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HIDING A DRIFT

BY MIKLÓS RÁSONYI1, WALTER SCHACHERMAYER2 AND

RICHARD WARNUNG2

Hungarian Academy of Sciences, University of Vienna and
Raiffeisen Capital Management

In this article we consider a Brownian motion with drift of the form

dSt = μt dt + dBt for t ≥ 0,

with a specific nontrivial (μt )t≥0, predictable with respect to FB , the nat-
ural filtration of the Brownian motion B = (Bt )t≥0. We construct a process
H = (Ht )t≥0, also predictable with respect to FB , such that ((H · S)t )t≥0 is
a Brownian motion in its own filtration. Furthermore, for any δ > 0, we re-
fine this construction such that the drift (μt )t≥0 only takes values in ]μ − δ,

μ + δ[, for fixed μ > 0.

1. Introduction. Let B = (Bt )t≥0 be a standard Brownian motion on a prob-
ability space (�, F ,P). For a fixed constant μ > 0, denote the Brownian motion
with drift μ as S = (St )t≥0, defined by

St = μt + Bt, t ≥ 0.(1.1)

Furthermore, let FB := (F B
t )t≥0 denote the right continuous, saturated filtration

generated by B . Given a predictable, FB -adapted process H = (Ht)t≥0, we con-
sider the stochastic integral (H ·S) = ((H ·S)t )t≥0 in its right continuous, saturated
filtration F(H ·S) := (F (H ·S)

t )t≥0. Marc Yor posed the following question:

Question 1: Can we define an FB -predictable process H such that the resulting sto-
chastic integral (H · S) is a Brownian motion (without drift) in its own filtration, that
is, an F(H ·S)-Brownian motion?

Clearly, the predictable integrand H can only take values in {−1,1},P ⊗ λ-a.s.,
λ denoting Lebesgue measure on [0,∞), in order to make sure that the process
(H · S) has the quadratic variation of a Brownian motion.
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In fact, at first glance it seems completely unlikely that an FB -predictable
process H with the required property does exist. Indeed, intuitively speaking, it
would have to start with P[H0 = 1] = P[H0 = −1] = 1/2, which seems absurd,
as H0 is required to be F B

0 -measurable and therefore P-a.s. constant (the sigma-
algebra F B

0 is trivial). Fortunately this intuitive argument is not quite correct, as the
predictable process H = (Ht )t≥0 is only defined modulo P ⊗ λ null-sets, so that it
does not really makes sense to speak about the random variable H0. Nevertheless,
the preceding heuristics seem to indicate that we need some random sign ε with
P[ε = 1] = P[ε = −1] = 1/2 which is independent of the Brownian motion B to
be able to start a successful construction of the desired integrand H = (Ht)t≥0 for
t close to t = 0.

So, let us cheat for a moment and fix a random variable ε, defined on (�, F ,P)

with P[ε = 1] = P[ε = −1] = 1/2, and consider the enlarged filtration FB,ε de-
fined by letting F B,ε

t = σ(F B
t , ε) for t ≥ 0.

Let us now try to construct an integrand H = (Ht)t≥0 which is predictable in the
enlarged filtration FB,ε and such that the stochastic integral (H · S) is a Brownian
motion (without drift) in its own filtration F(H ·S). We have an obvious way to start
the construction of H at time t = 0 by letting

H0 := ε,(1.2)

or rather, reasoning heuristically with infinitesimals,

Hu := ε for 0 ≤ u ≤ dt.

This yields an integrand (Hu)0≤u≤dt such that the stochastic integral (H ·S)0≤u≤dt

is a martingale for the infinitesimal time interval [0, dt]. Indeed,

E[d(H · S)0] = E[ε(Sdt − S0)] = E[ε(Bdt − B0) + εμdt] = 0dt.

But already an infinitesimal instant of time later we again are in trouble: after
having observed the process (H · S) during the infinitesimal time interval [0, dt],
we have learned something (which turns out to be of the order dt1/2) on the prob-
ability of ε equaling +1 or −1, conditionally on the process (H · S)0≤u≤dt .

Hence, the approach of defining Ht = H0 = ε for t ∈ [0,�t] for a finite incre-
ment �t > 0 yields a process (H · S)0≤t≤�t which fails to be a martingale in its
own filtration, as one easily verifies.

At this stage we remembered Pólya’s famous dictum:

“To every problem there is an easier problem.”

Instead of asking Yor’s original question for the process S with constant drift μ,
as in (1.1) we pose the same question, but with μ replaced by an appropriate pre-
dictable process (μt )t≥0, that is,

dSt = μt dt + dBt ,(1.3)
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where (μt )t≥0 is tailor-made such that, for the integrand Ht = ε, for t ≥ 0, we
indeed obtain a process (H · S)t≥0 which is a Brownian motion in its own fil-
tration F(H ·S). This program indeed turns out to be doable as summarized in the
subsequent statement.

PROPOSITION 1.1. Suppose that on (�, F ,P) there is a standard Brownian
motion B = (Bt )t≥0 and a random variable ε with P[ε = 1] = P[ε = −1] = 1/2,
independent of B . Denote by FB the filtration generated by B .

For each μ > 0, there is an FB -predictable process μt taking values in ]0,2μ[
such that defining S = (St )t≥0 by S0 = 0 and

dSt = μt dt + dBt , t ≥ 0,(1.4)

we have that

Yt = εSt , t ≥ 0,

is a Brownian motion in its own filtration.

The preceding result is a preliminary step toward a satisfactory answer to Yor’s
question. It has two deficiencies: first, we had to replace the constant μ by a process
(μt )t≥0 fluctuating in ]0,2μ[, and, second, we had to enlarge the filtration FB to
Fε,B in order to be able to define our predictable integrand Ht ≡ ε, for t ≥ 0.

As regards the second issue, we can get completely rid of the necessity of intro-
ducing the additional source of randomness ε by applying the Lévy transform; see
Section 3. We can indeed find an integrand H which is predictable with respect
to FB instead of Fε,B and still does the job. As regards the first issue, we can re-
fine the construction in such a way that the process (μt )t≥0 only takes values in
]μ − δ,μ + δ[ instead of ]0,2μ[, for given δ > 0.

We summarize our findings in the subsequent theorem. Very roughly speaking,
it states that the answer to Yor’s question is positive, provided that we allow for
a tailor-made drift process (μt )t≥0 instead of a constant drift μ, which may be
chosen to satisfy |μt − μ| < δ, for given δ > 0.

THEOREM 1.2. Let B = (Bt )t≥0 be a Brownian motion defined on the filtered
probability space (�, F ,FB,P), where FB = (F B

t )t≥0 is the right-continuous sat-
urated filtration generated by B:

(i) For each μ > 0, there are FB -predictable processes H = (Ht)t≥0, taking val-
ues in {−1,1}, and (μt )t≥0, taking values in ]0,2μ[, such that for S = (St )t≥0
defined by S0 = 0 and

dSt = μt dt + dBt

we have that the process ((H ·S)t )t≥0 is a Brownian motion in its own filtration
F(H ·S).
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(ii) Furthermore, for each δ > 0 we can choose (μt )t≥0 such that it only takes
values in ]μ − δ,μ + δ[.

However, Question 1 of M. Yor in its original form above still remains an open
and challenging problem. For recent work on the conservation of the martingale
property under a change of filtration, we refer to [1].

M. Émery asked us the following question: what about the discrete-time ver-
sion of the problem? The proper discrete analogue is an i.i.d. sequence (εn)n≤0
in its natural filtration (Fn)n≤0 such that P[εn = 1] = 1 − P[εn = −1] = p ∈
]0,1[\{1/2}. The question now reads as follows: is there an (Fn)n≤0-predictable
sequence (hn)n≤0 of {−1,1}-valued random variables such that the sequence
(hnεn)n≤0 is i.i.d. with P[hnεn = 1] = P[hnεn = −1] = 1/2?

This discrete version turns out to be simpler than the continuous one and we
shall give in the Appendix a positive solution, even in a slightly more general
setting.

The article is structured as follows: In Section 2 we describe the details of the
construction of (μt )t≥0 with respect to Fε,B . Next, in Section 3 we prove the first
part of Theorem 1.2 above. Finally, in Section 4 we use stopping techniques in
order to show the second statement of Theorem 1.2.

2. Constructing the drift process. Fix a probability space (�, F ,P ). Let B

be a Brownian motion and let ε be an independent random sign with P(ε = 1) =
P(ε = −1) = 1/2. Consider

St :=
∫ t

0
μs ds + Bt, t ≥ 0,(2.1)

with some bounded FB -predictable drift μt and set Yt := εSt . Our purpose is to
find μt such that Yt is a Brownian motion in its own filtration.

We imagine μt as being “glued together” from two FY -predictable processes.
Formally, let μ+

t ,μ−
t be FY -predictable bounded processes such that

μt := 1{ε=+1}μ+
t + 1{ε=−1}μ−

t .(2.2)

We wish to derive conditions on μ+
t ,μ−

t which ensure that Yt is as required. To
this end, introduce the conditional probabilities

pt := P [ε = 1|F Y
t ], t ≥ 0.(2.3)

In the language of filtering theory pt gives the distribution of the “signal” ε, con-
ditionally on the “observations” Y .

PROPOSITION 2.1. Let S and Y be as above and (μt )t≥0 a bounded FB -
predictable process of the form (2.2). The conditional probabilities pt defined in
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(2.3) satisfy p0 = 1/2 and

dpt = (μ+
t + μ−

t )2

2
[εpt (1 − pt) + pt(1 − pt)(1 − 2pt)]dt

(2.4)
+ εpt (1 − pt)(μ

+
t + μ−

t ) dBt .

PROOF. For each T > 0 there exists a measure QT ∼ P|F ε,B
T

such that
(Yt )0≤t≤T is a (QT ,Fε,B)-Brownian motion. By the Girsanov theorem, we know
that the Radon–Nikodym derivative is given by

dQT

dP
=

⎧⎪⎪⎨
⎪⎪⎩

exp
(
−

∫ T

0
μ+

t dBt − (1/2)

∫ T

0
(μ+

t )2 dt

)
, if ε = 1,

exp
(
−

∫ T

0
μ−

t dBt − (1/2)

∫ T

0
(μ−

t )2 dt

)
, if ε = −1.

(2.5)

It follows that, for each T > 0, the (QT ,Fε,B)-martingale Zt := dP
dQT

|F ε,B
t

,0 ≤
t ≤ T , is of the form

Zt = Z+
t 1{ε=1} + Z−

t 1{ε=−1}, 0 ≤ t ≤ T ,(2.6)

where the processes (Z+
t )0≤t≤T and (Z−

t )0≤t≤T are given by Z+
0 = Z−

0 = 1 and

dZ+
t = μ+

t Z+
t dYt ,

dZ−
t = −μ−

t Z−
t dYt ,

respectively. Note that μ+
t ,μ−

t are assumed to be FY -predictable and, thus,
(Z+

t )0≤t≤T and (Z−
t )0≤t≤T are FY -predictable, too. By the assumption on μt , Zt

is clearly FB -predictable.
We claim that, under QT , ε is independent of Y and has the same law as un-

der P. Indeed, as ZT is F B
T -measurable and ε is independent of B (and hence of

S) under P, for any bounded measurable functions h, j we have

EQT
[h(S)j (ε)] = EP[(1/ZT )h(S)]EP[j (ε)] = EQT

[h(S)]EQT
[j (ε)],

showing the QT -independence of S and ε as well as QT [ε = ±1] = 1/2.
Now note that, under QT , S is a Brownian motion. By symmetry of the Brown-

ian motion, we also get that Y = εS and ε are QT -independent as claimed above.
Clearly, we have 1{ε=1} = ε+1

2 . Thus, for calculating

EP

[
1{ε=1} | F Y

t

] = 1
2(EP[ε | F Y

t ] + 1), t ≥ 0,

we first calculate EP[ε | F Y
t ], t ≥ 0. Fix any T > 0 and consider that by Bayes’

formula and the tower law applied to the (QT ,Fε,B)-martingale ZT , it holds that

EP[ε | F Y
t ] = EQT

[εZT | F Y
t ]

EQT
[ZT | F Y

t ] = EQT
[εEQT

[ZT | F ε,B
t ] | F Y

t ]
EQT

[EQT
[ZT | F ε,B

t ] | F Y
t ]

= EQT
[εZt | F Y

t ]
EQT

[Zt | F Y
t ] , 0 ≤ t ≤ T .
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By independence of ε and Y (under QT ) and FY -adaptedness of (Z+
t )0≤t≤T and

(Z−
t )0≤t≤T , we get

EQT
[εZt | F Y

t ]
EQT

[Zt | F Y
t ] = EQT

[Z+
t 1{ε=1} | F Y

t ] − EQT
[Z−

t 1{ε=−1} | F Y
t ]

EQT
[Z+

t 1{ε=1} | F Y
t ] + EQT

[Z−
t 1{ε=−1} | F Y

t ] = Z+
t − Z−

t

Z+
t + Z−

t

=
[
exp

(∫ t

0
μ+

u dYu − 1

2

∫ t

0
(μ+

u )2 du

)

− exp
(
−

∫ t

0
μ−

u dYu − 1

2

∫ t

0
(μ−

u )2 du

)]

×
[
exp

(∫ t

0
μ+

u dYu − 1

2

∫ t

0
(μ+

u )2 du

)

+ exp
(
−

∫ t

0
μ−

u dYu − 1

2

∫ t

0
(μ−

u )2 du

)]−1

= exp(
∫ t

0 (μ+
u + μ−

u ) dYu − (1/2)
∫ t

0 [(μ+
u )2 − (μ−

u )2]du) − 1

exp(
∫ t

0 (μ+
u + μ−

u ) dYu − (1/2)
∫ t

0 [(μ+
u )2 − (μ−

u )2]du) + 1
,

0 ≤ t ≤ T .

So we have

EP

[
1{ε=1} | F Y

t

]
= 1

2

(
EQT

[εZt | F Y
t ]

EQT
[Zt | F Y

t ] + 1
)

(2.7)

= exp(
∫ t

0 (μ+
u + μ−

u ) dYu − (1/2)
∫ t

0 [(μ+
u )2 − (μ−

u )2]du)

exp(
∫ t

0 (μ+
u + μ−

u ) dYu − (1/2)
∫ t

0 [(μ+
u )2 − (μ−

u )2]du) + 1
,

for 0 ≤ t ≤ T . Define the process (Ut )t≥0 given by U0 = 0 and

dUt = (μ+
u + μ−

u ) dYt − (μ+
u )2 − (μ−

u )2

2
dt.

Applying the Itô formula to (2.7) and recalling the expression for (Yt )t≥0, we get

d
exp(Ut )

exp(Ut ) + 1
= exp(Ut )

(exp(Ut ) + 1)2

(
ε
(μ+

t + μ−
t )2

2
dt + ε(μ+

t + μ−
t ) dBt

)

+ 1

2

exp(Ut ) − exp(2Ut)

(exp(Ut ) + 1)3 (μ+
t + μ−

t )2 dt.

Using pt = exp(Ut )
exp(Ut )+1 , t ≥ 0, we get (2.4). �

We also have the following proposition.
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PROPOSITION 2.2. Under the assumptions of Proposition 2.1, suppose, in
addition, that for all u ≥ 0,

puμ
+
u − (1 − pu)μ

−
u = 0 a.s.,(2.8)

then the process Y is an FY -Brownian motion.

PROOF. Obviously (Yt )t≥0 is FY -adapted, continuous and has the right
quadratic variation as the drift is bounded. In order to fulfill Lévy’s characteri-
zation theorem of Brownian motion, we need to check the martingale condition.
Therefore, fix s ≤ t < ∞ and consider that

E[ε(St − Ss) | F Y
s ] = E

[∫ t

s
εμu du

∣∣∣ F Y
s

]
+ E[ε(Bt − Bs) | F Y

s ].
The second conditional expectation is 0. The martingale property is thus equivalent
to

E

[∫ t

s
εμu du1A

]
= 0,(2.9)

for all A ∈ F Y
s . Note that the Fubini theorem applies as |εμu1A| is bounded. Fur-

thermore, using the tower law, we get that (2.9) holds iff

E

[∫ t

s
εμu du1A

]
=

∫ t

s
E

[
E[εμu | F Y

u ]1A

]
du = 0,

for all A ∈ F Y
u . Recall that μ+

u and μ−
u are assumed to be F Y

u -measurable for
u ≥ 0. It follows from the hypotheses of this proposition that

E[εμu | F Y
u ] = puμ

+
u − (1 − pu)μ

−
u = 0,

concluding the proof. �

Formula (2.8) shows that it is reasonable to choose μ+
t proportional to (1 − pt)

and μ−
t proportional to pt . This will guarantee the validity of (2.8), as the next

proposition shows.

PROPOSITION 2.3. Let μ > 0 be an arbitrary constant. Let gt be a solution
of the equation

dgt = 2μ2[εgt (1 − gt ) + gt (1 − gt )(1 − 2gt )]dt + 2μεgt (1 − gt ) dBt ,
(2.10)

g0 = 1/2,

adapted to the filtration Fε,B and satisfying 0 ≤ gt ≤ 1 for t ≥ 0. Set

μ+
t = 2μ(1 − gt ), μ−

t = 2μgt , t ≥ 0,(2.11)

and define μt, St , Yt ,pt accordingly. If gt is FY -predictable and μt is FB -
predictable, then pt equals gt and Y is a Brownian motion in its own filtration.
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PROOF. First note that the coefficients of the autonomous SDE (2.10) are
Lipschitz-continuous and bounded when restricted to the interval [0,1], hence,
gt is the unique strong solution of (2.10) adapted to Fε,B . Thus, it suffices to prove
that pt is also a solution of (2.10). Obviously, p0 = P[ε = 1] = 1/2 = g0.

If gt is FY -predictable, then so are μ+
t ,μ−

t . Proposition 2.1 shows that pt is a
solution of (2.10), hence, indeed, pt = gt . With this choice of μ+

t ,μ−
t , equation

(2.8) is satisfied and Proposition 2.2 allows us to conclude. �

It remains to solve the stochastic differential equation (2.10).

PROOF OF PROPOSITION 1.1. In Section 4.2 of [4] a different filtering prob-
lem leads to almost the same equation as (2.10). That equation has an explicit
solution [see (4.55) on p. 180] from which it is easy to make the guess

gt :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(2μBt + 2μ2t)

1 + exp(2μBt + 2μ2t)
, if ε = 1,

1

1 + exp(2μBt + 2μ2t)
, if ε = −1.

(2.12)

Applying Itô’s formula, we may check that this indeed gives a (strong) solution to
(2.10) which trivially stays in (0,1). Define μ+

t ,μ−
t ,μt , St , Yt ,pt as in Proposi-

tion 2.3. One may check that

dgt = 2μgt(1 − gt ) dYt ,(2.13)

showing that gt is FY -predictable. We find that the dynamics of μt is

dμt = −μ2
t (2μ − μt) dt − μt(2μ − μt) dBt ,(2.14)

hence, μt is FB -predictable. For later use we note that, substituting in to (2.11),
we get the following formula for μt :

μt = 2μ

1 + exp(2μBt + 2μ2t)
.(2.15)

Proposition 2.3 now implies that pt = gt and Yt is indeed as required. �

3. Passing to the Lévy transform. In this section we describe how to get
rid of the enlargement of the filtration FB by the sign ε. We will make use of
the Lévy transform which arises naturally in the famous Tanaka formula for the
SDE of (|Bt |)t≥0 for some Brownian motion B (for the derivation of the Tanaka
formula, see, e.g., [3]).

Recall that the Lévy transform (M0
t )t≥0 of a Brownian motion (Bt )t≥0 is de-

fined by

M0
t =

∫ t

0
sign(Bs) dBs, t ≥ 0,(3.1)
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where we use the sign function in the following left-continuous form:

sign(x) = 1{x>0} − 1{x≤0} for x ∈ R.

Among the properties of the Lévy transform, we mention that (M0
t )t≥0 is a Brown-

ian motion in its own filtration and that the filtration generated by (M0
t )t≥0 equals

the one generated by (|Bt |)t≥0 which is strictly smaller than the filtration generated
by (Bt )t≥0.

PROOF OF (i) IN THEOREM 1.2. We come back to the setting of Section 2
and consider the filtered probability space (�, F ,Fε,B,P). Let us take μt, St as
constructed in the proof of Proposition 1.1. Introduce (Yt )t≥0 = (εSt )t≥0; this is a
Brownian motion in its own filtration, by Proposition 1.1.

Now consider the Lévy transform (Mt)t≥0 of the FY -Brownian motion Y =
(Yt )t≥0. It is defined by M0 = 0 and

dMt = sign(Yt ) dYt = sign(εSt )ε dSt
(3.2)

= sign(St ) dSt , t ≥ 0.

This is again a Brownian motion (in FY as well as in FM ) by the properties of
the Lévy-transform. It follows that, with the choice Ht = sign(St ), the process
(H · S)t , t ≥ 0 is a Brownian motion in its own filtration. �

4. L∞-approximation of a constant drift. The aim of this section is to show
that we can in fact define a process (St )t≥0 such that the drift is close to a constant
drift μ with respect to the norm in L∞. The strategy is that we stop whenever the
drift (μt )t≥0 has moved by some small fixed number. After that we will restart the
construction. A somewhat delicate point is that the stopping has to be done in a
way adapted to FM . Lemma 4.1 below shows that this is indeed possible.

The distance of the drift process μt from μ is proportional to the distance of pt

from one half. Namely, by (2.2) and (2.11),

|μt − μ| = |2μ(1 − pt) − μ|1{ε=1} + |2μpt − μ|1{ε=−1}
(4.1)

= 2μ
∣∣1

2 − pt

∣∣ for t ≥ 0.

In the following lemma we show that one can define a stopping time in the fil-
tration generated by the Lévy transform (Mt)t≥0 of the Brownian motion (Yt )t≥0,
that is, FM := (F M

t )t≥0, such that we have a control over the distance of p from
1/2.

LEMMA 4.1. Take pt ,μt , St , Yt as constructed in the proof of Proposition 1.1
in Section 2 and consider the Lévy transform M = (Mt)t≥0 of Y = (Yt )t≥0, defined
by M0 = 0 and

dMt = sign(Yt ) dYt .
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For each δ > 0 we define the stopping time ρδ := inf{t : |Mt | ≥ δ} ∧ δ. The follow-
ing estimate holds:∣∣∣∣pt − 1

2

∣∣∣∣ ≤ δ
(2μ + 3μ2)

2
for 0 ≤ t ≤ ρδ.(4.2)

PROOF. We present the proof in two steps.
Step 1: We show that |Yt | ≤ 2δ, for 0 ≤ t ≤ ρδ .
Let τ := inf{t : |Yt | ≥ 2δ} and let σ := max{t ≤ τ :Yt = 0}, that is, the time of

the last zero of Y preceding τ . We note in passing that τ is a stopping time in the
filtration FY , while σ fails to be a stopping time. Observe that by Tanaka’s formula
(see, for instance, [3])

Mt = |Yt | − Lt,

where L is the local time of Y at zero. By definition of σ, the local time L does
not grow on [σ, τ ] and, thus, a.s. Lσ = Lτ . For the process M this gives

|Mσ − Mτ | = 2δ,

so that sup0≤t≤τ |Mt | ≥ δ, which shows that a.s. ρδ ≤ τ , that is, |Yt | ≤ 2δ for 0 ≤
t ≤ ρδ .

Step 2: By straightforward calculation, |pt − (1/2)| = (1/2)| th(μ2t + μBt)|,
where th denotes the hyperbolic tangent. As | thx| ≤ |x|, dYt = εμt dt + ε dBt

and μt ∈]0,2μ[, we may write, for t ≤ ρδ ,∣∣∣∣pt − 1

2

∣∣∣∣ ≤ μ2 t

2
+ μ

|Bt |
2

≤ μ2 t

2
+ μ

|Yt |
2

+ μ

∣∣∣∣
∫ t

0
μs ds

∣∣∣∣/2 ≤ μ2 δ

2
+ μ

2δ

2
+ μ2δ,

using Step 1 and ρδ ≤ δ. �

Using the previous lemma, we can refine the construction by stopping and
restarting, when we are too far away from a constant drift, considering the in-
formation of FM only. Fix the constant μ > 0. For the goal of controlling the L∞
distance of μ and the drift process μt to be constructed, fix also a constant δ > 0.

The strategy is straightforward. We start at t = 0 using the drift (μ1
t )t≥0 which

is given by μ1
0 = μ and (2.14). Define the process S1 by S1

0 = 0,

dS1
t = μ1

t dt + dBt , t ≥ 0.

We perform the Lévy transform which results in a process (M1
t )t≥0. Introducing

the FM1
-stopping time

τ1 := inf{t > 0 : |M1
t | ≥ δ} ∧ δ,

we can assure by Lemma 4.1 and (4.1) that

|μ1
t − μ| ≤ δ(3μ3 + 2μ2) for 0 ≤ t ≤ τ1.(4.3)
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Then after τ1 we restart the construction by defining the drift (μ2
t )t≥τ1 where μ2

τ1
=

μ and (μ2
t )t≥τ1 fulfills (2.14). Set S2

τ1
= 0 and

dS2
t = μ2

t dt + dBt , t ≥ τ1.

Furthermore, we perform the Lévy transform resulting in (M2
t )t≥τ1 and we define

the stopping time

τ2 := inf{t > τ1 : |M2
t | ≥ δ} ∧ (δ + τ1).

By this construction, we have that the estimate (4.3) holds for (μ2
t )τ1≤t≤τ2 , and we

may continue the construction in the same fashion.
Now we proceed formally:
Set τ0 = 0 and define recursively for l ≥ 1 (S̃l

t )t≥0 by S̃l
0 = 0 and

dS̃l
t = μ̃l

t dt + dWl
t , t ≥ 0,

where the Brownian motion (W l
t )t≥0 is given by

Wl
t := Bτl−1+t − Bτl−1, t ≥ 0,

and the drift process (μ̃l
t )t≥0 is given by

μ̃l
t = 2μ

1 + exp(2μWl
t + 2μ2t)

(4.4)

[compare to (2.15)].
The integrand (H l

t )t≥0 is defined analogously to Section 3 by

Hl
t = sign(S̃l

t ), t ≥ 0,

and the stopping time γl is defined by

γl := inf{t : |(H l · S̃l)t | ≥ δ} ∧ δ.(4.5)

Then we set

τl = τl−1 + γl(4.6)

and go on with the recursive definition.
Finally, for l ≥ 1 we introduce the processes (Ñ l

t )t≥0 and (Nl
t )t≥0 by

Ñ l
t := (H l · S̃l)t , t ≥ 0,

and

Nl
t := Ñ l

t∧γl
, t ≥ 0.

Note that by the considerations of Sections 2 and 3 (Ñ l
t )t≥0 as well as its stopped

version (Nl
t )t≥0 are martingales in their own filtrations for l ≥ 1.
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REMARK 4.2. It is evident that (γl)l≥1 as well as {(W l
t )0≤t≤γl

}l≥1 are i.i.d. se-

quences. By σ(Nl
t , t ≥ 0) ⊆ F Wl

γl
, it holds that (Nl

t )l≥1 are independent (and iden-
tically distributed) processes and that F B

τl−1
is independent of (W l

t )t≥0 for l ≥ 1.

By these observations, it follows that F B
τl−1

is independent of (Nl
t )t≥0 for l ≥ 1.

We need to show that the union of the stochastic intervals
⋃

l≥1[[τl−1, τl]] equals
the whole real line.

LEMMA 4.3. Let (τl)
∞
l=0 be defined by τ0 = 0 and (4.6) for l ≥ 1. Then

P[τl → ∞, l → ∞] = 1.

PROOF. We already noticed in Remark 4.2 that the interval lengths τl −τl−1 =
γl are positive and identically distributed. A well-known result (see, e.g., [2],
Proposition 4.14) tells us that

lim
l→∞ τl =

∞∑
l=1

(τl − τl−1) = ∞

almost surely. �

The last step is to show that the process which is given by the concatenation of
the Lévy transforms Nl, l ≥ 1, on the respective stochastic intervals is a Brownian
motion in its own filtration. We want to apply Lévy’s criterion and first concentrate
on proving the martingale property. We need three lemmas:

LEMMA 4.4. Let (Gt)t≥0 be a martingale in its own filtration. Then(
G(t−x)+

)
t≥0

is also a martingale in its own filtration for each fixed number x ≥ 0.

PROOF. Obvious. �

LEMMA 4.5. Let η be an F B -stopping time and (Gt)t≥0 be a continuous
martingale in its own filtration such that F B

η ⊥⊥ (Gt)t≥0. Define the filtration Ft :=
F B

η ∨ Gt , where Gt := σ(G(u−η)+,0 ≤ u ≤ t), then (G(t−η)+)t≥0 is a martingale
w.r.t. (Ft )t≥0.

PROOF. We want to show that

E
[
G(t−η)+ | F B

η ∨ σ
(
G(u−η)+,0 ≤ u ≤ s

)] = G(s−η)+ .

Note that

F B
η ∨ σ

(
G(u−η)+,0 ≤ u ≤ s

) ⊆ F B
η ∨ σ

(
G(u−·)+,0 ≤ u ≤ s

)
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and consider an event in the latter sigma-algebra given by

A := {B(· ∧ η) ∈ C,L(·) ∈ D},
with Borel sets C,D of C[0,∞) where C[0,∞) is the space of continuous func-
tions on [0,∞) equipped with the topology of uniform convergence on compacts.
We regard B(· ∧ η) as a random function

B(· ∧ η) :� → C[0,∞),

and

L(·) := G(u1−·)+ :� → C[0,∞)

for some 0 ≤ u1 ≤ s. Furthermore, we define the random functions

H1(·) := G(t−·)+ :� → C[0,∞) and

H2(·) := G(s−·)+ :� → C[0,∞).

Now consider that the law ν of (H1,H2,B(· ∧ η),L,η) on the space


 := (C[0,∞))4 × (R+ ∪ {∞})
can be decomposed as

dν(x1, x2, x3, x4, x5) = dν(x1, x2, x4 | x3, x5) dμ(x3, x5),

where μ is the law of (B(· ∧ η), η) and ν(·, ·, · | x3, x5) is the conditional law
of (H1,H2,L) knowing B(· ∧ η) = x3 and η = x5. The martingale property of
G(t−x)+ for each x ≥ 0 (Lemma 4.4) implies∫



x1(x)1D(x4(x)) dϑ(x1, x2, x4) =

∫



x2(x)1D(x4(x)) dϑ(x1, x2, x4),(4.7)

for each x ≥ 0 where ϑ is the (unconditional) law of (H1,H2,L).
Furthermore, the hypotheses of the lemma entail the independence of H1,H2,L

from B(· ∧ η) and η, so it follows that ν(x1, x2, x4 | x3, x5) does not depend on
(x3, x5) and, thus,

dν(x1, x2, x4 | x3, x5) = dϑ(x1, x2, x4).(4.8)

By the decomposition of ν and (4.8), we can write

E
[
G(t−η)+1A

] =
∫



x1(x5)1C(x3)1D(x4(x5)) dν(x1, x2, x3, x4, x5)

=
∫



x1(x5)1D(x4(x5)) dϑ(x1, x2, x4)1C(x3) dμ(x3, x5),

which by (4.7) equals∫



x2(x5)1D(x4(x5)) dϑ(x1, x2, x4)1C(x3) dμ(x3, x5) = E
[
G(s−η)+1A

]
.
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For more general sets A of the form

A := {
B(· ∧ η) ∈ C,G(u1−η)+ ∈ D1, . . . ,G(un−η)+ ∈ Dn

}
,

the equality

E
[
G(t−η)+1A

] = E
[
G(s−η)+1A

]
holds by the same argument, which proves the lemma. �

LEMMA 4.6. Let X be a random variable, G and H be sigma-algebras in a
probability space (�, F ,P). If G ⊥⊥ H and X ⊥⊥ H, then

E[X | G ∨ H] = E[X | G].
PROOF. Obvious. �

Finally define the process (St )t≥0 using S̃l, l ≥ 1, and (Ht)t≥0 using Hl, l ≥ 1:

St :=
l−1∑
j=1

S̃j
γj

+ S̃l
t−τl−1

for τl−1 ≤ t ≤ τl,

thus, the drift (μt )t≥0 of (St )t≥0 is given by

μt := μ̃l
t−τl−1

for τl−1 ≤ t ≤ τl,(4.9)

and the integrand is defined as

Ht := Hl
t−τl−1

for τl−1 ≤ t ≤ τl.

We obviously have

St =
∫ t

0
μs ds + Bt .

Then the stochastic integral (Mt)t≥0 is defined by

Mt := (H ·S)t =
k−1∑
l=1

(H l · S̃l)γl
+ (Hk · S̃k)t−τk−1 for τk−1 ≤ t ≤ τk.(4.10)

Note that, by construction, St and Mt are continuous processes.

PROPOSITION 4.7. The process (Mt)t≥0 as defined in (4.10) satisfies

Mt =
∞∑
l=1

Nl
(t−τl−1)

+,(4.11)

where the sum converges in L2. (Mt)t≥0 is a martingale in its own filtration. That
is, for 0 ≤ s < t < ∞,

E[Mt |F M
s ] = Ms.
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PROOF. First we show that the sum on the right-hand side of (4.11) converges
in L2. Note that

k∑
l=1

Nl
(t−τl−1)

+

=
∫ τ1∧t

0
sign(S̃1

s−τ0
)μ̃1

s−τ0
ds + · · · +

∫ τk∧t

τk−1∧t
sign(S̃k

s−τk−1
)μ̃k

s−τk−1
ds

+
∫ τ1∧t

0
sign(S̃1

s−τ0
) dBs + · · · +

∫ τk∧t

τk−1∧t
sign(S̃k

s−τk−1
) dBs

=
∫ τk∧t

0
Hsμs ds +

∫ τk∧t

0
Hs dBs,

which by Lemma 4.3 a.s. converges to

Mt =
∫ t

0
Hsμs ds +

∫ t

0
Hs dBs as k → ∞.(4.12)

Furthermore, we know from Proposition 2.3 that

|Htμt | ≤ 2μ for t ≥ 0.

By the Doob inequality and the Itô isometry, we get

E

[
sup

0≤u≤t

∣∣∣∣
∫ u

0
Hs dBs

∣∣∣∣
2]

≤ 4E

[(∫ t

0
Hs dBs

)2]
= 4t,

as |Hs | = 1. The L2 convergence of the infinite sum follows.
Now we prove that (Mt)t≥0 is a martingale in its own filtration. Define the

filtrations (Gl
t )t≥0 for l ≥ 1 by

Gl
t := σ

(
Nl

(u−τl−1)
+,0 ≤ u ≤ t

)
,

and consider that

E[Mt | F M
s ] = E

[ ∞∑
l=1

E

[
Nl

(t−τl−1)
+

∣∣∣ ∞∨
j=1

Gj
s

] ∣∣∣ F M
s

]
,(4.13)

where L2-convergence allows us to exchange summation and expectation and we
used that F M

s ⊆ ∨∞
j=1 Gj

s for s ≥ 0. Furthermore, notice that

∞∨
j=1

Gj
s ⊆

l∨
j=1

Gj
s ∨ σ(Nl+1,Nl+2, . . .).

To see this, note that for m ≥ l + 1 we have that Gm
s ⊆ σ(Nm, τm−1 ∧ s) and that,

by definition, σ(τm−1 ∧ s) ⊆ σ(Nm−1, τm−2 ∧ s). Continuing this inductively, we
get Gm

s ⊆ σ(Nm, . . . ,Nl+1, τl ∧ s) and finally, σ(τl ∧ s) ⊆ Gl
s .
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Thus, define Hl
s := ∨l

j=1 Gj
s ∨ σ(Nl+1,Nl+2, . . .) and recall that

∨l
j=1 Gj

s ⊆
F B

τl∧s which is independent of Nk, k ≥ l + 1; recall Remark 4.2. By Lemma 4.6
and the tower law, the inner conditional expectation in (4.13) is given by

E

[
E

[
Nl

(t−τl−1)
+ | Hl

s

] ∣∣∣ ∞∨
j=1

Gj
s

]
= E

[
E

[
Nl

(t−τl−1)
+

∣∣∣ l∨
j=1

Gj
s

] ∣∣∣∣
∞∨

j=1

Gj
s

]

= E

[
Nl

(t−τl−1)
+

∣∣∣ l∨
j=1

Gj
s

]
.

Note that
∨l

j=1 Gj
s ⊆ F l

s := F B
τl−1

∨ Gl
s . By applying Lemma 4.5 with (Gt)t≥0 =

(Nl
t )t≥0, we get that

E

[
Nl

(t−τl−1)
+

∣∣∣ l∨
j=1

Gj
s

]
= Nl

(s−τl−1)
+ .

Substituting these results into (4.13) and using the representation (4.11) for Ms ,
we get that

E[Mt | F M
s ] = E

[ ∞∑
l=1

Nl
(s−τl−1)

+
∣∣∣ F M

s

]
= E[Ms | F M

s ] = Ms. �

PROOF OF (ii) IN THEOREM 1.2. By construction and by Proposition 4.7,
(Mt)t≥0 is a continuous martingale and its bracket is 〈M〉t = t by (4.12) and by
|Hs | = 1, s ≥ 0, hence, (Mt)t≥0 is a Brownian motion (in its own filtration).

For (μt )t≥0, the drift of S, we conclude that, due to (4.1), Lemma 4.1, (4.5), (4.9)
and Lemma 4.3,

sup
t≥0

|μt − μ| ≤ δ(3μ3 + 2μ2) a.s.,(4.14)

which can be made arbitrarily small. �

APPENDIX: MICHEL ÉMERY’S QUESTION

We now take up again the question discussed at the end of the introduction. We
adopt the notation from there but assume, slightly more generally, that the inde-
pendent sequence (εn)n≤0 of {−1,1}-valued random variables fulfill the condition

P[εn = 1] = 1 − P[εn = 1] = pn, n ≤ 0,

for some sequence (pn)n≤0 in ]0,1[ satisfying

0∑
n=−∞

min(pn,1 − pn) = ∞.(A.1)
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In the sequel we call {−1,1}-valued random variables Bernoulli variables and
let N− denote the integers less than or equal to zero.

The role of the regularity condition (A.1) is explained in the following lemma.

LEMMA A.1. The law of the {−1,1}N− -valued random variable (εn)n≤0 is
diffuse iff (A.1) holds true.

PROOF. First assume that there exists an atom A = (a0, a−1, . . .) with P[A] >

0, then
∏−∞

n=0 p
(1+an)/2
n (1 − pn)

(1−an)/2 > 0 which is equivalent to

0∑
n=−∞

(
1 − p(1+an)/2

n (1 − pn)
(1−an)/2) =

0∑
n=−∞

(
(1 − pn)

(1+an)/2p(1−an)/2
n

)
< ∞,

which implies that the sum in (A.1) is finite. On the other hand, if the sum in (A.1)
is finite, this is equivalent to

∏−∞
n=0 p

(1−an)/2
n (1 − pn)

(1+an)/2 > 0 for a sequence
(an)n≤0 such that

p(1+an)/2
n (1 − pn)

(1−an)/2 = min(pn,1 − pn) for n ≤ 0,

and we find A = (a0, a−1, . . .) with P[A] > 0. �

We call a {−1,1}-valued random variable X symmetric Bernoulli if

P[X = 1] = P[X = −1] = 1
2 .

LEMMA A.2. Let (εn)n≤0 be a sequence of Bernoulli random variables,
and (hn)n≤0 an i.i.d. sequence of symmetric Bernoulli variables independent of
(εn)n≤0. Then:

(a) (hnεn)n≤0 is an i.i.d. sequence of symmetric Bernoulli random variables
and

(b)

law[(εn)n≤0|(hnεn)n≤0] = law[(εn)n≤0] a.s.

PROOF. Fix N ≥ 1 and consider signs x1, . . . , xN as well as indices i1, . . . , iN .
Then by independence of (hn)n≤0 and (εn)n≤0 combined with the i.i.d. property,
we get

P[hi1εi1 = x1, . . . , hiN εiN = xN ]
= ∑

y1,...,yn

P[hi1 = x1/y1, . . . , hiN = xN/yN ]P[εi1 = y1, . . . , εiN = yN ]

=
(

1

2

)N ∑
y1,...,yn

P[εi1 = y1, . . . , εiN = yN ] =
(

1

2

)N

,
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which proves (a). For proving (b), we fix again N,M ≥ 1 and consider signs
x1, . . . , xN and y1, . . . , yN as well as indices i1, . . . , iN such that P[hi1εi1 =
x1, . . . , hiN εiN = xN ] > 0. By independence of (hn)n≤0 and (εn)n≤0 and the pre-
vious argument, we can calculate that

P[εi1 = y1, . . . , εiN = yN | hi1εi1 = x1, . . . , hiN εiN = xN ]
= P[εi1 = y1, . . . , εiN = yN,hi1εi1 = x1, . . . , hiN εiN = xN ]

P[hi1εi1 = x1, . . . , hiN εiN = xN ]
= (1/2)N

P[εi1 = y1, . . . , εiN = yN ]
(1/2)N

= P[εi1 = y1, . . . , εiN = yN ],
which proves (b). �

Assuming (A.1), we can find disjoint, infinite subsets (In)n≤0 of N− such that
i > n, for all i ∈ In, and ∑

i∈In

min(pi,1 − pi) = ∞.(A.2)

For these sets we define the following infinite sequence (I (l))∞l=0 of subsets of N−
by

I (0) := I0,

I (1) = ⋃
n∈I (0)

In,

(A.3)
I (2) = ⋃

n∈I (1)

In,

... etc.

Additionally to the sequence (I (l))∞l=0 from (A.3), we furthermore introduce

J = N−
∖(

{0} ∪
∞⋃
l=0

I (l)

)
.

In the following lemma we summarize three properties of these sets.

LEMMA A.3. For the sequence (I (l))∞l=0 defined in (A.3) we have the follow-
ing:

(a) I (l) ⊂ {. . . ,−l − 2,−l − 1} for l ≥ 0.
(b) The sets (I (l))∞l=0 are mutually disjoint.
(c) For each m ∈ J we have Im ⊂ J .
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PROOF. Proof of (a): We prove the statement by induction. 0 /∈ I (0) by con-
struction. Thus, assume that the statement holds for I (0), . . . , I (n). For I (n+1) con-
sider that

I (n+1) = ⋃
x∈I (n)

Ix,

and by the induction hypothesis x ≤ −n − 1 for x ∈ I (n). But then also y ≤ x − 1,

for all y ∈ Ix , thus, it follows that y ≤ −n − 2 and Ix ⊂ {. . . ,−n − 3,−n − 2} for
each x ∈ I (n), which proves (a).

Proof of (b): Again by induction, let us assume that I (0), . . . , I (n) are pairwise
disjoint. We want to prove that I (0), . . . , I (n+1) are also pairwise disjoint. Take
m ∈ I (n+1) = ⋃

x∈I (n) Ix . If we had m ∈ I (j) for some 1 ≤ j ≤ n, then m ∈ Iy for
some y ∈ I (j−1) and also m ∈ Iw for some w ∈ I (n). But as the Ii, i ∈ N− are
disjoint, this implies y = w so that I (n) ∩ I (j−1) �= ∅, which is a contradiction.
Finally, if m ∈ I (0), then w = 0, but 0 /∈ I (i) for i ≥ 1 by (a).

Proof of (c): Let m ∈ J and x ∈ Im. Let I (−1) := {0}. Assume that there is a
k ≥ 0 such that x ∈ I (k); this implies that there is y ∈ I (k−1) such that x ∈ Iy . Then
m = y and m ∈ I (k−1), which is a contradiction. �

We now can prove a positive answer for M. Émery’s question.

THEOREM A.4. Let (εn)n≤0 be a sequence of independent {−1,1}-valued
random variables such that

0∑
n=−∞

min(P[εn = 1],P[εn = −1]) = ∞.(A.4)

Then there is a predictable process (hn)n≤0 of {−1,1}-valued random variables,
such that (hnεn)n≤0 is an i.i.d. sequence of symmetric Bernoulli random variables.

PROOF. Consider the disjoint, infinite subsets (In)n≤0 of N− verifying (A.2).
By Lemma A.1, we may find Borel-functions

fn : {−1,1}N− → {−1,1},
such that

hn = fn((εi)i∈In)(A.5)

satisfies

P[hn = 1] = P[hn = −1] = 1
2 .

We claim that these (hn)n≤0 do the job.
For this aim we show that

P[h0ε0 = 1|(hnεn)n≤−1] a.s.= P[h0ε0 = −1|(hnεn)n≤−1] a.s.= 1/2.(A.6)
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To see the dependence structure of the (hn)n∈N− , note that by (A.5) for n ≥ 0
the {−1,1}N− -valued random variable (hi)i∈I (n) does depend on (εi)i∈I (n+1) but it
is independent of (εi)i∈I (n) as I (n) ∩ I (n+1) = ∅, by Lemma A.3(b).

The (hi)i∈I0 are an i.i.d. sequence of symmetric Bernoulli random variables
independent of (εi)i∈I0 and (εi)i∈J, hence, by Lemma A.2(b),

law[(εi)i∈I0 | (hiεi)i∈I0, (εi)i∈J ] a.s.= law[(εi)i∈I0].(A.7)

It follows that

P[h0 = 1 | (hiεi)i∈I0, (εi)i∈J ] a.s.= P[f0((εi)i∈I0) = 1 | (hiεi)i∈I0, (εi)i∈J ]
(A.8)

a.s.= P[f0((εi)i∈I0) = 1] = 1
2 .

Similarly, we get for (hi)i∈I0 = (fi(εn, n ∈ Ii))i∈I0 that

law[(hi)i∈I0 | (hiεi)i∈I (1) , (εi)i∈J ] is a.s. i.i.d. symmetric Bernoulli.(A.9)

Now we claim that

law[h0 | (hiεi)i∈I0∪I (1) , (εi)i∈J ] is a.s. symmetric Bernoulli.(A.10)

Indeed, fix finite index sets K ⊂ I0, L ⊂ I (1), M ⊂ J and signs (xi)i∈K as well
as (yi)i∈L, (zi)i∈M . Then

P[h0 = 1 | (hiεi)i∈K = (xi)i∈K, (hiεi)i∈L = (yi)i∈L, (εi)i∈M = (zi)i∈M ]
= P[h0 = 1, (hiεi)i∈K = (xi)i∈K | (hiεi)i∈L = (yi)i∈L, (εi)i∈M = (zi)i∈M ]

P[(hiεi)i∈K = (xi)i∈K | (hiεi)i∈L = (yi)i∈L, (εi)i∈M = (zi)i∈M ] .

For the denominator consider that by (A.9) together with independence of (εi)i∈I0

from (εi)i∈I (1)∪I (2)∪J and by Lemma A.2(a),

P[(hiεi)i∈K = (xi)i∈K | (hiεi)i∈L = (yi)i∈L, (εi)i∈M = (zi)i∈M ] = 2−|K|.
By (A.8) and (A.9), we get for the numerator

P[h0 = 1, (hiεi)i∈K = (xi)i∈K | (hiεi)i∈L = (yi)i∈L, (εi)i∈M = (zi)i∈M ]
= P[h0 = 1, (hiεi)i∈K = (xi)i∈K ] = 1

22−|K|,
and (A.10) follows as the same conclusion passes to infinite index sets.

Continuing analogously, we get by induction that

law[h0 | (hiεi)i∈⋃∞
l=0 I (l) , (εi)i∈J ] is a.s. symmetric Bernoulli,

which gives the claim (A.6) since σ(hnεn, n ≤ −1) is contained in σ(εnhn,n ∈⋃∞
l=0 I (l), εn, n ∈ J ) by Lemma A.3(c).
Analogous arguments show that

P[hiεi = 1 | (hnεn)n≤i−1] a.s.= P[hiεi = −1 | (hnεn)n≤i−1] a.s.= 1/2,

for any i ≤ −1, which proves the theorem. �
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