1) Iyl <Ci, 1Yiklloo < C1272,

> v H <2

keV () o

forall/ > —1 and for some C; < co. Examples of such systems {} are given, for
instance, by compactly supported wavelet bases; see, for example, [25]. In this case
Y (x) = 2L/ 21//(le — k) for some compactly supported function . We assume
that {1y} is a frame, that is, there exist positive constants c¢; and ¢ depending
only on {1y} such that, for any two sequences of coefficients S, ﬁl/k,

Yy Y Bu—B={ Y Y B —Bvn

I=—1keV () I=—1keV ()

< Y Y (Bu— B

I=—1keV ()

2

5.2)
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If {1;% } is an orthonormal wavelet basis, this condition is satisfied with ¢y = ¢ = 1.

Now, choose { f1, ..., fu} ={Vw, =1 <1 <lnax, k € V()}, where [, 1s such
that 2'ma < p /(logn). Then also M =< n/(logn). The coefficients Aj are now in-
dexed by j = (I, k), and we set by definition Ay ) =0 for (,k) ¢ {—1 <1 <
Imax, k € V(I)}. Assume that there exist coefficients B} such that

=YY Bivu.

I=—1keV ()

where the series converges in L. Then Theorem 3 easily implies the following
result.

THEOREM 6. Let f1,..., fu be as defined above with M =< n/(logn), and
let w; be given by (3.8) for § = n=2. Then for all n > 1, » € RM we have, with
probability at least 1 —n™2,

If®— fI* < K( SN (aw =B

I=—1keV ()
(5.3) 1 | )
Bl 2y)
(ke (0

where K is a constant independent of f.

This is a general oracle inequality that allows one to show that the estimator f*
attains minimax rates of convergence, up to a logarithmic factor simultaneously
on various functional classes. We will explain this in detail for the case where f
belongs to a class of functions F satisfying the following assumption for some
s> 0:

CONDITION (C). For any f € F and any I’ > 0 there exists a sequence of
coefficients A = {Aq k), —1 <1 <1',k € V(I)} such that

(5.4) Z > (i — BR)* = 027

I=—1keV ()

for a constant C, independent of f.

It is well known that Condition (C) holds for various functional classes F, such
as Holder, Sobolev, Besov classes, if {1} is an appropriately chosen wavelet ba-
sis; see, for example, [25] and the references cited therein. In this case s is the
smoothness parameter of the class. Moreover, the basis {yt} can be chosen so
that Condition (C) is satisfied with C» independent of s for all s < sy, Where
Smax 1S @ given positive number. This allows for adaptation in s.
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Under Condition (C), we obtain from (5.3) that, with probability at least 1 —
-2
n

’

I =11 <lmlm K<C22_2“+ > [ Z‘/’zk(X)logn

(k) 1<l i=1

+2l<1°f”> D

From (5.5) and the last inequality in (5.1) we find for some constant K’, with

probability at least 1 — n~2,

. logn , (logn\?
||f‘—f||2§1£111n K/<2—215 21( g )+221( g ))

—=‘max n n

logn ~25/@s+D)
=o((5) )
n

where the last expression is obtained by choosing I’ such that 2 = (n /
logn)/@s+D Tt follows from (5.6) that f*® converges with the optimal rate (up
to a logarithmic factor) simultaneously on all the functional classes satisfying
Condition (C). Note that the definition of the functional class is not used in the
construction of the estimator f*, so this estimator is optimal adaptive in the rate
of convergence (up to a logarithmic factor) on this scale of functional classes for
s < Smax- Results of such type, and even more pointed (without extra logarithmic
factors in the rate and sometimes with exact asymptotic minimax constants), are
known for various other adaptive density estimators; see, for instance, [6, 22, 25,
27, 35, 36] and the references cited therein. These papers consider classes of den-
sities that are uniformly bounded by a fixed constant; see the recent discussion
in [5]. This prohibits, for example, free scale transformations of densities within
a class. Inequality (5.6) does not have this drawback. It allows to get the rates of
convergence for classes of unbounded densities f as well.
Another example is given by the classes of sparse densities defined as follows:

Lo(m) ={f:[0,1] — R: f is a probability density and |{j : (f, f;) # 0} <m},

(5.5)

(5.6)

where m < M is an unknown integer. If f1, ..., fys is a wavelet system as defined
above and J* = {j = (I, k): (f, f;) # 0}, then under the conditions of Theorem 6

for any f € Lo(m) we have, with probability at least 1 —n =2,

2
5.7) ||f‘—f“25K< 2 [ Zw“‘(x)logn (?) ])

LoerL™" i=1

From (5.7), using Lemma 1 and the first two inequalities in (5.1), we obtain the
following result.
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COROLLARY 3. Let the assumptions of Theorem 6 hold. Then, for every L <
ocoandn > 1,

mlogn

sup plire 12z 5(

JeLomN{f I fllo=L}

)} <3/

n
(5.8)
Ym <M,

where b > 0 is a constant depending only on L.

Corollary 3 can be viewed as an analogue for density estimation of the adaptive
minimax results for £q classes obtained in the Gaussian sequence model [1, 23]
and in the random design regression model [13].

6. Numerical experiments. In this section we describe the algorithm used for
the minimization problem (2.4) and we assess the performance of our procedure
via a simulation study.

6.1. A coordinate descent algorithm. Since the criterion given in (2.4) is con-
vex, but not differentiable, we adopt an optimization by coordinate descent instead
of a gradient-based approach (gradient descent, conjugate gradient, etc.) in the
spirit of [20, 21]. Coordinate descent is an iterative greedy optimization technique
that starts at an initial location A € R and at each step chooses one coordinate
Aj € R of A at random or in order and finds the optimum in that direction, keep-
ing the other variables A_; fixed at their current values. For convex functions, it
usually converges to the global optimum; see [20]. The method is based on the
obvious observation that for functions of the type

HQ) =g + ol|A1,

where g is a generic convex and differentiable function, @ > 0 is a given parame-
ter, and |A|; denotes the £1 norm, the optimum in a direction A ; € R is to the left,
right or at A; = 0, depending on the signs of the left and right partial derivatives
of H at zero. Specifically, let g; denote the partial derivative of g with respect
to A;, and denote by )L(l j the vector A with the jth coordinate set to 0. Then, the
minimum in direction j of H(A) is at 20 j ifand only if |g; ()\(i j)| < w. This obser-
vation makes the coordinate descent become the iterative thresholding algorithm
described below.

Coordinate descent.
Given o, initialize all A ;, 1 < j < M, for example, with 1/M.

1. Choose a direction j € {1, ..., M} and set Ao — ).
2. If g ()»(l j)l <o, thenset A =1° i otherwise obtain A by line minimization in
direction j.
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3. If |A%4 — A| > €, go to 1, where € > 0 is a given precision level.

For line minimization, we used the procedure 1inmin from Numerical Recipes
[34], page 508.

6.2. Estimation of mixture weights using the generalized bisection method and
a penalized cross-validated loss function. We apply the coordinate descent algo-
rithm described above to optimize the function H(A) given by (2.4), where the
tuning parameters w; are all set to be equal to the same quantity w. The theoretical
choice of this quantity described in detail in the previous sections may be too con-
servative in practice. In this section we propose a data driven method for choosing
the tuning parameter w, following the procedure first introduced in [10], which we
briefly describe here for completeness.

The procedure chooses adaptively the tuning parameter from a list of candidate
values, and it has two distinctive features: the list of candidates is not given by a
fine grid of values and the adaptive choice is not given by cross-validation, but by a
dimension stabilized cross-validated criterion. We begin by describing the princi-
ple underlying our construction of the set of candidate values which, by avoiding a
grid search, provides significant computational savings. We use a generalization of
the bisection method to find, for each 0 < k < M, a preliminary tuning parameter
w = wg that gives a solution 2 with exactly k nonzero elements. Formally, denote
by 7(w) the number of nonzero elements in the A obtained by minimizing (2.4)
with w; = w for a given value of the tuning parameter w. The generalized bisec-
tion method will find a sequence of values of the tuning parameter, wo, ..., wy,
such that 7(wy) =k, for each 0 < k < M. Tt proceeds as follows, using a queue
consisting of pairs (w;, w;) such that 7(w;) <7n(w;) — 1.

The general bisection method (GBM) for all k.
Initialize all w; with —1.

. Choose wy very large, such that 77(wg) = 0. Choose w, = 0, hence, 7(w,) = n.
. Initialize a queue g with the pair (wq, w;,).

. Pop the first pair (a, b) from the queue.

. Take w = (a + b)/2. Compute k =71 (w).

If wp = —1, make wy = w.

. If |i(a) — k| > 1 and |a — w| > «, add (a, w) to the back of the queue.

. If |7(b) — k| > 1 and |b — w| > «, add (w, b) to the back of the queue.

. If the queue is not empty, go to 3.

I o Y N I

This algorithm generalizes the basic bisection method (BBM), which is a well-
established computationally efficient method for finding a root z € R of a function
h(z); see, for example, [15]. We experimentally observed (see also [10] for a de-
tailed discussion) that using the GBM is about 50 times faster than a grid search
with the same accuracy.
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Our procedure finds the final tuning parameter v by combining the GBM with
the dimension stabilized p-fold cross-validation procedure summarized below. Let
D denote the whole data set, and let D = Dy U ---U D, be a partition of D in p
disjoint subsets. Let D_; = D \ D;. We will denote by w,ﬁ a candidate tuning
parameter determined using the GBM on D_ ;. We denote by k] the set of indices
corresponding to the nonzero coefficients of the estimator of A given by (2.4), for
tuning parameter w,ﬁ on D_;. We denote by 2K the minimizers on D_ j of the

unpenalized criterion 7 (), with respect only to those A; with [ € [ kj Let L =:
7 (A7), computed on D ;. With this notation, the procedure becomes the following:

Weight selection procedure.
Given: a data set D partitioned into p disjoint subsets, D = Dy U ---U D, Let
D_j=D\Dj forall j.

1. Foreach 1 <k < M and each fold j of the partition, 1 < j < p:
Use the GBM to find w,ﬂ and ij such that ﬁ(w,{) = |I,g| =konD_;.
Compute L] =: ?(ij ), as defined above, on D;.
2. Foreach 1 <k <M: _
.1y J
Compute Ly =: > ijl Ly.
3. Obtain

~

. logn
k =argmin| Ly + 0.5k )
k n

4. With k from Step 3, use the BBM on the whole data set D to find the tuning
sequence wg and then compute the final estimators using the coordinate descent
algorithm and tuning paramemter @ = wg.

In all the the numerical experiments described below we took the number of
splits p = 10.

REMARK. We recall that the theoretical results of Section 4.1 show that for
correct identification of the mixture components one needs to work with a value of
the tuning sequence that is slightly larger than the one needed for good approxima-
tions with mixtures of a given density. A good practical approximation of the latter
tuning value is routinely obtained by cross-validation; this approximation is, how-
ever, not appropriate if the goal is correct selection, when the theoretical results
indicate that a different value is needed. Our modification of the cross-validated
loss function via a BIC-type penalty is motivated by the known properties of the
BIC-type criteria to yield consistent model selection in a large array of models;
see, for example, [7] for results on regression models. The numerical experiments
presented below show that this is also the case for our criterion in the context of se-
lecting mixture components. The theoretical investigation of this method is beyond
the scope of this paper and will be undertaken in future research.
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6.3. Numerical results. In this subsection we illustrate the performance of our
procedure via a simulation study.

6.3.1. One-dimensional densities. We begin by investigating the ability of
SPADES, with its tuning parameter chosen as above, to (i) approximate well, with
respect to the Ly norm, a true mixture; (ii) to identify the true mixture compo-
nents. We conducted a simulation study where the true density is a mixture of
Gaussian densities with k* = 2 and, respectively, k* = 5 true mixture components.
The mixture components are chosen at random from a larger pool of M Gaussians
N(aj, 1), 1 < j <M, where for k* =2 we take a = 4, and for k* =5 we take
a = 5. These choices for a ensure that the identifiability condition (4.11) is satis-
fied. The true components correspond to the first £* Gaussian densities from our
list, and their weights in the true mixture are all equal to 1/k*. The maximum size
M of the candidate list we considered is M = 200, for k* =2 and M = 600, for
k* = 5. All the results obtained below are relative to S = 100 simulations. Each
time, a sample of size n is obtained from the true mixture and is the input of the
procedure described in Section 6.2.

We begin by evaluating the accuracy with respect to the L, norm of the esti-
mates of f*. We investigate the sensitivity of our estimates relative to an increase
in the dictionary size and k*. In Figure 1, we plot the median over 100 simulations
of || f* — f*®||? versus the size M of the dictionary, when the true mixture cardi-
nality is k* = 2 (left panel) and k* = 5 (right panel). For k&* = 2 we considered
three instances of sample sizes n = 50, 100, 200 and we varied M up to 200. For
k* =5 we considered three larger instances of sample sizes n = 300, 400, 600 and
we varied M up to 600. These experiments provide strong support for our theoreti-
cal results: the increase in M does not significantly affect the quality of estimation,
and an increase in k* does. For larger values of k* we need larger sample sizes to
obtain good estimation accuracy.

0.05

0.05

— n=50 — n=300

0.045F — n=100 | 1 0.045F —— nh=400
0.04} — n=200 0.04} — n=600

0.0351 b 0.035F
0.03| k! 0.03|
0.025F 4 0.025
0.02| b 0.02

0.015F 1 0.015

0.01F b 0.01 [

0.005F q 0.005

Q = ol= iy
20 40 60 80 100 120 140 160 180 200 100 150 200 250 300 350 400 450 500 550 600

FIG. 1. Median Ly error || f* — f®||2 for |I*| = 2, respectively, |I*| = 5. The error bars are the
25 and 75 percentiles.
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FIG. 2. Percentage of times 1* = I obtained from 100 runs, for |I*| = 2, respectively, |I*] = 5.

We next investigated the ability of the SPADES to find the exact mixture com-
ponents. Figure 2 shows a plot of the percentage of times the exact mixture com-
ponents were found versus M. We considered the same combinations (n, M) as in
Figure 1. Again, observe that the performance does not seriously degrade with the
dictionary size M, and is almost unaffected by its increase once a threshold sample
size is being used. However, notice that on the difference from the results presented
in Figure 1, correct identification is poor below the threshold sample size, which is
larger for larger k*. This is in accordance with our theoretical results: recall Con-
dition (B) of Section 4.1 on the minimum size of the mixture weights. Indeed, we
designed our simulations so that the weights are relatively small for k* = 5, they
are all equal to 1/k* = 0.2, and a larger sample size is needed for their correct
identification.

Finally, we evaluated in Figure 3 the dependence of the error and hit rate (i.e.,

the percentage of times /™ = D ) on the smallest distance Dyin = ming; |pg — |
between the means of the densities in the dictionary. The results presented in Fig-
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FIG. 3.  Dependence on the distance Dy = mingj g — ;| of the Ly error || f* — f‘||2 and
the percentage of times 1* = I. In this example, n = 100, M = 25, |I*| = 2.
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ures 1 and 2 above were obtained for the value Dy, = 4, which satisfies the theo-
retical requirement for correct mixture identification. On the other hand, Dy, can
be smaller for good L, mixture approximation. It is interesting to see what hap-
pens when Dy, decreases, so that the mixture elements become very close to one
another. In Figure 3 we present the simulations for k* =2, M = 25 and n = 100,
which is sufficient to illustrate this point. We see that, although the L, error in-
creases slightly when Dpy, decreases, the deterioration is not crucial. However, as
our theoretical results suggest, the percentage of times we can correctly identify
the mixture decreases to zero when the dictionary functions are very close to each
other.

6.3.2. Two-dimensional densities. In a second set of experiments our aim was
to approximate a two-dimensional probability density on a thick circle (cf. the left
panel of Figure 5) with a mixture of isotropic Gaussians. A sample of size 2000
from the circle density is shown in the middle panel of Figure 5. We use a set
of isotropic Gaussian candidates with covariance ¥ = Il centered at some of the
2000 locations, such that the Euclidean distance between the means of any two
such Gaussians is at least 1. We select from these candidate mixture densities in
a greedy iterative manner, each time choosing one of the 2000 locations that is
at distance at least 1 from each of those already chosen. As a result, we obtain a
dictionary of M = 248 candidate densities.

The circle density cannot be exactly represented as a finite mixture of Gaussian
components. This is a standard instance of many practical applications in Com-
puter Vision, as the statistics of natural images are highly kurtotic and cannot be
exactly approximated by isotropic Gaussians. However, in many practical applica-
tions a good approximation of an object that reflects its general shape is sufficient
and constitutes a first crucial step in any analysis. We show below that SPADES
offers such an approximation.

Depending on the application, different trade-offs between the number of mix-
ture components (which relates to the computational demand of the mixture
model) and accuracy might be appropriate. For example, in real-time applications
a small number of mixture elements would be required to fit into the computational
constraints of the system, as long as there is no significant loss in accuracy.

For the example presented below we used the GBM to determine the mixture
weights Xk, for mixtures with k =1, 2, ..., 248 components. Let yp = ming ¥ (Xk),
where we recall that the loss function y is given by (2.2) above. We used the
quantity y k) — yo to measure the accuracy of the mixture approximation. In
Figure 4 we plotted 7 (A¥) — yp as a function of k and used this plot to determine
the desired trade-off between accuracy and mixture complexity. Based on this plot,
we selected the number of mixture components to be 80; indeed, including more
components does not yield any significant improvement. The obtained mixture is
displayed in the right panel of Figure 5. We see that it successfully approximates
the circle density with a relatively small number of components.
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FI1G. 4. Plot of 7’7(’):]‘ ) — o as a function of the mixture components k.

APPENDIX

LEMMA 3. () Let fi be given by (4.8). Then i = (i, 0) € R is a minimizer
inheRM of

2
§(h) =—~
n

n M
Y H(X) + 67+ 8Lr Y Al
i=1 k=1
on the random event B defined in (4.9).

(IT) Any two minimizers of g(A) have nonzero components in the same positions.

PROOF. (). Since g is convex, by standard results in convex analysis, A € RM
is a minimizer of g if and only if 0 € D5 where D, is the subdifferential of g(1):

2 n M
D, = :w G]RM:wkz —;ka(Xi)+ZZAj(fj, fr) + 8rug,
i=1 i=1

vk € Vil(Ap), 1 <k <My,

0 50 100 150 200 250 300 350 400 450

50 100 150 200 250 300 350 400 450
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FI1G. 5. A thick circle density, a sample of size 2000 from this density and approximations using a
mixture of 80 isotropic Gaussians.
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where
{L}, if A >0,
Vi) =1 {—L}, if A4 <0,

Therefore, A minimizes g(-)if and only if, forall 1 <k < M,

(A.T) —ka(X ) — Z)» (fj, fi) =4Lrsign(i)  if Ak #0,

j=1

<4Lr  ifa=0.

1 n
(A.2) ;ka(Xi) Z {fi» fi)
i=1 j=1

We now show that i = (ji, 0) € RM with ji given in (4.8) satisfies (A.1) and (A.2)
on the event 5 and therefore is a minimizer of g () on this event. Indeed, since i is
a minimizer of the convex function 4 () given in (4.7), the same convex analysis
argument as above implies that

—kaor)— > wjlfj, fo) =4Lrsign(u)  if ix #0,k € I*,

i=1 jel*

<4Lr  ifjie=0kel*

‘;ZMX)— > il fis fi)

jel*

Note that on the event B we also have

<d4Lr

kam— > wilfi fi)

jerx*
if k ¢ I'* (for which ji; = 0, by construction).
Here [1; denotes the kth coordinate of . The above three displays and the fact that
Lk = fix, k € I'*, show that 1 satisfies conditions (A.1) and (A.2) and is therefore
a minimizer of g(A) on the event 5.

(II). We now prove the second assertion of the lemma. In view of (A.1), the
index set S of the nonzero components of any minimizer A of g(A) satisfies

4rL}.

Therefore, if for any two minimizers 21 and 2@ of g(X) we have

S:{ke{l,.. ‘ ka(X)—Zk (fj fi)

i=1 j=1

M
(A.3) MG =EN s fiy =0 forallk,
j=1
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then S is the same for all minimizers of g(A).

Thus, it remains to show (A.3). We use simple properties of convex functions.
First, we recall that the set of minima of a convex function is convex. Then, if
A and 1@ are two distinct points of minima, so is pA) 4+ (1 — p)A @, for any
0 < p < 1. Rewrite this convex combination as A®) + pn, where n = A(D) — 1,
Recall that the minimum value of any convex function is unique. Therefore, for
any 0 < p < 1, the value of g() at A = A> + pp is equal to some constant C:

2
2
F(p) = nZZ (%5 + pn)) f,<X>+/< )»(2)+P’7j)fj(x)) dx

i=l1j=I
1@ | =
+8rLZ|Aj + pnj|=C
j=l1

By taking the derivative with respect to p of F(p), we obtain that, for all 0 < p <
1,

2 n M M ) _
F(p)= =303 nj fi(X) +8rL Y n;sign(i? + on))

i=1j=1 j=1
M
+2/ (Z )\(2) + pon; f](x)> (Z ﬂjf;(x)> dx =
J

By continuity of p )15.2) + pnj, there exists an open interval in (0, 1) on which

o sign()_LE.Z) + pn;j) is constant for all j. Therefore, on that interval,

M 2
F'(p) = 2P/ (Z 77jfj(X)> dx + C',
Jj=1

where C’ does not depend on p. This is compatible with F'(p) =0,V0 < p < 1,
only if

M
Y mjfjx)=0  forallx

j=1

and, therefore,

M
S nilfj, fiy=0  forallke(l,..., M),
j=I

which is the desired result. This completes the proof of the lemma. [
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