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MULTIVARIATE NORMAL APPROXIMATION WITH STEIN’S
METHOD OF EXCHANGEABLE PAIRS UNDER A GENERAL

LINEARITY CONDITION

BY GESINE REINERT1 AND ADRIAN RÖLLIN2

University of Oxford and National University of Singapore

In this paper we establish a multivariate exchangeable pairs approach
within the framework of Stein’s method to assess distributional distances to
potentially singular multivariate normal distributions. By extending the statis-
tics into a higher-dimensional space, we also propose an embedding method
which allows for a normal approximation even when the corresponding sta-
tistics of interest do not lend themselves easily to Stein’s exchangeable pairs
approach. To illustrate the method, we provide the examples of runs on the
line as well as double-indexed permutation statistics.

1. Introduction. Stein’s method was first published in Stein (1972) to assess
the distance between univariate random variables and the normal distribution. This
method has proved particularly powerful in the presence of both local dependence
and weak global dependence.

A coupling at the heart of Stein’s method for univariate normal approximation is
the method of exchangeable pairs; see Stein (1986). Assume that W is a univariate
random variable with EW = 0 and EW 2 = 1, and assume that W ′ is a random
variable such that (W,W ′) makes an exchangeable pair. Assume further that there
is a number λ > 0 such that the conditional expectation of W ′ − W with respect
to W satisfies

E
W(W ′ − W) = −λW.(1.1)

Heuristically, (1.1) can be understood as a linear regression condition. If (W,W ′)
were bivariate normal with correlation ρ, then

E
WW ′ = ρW,

and (1.1) would be satisfied with λ = 1 − ρ. If W was close to normal, then so
would be W ′, and it would not be unreasonable to assume that (1.1) is close to
being satisfied.
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In this spirit, the univariate theorem of Stein (1986) has been extended by
Rinott and Rotar (1997). With the same basic setup as in Stein (1986), they gen-
eralize (1.1) by assuming that there is a number λ > 0 and a random variable
R = R(W) such that

E
W(W ′ − W) = −λW + R.(1.2)

Note that, unlike condition (1.1), this is not a condition in the strict sense, as we
can define R := E

W(W ′ −W)+λW for any λ; however, we always have ER = 0.
One of the results of Rinott and Rotar (1997) is that

sup
x

|P[W ≤ x] − P[Z ≤ x]|
(1.3)

≤ 6

λ

√
Var EW(W ′ − W)2 + 6

λ1/2

√
E|W ′ − W |3 + 19

λ

√
VarR,

where Z has standard normal distribution. So clearly, representation (1.2) is useful
only if λ−1

√
VarR = o(1). In this case, if λ1 and λ2 stem from two different rep-

resentations (1.2) for which λ−1
i

√
VarRi = o(1) for i = 1,2, then it it easy to see

that |λ1 − λ2|/(λ1 + λ2) = o(1); in this sense, λ is asymptotically unique. Rinott
and Rotar (1997) then apply bound (1.3) to the number of ones in the anti-voter
model, and to weighted U -statistics. Röllin (2008) provides a proof of a variant
of (1.3) which does not use exchangeability but only L (W ′) = L (W).

Stein’s method has been extended to many other distributions; for an overview,
see, for example, Reinert (2005). For multivariate normal approximations the
method was first adapted by Barbour (1990) and Götze (1991), viewing the nor-
mal distribution as the stationary distribution of an Ornstein–Uhlenbeck diffusion,
and using the generator of this diffusion as a characterizing operator for the normal
distribution. Subsequent authors have used this generator approach for multivariate
normal approximation with different variants, such as the local approach and the
size-biasing approach by Goldstein and Rinott (1996) and Rinott and Rotar (1996),
and the zero-biasing approach by Goldstein and Reinert (2005).

The exchangeable pair approach, in contrast, while having proved useful in non-
normal contexts [see Chatterjee, Diaconis and Meckes (2005), Chatterjee, Fulman
and Röllin (2006) and Röllin (2007)] remained restricted to the one-dimensional
setting until very recently. A main stumbling block was that the extension of con-
dition (1.2) to the multivariate setting is not obvious from the viewpoint of Stein’s
method.

In Chatterjee and Meckes (2008), this issue was finally addressed. They propose
the condition that, for all i = 1, . . . , d ,

E
W(W ′

i − Wi) = −λWi,(1.4)

for a fixed number λ, where now W = (W1, . . . ,Wd) and W ′ = (W ′
1, . . . ,W

′
d) are

identically distributed d-vectors with uncorrelated components (an extension to the
additional remainder term R was not considered, but would be straightforward).
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They employ such couplings to bound the distance to the standard multivariate
normal distribution. Using the same argument as Röllin (2008), Chatterjee and
Meckes (2008) are able to give proofs of their theorems without using exchange-
ability and apply them successfully to various multivariate applications.

Applying a similar heuristic as for (1.1), however, if (W,W ′) were jointly nor-
mal, with mean vector 0 and covariance matrix

�0 =
(

� �̃

�̃ �

)
,(1.5)

then E
WW ′ = �̃�−1W [see, e.g., Mardia, Kent and Bibby (1979), page 63, The-

orem 3.2.4], in which case

E
W(W ′ − W) = −(Id−�̃�−1)W ;(1.6)

here Id denotes the identity matrix. Again, if (W,W ′) is approximately jointly
normal, then we expect (1.6) to be approximately satisfied. This heuristic leads to
the condition that

E
W(W ′ − W) = −�W + R(1.7)

for an invertible d ×d matrix � and a remainder term R = R(W). For R = 0, even
if � = Id, we would obtain � = Id−�̃, which in general is not diagonal. Hence,
we argue that (1.7) is not only more general, but also more natural than (1.4).

Different exchangeable pairs will lead to different � and R in (1.7); our embed-
ding method suggests suitable decompositions. Indeed, for a specific exchangeable
pair (W,W ′) at hand, it is often far from obvious whether this pair will satisfy the
linearity condition (1.7) with R of the required small order, unless equal to zero.
Consider the case of 2-runs. For a sequence of i.i.d. Bernoulli distributed random
variables ξ1, . . . , ξn such that P[ξ1 = 1] = p, define the centered number of 2-runs

V2 =
n∑

i=1

ξiξi+1 − np2,

where we let ξn+1 := ξ1. The most natural construction of an exchangeable pair in
the spirit of Stein (1986) is to pick uniformly a ξi and replace it by an independent
copy ξ ′

i . Denote by V ′
2 the resulting number of 2-runs in the new sequence. It is

easy to calculate (see Section 4.2) that

E
V2(V ′

2 − V2) = −2

n
V2 + 2p

n
E

V2

n∑
i=1

(ξi − p).(1.8)

The conditional expectation on the right-hand side of (1.8) is hard to calculate.
Furthermore, it has the same order of magnitude as V2. Also, the weighted U -
statistics approach of Rinott and Rotar (1997) (Proposition 1.2) does not yield con-
vergent bounds to the normal distribution. We propose the following approach to
this problem. Keeping the above coupling, we define V1 :=∑n

i=1 ξi − np (and V ′
1
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accordingly) and consider the problem as a 2-dimensional problem W := (V1
V2

)
.

Equation (1.8) now yields E
W(V ′

2 −V2) = − 2
n
V2 + 2p

n
V1, and further calculations

reveal that E
W(V ′

1 − V1) = − 1
n
V1, so that now (1.7) holds with

� = 1

n

[
1 0

−2p 2

]

and R = 0. Using this embedding into a higher-dimensional setting, the problem
now fits into our framework and allows not only for a normal approximation of
the primary statistic, but for an approximation of the joint distribution of the pri-
mary and auxiliary statistics. For this embedding method, the generality of condi-
tion (1.7) is essential; see (4.1) later.

The rest of the article is organized as follows. In the next section we prove an
abstract nonsingular multivariate normal approximation theorem (Theorem 2.1)
for smooth test functions. The explicit bound on the distance to the normal distrib-
ution is given in terms of the conditional variance, the absolute third moments and
the variance of the remainder term. Proposition 2.8 gives the extension to singular
multivariate normal distributions, using Stein’s method and the triangle inequality.
To illustrate our results, we calculate the example of sums of i.i.d. variables.

Section 3 uses the abstract theorem to obtain a similar result for nonsmooth test
functions, such as indicators of convex sets. Adapting the approach by Rinott and
Rotar (1996) to general multivariate normal approximation, Corollary 3.1 displays
how the main terms involved in the error bounds for smooth test functions reappear
in the bounds for nonsmooth test functions.

Section 4 discusses the above mentioned embedding method and illustrates its
application with a detailed treatment of runs on the line. We also sketch the appli-
cation to double-indexed permutation statistics.

The generality of (1.7) comes at the extra cost that now exchangeability seems
almost inevitable. Indeed, in view of Röllin (2008), we were surprised that, in the
multivariate setting, the exchangeability condition cannot be removed as easily as
in the one-dimensional case. Therefore, the last section discusses the exchange-
ability condition, condition (1.7) and their implications.

Appendix A contains the proof of Corollary 3.1, and details of the runs example
are in Appendix B.

1.1. Notation. Random vectors in R
d are written in the form W = (W1,

W2, . . . ,Wd)t , where Wi are R-valued random variables for i = 1, . . . , d . If �

is a symmetric, nonnegative definite matrix, we denote by �1/2 the unique sym-
metric, nonnegative definite square root of �. Denote by Id the identity matrix,
usually of dimension d . Throughout this article, Z will denote a random vector
having standard multivariate normal distribution, also of dimension d .

For ease of presentation, we abbreviate the transpose of the inverse of a matrix
in the form �−t := (�−1)t .
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Stein’s method makes good use of Taylor expansions. For derivatives of smooth
functions h : R

d → R, we use the notation ∇ for the gradient operator. For the sake
of presentation, the partial derivatives are abbreviated as hi = ∂

∂xi
h, hi,j = ∂2

∂xi ∂xj
h

unless we would like to emphasise the dependence on the variables.
To derive uniform bounds, we shall employ the supremum norm, denoted by ‖·‖

for both functions and matrices. For a function h : Rd → R, we abbreviate |h|1 :=
supi ‖ ∂

∂xi
h‖, |h|2 := supi,j ‖ ∂2

∂xi ∂xj
h‖, and so on, if the corresponding derivatives

exist.

2. The distance to multivariate normal distribution in terms of smooth test
functions. First we derive a bound on the distance between a multivariate tar-
get distribution and a multivariate normal distribution with the same mean vector
(which is assumed to be 0 in the sequel), and with the same, positive definite co-
variance matrix. We start by considering smooth test functions.

THEOREM 2.1. Assume that (W,W ′) is an exchangeable pair of R
d -valued

random vectors such that

EW = 0, EWWt = �,(2.1)

with � ∈ R
d×d symmetric and positive definite. Suppose further that (1.7) is sat-

isfied for an invertible matrix � and a σ(W)-measurable random vector R. Then,
if Z has d-dimensional standard normal distribution, we have for every three times
differentiable function h,

|Eh(W) − Eh(�1/2Z)| ≤ |h|2
4

A + |h|3
12

B +
(
|h|1 + 1

2
d‖�‖1/2|h|2

)
C,(2.2)

where, with λ(i) :=∑d
m=1 |(�−1)m,i |,

A =
d∑

i,j=1

λ(i)
√

Var EW(W ′
i − Wi)(W

′
j − Wj),

B =
d∑

i,j,k=1

λ(i)
E|(W ′

i − Wi)(W
′
j − Wj)(W

′
k − Wk)|,

C =
d∑

i=1

λ(i)
√

VarRi.

Before we proceed with the proof, we illustrate Theorem 2.1 by means of the
simple example of sums of i.i.d. random variables and make some further remarks.

COROLLARY 2.2. Suppose that W = (W1, . . . ,Wd) is such that, for each i,
Wi =∑n

j=1 Xi,j , where Xi,j , i = 1, . . . , d, j = 1, . . . , n, are i.i.d. with mean zero
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and variance 1
n

, so that the covariance matrix � = Id. Assume further that there
exist 0 < β,γ < ∞ such that

E|Xi,j |3 = βn−3/2 and Var(X2
i,j ) = γ n−2.

Then, for every three times differentiable function h,

|Eh(W) − Eh(Z)| ≤ d√
n

(√
γ

4
|h|2 + 2β

3
|h|3

)
.

PROOF. We construct an exchangeable pair by choosing a vector I and a sum-
mand J uniformly, such that P(I = i, J = j) = 1/(dn). If I = i, J = j , we re-
place Xi,j by an independent copy X′

i,j ; all other variables remain unchanged.
Put

W ′
I = WI − XI,J + X′

I,J

and W ′
k = Wk for k 
= I ; denote by W ′ the resulting d-vector. Then (W,W ′) is

exchangeable, and, in (1.7), � = 1
dn

Id with R = 0 and, hence, C = 0. For our
bounds we note that λ(i) = dn. We calculate that

E
W(W ′

i − Wi)
2 = 1

dn
+ 1

dn

∑
j

E
WX2

i,j .

Thus,

Var E
W(W ′

i − Wi)
2 ≤ 1

d2n2

∑
j

VarX2
ij ≤ γ

n3d2 .

Moreover, by the construction, for i 
= k, (W ′
i − Wi)(W

′
k − Wk) = 0, and (W ′

i −
Wi)(W

′
k − Wk)(W

′
l − Wl) = 0, unless i = k = l. By assumption,

E|W ′
i − Wi |3 = 1

dn

d∑
�=1

1(� = i)

n∑
j=1

E|Xi,j − X′
i,j |3 ≤ 8β

dn3/2 .

The result now follows directly from Theorem 2.1. �

REMARK 2.3. Multivariate normal approximations for vectors of sums of
i.i.d. random variables have been so intensively studied that there is not enough
space to review all the results. The approach most similar to ours is found in
Chatterjee and Meckes (2008), where instead of exchanging only one summand,
a whole vector would be exchanged. Their results yield

|Eh(W) − �h| ≤ d3/2√γ + 1

2
√

n
|h|1 + 4

d3β√
n

|h|2.
Due to the different Stein equation used, the dependence on the dimension differs,
and the bounds are in terms of different derivatives of the test function. The overall
similarity in this special case is apparent.
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REMARK 2.4. If we were to normalize the random vectors in Theorem 2.1,
denoting the normalization of W by Ŵ := �−1/2W and Ŵ ′ = �−1/2W ′, then,
the conditions of the theorem remain satisfied for (Ŵ , Ŵ ′) with �̂ = Id and �̂ =
�−1/2��1/2 as well as R̂ = �−1/2R.

REMARK 2.5. As a precursor to (1.7), in the context of multivariate zero-
biasing, Goldstein and Reinert (2005) use the condition of the form (1.7) for �

such that �i,j = ρ + 1(i = j).

After these remarks we proceed to the proof of Theorem 2.1, which is based on
the Stein characterization of the normal distribution that Y ∈ R

d is a multivariate
normal MVN(0,�) if and only if

E
{∇ t�∇f (Y ) − Y t∇f (Y )

}= 0 for all smoothf : Rd → R.(2.3)

We will need the following lemma to prove the theorem; however, see also
Remark 2.4, Barbour (1990), Goldstein and Rinott (1996) and Götze (1991). The
proof of Lemma 2.6 is routine.

LEMMA 2.6. Let h : Rd → R be differentiable with bounded first deriva-
tive. Then, if � ∈ R

d×d is symmetric and positive definite, there is a solution
f : Rd → R to the equation

∇ t�∇f (w) − wt∇f (w) = h(w) − Eh(�1/2Z),(2.4)

which holds for every w ∈ R
d . If, in addition, h is n times differentiable, there is a

solution f which is also n times differentiable and we have for every k = 1, . . . , n

the bound ∣∣∣∣ ∂kf (w)∏k
j=1 ∂wij

∣∣∣∣≤ 1

k

∣∣∣∣ ∂kh(w)∏k
j=1 ∂wij

∣∣∣∣(2.5)

for every w ∈ R
d .

REMARK 2.7. Compared to the main theorem of Chatterjee and Meckes
(2008), which only needs the existence of two derivatives, our Theorem 2.1 is more
restrictive in the choice of test functions h. This reflects the fact that we make use
of Lemma 2.6, which is motivated by Goldstein and Rinott (1996), whereas Chat-
terjee and Meckes (2008) prove new bounds on the solutions of (2.4), but only for
� = Id; see also Raič (2004) for similar results. The general result of Lemma 2.6,
however, allows us to work with the unstandardized pair (W,W ′), which not only
usually simplifies the calculations, but also yields more informative bounds if the
limiting covariance matrix is singular.
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PROOF OF THEOREM 2.1. Our aim is to bound |Eh(W) − Eh(�1/2Z)|
by bounding |E{∇ t�∇f (W) − Wt∇f (W)

}|, where f is the solution to the
Stein equation (2.4). First we expand EWt∇f (W). Define the real-valued, anti-
symmetric function

F(w′,w) := 1
2(w′ − w)t�−t (∇f (w′) + ∇f (w)

)
(2.6)

for w,w′ ∈ R
d , and note that, because of exchangeability, EF(W ′,W) = 0; see

Stein (1986). Thus,

0 = 1
2E
{
(W ′ − W)t�−t (∇f (W ′) + ∇f (W)

)}
= E{(W ′ − W)t�−t∇f (W)}

+ 1
2E
{
(W ′ − W)t�−t (∇f (W ′) − ∇f (W)

)}
(2.7)

= E{Rt�−t∇f (W)} − E{Wt∇f (W)}
+ 1

2E
{
(W ′ − W)t�−t (∇f (W ′) − ∇f (W)

)}
,

where we used (1.7) for the last step. Recalling the notation fi,j (x) = ∂2

∂xi ∂xj
f (x),

Taylor expansion gives

(w′ − w)t�−t (∇f (w′) − ∇f (w)
)

= ∑
m,i,j

(�−1)m,i(w
′
i − wi)(w

′
j − wj)fm,j (w)

+ ∑
m,i,j,k

(�−1)m,i(w
′
i − wi)(w

′
j − wj)(w

′
k − wk)R̃mjk,

where

|R̃mjk| ≤ 1

2

∥∥∥∥ ∂3f

∂wm ∂wj ∂wk

∥∥∥∥.(2.8)

Thus, in (2.7),

E
{
(W ′ − W)t�−t (∇f (W ′) − ∇f (W)

)}
= ∑

m,i,j

(�−1)m,iE{(W ′
i − Wi)(W

′
j − Wj)fm,j (W)}(2.9)

+ ∑
m,i,j,k

(�−1)m,iE{(W ′
i − Wi)(W

′
j − Wj)(W

′
k − Wk)R̃mjk}.

Now we turn our attention to E∇ t�∇f (W). Note that, because of (2.1), (1.7) and
exchangeability,

E(W ′ − W)(W ′ − W)t

= E{W(W − W ′)t } + E{W(W − W ′)t }(2.10)

= 2E{W(�W − R)t } = 2��t − 2E(WRt) =: T .
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Hence,

∇ t�∇f (w) = 1

2
∇ tT �−t∇f (w) + ∇ t

E(WRt)�−t∇f (w)

= 1

2

∑
m,i,j

(�−1)m,iTj,i

∂2f (w)

∂wm ∂wj

+ ∑
m,i,j

(�−1)m,iE(WjRi)
∂2f (w)

∂wm ∂wj

.

Combining this equation with (2.7) and (2.9),

|E{∇ t�∇f (W) − Wt∇f (W)}|

≤ 1

2

∣∣∣∣ ∑
m,i,j

E

{
(�−1)m,i[Tj,i − E

W(W ′
i − Wi)(W

′
j − Wj)] ∂2f (W)

∂wm ∂wj

}∣∣∣∣
+ 1

2

∣∣∣∣ ∑
m,i,j,k

E{(�−1)m,i(W
′
i − Wi)(W

′
j − Wj)(W

′
k − Wk)R̃mjk}

∣∣∣∣
(2.11)

+
∣∣∣∣∑
i,m

(�−1)m,iE

{
Ri

∂f (W)

∂wm

}∣∣∣∣+
∣∣∣∣ ∑
m,i,j

(�−1)m,iE(WjRi)E

{
∂2f (W)

∂wm ∂wj

}∣∣∣∣
≤ |h|2

4

∑
i,j

λ(i)
E|Tj,i − E

W(W ′
i − Wi)(W

′
j − Wj)| + |h|3

12
B

+ |h|1
∑
i

λ(i)
E|Ri | + |h|2

2

∑
i,j

λ(i)
E|WjRi |,

where we used (2.8) to obtain the second inequality, and Lemma 2.6 to obtain the

last inequality. From the Cauchy–Schwarz inequality, E|Rj | ≤
√

ER2
j and

E|WjRi | ≤
√

EW 2
j ER2

i ≤ ‖�‖1/2
√

ER2
i .

The C-expression in (2.2) now follows from the last two terms of (2.11). Recalling
that E(W ′ − W)(W ′ − W)t = T , this proves the first term of (2.2) from the first
term of (2.11). �

Sometimes we may wish to assess the distance to a normal distribution for
which the covariance matrix �0, while nonnegative definite, does not have full
rank. Stein’s method helps to derive a straightforward bound in this case also. The
proof of the following proposition is straightforward and routine, noting that (2.3)
remains valid if the covariance matrix is not of full rank.

PROPOSITION 2.8. Let X and Y be R
d -valued normal vectors with distri-

butions X ∼ MVN(0,�) and Y ∼ MVN(0,�0), where � = (σi,j )i,j=1,...,d has
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full rank, and �0 = (σ 0
i,j )i,j=1,...,d is nonnegative definite. Let h : Rd → R have 2

bounded derivatives. Then

|Eh(X) − Eh(Y )| ≤ 1

2
|h|2

d∑
i,j=1

|σi,j − σ 0
i,j |.

Using the triangle inequality and Theorem 2.1, we thus obtain a bound for a nor-
mal approximation even for a normal distribution with degenerate covariance ma-
trix.

3. Nonsmooth test functions. Following Rinott and Rotar (1996), let � de-
note the standard normal distribution in R

d , and φ the corresponding density func-
tion. For h : Rd → R set

h+
δ (x) = sup{h(x + y) : |y| ≤ δ},

h−
δ (x) = inf{h(x + y) : |y| ≤ δ},

h̃(x, δ) = h+
δ (x) − h−

δ (x).

Let H be a class of measurable functions R
d → R which are uniformly bounded

by 1. Suppose that, for any h ∈ H :
(C1) for any δ > 0, h+

δ (x) and h−
δ (x) are in H,

(C2) for any d × d matrix A and any vector b ∈ R
d , h(Ax + b) ∈ H,

(C3) for some constant a = a(H, δ)

sup
h∈H

{∫
Rd

h̃(x, δ)�(dx)

}
≤ aδ.(3.1)

Obviously we may assume a ≥ 1.

The class of indicators of measurable convex sets is such a class; for this class,
a ≤ 2

√
d ; see Bolthausen and Götze (1993).

In the same way as in Rinott and Rotar (1996), we can show the following
corollary. The presentation differs from Rinott and Rotar (1996), as we make the
relationship to the bounds in Theorem 2.1 immediate and in that we allow for
general �. The now fairly standard proof is found in Appendix A. We also note
forthcoming work by Bhattacharya and Holmes (2007).

Let W have mean vector 0 and variance–covariance matrix �. If � and R

are such that (1.7) is satisfied for W , then Y = �−1/2W satisfies (1.7) with
�̂ = �−1/2��1/2 and R′ = �−1/2R. We put

λ̂(i) =
d∑

m=1

|(�−1/2�−1�1/2)m,i |,
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as well as

A′ =∑
i,j

λ̂(i)
√

Var EY
∑
k,�

�
−1/2
i,k �

−1/2
j,� (W ′

k − Wk)(W
′
� − W�),

B ′ = ∑
i,j,k

λ̂(i)
E

∣∣∣∣∑
r,s,t

�
−1/2
i,r �

−1/2
j,s �

−1/2
k,t (W ′

r − Wr)(W
′
s − Ws)(W

′
t − Wt)

∣∣∣∣
and

C′ =
d∑

i=1

λ̂(i)

√√√√E

(∑
k

�
−1/2
i,k Rk

)2

.

COROLLARY 3.1. Let W be as in Theorem 2.1. Then, for all h ∈ H with
|h| ≤ 1, there exists γ = γ (d) such that, with a > 1 as in (3.1),

sup
h∈H

|Eh(W) − Eh(Z)| ≤ γ 2
(
−D′ log(T ′) + B ′

2
√

T ′ + C′ + a
√

T ′
)
,

with

T ′ = 1

a2

(
D′ +

√
aB ′

2
+ D′2

)2

and D′ = A′

2
+ C′d.

If A′,B ′ and C′ are O(n−1/2), then we would obtain a bound of order O(n−1/4).
This is poorer than the n−1/2 logn type of bounds obtained in Rinott and Ro-
tar (1996), but Rinott and Rotar (1996) obtain the improved rate by assuming that
the random vectors are bounded.

4. The embedding method and applications.

4.1. General framework. Assume that an �-dimensional random vector W(�)

of interest is given. Often, the construction of an exchangeable pair (W(�),W
′
(�))

is straightforward. If, say, W(�) = W(�)(X) is a function of i.i.d. random variables
X = (X1, . . . ,Xn), one can choose uniformly an index I from 1 to n, replace XI

by an independent copy X′
I , and define W ′

(�) := W(�)(X
′), where X

′ is now the
vector X but with XI replaced by X′

I .
In general there is no hope that (W(�),W

′
(�)) will satisfy condition (1.2) with R

being of the required smaller order or even equal to zero, so that in this case The-
orem 2.1 would not yield useful bounds.

Surprisingly often it is possible, though, to extend W(�) to a vector W ∈ R
d

such that we can construct an exchangeable pair (W,W ′) which satisfies condi-
tion (1.2) with R = 0. If we can bound the distance of the distribution L(W) to
a d-dimensional multivariate normal distribution, then a bound on the distance of
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the distribution L(W(�)) to an �-dimensional multivariate normal distribution fol-
lows immediately.

To explain the approach, we turn the problem on its head. Suppose that W ∈ R
d

is such that we can construct an exchangeable pair (W,W ′) which satisfies condi-
tion (1.2) with R = 0. Rename the first � components to comprise W(�), so that

W =
[

W(�)

W(d−�)

]
,

and W(�) = I�,0W , with

I�,0 = (
Id�,0�×(d−�)

)
,

0�×(d−�) denoting the �×(d−�)-matrix consisting entirely of 0’s. Defining W ′
(�) =

I�,0W
′, it follows that (W(�),W

′
(�)) forms an exchangeable pair. From (1.2),

E
W (W(�) − W ′

(�)

)= I�,0E
W(W − W ′) = −I�,0�W.

Now decompose the matrix � as

� =
[
�1,1 �1,2
�2,1 �2,2

]
,

where �1,1 denotes an � × � submatrix, �1,2 denotes an � × (d − �) submatrix,
and so on. Then

I�,0�W = �1,1W(�) + �1,2W
(d−�)

and, hence,

E
W (W(�) − W ′

(�)

)= −�1,1W(�) − �1,2W
(d−�).

Conditioning on W(�) gives that

E
W(�)

(
W(�) − W ′

(�)

)= −�1,1W(�) − �1,2E
W(�)W(d−�).

Thus, condition (1.2) is satisfied with

R = −�1,2E
W(�)W(d−�).(4.1)

If �1,2 = 0, then no embedding is required. But if �1,2 
= 0, then the remainder R

in (1.2) is a nontrivial linear combination of random variables, and these random
variables could serve as embedding vector. In order to obtain useful bounds in
Theorem 2.1, the embedding dimension d should not be too large. In the examples
below it will be obvious how to choose W(d−�) to make the construction work.
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4.2. Runs on the line. Let X = (ξ1, . . . , ξn) be a sequence of independent ran-
dom variables with distribution Bernoulli(p), 0 < p < 1, that is, P[ξ1 = 1] =
1 − P[ξ1 = 0] = p. For d > 1, define the (centered) number of d-runs as

Vd :=
n∑

m=1

(ξmξm+1 · · · ξm+d−1 − pd),

where, for convenience, we assume the torus convention that ξn+1 ≡ ξ1, ξn+2 ≡ ξ2
and so on.

As mentioned in the Introduction, if we want to use the obvious construction
of an exchangeable pair, the univariate version of exchangeable pairs of Rinott
and Rotar (1997) (Proposition 1.2) does not yield convergent bounds of Vd to the
standard normal distribution if d > 1. However, we can tackle the example with
our approach by incorporating the auxiliary variables V1, . . . , Vd−1, such that the
problem becomes linear in a higher-dimensional setting.

We construct an exchangeable pair (X,X
′), where instead of just one, we resam-

ple d −1 of the ξi . To this end, let I be uniformly distributed over {1, . . . , n} and let
ξ̃1, . . . , ξ̃n be independent copies of the ξi . Let X

′ be the same as X but with the sub-
sequence ξI , ξI+1, . . . , ξI+d−2 of length d − 1 replaced by ξ ′

I , ξ
′
I+1, . . . , ξ

′
I+d−2.

Clearly (X,X
′) forms an exchangeable pair. Define V ′

i := Vi(X
′); we have

V ′
i − Vi =

I−1∑
m=I−i+1

ξm · · · ξI−1ξ
′
I · · · ξ ′

m+i−1 +
I+d−i−1∑

m=I

ξ ′
m · · · ξ ′

m+i−1

(4.2)

+
I+d−2∑

m=I+d−i

ξ ′
m · · · ξ ′

I−1ξI · · · ξm+i−1 −
I+d−2∑

m=I−i+1

ξm · · · ξm+i−1,

where sums
∑b

a are defined to be zero if a > b. Now, (4.2) yields

E
(V1,...,Vd−1)(V ′

i − Vi)

= −n−1[(d + i − 2)Vi − 2pVi−1 − 2p2Vi−2 − · · · − 2pi−1V1](4.3)

= −n−1

[
(d + i − 2)Vi − 2

i−1∑
k=1

pi−kVk

]
.

From this representation we see that we may take V1, . . . , Vd−1 as the auxiliary
random variables.

Straightforward calculations yield that, for all i ≥ j ,

E(ViVj ) = n

[
(i − j + 1)pi + 2

j−1∑
l=1

pi+j−l − (i + j − 1)pi+j

]

(4.4)

= npi(1 − p)

j−1∑
k=0

(i − j + 1 + 2k)pk.
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In particular,

EV 2
i = npi(1 − p)

i−1∑
k=0

(1 + 2k)pk,(4.5)

which lies in the interval between npi(1 − p) and npi(1 − p)i2. Thus, we define
the Wi to be the weighted versions

Wi := Vi√
npi(1 − p)

,(4.6)

and from (4.4) we have for general i and j

E(WiWj ) = p|i−j |/2
i∧j−1∑
k=0

(|i − j | + 1 + 2k)pk =: σi,j .(4.7)

From (4.7) it is clear that the corresponding � = (σi,j )i,j is constant for all n and
of full rank. For p → 0, � converges to uncorrelated coordinates and for p → 1
to a matrix of rank 1. For applications and further references see Glaz, Naus and
Wallenstein (2001) and Balakrishnan and Koutras (2002). Now, from (4.3) we have

E
W(W ′

i − Wi) = −n−1

[
(d + i − 2)Wi − 2

i−1∑
k=1

p(i−k)/2Wk

]
.

Thus, (1.7) is satisfied with R = 0 and

� = 1

n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d − 1
−2p1/2 d 0

...
. . .

−2p(k−1)/2 · · · −2p1/2 d + k − 2
...

. . .

−2p(d−1)/2 · · · −2p1/2 2(d − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

THEOREM 4.1. With W defined as in (4.6), n > 2d − 1 and � given
through (4.7), we have for three times differentiable functions h that

|Eh(W) − Eh(�1/2Z)| ≤ 416d7/2|h|2 + 960d5|h|3
pd/2(1 − p)3/2

√
n

.

PROOF. Some rough estimates yield that, for all 1 ≤ i, j, k ≤ d,

λ(i) ≤ 15n

d
,

Var E
W(W ′

i − Wi)(W
′
j − Wj) ≤ 768d5

n3pd(1 − p)2 ,

E|(W ′
i − Wi)(W

′
j − Wj)(W

′
k − Wk)| ≤ 64d3

n3/2pd/2(1 − p)3/2 .
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Now apply Theorem 2.1. Details can be found in Appendix B. �

REMARK 4.2. Although the bound is quite crude with respect to the dimen-
sion and hence mainly of theoretical interest, it is explicit. For small values of p

or large values of d , however, Poisson approximation is more appropriate, and in
these cases the bounds for normal approximation cannot be expected to be good
unless n is very large. We also note that Vd exhibits a local dependence structure
and thus also Stein’s method using the local approach, such as in Rinott and Ro-
tar (1996), could easily be used; and, of course, there is an abundance of results
about m-dependent sequences.

REMARK 4.3. In the case of 2-runs, using the notation of (1.8) and the con-
sequent paragraph, it is not difficult to see that, for any choice of λ and defining
R = R(V2,V1) := σ−1(λV2 − 2

n
V2 + 2p

n
V1), we have that λ−1

√
VarR is at least

of order 1 as n → ∞, where σ 2 := VarV2. It may nevertheless be possible to
choose λ such that, with R̃ = R̃(V2) := E

V2R = σ−1(λV2 − 2
n
V2 + 2p

n
E

V2V1),

we have λ
√

Var R̃ = o(1), so that a representation (1.2) could indeed be found
with R being of the required small order. But, whereas E

V2V1 is hard to calculate,
in this situation the application of the multivariate version (1.7) and Theorem 2.1
is straightforward.

4.3. Double-indexed permutation statistics. Let ai,j,k,l , 1 ≤ i, j, k, l ≤ n, be
real numbers such that ai,j,k,l = 0 whenever i = j but k 
= j . Assume that∑

i,j,k,l

ai,j,k,l = 0(4.8)

and define

V0 = V0(π) =
n∑

s,t=1

as,t,π(s),π(t),

where π is a uniformly drawn random permutation of size n. A Berry–Esseen
bound for the distribution of V0 was proved by Zhao et al. (1997) under quite
general conditions, generalizing the proof of Bolthausen (1984), which is related
to the exchangeable pair coupling. Under similar conditions as Zhao et al. (1997),
Barbour and Chen (2005) used the exchangeable pair coupling to find a nontrivial
representation of V0 of the form (1.2) with a nonzero remainder term R; see their
article also for a historical overview. Yet the problem is so rich that there is to
date no result which unifies all the cases in which asymptotic normality holds. For
example, the results in Barbour and Chen (2005) and in Zhao et al. (1997) do not
cover the the number of descents in a random permutation, for which asymptotic
normality was derived in Fulman (2004) via exchangeable pairs.
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We will discuss here only the applicability of this example to Theorem 2.1 to il-
lustrate the embedding method, which contrasts with Barbour and Chen (2005)
in the sense that, with our approach, again one does not need to find a one-
dimensional representation of the form (1.2) but can use directly the multidimen-
sional version (1.7) in a straightforward manner. We also do not bound the error
terms because the corresponding calculations are too involved for the purpose of
this paper.

Construct now an exchangeable pair as follows. Let I and J be distributed
uniformly over 1, . . . , n conditioned that I 
= J . Define the permutation π ′ =
(π(I )π(J )) ◦ π so that π ′ is the permutation where π ′(k) = π(k) for all k 
= I, J ,
and where π ′(I ) = π(J ) and π ′(J ) = π(I). Let now, for the sake of a simpler
notation, aπ

i,j,k,l := ai,j,π(k),π(l). Defining W ′ = W(π ′), we have

V ′
0 − V0 = −

n∑
s=1

(aπ
I,s,I,s + aπ

J,s,J,s + aπ
s,I,s,I + aπ

s,J,s,J )

+ (aπ
I,I,I,I + aπ

I,J,I,J + aπ
J,I,J,I + aπ

J,J,J,J )

+
n∑

s=1

(aπ
I,s,J,s + aπ

J,s,I,s + aπ
s,I,s,J + aπ

s,J,s,I )

− (aπ
I,I,J,J + aπ

I,J,J,I + aπ
J,I,I,J + aπ

J,J,I,I ).

Hence,

E
π(V ′

0 − V0)

= − 1

n(n − 1)

∑
i 
=j

n∑
s=1

(aπ
i,s,i,s + aπ

j,s,j,s + aπ
s,i,s,i + aπ

s,j,s,j )

+ 1

n(n − 1)

∑
i 
=j

(aπ
i,i,i,i + aπ

i,j,i,j + aπ
j,i,j,i + aπ

j,j,j,j )

+ 1

n(n − 1)

∑
i 
=j

n∑
s=1

(aπ
i,s,j,s + aπ

j,s,i,s + aπ
s,i,s,j + aπ

s,j,s,i)

− 1

n(n − 1)

∑
i 
=j

(aπ
i,i,j,j + aπ

i,j,j,i + aπ
j,i,i,j + aπ

j,j,i,i)

= −4

n
V0 + 2

n(n − 1)

n∑
s=1

∑
i 
=j

(aπ
i,s,j,s + aπ

s,i,s,j )

+ 2

n(n − 1)

∑
i 
=j

(aπ
i,i,i,i + aπ

i,j,i,j ) − 2

n(n − 1)

∑
i 
=j

(aπ
i,i,j,j + aπ

i,j,j,i)

= λ

(
−2n − 1

n
V0 + V1 + V2

)
+ R1 + R2,
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with λ := 2/(n − 1) and where

R1 := λ

n∑
i=1

aπ
i,i,i,i − λ

n

n∑
i,j=1

ai,i,j,j , R2 := −λ

n

n∑
i,j=1

aπ
i,j,j,i ,

Vi :=
n∑

s=1

a
(i)
s,π(s) for i = 1,2, where

a
(1)
s,t := 1

n

∑
i,j

as,i,t,j , a
(2)
s,t := 1

n

∑
i,j

ai,s,j,t .

Thus, the conditional expectation E
π(V ′

0 − V0) can be decomposed into a sum
of the original statistic V0 and two related single-indexed permutation statistics,
together with an error term. Now, for i = 1,2,

V ′
i − Vi = −a

(i)
I,π(I ) − a

(i)
J,π(J ) + a

(i)
I,π(J ) + a

(i)
J,π(I )

and, thus,

E
π(V ′

i − Vi) = −2

n
Vi + 2

n(n − 1)

∑
i 
=j

a
(i)
i,π(j)

= −λVi + 2

n(n − 1)

∑
i,j

a
(i)
i,π(j)

= −λVi,

where the last equality follows from (4.8). Thus, (1.7) holds for the vector W =
(V0,V1,V2)

t with

� = λ

⎛
⎜⎝

2n − 1

n
−1 −1

0 1 0
0 0 1

⎞
⎟⎠

and R = (R1 + R2,0,0)t .
In the special case where aijkl = bij ckl with bii = cii = 0 for all i, j, k, l and

where (bij ) or (ckl) is symmetric up to a (possibly negative) constant, we have
R1 = 0 and R2 = βλn−1V0 for some number β , so that (1.7) holds with an R = 0
and a slightly different �, which would simplify the estimates. Note that these
assumptions hold, for example, if either (bij ) or (cij ) is the adjacency matrix of an
undirected graph containing no self-loops.

Mann–Whitney–Wilcoxon statistic. Let x1, . . . , xnx and y1, . . . , yny , nx +ny =
n, be independent random samples from unknown distributions FX and FY , respec-
tively. The MWW-statistic is then defined to be the number of pairs (xi, yj ) such
that xi < yj . Let π(i) be the rank of zi , where z = (x1, . . . , xnx , y1, . . . , yny ) is the
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combined sample. To test the hypothesis H0 :FX = FY , we may assume that π has
uniform distribution. It is easy to see that, defining

ai,j,k,l =
⎧⎪⎨
⎪⎩

+1
2 , if 1 ≤ i ≤ nx , nx + 1 ≤ j ≤ n and 1 ≤ k < l ≤ n,

−1
2 , if 1 ≤ i ≤ nx , nx + 1 ≤ j ≤ n and 1 ≤ l < k ≤ n,

0, else,

V0 is equivalent to the MWW-statistic (up to a shift). It is well known that VarV0 =
nxny(n + 1)/12 [see Mann and Whitney (1947)], so that if, for some 0 < α < 1,
nx � αn and ny � (1 − α)n, respectively, we have VarV0 � n3.

Note now that, as ai,i,k,l = 0 for all i, k, l and as
∑

i,j ai,j,π(j),π(i) =
−∑

i,j ai,j,π(i),π(j), we have R1 = 0 and R2 = −λ
n
V0. Hence, the remainder

term C in Theorem 2.1 has the required lower order.
Further, we calculate that a

(1)
i,j = ny(n−2j+1)

2n
if 1 ≤ i ≤ nx and a

(1)
i,j = 0 other-

wise, and therefore, using the variance formula for the usual singly indexed per-
mutation statistics [see Hoeffding (1951)],

VarV1 = 1

n − 1

n∑
i,j=1

(
a

(1)
i,j − a

(1)
i,· − a

(1)
·,j + a(1)·,·

)2 � n3.

The same asymptotic is true for V2, so that indeed W = n−3/2(V0,V1,V2) with the
above coupling and choice of � is a good candidate for Theorem 2.1.

5. Some comments on the exchangeability condition. Exchangeability is
used twice in the proof of Theorem 2.1, namely, in (2.7) and (2.10). In this section
we discuss the necessity of this condition if one uses the Stein operator of the form
in equation (2.4).

5.1. Exchangeability and anti-symmetric functions. In (2.7), we use ex-
changeability in the spirit of Stein (1986). It has been proved by Röllin (2008)
that in the one-dimensional setting the exchangeability condition can be omitted
for normal approximation by replacing the usual anti-symmetric function (2.6)
with F(w,w′) = g(w′) − g(w), where now only equality in distribution is needed
to obtain an identity similar to (2.7). Chatterjee and Meckes (2008) also proved
their results with this new function F but under the stronger condition (1.4). How-
ever, there seems to be no obvious way to apply the above approach under the
more general assumption (1.7) (even with R = 0) to remove the exchangeability
condition. To see this, note that, by multivariate Taylor expansion,

g(w′) = g(w) + (w′ − w)t∇g(w) + 1
2∇ t (w′ − w)(w′ − w)t∇g(w)

(5.1)
+ r(w′,w),
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where r is the corresponding remainder term of the expansion. Thus, (5.1)
and (1.7) yield the identity

0 = Eg(W ′) − Eg(W)

= −E{Wt�t∇g(W)} + 1
2E{∇ t (W ′ − W)(W ′ − W)t∇g(W)}(5.2)

+ Er(W ′,W),

for any suitable function g. To optimally match (5.2) and the left-hand side of (2.4),
we have to choose g such that the system

�t∇g = ∇f(5.3)

is satisfied. In the one-dimensional setting of Röllin (2008) and the multivariate
setting � = λ Id of Chatterjee and Meckes (2008), (5.3) can be solved by setting
g = λ−1f . Indeed, (5.3) cannot be solved in general; only if � = λ Id does (5.3)
have a twice continuously partially differentiable solution g for a sufficiently large
class of functions f .

5.2. Exchangeability, the covariance matrix and the � matrix. In (2.10), using
only equality in distribution instead of exchangeability, we obtain

E(W ′ − W)(W ′ − W)t = �� + ��t.(5.4)

It is clear from (2.11) that the canonical choice for the variance structure of the
approximating multivariate normal distribution would then be

1
2E(W ′ − W)(W ′ − W)t�−t = 1

2(���−t + �) =: �̃,(5.5)

which in the exchangeable setting reduces to �; see (2.10).
It is easy to see that �̃ = � if and only if �̂ := �−1/2��1/2, arising from

standardization (see Remark 2.4), is symmetric. If (W ′,W) is exchangeable, we
have from (2.10) that �̃ = � and, hence, �̂ is symmetric. While exchangeability of
(W,W) is not a necessary condition for �̂ to be symmetric, the following example
illustrates that nonsymmetric �̂ is far from unusual.

EXAMPLE 5.1. Let d be a positive integer, d ≥ 4. Let X(k) = {Xi(k); i =
1, . . . , d}, k ∈ Z+ be a discrete time Markov chain with values in {−1,1}d and
with the following transition rule. At every time step k, pick uniformly an index I

from {1,2, . . . , d}. Then with probability 1/2, let XI(k + 1) = −XI−1(k), and
with probability 1/2, let XI(k + 1) = XI+1(k), where we interpret the indices 0
and d + 1 as d and 1, respectively. For all j 
= I , put Xj(k + 1) = Xj(k). Observe
that, for arbitrary k and i 
= j ,

E[Xi(k + 1)Xj (k + 1)|X(k)]

= 1

2d

(
Xi+1(k) − Xi−1(k)

)
Xj(k) + 1

2d
Xi(k)

(
Xj+1(k) − Xj−1(k)

)

+ d − 2

d
Xi(k)Xj (k).
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Now, if E{Xi(k)Xj (k)} = 0 for all i 
= j , then also E{Xi(k + 1)Xj (k + 1)} =
0 (where the case j ∈ {i − 1, i + 1} is slightly different than for the other j ).
Thus, if we start the chain such that the Xi are uncorrelated and centered, then, by
induction, the Xi are uncorrelated for every k and it is easy to see from this that
also the equilibrium distribution of the chain has uncorrelated Xi .

Assume that X(1),X(2), . . . is a sequence of mean zero independent and iden-
tically distributed d-vectors with finite � := E{X(1)(X(1))t }. It is clear from the
multivariate CLT [see, for example, Rotar (1997), page 363, Theorem 4] that
W = n−1/2∑n

i=1 X(i) converges to the multivariate mean zero normal distribution
with covariance matrix �.

However, consider the following coupling construction. Let X(i) have the equi-
librium distribution of the above Markov chain and for each i let X′(i) be the value
after one step ahead in the Markov chain, such that the pairs (X(i),X′(i)) are in-
dependent for different i. Define now W ′ = W + n−1/2(X′(I ) − X(I)), where I is
uniformly distributed on {1, . . . , n}, and note that L (W ′) = L (W). We calculate
that E

X(i)
(X′(i) − X(i)) = −�X(i) with

�ij = 1

d
·

⎧⎪⎪⎨
⎪⎪⎩

1, if j = i,
1
2 , if j = i − 1,
−1

2 , if j = i + 1,
0, else.

Then E
W(W ′ − W) = −n−1�W . As � is not symmetric, (W,W ′) cannot be ex-

changeable, and so Theorem 2.1 cannot be applied with this coupling.

APPENDIX A: PROOF OF COROLLARY 3.1

For h ∈ H define the following smoothing:

hs(x) =
∫

Rd
h
(
s1/2y + (1 − s)1/2x

)
�(dy), 0 < s < 1.

The following key result for this smoothing can be found in Götze (1991).

LEMMA A.1. Let Q be a probability measure on R
d , and let W ∼ Q,Z ∼ �.

Let a be as in (3.1). Then there exists a constant γ > 0 which depends only on the
dimension d such that, for 0 < t < 1,

sup
h∈H

|Eh(W) − Eh(Z)| ≤ γ
[

sup
h∈H

|E(h − �h)t (W)| + a
√

t
]
.

To prove Corollary 3.1, first we assume that � = Id. Let 0 < t < 1. The solu-
tion of (2.4) for ht is �t(x) = 1

2

∫ 1
t

hs(x)−�h
1−s

ds, and for |h| ≤ 1, it is shown in
Götze (1991) and also in Loh (2008) that there is a constant γ = γ (d) depending
only on the dimension d such that

|�t |1 ≤ γ, |�t |2 ≤ γ log(t−1);(A.1)
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the γ is in general not equal to the γ in Lemma A.1. Then, as in (2.11),

|Eht (W) − Eht (Z)| = |E{∇ t∇�t(W) − Wt∇�t(W)}|
≤ 1

2

∑
m,i,j

|(�−1)m,iE(W ′
i − Wi)(W

′
j − Wj)(W

′
k − Wk)Rmjk|(A.2)

+ γ

2
log(t−1)A + γC

(
1 + d log(t−1)

)
,

with A,B and C as in Theorem 2.1. For the last step we used the same estimates
as applied for the remainder term in (2.11), and that � = Id.

For the remainder term Rmjk , in Loh (2008), Lemma 1 (page 1992), it is shown
that, if |h| ≤ 1, then there is a constant c0 (depending only on d) such that, for any
finite signed measures Q on R

d ,

sup
1≤p,q,r≤d

∣∣∣∣
∫

Rd

∂3

∂zp ∂zq ∂zr

�t(z)Q(dz)

∣∣∣∣
≤ c0√

t
sup

0≤s≤1,y∈Rd

∣∣∣∣
∫

Rd
h(sv + y)Q(dv)

∣∣∣∣.
Thus, we can bound the second term in (A.2) by c0

2
√

t
B . For simplicity, we rela-

bel γ as the maximum of γ , γ 2 and γ c0, yielding that

sup
h∈H

|Eh(W) − Eh(Z)| ≤ γ 2
(
D log(t−1) + 1

2
Bt−1/2 + C + a

√
t

)
,

with D = S
2 + Cd. The minimum with respect to t is attained for T = 1

a2 (D +√
aB
2 + D2)2, which gives the assertion for � = Id.
To complete the proof for general �, we standardize

Y = �−1/2W.

From condition (C2), we have that for any d × d matrix A and any vector b ∈ R
d ,

h(Ax + b) ∈ H, so, in particular, h(�−1/2x) ∈ H. Hence, the above bounds (A.1)
can be applied directly. The proof now continues as for the � = Id case, but with
the standardized variables. We omit the details.

APPENDIX B: DETAILS OF THE RUNS EXAMPLE

We first show the following lemma, which may be useful when the nondiagonal
entries of � are small compared to the diagonal-entries.

LEMMA B.1. Assume that � is lower triangular and assume that there is
a > 0 such that |�i,j | ≤ a for all j < i. Then, with γ := infi |�ii |,

sup
i

λ(i) ≤ (a/γ + 1)d−1

γ
.
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PROOF. Write � = �E�D , where �D is diagonal with the same diagonal
as � and �E is lower triangular with diagonal entries equal to 1 and (�E)i,j :=
�i,j /�j,j . Denote by ‖ · ‖p the usual p-norm for matrices and recall that, for any
matrix A, ‖A‖1 = supj

∑
i |Ai,j |. Then, λ(i) ≤ ‖�−1‖1 ≤ ‖�−1

D ‖1‖�−1
E ‖1. Noting

that |(�E)i,j | ≤ a/γ for all j < i, we have from Lemeire (1975) that ‖�−1
E ‖1 ≤

(a/γ + 1)d−1. Now, as ‖�−1
D ‖1 = γ −1, the claim follows. �

Fix now i and j . From (4.2) it is not difficult to see that we can find two se-
quences A1, . . . ,ANi,j

and B1, . . . ,BNi,j
of subsets of {−d + 1, . . . ,2d − 3} such

that

E
ξ,ξ ′

(V ′
i − Vi)(V

′
j − Vj ) = 1

n

n∑
m=1

Ni,j∑
k=1

∏
l∈Ak

ξm+l

∏
l∈Bk

ξ ′
m+l

(B.1)

=: 1

n

n∑
m=1

νi,j (m).

From (4.2) is easy to see that Ni,j ≤ 4(d + i − 2)(d + j − 2) ≤ 16d2, as V ′
i − Vi

(respectively V ′
j −Vj ) contain no more than 2(d+i−2) [respectively 2(d+j −2)]

summands. Note that |Ak| + |Bk| ≥ i ∨ j , that is, every summand in (B.1) is the
product of at least i ∨ j independent random indicators. Hence, it is not difficult to
see that

Var(νi,j (m)) ≤ 256d4pi∨j .(B.2)

Now,

Var E
W(W ′

i − Wi)(W
′
j − Wj)

≤ 1

n2pi+j (1 − p)2 Var E
ξ,ξ ′

(V ′
i − Vi)(V

′
j − Vj )

= 1

n4pi+j (1 − p)2

n∑
m,m′=1

Cov(νi,j (m), νi,j (m′)).

If |m − m′| ≥ 3d , we have Cov(νi,j (m), νi,j (m′)) = 0 because νi,j (m) and
νi,j (m′) are independent. If |m − m′| < 3d, we can apply (B.2) to estimate the
covariances and, hence, we obtain

Var E
W(W ′

i − Wi)(W
′
j − Wj) ≤ 768d5

n3pi∧j (1 − p)2 .

Similar arguments lead to the estimate

E|(V ′
i − Vi)(V

′
j − Vj )(V

′
k − Vk)| ≤ 64d3pmax{i,j,k},
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hence, for the second summand in (2.2),

E|(W ′
i − Wi)(W

′
j − Wj)(W

′
k − Wk)| ≤ 64d3pmax{i,j,k}

n3/2p(i+j+k)/2(1 − p)3/2 .

Applying Lemma B.1 to the matrix n� with a = 2 and γ = d − 1, we obtain

λ(i) ≤ n(2/(d − 1) + 1)d−1

(d − 1)
≤ 15n

d
.

Combining all estimates with Theorem 2.1 proves Theorem 4.1.
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