
The Annals of Statistics
2010, Vol. 38, No. 1, 598–633
DOI: 10.1214/09-AOS734
© Institute of Mathematical Statistics, 2010

BALANCED CONTROL OF GENERALIZED ERROR RATES

BY JOSEPH P. ROMANO1 AND MICHAEL WOLF2

Stanford University and University of Zurich

Consider the problem of testing s hypotheses simultaneously. In this pa-
per, we derive methods which control the generalized family-wise error rate
given by the probability of k or more false rejections, abbreviated k-FWER.
We derive both single-step and step-down procedures that control the k-
FWER in finite samples or asymptotically, depending on the situation. More-
over, the procedures are asymptotically balanced in an appropriate sense. We
briefly consider control of the average number of false rejections. Addition-
ally, we consider the false discovery proportion (FDP), defined as the number
of false rejections divided by the total number of rejections (and defined to
be 0 if there are no rejections). Here, the goal is to construct methods which
satisfy, for given γ and α, P {FDP > γ } ≤ α, at least asymptotically. Special
attention is paid to the construction of methods which implicitly take into
account the dependence structure of the individual test statistics in order to
further increase the ability to detect false null hypotheses. A general resam-
pling and subsampling approach is presented which achieves these objectives,
at least asymptotically.

1. Introduction. The main goal of this paper is to show how computer-
intensive methods can be used to construct asymptotically valid tests of multiple
hypotheses under very weak conditions while at the same time incorporating bal-
ance. In particular, we construct computationally feasible methods which provide
control (at least asymptotically) of some generalized notions of the family-wise er-
ror rate. However, the theory also applies to exact finite sample control in certain
situations. At the same time, explicit attention is paid to the construction of meth-
ods that are balanced, which roughly means that individual hypotheses are treated
fairly in the allocation of overall error measure.

In this sense, we provide a synthesis of our previous work [31] and the works of
[5, 6]. Given the rising popularity and importance of generalized error rates, due
to applications where a very large of hypotheses are tested at the same time, such a
synthesis appears both timely and useful. In [31], we presented computer-intensive
methods to control generalized notions of the family-wise error rate, obtaining both
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asymptotic and finite-sample results, but these methods do not generally incor-
porate balance. Previously, [5, 6] constructed balanced simultaneous confidence
regions for s real-valued parameters θ1(P ), . . . , θs(P ); tests of the s hypotheses
Hi : θi(P ) = 0 can then be constructed by rejecting any Hi for which 0 is not in the
confidence region. By the usual duality of tests and confidence regions, such a pro-
cedure then controls the traditional family-wise error rate. Moreover, this method
can be viewed as a single-step procedure. One of the main goals of this paper is
to generalize [5, 6]’s construction to other generalized error rates and at the same
time to provide a step-down improvement by allowing the possibility of further re-
jections (even for the family-wise error rate). Of course, we want the constructions
to be computationally feasible, to offer control of the given error measure, and to
provide balance.

The paper is organized as follows. Section 2 provides some overview and mo-
tivation. In Section 3, we review [5]’s construction of balanced simultaneous con-
fidence regions and then generalize this construction to accommodate control of
the generalized family-wise error rate (k-FWER). These methods are single-step
methods, in that individual test statistics are compared to their respective criti-
cal values simultaneously. In Section 4, we show that, if we apply critical values
that have a monotonicity property, then the basic problem of constructing a valid
step-down multiple test procedure that controls the k-FWER can be reduced to the
easier problem of constructing single-step methods which control the k-FWER. In
particular, if finite sample methods which offer control of the type I error are avail-
able for each of the individual tests, then this will immediately translate into con-
trol of the k-FWER. Otherwise, we can apply bootstrap and subsampling methods
to achieve asymptotic control, as described in Section 5. In summary, step-down
improvements of the single-step method are presented. We also present a general-
ized Bonferroni type of method which has finite sample control of the k-FWER in
Section 6. Section 7 briefly discusses control of the average number of false rejec-
tions. Results for control of the false discovery proportion (FDP) are obtained in
Section 8. A simulation study is presented in Section 9. All proofs are collected in
the Appendix.

2. Overview and motivation.

2.1. Problem at hand. Suppose data X is generated from some unknown
probability distribution P . In anticipation of asymptotic results, we may write
X = X(n), where n typically refers to the sample size. A model assumes that P be-
longs to a certain family of probability distributions �, though we make no rigid
requirements for �; it may be a parametric, semiparametric or a nonparametric
model.

Consider the problem of simultaneously testing a hypothesis Hi against H ′
i ,

for i = 1, . . . , s. Of course, a hypothesis Hi can be viewed as a subset, ωi , of �,
in which case the hypothesis Hi is equivalent to P ∈ ωi and H ′

i is equivalent to
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P /∈ ωi . We also assume a test of the individual hypothesis Hi is based on a test
statistic Tn,i , with large values indicating evidence against Hi .

The classical approach to dealing with the multiplicity problem is to restrict
attention to procedures that control the probability of one or more false rejections,
which is called the family-wise error rate (FWER). But, safeguards against false
rejections are not the only concern of multiple testing procedures. Corresponding
to the power of a single test, one must also consider the ability of a procedure to
detect departures from the null hypotheses. When the number of tests, s, is large,
such as in genomics studies, control of the FWER at conventional levels becomes
so stringent that individual departures from the null hypotheses have little chance
of being detected. For this reason, we shall consider alternatives to the FWER that
(probabilistically) control false rejections less severely in hopes of better power.

2.2. Various error rates. First, we shall consider the k-FWER, the probability
of rejecting at least k true null hypotheses, where k is some integer. For testing
Hi :P ∈ ωi , i = 1, . . . , s, let I (P ) denote the set of true null hypotheses when P is
the true probability distribution; that is, i ∈ I (P ) if and only if P ∈ ωi . Then, the
k-FWER, which depends on P , is defined to be the following.

k-FWERP = P {reject at least k hypotheses Hi : i ∈ I (P )}.(2.1)

Control of the k-FWER requires that k-FWER ≤ α for all P ; that is,

k-FWERP ≤ α for all P.(2.2)

Evidently, the case k = 1 reduces to control of the usual FWER.
If (2.2) were required to hold only when I (P ) = {1, . . . , s}, then control for such

P is called weak control. We are requiring (2.2) to hold for all P , and so I (P ) can
be a general subset of {1, . . . , s}. Control for general P is called strong control,
which is the desired form of control here and throughout the literature on multiple
testing; e.g., see [9] for a related discussion. The notion of weak control is not
useful for practical and theoretical reasons, and will not be used in the remainder
of this paper.

A related measure of error control is the average number of false rejections, also
known as the per-family error rate (PFER). To this end, let F denote the number
of true null hypotheses rejected. Control of the average number of false rejections
at level k just means

EP (F) ≤ k for all P.(2.3)

More generally, the integer k could be replaced by some real-valued λ ∈ (0,∞).
Such a measure of error control was suggested in [34]. Note that with this defini-
tion of F , one can write

k-FWERP = P {F > k − 1}.
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In many applications, it may not be obvious what value of k for the number of
false rejections should be chosen. Instead, it often is more natural to focus on the
proportion of false rejections out of all rejections. Therefore, we will also consider
the false discovery proportion (FDP), defined as the total number of false rejections
divided by the total number of rejections, and equal to 0 if there are no rejections.
Analogously to the number of false rejections, F , we may wish to control two
different things. On the one hand, the probability that the FDP exceeds some given
bound; and on the other hand, the expected value of the FDP.

As the FDP is a proportion, a bound on it should lie in the unit interval. Hence,
for a specified γ ∈ [0,1), consider the probability P {FDP > γ }. (We now use
γ as opposed to the λ of PFER control to further stress that γ < 1 necessarily.)
Probabilistic control of the FDP requires that this probability be ≤α for all P ; that
is

P {FDP > γ } ≤ α for all P.(2.4)

Thus, control of the FDP means more fully that we are controlling the tail proba-
bility that the FDP exceeds a given value in the sense of (2.4). Note that the choice
γ = 0, for arbitrary α, results in control of the FWER at level α. This follows
because the event {FDP > 0} is equivalent to the event {F > 0}.

Arguably, a more consistent terminology, in the spirit of [40], would be as fol-
lows. For a specified γ ∈ [0,1), define the γ -TPFDP as the γ tail probability of
the FDP; that is, γ -TPFDP = P {FDP > γ }. Then, control of the γ -TPFDP re-
quires that

γ -TPFDP ≤ α for all P.

However, we already used the terminology of (probabilistic) control of the FDP
in the previous works [19] and [31]; so we prefer to stick with it. Throughout this
manuscript, the shorthand language “control of the FDP” will always refer to (2.4),
exactly or sometimes just asymptotically.

Alternative terminology for (2.4) include “rate ceiling confidence thresholds”
by [12] and “controlling the tail probability for the proportion of false positives
among the rejected hypotheses (TPPFP)” by [40].

A related measure of error control is the expected value of the FDP, known as
the false discovery rate (FDR). Control of the FDR requires that, for a specified
γ ∈ [0,1),

EP (FDP) ≤ γ for all P.

An interesting feature of FDR control is that it results in weak control of the FWER
at level α = γ . That is, when all null hypotheses are true, control of the FDR for a
given value γ ∈ [0,1) implies P(F > 0) ≤ γ . The FDR as an error rate dates back
to [1] and, up to now at least, is more popular than the (probabilistic) control of
the FDP.
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However, an important distinction between controlling an exceedance proba-
bility and controlling an expected value, respectively, of an underlying random
variable should be pointed out. In doing so, we restrict attention to the FDP as the
underlying random variable. In this case, control of an exceedance probability cor-
responds to (probabilistic) control of the FDP while control of the expected value
corresponds to control of the FDR. (The distinction is analogous concerning F

as the underlying random variable, with k-FWER and PFER as the two resulting
error rates.)

When controlling an exceedance probability, one can make meaningful state-
ments about the realized random variable, the FDP. In particular, (probabilistic)
control of the FDP allows one to be 1 − α confident that the realized FDP is ≤γ .
On the other hand, control of the FDR does not allow one to make any useful
statements on the realized FDR; though some very crude declarations based on the
Markov inequality are possible; see [19]. Put differently, even if EP (FDP) ≤ γ ,
the probability of the FDP exceeding γ can actually be quite large. For some re-
lated discussion and simulation studies, see [17, 29, 36] and [37]. Unfortunately,
this important point is still underappreciated. Indeed, it is quite common that re-
searchers apply methods to control the FDR but then interpret their results as if
they had (probabilistically) controlled the FDP instead.

2.3. Single-step vs. stepwise methods. In single-step methods, individual test
statistics are compared to their critical values simultaneously, and after this simul-
taneous “joint” comparison, the method stops. Often there is only one common
critical value, but this does not need to be the case. More generally, the critical
value for the ith test statistic may depend on i. As an example, consider the Bon-
ferroni method with Tn,i = −p̂n,i , where p̂n,i is an individual p-value for Hi . It is
a single-step method with common critical value −α/s, that is, Hi is rejected iff
Tn,i ≥ −α/s or, equivalently, iff p̂n,i ≤ α/s. More generally, the weighted Bonfer-
roni method is a single-step method with the ith critical value given by −wiα/s,
where the constants wi reflect the “importance” of the individual hypotheses, sat-
isfying wi ≥ 0 and

∑
wi = 1.

Often, single-step methods can be improved in terms of power via stepwise
methods, while nevertheless maintaining control of the desired error rate. Step-
down methods start with a single-step method but then continue by possibly re-
jecting further hypotheses in subsequent steps. This is achieved by decreasing the
critical values for the remaining hypotheses depending on the hypotheses already
rejected in previous steps. As soon as no further hypotheses are rejected anymore,
the method stops. As an example, consider the Holm method of [15], which is a
step-down improvement over Bonferroni and can be formulated as follows. Let Rj

denote the total number of rejected hypotheses in the previous j − 1 steps, where
j > 1. Then the (common) critical value in the j th step becomes −α/(s − Rj).
(This formulation is different from the standard description but is equivalent.)
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Such stepwise methods which improve upon single-step methods by possible
rejecting “less significant” hypotheses in subsequent steps are called step-down
methods. Intuitively, this is because such methods start with the most significant
hypotheses, having the largest test statistics, and then “step down” to further exam-
ine the remaining hypotheses having smaller test statistics. All resampling methods
that we have proposed in previous work—such as [30, 31] and [28]—as well as
the ones developed in this paper are step-down methods.

In contrast, there also exist stepup methods that start with the least significant
hypotheses, having the smallest test statistics, and then “step up” to further exam-
ine the remaining hypotheses having larger test statistics. The crucial difference
is that, at any given step, the question is whether to reject all remaining hypothe-
ses or not. And so the hypotheses “sorted out” in previous steps correspond to
not rejected hypotheses rather than rejected hypotheses, as in step-down methods.
A prominent example is the FDR controlling method of [1]. Like Bonferroni it
also uses Tn,i = −p̂n,i . The first step checks whether all Tn,i ≥ −α or, equiva-
lently, whether mini pn,i ≤ α. If yes, all hypotheses are rejected. Otherwise, the
hypothesis corresponding to the largest test statistic is discarded. In the second
step, all remaining test statistics are compared to −α · (s − 1)/s and so on.

2.4. Previous work and introduction of balance. Recently, there have been
many new proposals which control generalized error rates that are less stringent
than the FWER. A notable such technique is the FDR controlling method of [1].
Additional methods that control the FDR are given in [2, 3, 32] and [35], among
others. Asymptotic procedures that control the FDP (and the FDR) in the frame-
work of a random effects mixture model are studied in [12]. These ideas are ex-
tended in [21], where in the context of random fields, the number of null hypothe-
ses is uncountable. Methods that control both the k-FWER and the FDP are given
in [17]; they provide some justification for their methods, but they are limited to
a multivariate permutation model. Stepwise methods based on p-values having fi-
nite sample validity are obtained in [16, 19, 26] and [27]. Alternative methods for
control of the k-FWER and FDP are given in [39] and [40]. Control of the false
discovery rate via resampling is considered in [8, 28] and [42].

In this paper, building upon our previous works [30, 31] where balanced was
not emphasized, we employ resampling and subsampling techniques to achieve
our goals and do not require the use of the subset pivotality condition of [41]. The
virtue of utilizing computer-intensive methods is that one can construct more pow-
erful procedures by implicitly or explicitly taking into account the joint distribution
of the test statistics. In addition, we construct procedures which are balanced, in a
sense to be described later.

In general, we suppose that rejection of Hi is based on large values of a test
statistic Tn,i (with the subscript n used for asymptotic purposes). If a p-value p̂n,i

is available for testing Hi , one can take Tn,i = −p̂n,i . Typically, one would like to



604 J. P. ROMANO AND M. WOLF

choose test statistics which lead to procedures that are balanced in the sense that
all tests contribute equally to error control, as argued by [5, 24] and [38].

Achieving balance can often be handled by appropriate choice of test statis-
tics. For example, using p-values as the basic statistics will lead to better balance
of error control. Quite generally, Beran’s prepivoting transformation can lead to
balance; see [5, 6]. Alternatively, balance can sometimes be achieved by studen-
tization. However, if studentization or transforming a test statistic to a p-value
is accomplished by resampling, we would not want to have to employ an iterated
resampling scheme to obtain overall error control, as such a scheme would be com-
putationally very expensive. Instead, in order to avoid such heavy computational
schemes, one of the main contributions here is that we can obtain balance and error
control via resampling without resorting to an iterated bootstrap (and use the same
set of resamples or subsamples at each stage).

Some further notation which is used throughout the paper is required. Suppose
{yi : i ∈ K} is a collection of real numbers indexed by a finite set K having |K|
elements. Then, for k ≤ |K|, the k-max(yi : i ∈ K) is used to denote the kth largest
value of the yi with i ∈ K . So, if the elements yi , i ∈ K , are ordered as y(1) ≤ · · · ≤
y(|K|), then k-max(yi : i ∈ K) = y(|K|−k+1).

3. Balanced (generalized) simultaneous confidence regions. Throughout
this section, the integer k is fixed. We first review and then generalize Beran’s
[5] construction of simultaneous confidence regions as a building block. For now,
assume hypothesis Hi is concerned with a test of a real-valued parameter θi(P ).
Specifically, Hi specifies P ∈ ωi , where

ωi = {P : θi(P ) = 0}.
Let θ̂n,i be some estimate of θi(P ). Tests of a particular Hi , without regard to
multiplicity, can be constructed by the usual duality between tests and confidence
intervals, if one knows or can estimate the sampling distribution of θ̂n,i − θi(P )

under P . Let Jn,i(P ) denote the sampling distribution of τn[θ̂n,i −θi(P )] under P ,
with Jn,i(·,P ) denoting the corresponding left-continuous cumulative distribution.
The nonrandom sequence τn is introduced for asymptotic purposes so that a non-
degenerate limiting distribution for Jn,i(·,P ) exists. Note that it is possible to let
τn vary with the hypothesis i, but we will not pursue this further.

Also, let Hn,i(·,P ) denote the c.d.f. of τn|θ̂n,i − θi(P )| under P . Let cn,i(γ,P )

denote the largest γ quantile of Hn,i(·,P ). Then, assuming continuity of Hn,i(·,
P ), the confidence interval

{θi : τn|θ̂n,i − θi | ≤ cn,i(γ,P )}(3.1)

has coverage probability γ . Continuity of Hn,i(P ) is only assumed here for con-
venience and is certainly not required in our asymptotic results. Of course, the in-
terval (3.1) is generally unavailable because cn,i(γ,P ) is unknown, as it depends
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on P . However, even if these critical values were available, we would like to make
a statement about the simultaneous coverage of the intervals.

To this end, let K ⊆ {1, . . . , s} denote an arbitrary subset of {1, . . . , s}. We
would like to make joint inferences for the parameters θi(P ) simultaneously for
i ∈ K . The case where K = {1, . . . , s} is especially important, but the general case
is required for our step-down multiple testing method presented later. Then the
probability of the event

{τn|θ̂n,i − θi(P )| ≤ cn,i(γ,P ) for all i ∈ K}
is some function of γ and P , say fn,K(γ,P ). Again, for the moment, ignoring the
fact that P is unknown, the idea for constructing a simultaneous confidence region
for the set of parameters {θi(P ) : i ∈ K} is to vary γ so that this last expression is
equal to 1 − α. Thus, we choose γ so that fn,K(γ,P ) = 1 − α, or more formally
the infimum over all γ such that fn,K(γ,P ) ≥ 1 − α. Suppose γn,K(α,P ) is such
that

fn,K(γn,K(α,P ),P ) = 1 − α.

Then in addition to the simultaneous coverage statement, each marginal interval for
a particular θi(P ) has coverage probability γn,K(α,P ), which is independent of i.
That each interval covers its corresponding parameter with the same probability is
the property of balance.

Beran’s [5] asymptotic solution to the construction of balanced simultaneous
confidence regions is to utilize the bootstrap. That is, let Q̂n be some estimate
of P . For i.i.d. data, in the absence of a parametric model for P , Q̂n is typically
taken to be the empirical distribution of the observed data, or possibly a smoothed
version (i.e., nonparametric bootstrap); on the other hand, if a parametric model for
P is assumed, then Q̂n should be based on this model (i.e., parametric bootstrap);
see [7]. For time series or data-dependent situations, bootstrap methods that can
capture the underlying dependence structure should be employed, such as block
bootstraps, sieve bootstraps or Markov bootstraps; see [18]. The procedure is to
replace P by Q̂n in (3.1). Specifically, Beran proposes the set of intervals

{θi : τn|θ̂n,i − θi | ≤ cn,i(γ, Q̂n)} = {θi : τn|θ̂n,i − θi | ≤ H−1
n,i (γ, Q̂n)},(3.2)

where γ is chosen to be γn,K(α, Q̂n). Under appropriate regularity conditions,
these intervals simultaneously contain the true parameters {θi(P ) : i ∈ K} with lim-
iting probability 1 − α and are asymptotically balanced.

Of course, simultaneous confidence regions for {θi(P ) : i ∈ K} of nominal level
1 − α can be used to construct tests of the hypotheses Hi, i ∈ K , by rejecting
any Hi for which 0 is not included in the confidence interval for θi(P ). Such a
procedure would control the family-wise error rate at nominal level α. However,
our current goal is to control the k-FWER. Therefore, we now generalize Beran’s
construction. It is now required to approximate the probability of the event

{τn|θ̂n,i − θi(P )| ≤ cn,i(γ,P ) for all but at most (k − 1) of the i ∈ K}.(3.3)
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To this end, the previous event (3.3) can be rewritten as{
Hn,i

(
τn|θ̂n,i − θi(P )|,P ) ≤ γ for all but at most (k − 1) of the i ∈ K

}
(3.4)

or {
k-max

(
Hn,i

(
τn|θ̂n,i − θi(P )|,P )

, i ∈ K
) ≤ γ

}
.(3.5)

Let fn,K(γ, k,P ) denote the probability under P of the event in (3.3)–(3.5), and
let γn,K(α, k,P ) denote the value of γ such that fn,K(γ, k,P ) = 1 − α, or more
precisely the infimum over all γ such that

fn,K(γ, k,P ) ≥ 1 − α.

Then, the solution γ of the previous equation can be represented as the 1 − α

quantile of the distribution of

k-max
(
Hn,i

(
τn|θ̂n,i − θi(P )|,P )

, i ∈ K
)

under P , which we denote by Ln,K(k,P ).
A bootstrap choice for the level γ can be represented as

γn,K(α, k, Q̂n) = L−1
n,K(1 − α, k, Q̂n).(3.6)

Combining (3.2) and (3.6) yields the joint generalized confidence region{
(θi, i ∈ K) : τn|θ̂n,i − θi | ≤ H−1

n,i

(
L−1

n,K(1 − α, k, Q̂n), Q̂n

)}
.(3.7)

Under fairly weak conditions, this simultaneous generalized confidence region
covers all θi(P ) with i ∈ K , except for at most k − 1 of them, with limiting proba-
bility 1 − α. Moreover, the intervals are asymptotically balanced in the sense that
the probability that θi(P ) is covered does not depend on i asymptotically.

REMARK 3.1 [Calculating (3.7)]. In order to calculate (3.7), we usually re-
sort to an approximation by simulation. However, only one set of resamples is
needed, and nested simulations are not required in order to derive asymptotic re-
sults. To describe the algorithm in a little detail, for b = 1, . . . ,B , draw a sample
of size n from Q̂n and let θ̂∗

n,i(b) be the estimate of θi(P ). Then, Hn,i(x, Q̂n)

can be approximated by the proportion of times the values τn|θ̂∗
n,i(b) − θ̂n,i |

are ≤x; this leads to a corresponding approximation to the quantile function
H−1

n,i (·, Q̂n). Next, Ln,K(x, k, Q̂n) is estimated by the proportion of times the val-

ues k-max(Hn,i(τn|θ̂∗
n,i(b) − θ̂n,i |, Q̂n), i ∈ K) are ≤x; its largest 1 − α quantile

is a simulation-based approximation of L−1
n,K(1 − α, k, Q̂n).

As [5] argued in the case k = 1, this construction can reproduce some classi-
cal solutions in certain parametric models. Moreover, the construction implicitly
studentizes the individual estimators, so that each marginal interval covers its re-
spective parameter with the same probability. However, outside certain parametric
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models or permutation models, the solution is only approximate. In order to de-
scribe the asymptotic behavior of the above quantities, we introduce some notation

and assumptions. The symbols
L→ and

P→ will denote convergence in law (or in
distribution) and convergence in probability, respectively. For K ⊆ {1, . . . , s}, let
Jn,K(P ) denote the joint distribution of {τn[θ̂n,i − θi(P )], i ∈ K}. So, Jn,{i}(P ) =
Jn,i(P ) for a singleton subset K = {i}. Typically, the joint distribution of the es-
timators tends to an asymptotic limit, which is stated formally in the following
assumption.

ASSUMPTION B1. Jn,{1,...,s}(P )
L→ J{1,...,s}(P ).

For a reasonable asymptotic theory, the asymptotic distribution should be non-
degenerate, and so we will also use the following assumption.

ASSUMPTION B2. Ji(P ) has a continuous distribution function for all i.

Assumptions B1 and B2 imply that, for every K ⊆ {1, . . . , s}, Ln,K(k,P ) has a
continuous limiting distribution LK(k,P ); see Lemma A.1 in the Appendix.

Under an additional mild assumption, we can show that this limiting distribution
is strictly increasing on its support, which will prove quite useful. This additional
assumption is the following.

ASSUMPTION B3. The support of the limiting distribution J{1,...,s}(P ) is con-
nected.

Assumption B3 is indeed very weak. It holds whenever the joint limiting distrib-
ution is multivariate Gaussian, as long as the diagonal entries of the covariance ma-
trix are nonzero. In particular, this covariance matrix may even be singular (which
happens in some simultaneous inference problems; e.g., pairwise comparisons of
means). The utility of Assumption B3 derives from the fact that it implies that
LK(k,P ) has a continuous and strictly increasing c.d.f. on its interval of support;
see Corollary A.1 in the Appendix.

Finally, in order to show asymptotic validity of the bootstrap, we need a further
assumption on the behavior of the estimator Q̂n of P . For this, we assume the
usual conditions for bootstrap consistency when testing the single hypothesis that
θi(P ) = 0 for all i ∈ I (P ); that is, we assume the bootstrap consistently estimates
the joint distribution of τn[θ̂n,i − θi(P )] for i ∈ {1, . . . , s}. Specifically, consider
the following assumption.

ASSUMPTION B4. For any metric ρ metrizing weak convergence on R
s ,

ρ
(
Jn,{1,...,s}(P ), Jn,{1,...,s}(Q̂n)

) P→ 0.
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Assumption B4 is quite standard in the bootstrap literature, and readily holds
for general classes of statistics, such as estimators which are smooth functions of
means, U -statistics, L-statistics, estimators which are differentiable functions of
the empirical process, etc.; see [13, 33] and Chapter 1 of [22]. Thus, our results ap-
ply to a wide range of problems. Under these assumptions, the following theorem
proves asymptotic control of the k-FWER of our bootstrap method based on the
simultaneous intervals (3.7). The result here requires fewer assumptions than [5].
In particular, we can dispense with his Assumption 4 in view of our above Lem-
ma A.2. Moreover, our result will apply toward control of the k-FWER for general
k (while the results in [5] only apply to k = 1).

THEOREM 3.1. Suppose data is generated from P satisfying Assumptions
B1–B3. Let Q̂n be an estimator of P satisfying Assumption B4. Fix K ⊆ {1, . . . , s}
and a positive integer k. Consider the joint confidence region given by (3.7), with
the marginal interval Ĉn,i for θi(P ) with i ∈ K expressed as

Ĉn,i ≡ θ̂n,i ± τ−1
n H−1

n,i

(
L−1

n,K(1 − α, k, Q̂n), Q̂n

)
.(3.8)

(i) For i ∈ K , the intervals Ĉn,i simultaneously cover all the corresponding
true parameter values θi(P ), except for at most k − 1 of them, with asymptotic
probability 1 − α.

(ii) The intervals Ĉn,i are balanced in the sense that

lim
n→∞P {θi(P ) ∈ Ĉn,i} = γ independent of i,(3.9)

where γ = γK(1 −α, k,P ) is the unique 1 −α quantile of the limiting distribution
LK(k,P ).

A value of 0 for θi(P ) falls outside the region (3.8) if and only if

|τnθ̂n,i | > H−1
n,i

(
L−1

n,K(1 − α, k, Q̂n), Q̂n

)
.(3.10)

By design, there exists a duality between generalized confidence regions con-
structed and control of the k-FWER, so the following holds.

COROLLARY 3.1. Assume the conditions of Theorem 3.1. For testing the mul-
tiple hypotheses Hi : θi(P ) = 0, consider the procedure which rejects Hi if (3.10)
holds with K = {1, . . . , s}. Then:

(i) lim
n→∞k-FWERP ≤ α.

(ii) Moreover,

lim
n→∞P {reject Hi} = 1 − L−1

K (1 − α, k,P )(3.11)

exists and is independent of i for i ∈ I (P ), i.e., the error allocation is asymptoti-
cally balanced.
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Note that, for testing Hi alone, a marginal (unadjusted) p-value can be obtained
by

p̂n,i ≡ 1 − Hn,i(|τnθ̂n,i |, Q̂n).(3.12)

If balance were not imposed, as in [31], then the larger |θ̂n,i |, the more signifi-
cant Hi ; that is, tests are essentially ordered by the values of |θ̂n,i |. By imposing
balance, tests are now ordered by the ordering of p-values. This rules out poten-
tial “inconsistencies” of the unbalanced method of [31] where it can happen that,
say, H1 is rejected while H2 is not, even though p̂n,2 < p̂n,1. For example, such a
situation can arise when the standard deviation of θ̂n,1 is larger than the standard
deviation of θ̂n,2.

As previously mentioned, the choice of Q̂n should reflect the underlying P .
We will later also consider a subsampling approach in Section 5.2. In some cases
where permutation methodology is applicable, one can obtain exact finite sample
results as well. (Computationally, one can achieve this feasibly without an iterative
scheme because the set of permutations of a permutation is exactly the set of all
permutations; in contrast, the set of bootstrap samples from a bootstrap sample
itself is not the same as the set of all bootstrap samples from the original data.)
To see how this is done in the case k = 1, see [30]. The finite sample results also
extend to step-down methods considered later, using ideas developed in Section 4.

REMARK 3.2 (General roots). If standard errors σ̂n,i of the scaled estimators
τnθ̂n,i are available, it usually makes sense, especially from a higher-order asymp-
totic viewpoint, to base inference on the (estimated) distributions of the studentized
roots τn|θ̂n,i − θi(P )|/σ̂n,i . As in [5], we allow for general roots as follows. Based
on data X(n) from P , let Rn,i(X

(n), θi(P )) be a real-valued function of the sam-
ple and θi(P ), with c.d.f. Hn,i(·,P ). [We use the same notation as we did for the
special case when Rn,i(X

(n), θi(P )) = τn|θ̂n,i − θi(P )|.] Then let Ln,K(·, k,P )

denote the distribution of

k-max
(
Hn,i

(
Rn,i

(
X(n), θi(P )

))
, i ∈ K

)
.

The bootstrap replaces P by Q̂n, leading to the joint confidence region{
(θi, i ∈ K) :Rn,i

(
X(n), θi

) ≤ H−1
n,i

(
L−1

n,K(1 − α, k, Q̂n), Q̂n

)}
in the generalization of (3.7). For example, if we consider the “one-sided” roots
Rn,i = τn(θ̂n,i − θi(P )), then the construction leads to simultaneous one-sided
confidence intervals. Alternatively, if standard errors are available, we could also
consider the “one-sided” studentized roots Rn,i = τn[θ̂n,i − θi(P )]/σ̂n,i to obtain
simultaneous one-sided confidence intervals.

REMARK 3.3 (Balance in the tails). So far, balance is achieved with respect to
the marginal coverage probability of each interval. The construction can easily be
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modified if it is also desired to have balance in the tails of each marginal interval
as well. A simple way to do this is by considering the “one-sided” roots explained
in the previous remark at level 1−α/2, and then the negative of these roots at level
1−α/2; combine them to obtain balance in the tails as well as balance of marginal
coverage.

REMARK 3.4 (Relationship to studentization). As argued by [5], the construc-
tion implicitly accounts for the variation in i of the estimates θ̂n,i and is asymp-
totically equivalent to studentization. Note that in the expression for the marginal
p-value p̂n,i given in (3.12), the transformation Hn,i(·, Q̂n) is essentially Beran’s
prepivoting transformation, and has the effect of putting all the test statistics on a
common scale. Indeed by (3.8), the multiple testing procedure rejects an Hi if

Hn,i(|τnθ̂n,i |, Q̂n) > L−1
n,K(1 − α, k, Q̂n),

where the right-hand side now does not depend on i. In general, if one can stu-
dentize an estimator or convert it to a p-value, balance will (asymptotically) be
achieved. However, if resampling is required to do so, then a nested level of re-
sampling may be required to assess overall error control. The approach here and in
[5] allows one to accomplish both without having to compute iterative bootstraps.
Certainly, one can apply the above methodology to studentized roots in hopes of
better balance in finite samples.

It is also possible to obtain marginal p-values adjusted for multiplicity. The ith
adjusted p-value is the smallest value of the overall significance level α for which
Hi can be rejected. Generally, it could be found indirectly by “trial and error,”
which would be rather cumbersome. It can, however, also be found directly by
changing the inequality in (3.10) to an equality and solving for α. This results in

p̂
adjust
n,i = 1 − Ln,{1,...,s}(Hn,i(|τnθ̂n,i |, k, Q̂n))

(3.13)
= 1 − Ln,{1,...,s}(1 − p̂n,i , k, Q̂n),

where p̂n,i is the unadjusted marginal p-value given in (3.12).

4. Stepdown methods that control the k-FWER. We now return to the gen-
eral setup. Test statistics Tn,i are available to test Hi . Given a single-step method,
such as the resampling method discussed in Section 3, we will show how a step-
down improvement may be obtained. Suppose we have in mind critical values
ĉn,K,i(1 − α, k) which could be used to control the k-FWER at level α when test-
ing the multiple hypotheses Hi with i ∈ K ; that is, such a single-step procedure
would reject Hi if Tn,i > cn,K,i(1 − α, k).

A step-down method begins by first applying a single-step method, but then
additional hypotheses may be rejected after this first stage by proceeding in a
stepwise fashion, which we now describe. Begin by testing all null hypotheses
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H1, . . . ,Hs . Any hypothesis Hi is rejected if Tn,i > cn,{1,...,s},i(1 − α, k). If there
are no rejections, then stop. If there are rejections, let A2 be the set of hypotheses
not yet rejected. Then, we compare Tn,i for i ∈ A2 with smaller critical values than
used in the first stage, leading to the possibility of further rejections.

In the algorithm below, the critical constants ĉn,K,i(1 − α, k) may be fixed or
random, but the reader should have in mind that they should be designed to control
the k-FWER when testing Hi with i ∈ K . Note that, in comparison, the step-down
methods developed in [31] use a common critical value at each stage of the al-
gorithm, which does not depend on i. Of course, it is vital to allow these critical
values to depend on i if balance is desirable (and the test statistics are not studen-
tized or already balanced). A particular choice we will study later and suggested
by Corollary 3.1 is to let cn,K,i(1 − α, k) to be the right-hand side of (3.10), but
other choices are possible as well.

ALGORITHM 4.1 (Generic stepdown method for control of the k-FWER).

1. Let A1 = {1, . . . , s}. If Tn,i ≤ ĉn,A1,i(1 − α, k) for all i, then accept all hy-
potheses and stop; otherwise, reject any Hi for which Tn,i > ĉn,A1,i(1 − α, k)

and continue.
2. Let R2 be the indices i of hypotheses Hi previously rejected, and let A2 be

the indices of the the remaining hypotheses. If |R2| < k, then stop. Otherwise,
reject any Hi with i ∈ A2 if Tn,i > d̂n,A2,i(1 − α, k), where

d̂n,A2,i(1 − α, k) = max
I⊆R2,|I |=k−1

{ĉn,K,i(1 − α, k) :K = A2 ∪ I }.
If there are no further rejections, stop.
...

j . Let Rj be the indices i of hypotheses Hi previously rejected, and let Aj be the
indices of the remaining hypotheses. Let

d̂n,Aj ,i(1 − α, k) = max
I⊆Rj ,|I |=k−1

{ĉn,K,i(1 − α, k) :K = Aj ∪ I }.

Then reject any Hi with i ∈ Aj satisfying Tn,i > d̂n,Aj ,i(1 − α, k). If there are
no further rejections, stop.
...

And so on.

Note that, in the case k = 1, once a hypothesis is removed, it no longer enters
into the algorithm. However, for k > 1, the algorithm becomes more complex. The
reason is that, for control of the k-FWER, we must acknowledge that when we
consider a set of hypotheses not previously rejected, we may have gotten to that
stage by rejecting true null hypotheses, but hopefully at most k − 1 of them. Since
we do not know which of the hypotheses rejected thus far are true or false, we
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must maximize over subsets including some of those rejected, but at most k − 1
among the previously rejected ones. Our main point will be that, if we can control
the k-FWER at any stage of the algorithm, then the step-down method will control
the k-FWER.

In order to prove such an algorithm controls the k-FWER for a suitable choice
of critical values ĉn,K,i(1−α, k), we assume monotonicity of the estimated critical
values; that is, for any K ⊇ I ,

ĉn,K,i(1 − α, k) ≥ ĉn,I,i(1 − α, k).(4.1)

Under the monotonicity assumption (4.1), we will show that k-FWER control
of a step-down procedure is reduced to that of a single-step method. Thus, the
construction of a step-down procedure is effectively reduced to construction of
single tests, as long as the monotonicity assumption holds (and it always does for
specific choices studied later).

THEOREM 4.1. Consider Algorithm 4.1 with critical values ĉn,K,i(1 − α, k)

satisfying (4.1).

(i) Then

k-FWERP ≤ P
{
Tn,i > ĉn,I (P ),i for all but at most k − 1 of i ∈ I (P )

}
.(4.2)

(ii) Therefore, if the critical values ĉn,I (P ),i control the k-FWER as a single-
step procedure in the sense that the right-hand side of (4.2) is ≤α (in finite samples
or asymptotically), then k-FWERP ≤ α (in finite samples or asymptotically).

The monotonicity assumption (4.1) cannot be removed, as shown in Exam-
ple 2.1 of [30] in the case k = 1; an analogous construction works for general k.
The general resampling constructions we describe later will inherently satisfy
(4.1). When testing multiple hypotheses, it seems natural that the critical values
should satisfy the monotonicity condition, because larger critical values should be
required when testing more hypotheses rather than a smaller subset of them.

Our main goal will be to employ resampling methods to calculate critical val-
ues, which can account for the dependence structure of the test statistics. This was
accomplished in the case k = 1 by [30] and for general k in [31], but without
the requirement of balance. However, we see how the argument generalizes given
Theorem 4.1. We also observe that Theorem 4.1 applies to certain semiparamet-
ric problems where permutation and randomization tests apply. Such a setting is
discussed in [17], though the requirement of balanced was not addressed.

Outside some parametric models, application of the generic stepdown method
can be computationally intensive, so we will also consider the following more
streamlined algorithm. The basic idea is that at any stage, when testing whether or
not to include further rejections, we need only look at the hypotheses not previ-
ously rejected together with the k − 1 hypotheses that are least significant among
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those previously rejected. So, we avoid maximizing over all subsets of size k − 1
of previously rejected hypotheses and just look at the least significant k − 1 rejec-
tions. The arguments for such a procedure will be asymptotic.

ALGORITHM 4.2 (Streamlined stepdown method for control of the k-FWER).
We assume the existence of generic marginal p-values p̂n,i for testing the indi-
vidual hypotheses Hi . How they are computed depends on the context in gen-
eral; for example, in the bootstrap approach detailed in Section 5.1, one can use
p̂n,i = 1−Hn,i(τn|θ̂n,i |, Q̂n). The ordering of these p-values determines an order-
ing of the hypotheses in terms of their significance. To this end, order the p-values
in ascending order, p̂n,(1) ≤ · · · ≤ p̂n,(s). Denote by {r1, . . . , rs} the permutation
of {1, . . . , s} which yields this ordering; that is, p̂n,(1) = p̂n,r1, . . . , p̂n,(s) = p̂n,rs .
Accordingly, let H(1) = Hr1, . . . ,H(s) = Hrs . Then, H(1) is the most significant
and H(s) is the least significant hypothesis. The algorithm now is analogous to
Algorithm 4.1. The only difference is that in any step j > 1, the critical value
d̂n,Aj ,i(1 − α, k) is replaced by the critical value

d̃n,Aj ,i(1 −α, k) = ĉn,K,i(1 −α, k) where K = {
r|Rj |−k+2, r|Rj |−k+1, . . . , rs

}
.

5. Asymptotic results on k-FWER control. The main goal of this section
is to show how Theorem 4.1 can be used to construct step-down procedures that
asymptotically control the k-FWER under very weak assumptions. The use of re-
sampling techniques will be a key ingredient. The methods constructed will be
based on Algorithm 4.1, and so potentially many tests are constructed in a step-
wise fashion. However, a key feature is that the methods will only require one set
of resamples for all of the tests, whether they are bootstrap samples or subsamples.

In order to accomplish this, we will consider resampling schemes that do not
obey the null hypothesis constraints. This is natural because, essentially, our mul-
tiple testing methods are based on inverting (generalized) balanced simultaneous
confidence regions, extending the well-known duality between confidence inter-
vals and hypotheses tests for univariate parameters to the multivariate case. Such
an inversion can be viewed as a two-stage procedure. In the first stage, one com-
putes a (generalized) simultaneous confidence region. In the second stage, one
carries out the individual tests concerning the Hi by checking whether 0 is con-
tained in the implied confidence interval for θi(P ). Therefore, the null constraints
are completely irrelevant in the first stage and come only into play in the second
stage. Since the bootstrap is used in the first stage only, one can, therefore, simply
resample “from the data.”

Alternatively, hypothesis test constructions that do obey the constraints imposed
by the null hypothesis, as discussed in [4] and [25], are based on the idea that the
critical value should be obtained under the null hypothesis and so the resampling
scheme should reflect the constraints of the null hypothesis. This idea is even ad-
vocated as a principle in [14], and it is enforced throughout [41]. However, this
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direct approach of obtaining critical values by resampling from a null distribution
requires the subset pivotality condition of Section 2.2 of [41]. In particular, this
condition specifies that the joint distribution of any subvector of test statistics is
not affected by the truth or falsehood of the hypotheses corresponding to test sta-
tistics not included in this subvector. This allows one to always resample from a
“global” null distribution where all individual null hypotheses are true. While this
condition holds in many applications of interest, under weak regularity conditions,
such as testing the elements of a multivariate mean vector or testing the elements
of a multivariate regression coefficients vector, there also exist practically relevant
counterexamples, such as testing the elements of a correlation matrix; see Exam-
ple 4.1 of [30].

Our indirect approach based on resampling from the data avoids the subset piv-
otality condition and is thereby more generally valid than “direct” approaches as
in [41]. Related schemes have been suggested previously by [23] and [10]. They
derive a null distribution for the test statistics by resampling from the data com-
bined with a transformation via recentering using the estimated parameters from
the observed data rather than the null parameters (and potentially also rescaling
using the standard errors from the observed data). In this way, they are also able to
dispense with the subset pivotality condition.

We shall consider two concrete applications of Theorem 4.1, the first based on
the bootstrap and the second based on subsampling.

5.1. A bootstrap construction. We now apply Theorem 4.1 to develop an as-
ymptotically valid approach based on the bootstrap. As in Section 3, we specialize
to the case where hypothesis Hi is specified by {P : θi(P ) = 0} for some real-
valued parameter θi(P ). Implicitly, the alternatives are two-sided, but the one-
sided case can be similarly handled. Recalling the notation of Section 3, suppose
θ̂n,i is an estimate of θi(P ). Also, Tn,i = τn|θ̂n,i | for some nonnegative (nonran-
dom) sequence τn → ∞.

The duality between simultaneous confidence sets and multiple hypothesis tests
already exploited in Corollary 3.1 suggests using Algorithm 4.1 with critical values

ĉn,K,i(1 − α, k) = H−1
n,i

(
L−1

n,K(1 − α, k, Q̂n), Q̂n

)
.(5.1)

Note that, regardless of asymptotic behavior, the monotonicity assumption (4.1) is
always satisfied for the choice (5.1). Indeed, whenever I ⊆ K , we must show

H−1
n,i

(
L−1

n,I (1 − α, k, Q̂n), Q̂n

) ≤ H−1
n,i

(
L−1

n,K(1 − α, k, Q̂n), Q̂n

)
,

or equivalently [applying Hn,i(·, Q̂n) to both sides],

L−1
n,I (1 − α, k, Q̂n) ≤ L−1

n,K(1 − α, k, Q̂n).(5.2)

But, for any Q and I ⊆ K , the left-hand side of (5.2) is the 1 −α quantile under Q

of the k-max of |I | variables, while the right-hand side of (5.2) is the 1−α quantile
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of the k-max of these same |I | variables together with additional |K| − |I | vari-
ables. This simple observation together with Theorem 4.1 immediately reduces the
problem of step-down control to that of single-step control, which was already ob-
tained in Corollary 3.1. The following result is an improvement over Corollary 3.1
in that more rejections are possible, while maintaining asymptotic control of the
k-FWER.

COROLLARY 5.1. Under the setup and conditions of Corollary 3.1, consider
Algorithm 4.1 with critical values given by (5.1).

(i) Then lim supn→∞k-FWERP ≤ α.
(ii) limn→∞ P {reject Hi} exists and is independent of i ∈ I (P ).

(iii) If P is such that i /∈ I (P ), i.e., Hi is false and θi(P ) 
= 0, then the proba-
bility that the step-down method rejects Hi tends to one.

(iv) Moreover, if the procedure rejects Hi and it is declared that θi(P ) > 0
when θ̂n,i > 0, and vice versa, then the probability of making a type III error [i.e.,
of declaring θi(P ) positive when it is negative or declaring it negative when it is
positive] tends to 0.

Compare this balanced bootstrap method to the unbalanced bootstrap method
in Section 3 of [31]. Results (i), (iii) and (iv) also hold for our earlier method but,
crucially, result (ii) generally does not hold. The key difference is that our earlier
method can be considered a common cut-off method, since the critical value (or the
cut-off) does not depend on i, that is, ĉn,K,i(1−α, k) = ĉn,K(1−α, k) for all i; and
this common critical value is obtained as the 1 − α quantile of a suitable joint dis-
tribution. In contrast, the critical values of our balanced bootstrap method depend
on i. Instead what is common now is the quantile L−1

n,K(1 − α, k, Q̂n) used for all
marginal distributions Hn,i(·, Q̂n). Therefore, the new method can be considered
a common quantile method.

So far, the bootstrap construction has been based on Algorithm 4.1. But, asymp-
totic control of the k-FWER is also achieved by the computationally less expensive
streamlined Algorithm 4.2.

COROLLARY 5.2. The statements of Corollary 5.1 continue to hold if Algo-
rithm 4.1 is replaced by Algorithm 4.2.

REMARK 5.1 (Operative method). While the streamlined Algorithm 4.2 also
results in asymptotic control of the k-FWER, finite sample considerations pro-
vide some motivation to base the bootstrap construction on the more conservative
generic Algorithm 4.1. On the other hand, its computational burden can be too
high. As a feasible compromise, we suggest an operative method that retains some
of the desirable properties of the generic algorithm. Pick a user specified number
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Nmax, say Nmax = 50, and let M be the largest integer for which
( M
k−1

) ≤ Nmax. In
step j of Algorithm 4.1, a critical value is then computed as follows:

d̂n,Aj ,i(1 −α, k) = max
I⊆{rmax{1,|Rj |−M+1},...,r|Rj |},|I |=k−1

{ĉn,K,i(1 −α, k) :K = Aj ∪ I }.

That is, we maximize over subsets I not necessarily of the entire index set Rj

of previously rejected hypotheses but only of the index set corresponding to the
M least significant hypotheses rejected so far. The philosophy of this operative
method is to be as close as possible to the generic Algorithm 4.1, given the lim-
itation to the computational burden expressed by Nmax. Actually, the streamlined
algorithm is a special case of the operative method when Nmax = 1 is chosen, re-
sulting in M = k − 1.

REMARK 5.2 (Asymptotic sharpness). The lim supn→∞ in Corollary 5.1(i)
can actually be replaced by a limn→∞. Moreover, in the case k = 1, the inequality
is an equality. For k > 1, the limiting value may be less than α. However, if the joint
distribution Hi(|Yi |,P ), as defined through (A.1) and (A.2), is exchangeable, then
equality holds. Nevertheless, the step-down method represents a strict improve-
ment over the single step method in that it leads to at least as many rejections,
and the effect shows up asymptotically. Indeed, the limiting expression for the k-
FWER of the single-step procedure is given by (A.11) with K = {1, . . . , s}, while
the asymptotic expression for the step-down procedure replaces L−1

K (1 − α, k,P )

with the generally smaller value L−1
K0

(1 − α, k,P ), where K0 ⊆ K is given by the
set of true hypotheses I (P ) together with at most k − 1 other indices. (Of course,
the value will not strictly decrease if there are less than k hypotheses which are
false.) The limiting value should be near α if I (P ) is large in comparison with
k, because L−1

I (P )(1 − α, k,P ) should be close to L−1
K0

(1 − α, k,P ). On the other
hand, the inequality in Corollary 5.1(i) is always an equality for the streamlined
method of Algorithm 4.2.

5.2. A general subsampling construction. In this subsection, we sketch an al-
ternative construction of critical values in our step-down procedure by using sub-
sampling. As in the bootstrap approach of Section 5.1, we assume Hi is concerned
with the test of a parameter θi , but this can be generalized. Quite generally, the ap-
proach based on subsampling will hold under weaker asymptotic conditions than
required for the bootstrap.

We now detail the general subsampling construction in the case of n i.i.d.
observations X1, . . . ,Xn from P . The previous bootstrap estimators Hn,i(·, Q̂n)

and Ln,K(·, k, Q̂n) are replaced by subsampling estimators as follows. Fix a pos-
itive integer b < n and let Y1, . . . , YNn be equal to the Nn := (n

b

)
subsets of

{X1, . . . ,Xn}, ordered in any fashion. Let θ̂
(a)
b,i be equal to the statistic θ̂n,i evalu-

ated at the data set Ya , for a = 1, . . . ,Nn. The subsampling estimator of Hn,i(·,P )
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is then given by

Ĥn,i(x) = 1

Nn

∑
a

I
{
τb

∣∣θ̂ (a)
b,i − θ̂n,i

∣∣ ≤ x
}
.(5.3)

We also define

L̂n,K(x, k) = 1

Nn

∑
a

I
{
k-max

(
Ĥn,i

(
τb

∣∣θ̂ (a)
b,i − θ̂n,i

∣∣)) ≤ x
}
.(5.4)

If we replace the bootstrap estimators by these subsampling estimators, we can
prove a result analogous to Theorem 3.1, while removing Assumption B4.

THEOREM 5.1. Suppose data is generated from P satisfying Assumptions
B1–B3. Fix K ⊆ {1, . . . , s} and a positive integer k. Let b → ∞, b/n → 0 and
τb/τn → 0. Consider the joint confidence region rectangle, with marginal inter-
vals C̃n,i for θi(P ) with i ∈ K expressed as

C̃n,i ≡ θ̂n,i ± τ−1
n Ĥ−1

n,i

(
L̂−1

n,K(1 − α, k)
)
.(5.5)

(i) For i ∈ K , the intervals C̃n,i , simultaneously cover all the corresponding
true parameter values θi(P ), except for at most k − 1 of them, with asymptotic
probability 1 − α.

(ii) The intervals C̃n,i are balanced in the sense that

lim
n→∞P {θi(P ) ∈ C̃n,i} = γ independent of i,(5.6)

where γ = γK(1 −α, k,P ) is the unique 1 −α quantile of the limiting distribution
LK(k,P ).

The proof is analogous to the proof of Theorem 3.1, except that the uniform
convergence of the subsampling estimators (in probability) is proved by the now
standard arguments for subsampling; see Chapter 2 of [22]. Thus, the result also
generalizes quite easily; for example, in a stationary time series model, one only
considers subsamples of consecutive observations; see Chapter 3 of [22].

REMARK 5.3 (Effects of centering). For testing a single hypothesis Hi ,
τn|θ̂n,i | is compared to the 1 − α quantile of the subsampling distribution based
on the Nn values τb|θ̂ (a)

b,i − θ̂n|. Another possibility is to not “center” the subsam-

pling values by instead using the Nn values of τb|θ̂ (a)
b,i |. In fact, both approaches

are asymptotically equivalent under the null hypothesis and under contiguous al-
ternatives, at least when k = 1. The former approach more closely matches the
bootstrap approach introduced earlier. The latter approach makes it easier to reject
hypotheses because the critical value is generally smaller. In Section 2.6 of [22],
the latter approach was used, as it generalizes easily to other types of hypotheses
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(such as when using a Kolmogorov–Smirnov type of statistic). When testing many
hypotheses, the two approaches are not asymptotically equivalent because, if one
does not “center,” the subsampling critical value does not settle down against a
fixed alternative. (This is not an issue with one hypothesis because the test statis-
tic would then be growing at an even faster rate.) As a consequence, if one does
not center when considering multiple hypotheses at once, the subsampled values
for the test statistics corresponding to false null hypotheses will tend to be much
larger than those corresponding to true hypotheses, and the result is that the esti-
mate L̂n,K(·, k) will be too large if k > 1, and will negate the effects of utilizing
a weaker measure of error control. For purposes of k-FWER control with k > 1,
we recommend centering the subsampling distribution. However, we also note that
sometimes there are advantages to not doing so, as in the control of the false dis-
covery rate considered in [28].

In the case k = 1, not centering the subsampled values can be advanta-
geous in that it results in more powerful procedure. For example, suppose
(X1, Y1), . . . , (Xn,Yn) is a sample of n i.i.d. observations with Xi ∼ N(θ1,1),
Yi ∼ N(θ2,1) and Xi independent of Yi . If, for example, θ1 < 0 and θ2 > 0, then
the centered subsampling approach (as well as the bootstrap) will be based on a
single-step critical value which behaves asymptotically like the 1 − α quantile of
max(Z1,Z2), where the Zi are i.i.d. ∼ N(0,1). On the other hand, if subsampling
is used with no centering, then the single-step critical value will behave asymptot-
ically like z1−α because the subsampled averages of the Yi ’s will asymptotically
dominate those based on the Xi’s. A smaller critical value then implies greater
power.

We can also provide a step-down improvement by applying the step-down Al-
gorithm 4.1 with the critical values

ĉn,I,i(1 − α, i) = Ĥ−1
n,i

(
L̂−1

n,K(1 − α, k)
)
.

Note the monotonicity of the critical values: for I ⊆ K

ĉn,K,i(1 − α, k) ≥ ĉn,I,i(1 − α, k).(5.7)

This simple observation together with Theorems 4.1 and 5.1 immediately yields
an asymptotic improvement. The details are left to the reader.

6. Planned imbalance and weighted control of k-FWER. Lack of balance
is especially undesirable if hypotheses which we would like to treat equally are
treated unequally. However, sometimes lack of balance is desirable, if it is handled
appropriately. For example, if the various hypotheses are not equally important,
we might want to control for rejection error by allocating different weights to the
hypotheses.
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Consider the general setting of testing hypotheses H1, . . . ,Hs based on data X

from P , where Hi specifies P ∈ ωi . Assume p̂n,i is a p-value for testing Hi in the
sense

P {p̂n,i ≤ u} ≤ u for all u,P ∈ ωi.(6.1)

Suppose Hi is given weight wi , where
∑

i wi = 1. For example, the weighted Bon-
ferroni method rejects any Hi such that p̂n,i ≤ wiα. This controls the usual FWER
with k = 1. (Note that hypotheses with larger weights wi are given more impor-
tance.) In this section, we show how to construct such weighted procedures which
control the k-FWER, and at the same time provide a step-down improvement.

THEOREM 6.1. Consider the problem of testing H1, . . . ,Hs with marginal
p-values satisfying (6.1). Assume wi are known weights with

∑s
i=1 wi = 1.

(i) (Weighted generalized Bonferroni.) The single-step procedure which re-
jects Hi if p̂n,i ≤ wikα controls the k-FWER; that is

k-FWERP ≤ α.(6.2)

Moreover, if p̂n,i has a uniform (0,1) distribution whenever Hi is true, then
P {Hi is rejected} = wikα ∝ wi .

(ii) (Weighted generalized Holm.) The step-down procedure using Algo-
rithm 4.1 with Tn,i = −p̂n,i and

ĉn,K(1 − α, k) = − wi∑
j∈K wj

kα

also satisfies (6.2).

The computational application of Algorithm 4.1 is straightforward. The algo-
rithm can be translated as follows. First, reject any Hi whose corresponding p-
value p̂n,i satisfies p̂n,i ≤ wikα; that is, apply the single-step procedure. If there
are fewer than k rejections, then stop. (Of course, there is the possibility of allow-
ing up to k − 1 rejections regardless.) If there are k or more rejections, we can
next test the remaining p-values as follows. Let A be the indices of hypotheses
not yet rejected and let sA = ∑

j∈A wj . Let R be the indices of hypotheses already
rejected, and let sR be the sum of the k − 1 largest values among wj with j ∈ R.
Compare p̂n,i with wikα/(sA + sR). If there are no further rejections, then stop;
otherwise, continue in the same fashion after updating both A and R.

7. Control of average number of false rejections. In this section, we briefly
consider control of the average number of false rejections, also known as the per-
family error rate (PFER); see (2.3). Suppose p-values p̂n,i are available for test-
ing Hi , so that (6.1) holds. As is well known, the procedure which rejects Hi if
p̂n,i ≤ λ/s satisfies (2.3). More generally, and analogous to Theorem 6.1, the fol-
lowing is true.
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THEOREM 7.1. Consider the problem of testing H1, . . . ,Hs with marginal p-
values satisfying (6.1). Assume wi are known weights with

∑s
i=1 wi = 1. Then the

single-step procedure which rejects Hi if p̂n,i ≤ wiλ controls the average number
of false rejections; that is, (2.3) holds. Moreover, if p̂n,i has a uniform (0,1) distri-
bution whenever Hi is true and if wiλ is ≤1, then P {Hi is rejected} = wiλ ∝ wi .

For finite-sample control of the average number of false rejections, a step-down
improvement is not possible. To see why, suppose wi = 1/s, all Hi are true, and
p̂n,i has a uniform (0,1) distribution. Then the expected number of false rejections
of the above procedure is exactly λ. If the possibility of further rejections were
allowed, then the average number of false rejections must necessarily increase,
which would violate error control given by (2.3). (Note it is asymptotically possible
to provide a step-down improvement, but this is not pursued here. For example,
with wi = 1/s, one could attempt to estimate or bound the number of true null
hypotheses by Î and then replace the critical value λ/s with λ/Î .)

If exact p-values are not available, one can use subsampling or the bootstrap,
as in (3.12). Of course, by linearity of expectation, no further modification of the
procedure is needed to take into account the dependence between the test statistics.

8. Asymptotic results on FDP control. In many applications, one might be
willing to tolerate a certain small fraction of false rejections out of the total rejec-
tions. This leads to control based on the false discovery proportion (FDP). Let F

be the number of false rejections made by a multiple testing procedure and let R

be the total number of rejections. Then the FDP is defined as follows:

FDP =
⎧⎨
⎩

F

R
, if R > 0,

0, if R = 0.

A multiple testing procedure is said to (probabilistically) control the FDP at level
α if, for the given sample size n, P {FDP > γ } ≤ α, for all P . A multiple testing
procedure is said to asymptotically control the FDP at level α, if lim supn P {FDP >

γ } ≤ α, for all P . Our focus will be on procedures that provide asymptotic control.
The approach we propose is analogous to the one already presented in [31].

It is built upon an underlying procedure that (asymptotically) controls the k-
FWER for any fixed k ≥ 1. We then sequentially apply this k-FWER procedure
for k = 1,2, . . . until a stopping rule indicates termination. In the end, we reject all
hypotheses that were rejected in the last round before stopping. This leads to the
following algorithm; see [31] for some corresponding motivation and intuition.

ALGORITHM 8.1 (Generic method for control of the FDP).

1. Let j = 1 and let k1 = 1.
2. Apply the kj -FWER procedure and denote by Nj the number of hypotheses it

rejects.
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3. (a) If Nj < kj/γ − 1, stop and reject all hypotheses rejected by the kj -FWER
procedure.

(b) Otherwise, let j = j + 1 and then kj = kj−1 + 1. Return to step 2.

This algorithm is similar to the proposal of [17] for FDP control which is, how-
ever, restricted to a multivariate permutation model. The proposal of [17] is heuris-
tic in the sense that they cannot guarantee finite sample nor asymptotic control of
the FDP even if the permutation hypothesis is valid. In [31], asymptotic control of
Algorithm 8.1 is established when using an unbalanced bootstrap or subsampling
approach for the underlying k-FWER procedure, with simulations showing good
finite sample control. The following theorem establishes the corresponding result
if one uses instead a balanced k-FWER controlling procedure. The result covers
a general bootstrap construction where the individual tests are two-sided and con-
cern univariate parameters θi(P ). The bootstrap construction for one-sided tests
and the more general subsampling construction can be handled analogously. The
proofs are very similar to the unbalanced cases established in [31].

THEOREM 8.1. Consider the setup of Corollary 5.1. Fix P satisfying Assump-
tions B1–B3. Let Q̂n be an estimate of P satisfying Assumption B4. Employ the
step-down procedure of Algorithm 4.1 with ĉn,K,i(1 − α, k) as the underlying k-
FWER procedure. Then the following statements concerning Algorithm 8.1 are
true:

(i) lim supn→∞ P {FDP > γ } ≤ α.
(ii) If P is such that i /∈ I (P ), i.e., Hi is false and θi(P ) 
= 0, then the proba-

bility that the method rejects Hi tends to one.

9. Simulation study. This section presents a small simulation study in the
context of testing population means. We generate random vectors X1, . . . ,Xn

from an s-dimensional multivariate normal distribution with mean vector θ(P ) =
(θ1(P ), . . . , θs(P )), where n = 100 and s = 40. The null hypotheses are Hi :
θi(P ) = 0 and the alternative hypotheses are Hi : θi(P ) 
= 0. Define

X̄n,i,· = 1

n

n∑
j=1

Xi,j and σ̂ 2
n,i = 1

n − 1

n∑
j=1

(Xi,j − X̄n,i,·)2.

Then we use θ̂n,i = X̄n,i,· and τn = √
n.

The individual means θi(P ) are equal to either 0 or 0.4. The number of means
equal to 0.4 is 0, 10, 20 or 40. Denote the elements of the covariance matrix by σi,j .
Then half of the σi,i are equal to 1 while the other half are equal to 4. This is done
in a way such that both the “null” variables and the “alternative” variables have
half of their variances equal to 1 and the other half equal to 4. The correlation ρ is
constant; that is, σi,j /

√
σi,iσj,j = ρ for all i 
= j . We employ ρ = 0.0 and 0.5.



622 J. P. ROMANO AND M. WOLF

The goal is to compare the balanced bootstrap procedures of this paper with
the stepwise bootstrap procedures of [31] based on the maximum test statistic.
For the latter procedures, the individual test statistics Tn,i are either basic (i.e.,
nonstudentized) or studentized, that is,

T bas
n,i = τn|θ̂n,i | or T stud

n,i = τn|θ̂n,i |/σ̂n,i .

The abbreviations for the included procedures are as follows.

• (k-max Tbas). The bootstrap k-FWER procedure of [31] with T bas
n,i .

• (k-max Tstud). The bootstrap k-FWER procedure of [31] with T stud
n,i .

• (k-balbas). The balanced bootstrap k-FWER procedure of Section 5.1 with
τn|θ̂n,i |.

• (k-balstud). A balanced bootstrap k-FWER procedure analogous to Section 5.1
but with studentized roots τn|θ̂n,i |/σ̂n,i ; see Remarks 3.2 and 3.4.

• (FDP-max Tbas). The bootstrap FDP procedure of [31] with T bas
n,i .

• (FDP-max Tstud). The bootstrap FDP procedure of [31] with T stud
n,i .

• (FDP-balbas). The balanced bootstrap FDP procedure of Section 8 with τn|θ̂n,i |.
• (FDP-balstud). A balanced bootstrap FDP procedure analogous to Section 8 but

with τn|θ̂n,i |/σ̂n,i .

In order to properly estimate an appropriate quantile, one must employ a large
number of bootstrap resamples, denoted by B . In effect, one needs to construct
individual confidence intervals at level γ , where γ is close to one. Ceteris paribus,
γ increases with the number of hypotheses. To make the point, assume it is known
that the individual estimators θ̂n,i are independent of each other. In this case, γ is
given by γ = (1 − α)1/s . The larger γ , the larger should be B; see Section 19.3
of [11]. The computational burden we can handle corresponds to B = 10,000. For
that reason, we pick the relatively small value of s = 40 individual hypotheses.
Furthermore, we use α = 0.1 rather than α = 0.05. The value of Nmax for the
operative method is Nmax = 50; see Remark 5.1.

The values of k for k-FWER control we consider are k = 1 and 3. The latter
value is relatively small, since s = 40 is relatively small. For the same reason, we
have to chose the value of γ for FDP control relatively large, or the differences
between control of the 1-FWER and control of the FDP would hardly show up.
Therefore, we use γ = 0.2.

The performance criteria are (i) the various empirical error rates, compared to
the nominal level α = 0.1; (ii) the average number of false hypotheses rejected;
and (iii) the empirical imbalance. The latter is defined as the difference between
the maximal and the minimal empirical rejection probabilities over all true null
hypotheses. In other words, if the empirical rejection probability of null hypothesis
Hi is denoted by e.r.p.i , then the empirical imbalance is defined as

max
i∈I (P )

e.r.p.i − min
i∈I (P )

e.r.p.i .
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(When all null hypotheses are false, this measure is not defined.) Note that due to
sampling error, the empirical imbalance will typically be positive even if a pro-
cedure is perfectly balanced. The performance criteria are computed from 5000
repetitions in each scenario. For every repetition (i.e., every simulated data set),
the same set of B = 10,000 bootstrap resamples is shared by all procedures.

The results are presented in Table 1 and can be summarized as follows.

• Because the σi,i are different, k-max Tbas results in asymptotically unbalanced
inference. Due to studentization, k-max Tstud is invariant to the σi,i and yields
asymptotically balanced inference. This is reflected in the empirical imbalances
which are always larger for k-max Tbas, and sometimes much larger.

• If balance is applied to the basic method, resulting in k-balbas, then the empirical
imbalances become comparable to k-max Tstud. On the other hand, if balance is
applied to the studentized method, resulting in k-balstud, no meaningful further
improvement over k-max Tstud is achieved.

• Both k-max Tbas and k-max Tstud achieve satisfactory control of the k-FWER.
However, k-max Tbas is always less powerful compared to k-max Tstud.

• k-balbas can be anticonservative, especially when all null hypotheses are true;
see top “Control” row, third columns in both panels (ρ = 0 and ρ = 0.5) of
the Table 1. However, it should be pointed out that the worst results happen
under very stringent type I error control conditions: all null hypotheses true,
mutual independence and FWER control (which in this case is equivalent to
FDP control), based on nonstudentized test statistics with unequal population
variances. The results appear satisfactory in other settings of particular interest,
that is, when significant fractions of the null hypotheses are expected to be false.
Furthermore, consistent with our asymptotic theory, the results improve when
the sample size increases; see Remark 9.1 below.

• k-balbas is somewhat more powerful compared to k-max Tstud. But this not sur-
prising given the previous observation of anticonservativeness. On the other
hand, k-balstud performs very similarly compared to k-max Tstud both in terms
of k-FWER control and power.

• The comparisons are similar with respect to FDP control as opposed to k-FWER
control.

REMARK 9.1. Ceteris paribus, the finite-sample control of k-balbas improves
with both k and n. Some evidence for the former claim can be seen in Table 1. Un-
fortunately, running a complete simulation study with a large n is computationally
too expensive. But we considered the case of all θi = 0 and common correlation
ρ = 0, and increased the sample size from n = 100 to n = 400. The empirical con-
trols improve from 13.4% to 10.7% (for 1-FWER and FDP) and from 11.6% to
10.2% (for 3-FWER). So the improvement shows up already under very stringent
type I error control conditions (FWER control, all null hypotheses true, and mutual
independence).
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TABLE 1
Empirical FWERs and FDPs (in the rows “Control”); average number of false hypotheses rejected

(in the rows “Rejected”); and empirical imbalances (in the rows “Imbalance”), for various
procedures, with n = 100 and s = 40. The nominal level is α = 10%. The number of repetitions is
5000 per scenario and the number of bootstrap resamples is B = 10,000. Both the empirical error

rates and imbalances are expressed in percentages. There are three sections corresponding to
control of FWER, 3-FWER and FDP. In each section, the order of the methods, from left to right, is

given by max Tbas, max Tstud, balbas and balstud

Common correlation: ρ = 0

FWER control 3-FWER control FDP control

All θi = 0

Control 9.4 9.4 13.4 9.7 9.7 8.9 11.6 8.8 9.4 9.4 13.4 9.7
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Imbalance 0.7 0.3 0.4 0.3 11.0 1.3 1.3 1.2 0.7 0.3 0.4 0.3

Ten θi = 0.4

Control 8.1 9.9 13.2 10.0 6.9 7.3 9.3 7.3 7.9 6.5 8.5 6.5
Rejected 1.4 4.9 5.2 4.9 5.7 6.9 7.0 6.9 1.4 5.7 6.9 5.7
Imbalance 0.8 0.3 0.3 0.3 7.1 1.1 1.3 1.0 0.8 0.7 0.7 0.7

Twenty θi = 0.4

Control 5.4 6.2 8.6 6.5 4.2 5.4 6.7 5.3 4.1 3.3 4.5 3.3
Rejected 2.9 10.1 10.6 10.1 12.1 14.3 14.5 14.3 4.4 14.8 15.0 14.8
Imbalance 0.8 0.2 0.3 0.3 7.5 1.4 1.5 1.4 2.4 1.2 1.3 1.1

All θi = 0.4

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 6.4 21.8 22.7 21.8 30.6 33.1 33.5 33.1 29.4 38.5 38.5 38.5

Common correlation: ρ = 0.5

All θi = 0

Control 10.2 10.2 12.8 10.4 11.5 10.6 12.3 10.7 10.2 10.2 12.8 10.4
Rejected 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Imbalance 1.2 0.4 0.4 0.4 12.7 1.6 1.6 1.6 1.2 0.4 0.4 0.4

Ten θi = 0.4

Control 8.9 8.7 11.3 8.8 8.3 8.7 9.7 8.7 8.6 8.1 9.5 8.1
Rejected 1.9 5.4 5.6 5.4 5.1 6.8 6.9 6.8 2.3 6.0 6.2 6.0
Imbalance 1.2 0.3 0.4 0.3 5.5 0.8 0.9 0.8 2.6 0.6 0.7 0.5

Twenty θi = 0.4

Control 7.4 7.9 9.9 8.0 7.4 8.5 9.5 8.6 8.3 7.5 8.4 7.5
Rejected 4.2 11.0 11.4 11.0 10.5 13.8 14.0 13.8 6.9 13.7 14.1 13.7
Imbalance 1.4 0.3 0.4 0.3 6.5 0.7 0.8 0.7 6.6 0.9 0.8 0.9

All θi = 0.4

Control 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rejected 11.2 24.1 24.9 24.1 25.6 31.4 31.7 31.4 21.6 34.9 35.1 34.9
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In addition, it is also advisable to choose the number of bootstrap resamples,
B , as large as possible, given the computational resources. But at least for the
scenario with n = 100, all θi(P ) = 0, and common correlation ρ = 0, increasing
the number of bootstrap resamples from B = 10,000 to B = 50,000 made virtually
no difference.

REMARK 9.2. Further simulation results and comparisons are reported in
[31], but the methods there were not necessarily balanced. In particular, the meth-
ods of [31] are compared to those of [19, 39] and [40].

10. Concluding remarks. We have shown how computationally feasible
step-down methods can be constructed to control generalized error rates in multi-
ple testing, with special emphasis on procedures which are appropriately balanced.
This emphasis is certainly of practical relevance. Multiple testing methods which
are not balanced can lead to “contradictions” when applied to sets of data. For ex-
ample, it can happen that a certain hypothesis gets rejected by the multiple testing
method while another one does not, even though the first hypothesis is associated
with a larger unadjusted marginal p-value than the second hypothesis. Balanced
procedures automatically rule out this possibility.

Various measures of error control have been considered, with emphasis on con-
trol of the k-FWER, average number of false rejections, and FDP, which is the ra-
tio of false rejections out of the total number of rejections (and defined to be zero
when there are no rejections). All of these generalized error rates relax the tradi-
tional FWER and in return lead to improved ability to reject false null hypotheses.
They are of special interest and importance when the number of hypotheses un-
der test is large, which happens more and more frequently. Moreover, improved
power is gained not only by relaxing the given measure of error control, but also
by using resampling. Indeed, resampling methods implicitly account for the depen-
dence structure between the test statistics, leading to improved power compared to
methods based on the individual p-values alone. To the best of our knowledge,
there have been no previous proposals combining resampling and the imposition
of balance to control generalized error rates.

Some simulations have shown that these less strict methods can reject many
more false hypotheses compared to the traditional FWER control, especially when
the number of hypotheses being tested is large, while at the same time satisfying
the constraints of balance and error control.

Future work will examine the actual order of errors in our asymptotic approxi-
mations, both pointwise and uniformly with respect to the underlying probability
mechanism P . Moreover, an asymptotic framework in which the number of tests
gets large with the sample size will be studied as well. Finally, we would like to
develop weighted methods analogous to that studied in Theorem 6.1 which also
employ resampling to account for the dependence between tests.



626 J. P. ROMANO AND M. WOLF

APPENDIX: PROOFS AND AUXILIARY RESULTS

LEMMA A.1. Suppose Assumptions B1 and B2 hold. Then for every K ⊆
{1, . . . , s}, Ln,K(k,P ) has a continuous limiting distribution LK(k,P ), which can
be represented as the distribution of

k-max
(
Hi(|Yi |,P ), i ∈ K

)
,(A.1)

where (Y1, . . . , Ys) has distribution J{1,...,s}(P ) and

Hi(x,P ) = Ji(x,P ) − Ji(−x,P ).(A.2)

PROOF. Fix P and let

Yn,i = τn[θ̂n,i − θi(P )].(A.3)

By the almost sure representation theorem, we can assume there exist versions
Y ∗

n,i such that (Y ∗
n,1, . . . , Y

∗
n,s) has the same distribution as (Yn,1, . . . , Yn,s) and

Y ∗
n,i → Yi almost surely for every i. We must show that

k-max
(
Hn,i(|Y ∗

n,i |,P ), i ∈ K
)

(A.4)

has a limiting distribution. But, since Jn,i(P ) has a continuous limiting distribu-
tion with c.d.f. Ji(·,P ), then by the continuous mapping theorem, Hn,i(P ) has
a limiting distribution Hi(P ) with c.d.f. given by (A.2). By Pòlya’s theorem,
Hn,i(x,P ) → Hi(x,P ) uniformly in x. Therefore, by continuity of the k-max
function, the difference between (A.4) and

k-max
(
Hi(|Y ∗

n,i |,P ), i ∈ K
)

(A.5)

tends to 0. But, by continuity of the Hi(·,P ) and the k-max function, we have that
(A.5) tends almost surely to k-max(Hi(|Yi |,P ), i ∈ K), and hence in distribution
as well.

To show that this limiting distribution is continuous, note that

P
{
k-max

(
Hi(|Yi |,P ), i ∈ K

) = x
} ≤ ∑

i∈K

P {Hi(|Yi |,P ) = x} = 0,

because, for every i, Hi(|Yi |,P ) has the uniform distribution on (0,1). �

LEMMA A.2. Let X = (X1, . . . ,Xs) be a random vector on R
s with multi-

variate distribution F . Suppose that the support of the distribution F , denoted
supp(F ), is connected. Let hi be continuous with hi(Xi) having a continuous dis-
tribution. Then Y ≡ k-max(hi(X1), . . . , hs(Xs)) has a continuous and strictly in-
creasing c.d.f. on its interval of support.
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PROOF. To see that the c.d.f. of Y is continuous, simply note that

P {Y = x} ≤ ∑
1≤i≤s

P {hi(Xi) = x} = 0,

where the final equality follows from the assumption that hi(Xi) has a con-
tinuous distribution. To see that the c.d.f. of Y is strictly increasing, suppose
by way of contradiction that there exists a < b such that P {Y ∈ (a, b)} = 0,
but P {Y ≤ a} > 0 and P {Y ≥ b} > 0. Thus, there exists x = (x1, . . . , xs) ∈
supp(F ) such that k-max(h1(x1), . . . , hs(xs)) ≤ a and x′ ∈ supp(F ) such that
k-max(h1(x

′
1), . . . , hs(x

′
s)) ≥ b. Consider the set

Aa,b = {x ∈ supp(X) :a < k-max(h1(x1), . . . , hs(xs)) < b}.
By continuity of the k-max function and assumption (ii), Aa,b is nonempty. More-
over, again by continuity of the k-max function Aa,b must contain an open subset
of supp(F ) [relative to the topology on supp(X)]. It therefore follows by the defi-
nition of supp(X) that

P {X ∈ Aa,b} = P {k-max(h1(X1), . . . , hs(Xs)) ∈ (a, b)} > 0,

which yields the desired contradiction. �

Even in the case in which s = k = 1, both assumptions in Lemma A.2 are nec-
essary to conclude that the distribution of Y is continuous and strictly increasing.
Therefore, the assumptions used in Lemma A.2 seem as weak as possible. Note
that the assumption that hi(Xi) has a continuous distribution follows if Xi has a
continuous distribution and hi is the identity function [hi(x) = x], the absolute
value function [hi(x) = |x|], the distribution function of Xi [hi(x) = Fi(x) where
Xi ∼ Fi], or the distribution function of |Xi | evaluated at |Xi | [hi(x) = Hi(|x|)
where |Xi | ∼ Hi ]. The last example is most pertinent to this paper. Also, note that
the lemma continues to hold if the k-max function is replaced by any continuous
function which returns one of its arguments.

COROLLARY A.1. Assume Assumptions B1–B3. Then LK(k,P ) has a con-
tinuous and strictly increasing c.d.f. on its interval of support.

PROOF. For ease of notation, the proof is presented in the case K = {1, . . . , s}
(with no loss of generality). Recall the limiting distribution of LK(k,P ) can be
represented by the distribution of (A.1). The assumptions of Lemma A.2 are sat-
isfied. Indeed, suppose (X1, . . . ,Xs) has distribution J{1,...,s}(P ). Take hi(x) =
Hi(|x|,P ). Note that Hi(|Xi |,P ) has the uniform (0,1) distribution, which is con-
tinuous. The connectedness assumption holds by Assumption B3. �

PROOF OF THEOREM 3.1. By Lemma A.1,

Ln,K(·, k,P )
L→ LK(·, k,P ).
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Moreover, by Corollary A.1 we can conclude that the c.d.f. LK(·, k,P ) is contin-
uous and strictly increasing with unique inverse function

γK(1 − α, k,P ) = L−1
K (1 − α, k,P ).

It follows by Lemma 11.2.1 of [20] that

L−1
n,K(1 − α, k,P ) → γK(1 − α, k,P ).(A.6)

But, we can apply the identical argument to get a triangular array convergence
result simply by replacing P by a sequence Pn; it follows that for any sequence
{Pn} satisfying

ρ(Jn,K(Pn), JK(P )) → 0,

we have

Ln,K(k,Pn)
L→ LK(k,P )

and

L−1
n,K(1 − α, k,Pn) → γK(1 − α, k,P ).

But, by virtue of Assumption B4 and a subsequence argument, it follows that

L−1
n,K(1 − α, k, Q̂n)

P→ γK(1 − α, k,P ).(A.7)

Then

P {θi ∈ Ĉn,i except for at most k − 1 of the i ∈ K}
= P

{
k-max

(
Hn,i

(
τn|θ̂n,i − θi(P )|, Q̂n

)
, i ∈ K

)
(A.8)

≤ L−1
n,K(1 − α, k, Q̂n)

}
.

But, by Assumption B2, Pòlya’s theorem, and a subsequence argument,

sup|Hn,i(x, Q̂n) − Hi(x,P )| P→ 0,

where Hi(x,P ) = Ji(x,P )− Ji(−x,P ). So, the random variable on the left-hand
side of the inequality in (A.8) is

k-max
(
Hi

(
τn|θ̂n,i − θi(P )|,P )

, i ∈ K
) + oP (1).(A.9)

To examine the limiting distributional behavior of (A.9), let Yn,i = τn[θ̂n,i −
θi(P )]. By the almost sure representation theorem, we can assume there exist ver-
sions Y ∗

n,i with (Yn,1, . . . , Yn,s) having the same distribution as (Y ∗
n,1, . . . , Y

∗
n,s)

such that Y ∗
n,i → Yi almost surely, for all i, where (Y1, . . . , Yn) has distribution

J{1,...,s}(P ). It follows that (A.9) converges in distribution to the distribution of
k-max(|Yi |, i ∈ K), which is exactly LK(·, k,P ). We can now apply Slutsky’s the-
orem to evaluate (A.8) to conclude its limiting probability is

P {k-max(|Yi |, i ∈ K) ≤ γK(1 − α, k,P )} = 1 − α.
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To prove (ii),

P {θi(P ) ∈ Ĉn,i}
= P

{
τn|θ̂n,i − θi(P )| ≤ H−1

n,i

(
L−1

n,K(1 − α, k, Q̂n), Q̂n

)}
(A.10)

= P
{
Hn,i

(
τn|θ̂n,i − θi(P ), Q̂n

) ≤ L−1
n,K(1 − α, k, Q̂n)

}
.

But, a similar argument to the above by invoking the almost sure representation
theorem, taking K = {i}, gives that

Hn,i

(
τn|θ̂n,i − θi(P )|, Q̂n

) L→ Hi(|Yi |,P ),

which is uniform U(0,1). Since the right-hand side of (A.10) tends in probability
to γK(1 − α, k,P ), the result follows by Slutsky’s theorem. �

PROOF OF COROLLARY 3.1. Using the arguments as in the proof of The-
orem 3.1, we can calculate an exact limiting expression (rather than just the
bound α). If (Y1, . . . , Ys) is a random vector with distribution J{1,...,s}(P ), then

lim
n→∞k-FWERP = P

{
k-max

(
Ji(|Yi |,P ), i ∈ I (P )

)
> L−1

K (1 − α, k,P )
}

(A.11)

with K = {1, . . . , s}. The previous expression is exactly α if K = I (P ), but since
we always have

L−1
I (P )(1 − α, k,P ) ≤ L−1

K (1 − α, k,P ),

the inequality in the corollary follows. To prove (ii), we can calculate

lim
n→∞P {reject Hi} = P {Ji(|Yi |,P ) > L−1

K (1 − α, k,P )}
= P {Ui > L−1

K (1 − α, k,P )},
where Ui ∼ U(0,1), and the result follows. �

PROOF OF THEOREM 4.1. Assume |I (P )| ≥ k, or there is nothing to prove.
Consider the event that at least k true null hypotheses are rejected. Let ĵ be the
smallest (random) index j in the algorithm where this occurs, so that at least k of
the Tn,i with i ∈ I (P ) satisfy

Tn,i > d̂n,A
ĵ
,i(1 − α, k).

By definition of ĵ (now fixed), I (P ) ⊆ A
ĵ

∪ I0, where I0 is some set of indices
satisfying I0 ⊆ R

ĵ
and |I0| = k − 1. Let L be any set of indices of false null

hypotheses which satisfy A
ĵ

∪ I0 = I (P ) ∪ L. Since d̂n,A
ĵ
,i(1 − α, k) is defined

by taking the maximum over sets I of ĉn,K,i(1−α, k) with K = A
ĵ
∪ I as I varies
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over indices satisfying I ⊆ R
ĵ

and |I | = k − 1, it follows that d̂n,A
ĵ
,i(1 − α, k) ≥

ĉn,I (P )∪L,i(1 − α, k). By the monotonicity assumption,

ĉn,I (P )∪L,i(1 − α, k) ≥ ĉn,I (P ),i(1 − α, k).

To summarize, the event that at least k true null hypotheses are rejected implies
that at least k of the Tn,i with i ∈ I (P ) satisfy

Tn,i > ĉn,I (P ),i(1 − α, k)

and so (i) follows. Part (ii) follows immediately from (i). �

PROOF OF COROLLARY 5.1. The proofs of parts (i) and (ii) follow from the
arguments preceding the corollary. The proofs of parts (iii) and (iv) are very similar
to the proofs of parts (iii) and (iv) of Theorem 3.2 in [31]. �

PROOF OF THEOREM 6.1. To prove (i), let F be the number of false rejec-
tions and let I (P ) denote the set of true null hypotheses. Then, using Markov’s
inequality,

k-FWERP = P {F ≥ k} ≤ E(F)

k

= 1

k
E

( ∑
i∈I (P )

I {p̂n ≤ wikα}
)

= 1

k

∑
i∈I (P )

P {p̂n ≤ wikα}

≤ 1

k

∑
i∈I (P )

wikα = α
∑

i∈I (P )

wi ≤ α.

To prove (ii), the result follows from Theorem 4.1 once we verify the
monotonicity condition (4.1). But to show that monotonicity holds, let I ⊆ K .
Then

ĉn,I,i(1 − α, k) = − wi∑
j∈I wj

kα ≤ − wi∑
j∈K wj

kα = ĉn,I,i(1 − α, k). �

PROOF OF THEOREM 7.1. Let F be the number of false rejections and let
I (P ) denote the set of true null hypotheses. Then

EP (F) = E

[ ∑
i∈I (P )

I {p̂n,i ≤ wiλ}
]

= ∑
i∈I (P )

P {p̂n,i ≤ wiλ}

≤ λ · ∑
i∈I (P )

wi ≤ λ.
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The second statement is trivial. �

Acknowledgments. We would like to thank the coeditor, the Associate Editor
and two anonymous referees for their careful reviews of this manuscript which
have led to an improved presentation.

REFERENCES

[1] BENJAMINI, Y. and HOCHBERG, Y. (1995). Controlling the false discovery rate: A practi-
cal and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289–300.
MR1325392

[2] BENJAMINI, Y., KRIEGER, A. M. and YEKUTIELI, D. (2006). Adaptive linear step-up proce-
dures that control the false discovery rate. Biometrika 93 491–507. MR2261438

[3] BENJAMINI, Y. and YEKUTIELI, D. (2001). The control of the false discovery rate in multiple
testing under dependency. Ann. Statist. 29 1165–1188. MR1869245

[4] BERAN, R. (1986). Simulated power functions. Ann. Statist. 14 151–173. MR0829560
[5] BERAN, R. (1988). Balanced simultaneous confidence sets. J. Amer. Statist. Assoc. 83 679–

686. MR0963795
[6] BERAN, R. (1988). Prepivoting test statistics: A bootstrap view of asymptotic refinements.

J. Amer. Statist. Assoc. 83 687–697. MR0963796
[7] DAVISON, A. C. and HINKLEY, D. V. (1997). Bootstrap Methods and Their Application. Cam-

bridge Univ. Press, Cambridge. MR1478673
[8] DUDOIT, S., GILBERT, H. and VAN DER LAAN, M. J. (2008). Resampling-based empirical

Bayes multiple testing procedures for controlling generalized tail probability and expected
value error rates: Focus on the false discovery rate and simulation study. Biom. J. 50 716–
744.

[9] DUDOIT, S., SHAFFER, J. P. and BOLDRICK, J. C. (2003). Multiple hypothesis testing in
microarray experiments. Statist. Sci. 18 71–103. MR1997066

[10] DUDOIT, S., VAN DER LAAN, M. J. and POLLARD, K. S. (2004). Multiple testing. I. Single-
step procedures for control of general type I error rates. Stat. Appl. Genet. Mol. Biol. 3
71. Available at http://www.bepress.com/sagmb/vol3/iss1/art13. MR2101462

[11] EFRON, B. and TIBSHIRANI, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall,
New York. MR1270903

[12] GENOVESE, C. R. and WASSERMAN, L. (2004). A stochastic process approach to false dis-
covery control. Ann. Statist. 32 1035–1061. MR2065197

[13] HALL, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York. MR1145237
[14] HALL, P. and WILSON, S. (1991). Two guidelines for bootstrap hypothesis testing. Biometrics

47 757–762. MR1132543
[15] HOLM, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6

65–70. MR0538597
[16] HOMMEL, G. and HOFFMAN, T. (1988). Controlled uncertainty. In Multiple Hyptheses Testing

(P. Bauer, G. Hommel and E. Sonnemann, eds.) 154–161. Springer, Heidelberg.
[17] KORN, E. L., TROENDLE, J. F., MCSHANE, L. M. and SIMON, R. (2004). Controlling the

number of false discoveries: Application to high-dimensional genomic data. J. Statist.
Plann. Inference 124 379–398. MR2080371

[18] LAHIRI, S. N. (2003). Resampling Methods for Dependent Data. Springer, New York.
MR2001447

[19] LEHMANN, E. L. and ROMANO, J. P. (2005). Generalizations of the family-wise error rate.
Ann. Statist. 33 1138–1154. MR2195631

http://www.ams.org/mathscinet-getitem?mr=1325392
http://www.ams.org/mathscinet-getitem?mr=2261438
http://www.ams.org/mathscinet-getitem?mr=1869245
http://www.ams.org/mathscinet-getitem?mr=0829560
http://www.ams.org/mathscinet-getitem?mr=0963795
http://www.ams.org/mathscinet-getitem?mr=0963796
http://www.ams.org/mathscinet-getitem?mr=1478673
http://www.ams.org/mathscinet-getitem?mr=1997066
http://www.bepress.com/sagmb/vol3/iss1/art13
http://www.ams.org/mathscinet-getitem?mr=2101462
http://www.ams.org/mathscinet-getitem?mr=1270903
http://www.ams.org/mathscinet-getitem?mr=2065197
http://www.ams.org/mathscinet-getitem?mr=1145237
http://www.ams.org/mathscinet-getitem?mr=1132543
http://www.ams.org/mathscinet-getitem?mr=0538597
http://www.ams.org/mathscinet-getitem?mr=2080371
http://www.ams.org/mathscinet-getitem?mr=2001447
http://www.ams.org/mathscinet-getitem?mr=2195631


632 J. P. ROMANO AND M. WOLF

[20] LEHMANN, E. L. and ROMANO, J. P. (2005). Testing Statistical Hypotheses, 3rd ed. Springer,
New York. MR2135927

[21] PERONE PACIFICO, M., GENOVESE, C. R., VERDINELLI, I. and WASSERMAN, L. (2004).
False discovery control for random fields. J. Amer. Statist. Assoc. 99 1002–1014.
MR2109490

[22] POLITIS, D. N., ROMANO, J. P. and WOLF, M. (1999). Subsampling. Springer, New York.
MR1707286

[23] POLLARD, K. S. and VAN DER LAAN, M. J. (2003). Multiple testing for gene expression
data: An investigation of null distributions with consequences for the permutation test. In
Proceedings of the 2003 International MultiConference in Computer Science and Engi-
neering, METMBS’03 Conference 3–9.

[24] ROGERS, J. and HSU, J. (2001). Multiple comparisons of biodiversity. Biom. J. 43 617–625.
MR1863493

[25] ROMANO, J. P. (1988). A bootstrap revival of some nonparametric distance tests. J. Amer.
Statist. Assoc. 83 698–708. MR0963797

[26] ROMANO, J. P. and SHAIKH, A. M. (2006). On step-down control of the false discovery pro-
portion. In 2nd Lehmann Symposium—Optimality (J. Rojo, ed.). Institute of Mathematical
Statistics Lecture Notes—Monograph Series. 49 33–50. Inst. Math. Statist., Beachwood,
OH. MR2337829

[27] ROMANO, J. P. and SHAIKH, A. M. (2006). Stepup procedures for control of generalizations
of the family-wise error rate. Ann. Statist. 34 1850–1873. MR2283720

[28] ROMANO, J. P., SHAIKH, A. M. and WOLF, M. (2008). Control of the false discovery rate
under dependence using the bootstrap and subsampling (with discussion). Test 17 417–
442. MR2470085

[29] ROMANO, J. P., SHAIKH, A. M. and WOLF, M. (2008). Formalized data snooping based on
generalized error rates. Econometric Theory 24 404–447. MR2422863

[30] ROMANO, J. P. and WOLF, M. (2005). Exact and approximate step-down methods for multiple
hypothesis testing. J. Amer. Statist. Assoc. 100 94–108. MR2156821

[31] ROMANO, J. P. and WOLF, M. (2007). Control of generalized error rates in multiple testing.
Ann. Statist. 35 1378–1408. MR2351090

[32] SARKAR, S. K. (2002). Some results on false discovery rate in stepwise multiple testing pro-
cedures. Ann. Statist. 30 239–257. MR1892663

[33] SHAO, J. and TU, D. (1995). The Jackknife and the Bootstrap. Springer, New York.
MR1351010

[34] SPJØTVOLL, E. (1972). On the optimality of some multiple comparison procedures. Ann. Math.
Statist. 43 398–411. MR0301871

[35] STOREY, J. D., TAYLOR, J. E. and SIEGMUND, D. (2004). Strong control, conservative point
estimation and simultaneous conservative consistency of false discovery rates: A unified
approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 187–205. MR2035766

[36] TROENDLE, J. F. (2000). Stepwise normal theory test procedures controlling the false discov-
ery rate. J. Statist. Plann. Inference 84 139–158. MR1747501

[37] TROENDLE, J. F. (2008). Comment on “Control of the false discovery rate under dependence
using the bootstrap and subsampling,” by J. Romano, A. Shaikh and M. Wolf. Test 17
456–457.

[38] TU, W. and ZHOU, X. (2000). Pairwise comparison of the means of skewed data. J. Statist.
Plann. Inference 88 59–74. MR1767559

[39] VAN DER LAAN, M. J., BIRKNER, M. D. and HUBBARD, A. E. (2005). Empirical Bayes and
resampling based multiple testing procedure controlling tail probability of the proportion
of false positives. Stat. Appl. Genet. Mol. Biol. 4 32. Available at http://www.bepress.com/
sagmb/vol4/iss1/art29/. MR2170445

http://www.ams.org/mathscinet-getitem?mr=2135927
http://www.ams.org/mathscinet-getitem?mr=2109490
http://www.ams.org/mathscinet-getitem?mr=1707286
http://www.ams.org/mathscinet-getitem?mr=1863493
http://www.ams.org/mathscinet-getitem?mr=0963797
http://www.ams.org/mathscinet-getitem?mr=2337829
http://www.ams.org/mathscinet-getitem?mr=2283720
http://www.ams.org/mathscinet-getitem?mr=2470085
http://www.ams.org/mathscinet-getitem?mr=2422863
http://www.ams.org/mathscinet-getitem?mr=2156821
http://www.ams.org/mathscinet-getitem?mr=2351090
http://www.ams.org/mathscinet-getitem?mr=1892663
http://www.ams.org/mathscinet-getitem?mr=1351010
http://www.ams.org/mathscinet-getitem?mr=0301871
http://www.ams.org/mathscinet-getitem?mr=2035766
http://www.ams.org/mathscinet-getitem?mr=1747501
http://www.ams.org/mathscinet-getitem?mr=1767559
http://www.bepress.com/sagmb/vol4/iss1/art29/
http://www.ams.org/mathscinet-getitem?mr=2170445
http://www.bepress.com/sagmb/vol4/iss1/art29/


BALANCED CONTROL 633

[40] VAN DER LAAN, M. J., DUDOIT, S. and POLLARD, K. S. (2004). Augmentation proce-
dures for control of the generalized family-wise error rate and tail probabilities for
the proportion of false positives. Stat. Appl. Genet. Mol. Biol. 3 27. Available at http:
//www.bepress.com/sagmb/vol3/iss1/art15/. MR2101464

[41] WESTFALL, P. H. and YOUNG, S. S. (1993). Resampling-Based Multiple Testing: Examples
and Methods for P-Value Adjustment. Wiley, New York.

[42] YEKUTIELI, D. and BENJAMINI, Y. (1999). Resampling-based false discovery rate controlling
multiple test procedures for correlated test statistics. J. Statist. Plann. Inference 82 171–
196. MR1736442

DEPARTMENTS OF ECONOMICS

AND STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305-4065
USA
E-MAIL: romano@stanford.edu

INSTITUTE FOR EMPIRICAL RESEARCH

IN ECONOMICS

UNIVERSITY OF ZURICH

CH-8006 ZURICH

SWITZERLAND

E-MAIL: mwolf@iew.uzh.ch

http://www.bepress.com/sagmb/vol3/iss1/art15/
http://www.ams.org/mathscinet-getitem?mr=2101464
http://www.ams.org/mathscinet-getitem?mr=1736442
mailto:romano@stanford.edu
mailto:mwolf@iew.uzh.ch
http://www.bepress.com/sagmb/vol3/iss1/art15/

	Introduction
	Overview and motivation
	Problem at hand
	Various error rates
	Single-step vs. stepwise methods
	Previous work and introduction of balance

	Balanced (generalized) simultaneous confidence regions
	Stepdown methods that control the k-FWER
	Asymptotic results on k-FWER control
	A bootstrap construction
	A general subsampling construction

	Planned imbalance and weighted control of k-FWER
	Control of average number of false rejections
	Asymptotic results on FDP control
	Simulation study
	Concluding remarks
	Appendix: Proofs and auxiliary results
	Acknowledgments
	References
	Author's Addresses

