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In this paper we study quasi-stationarity for a large class of Kolmogorov
diffusions. The main novelty here is that we allow the drift to go to −∞ at the
origin, and the diffusion to have an entrance boundary at +∞. These diffu-
sions arise as images, by a deterministic map, of generalized Feller diffusions,
which themselves are obtained as limits of rescaled birth–death processes.
Generalized Feller diffusions take nonnegative values and are absorbed at
zero in finite time with probability 1. An important example is the logistic
Feller diffusion.

We give sufficient conditions on the drift near 0 and near +∞ for the ex-
istence of quasi-stationary distributions, as well as rate of convergence in the
Yaglom limit and existence of the Q-process. We also show that, under these
conditions, there is exactly one quasi-stationary distribution, and that this dis-
tribution attracts all initial distributions under the conditional evolution, if
and only if +∞ is an entrance boundary. In particular, this gives a sufficient
condition for the uniqueness of quasi-stationary distributions. In the proofs
spectral theory plays an important role on L2 of the reference measure for
the killed process.

1. Introduction. The main motivation of this work is the existence, unique-
ness and domain of attraction of quasi-stationary distributions for some diffusion
models arising from population dynamics. After a change of variable, the problem
is stated in the framework of Kolmogorov diffusion processes with a drift behaving
like −1/2x near the origin. Hence, we shall study quasi-stationarity for the larger
class of one-dimensional Kolmogorov diffusions (drifted Brownian motions), with
drift possibly exploding at the origin.

Consider a one-dimensional drifted Brownian motion on (0,∞)

dXt = dBt − q(Xt) dt, X0 = x > 0,(1.1)
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where q is defined and C1 on (0,∞) and (Bt ; t ≥ 0) is a standard one-dimensional
Brownian motion. In particular, q is allowed to explode at the origin. A pathwise
unique solution of (1.1) exists up to the explosion time τ . We denote Ty the first
time the process hits y ∈ (0,∞) (see [11], Chapter VI, Section 3) before the ex-
plosion

Ty = inf{0 ≤ t < τ :Xt = y}.
We denote by T∞ = limn→∞ Tn and T0 = limn→∞ T1/n. Since q is regular in
(0,∞), then τ = T0 ∧ T∞.

The law of the process starting from X0 with distribution ν will be denoted by
Pν . A quasi-stationary distribution (in short, q.s.d.) for X is a probability measure
ν supported on (0,∞) satisfying for all t ≥ 0

Pν(Xt ∈ A | T0 > t) = ν(A), ∀Borel set A ⊆ (0,∞).(1.2)

By definition, a q.s.d. is a fixed point of the conditional evolution. The Yaglom
limit π is defined as the limit in distribution

π(•) = lim
t→∞Px(Xt ∈ • | T0 > t),

provided this limit exists and is independent of the initial condition x. The Yaglom
limit is a q.s.d. (see Lemma 7.2).

We will also study the existence of the so-called Q-process which is obtained
as the law of the process X conditioned to be never extinct, and it is defined as
follows. For any s ≥ 0 and any Borel set B ⊆ C([0, s]) consider

Qx(X ∈ B) = lim
t→∞Px(X ∈ B | T0 > t).

When it exists, this limit procedure defines the law of a diffusion that never
reaches 0.

The reason for studying such diffusion processes with a possibly exploding drift
at the origin comes from our interest in the following generalized Feller diffusion
processes:

dZt = √
γZt dBt + h(Zt) dt, Z0 = z > 0,(1.3)

where h is a nice function satisfying h(0) = 0.
Notice that z = 0 is an absorbing state for Z. This means that if Z0 = 0, then

Zt = 0 for all t is the unique solution of (1.3) (see [11]).
If we define Xt = 2

√
Zt/γ, then

dXt = dBt − 1

Xt

(
1

2
− 2

γ
h

(
γX2

t

4

))
dt, X0 = x = 2

√
z/γ > 0,(1.4)

so that X is a drifted Brownian motion as in (1.1) where q(x) behaves like 1/2x

near the origin. The process Z is obtained after rescaling some sequences of birth–
death processes arising from population dynamics.
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Of particular interest is the case h(z) = rz − cz2 (logistic case), for which we
obtain

q(x) = 1

2x
− rx

2
+ cγ x3

8
.

A complete description of these models is performed in the final section of the
paper, where their biological meaning is also discussed. Of course quasi-stationary
distributions for Z and X are related by an immediate change of variables, so that
the results on X can be immediately translated to results on Z.

The study of quasi-stationarity is a long standing problem (see [24] for a reg-
ularly updated extensive bibliography and [7, 10, 28] for the Markov chain case).
For Kolmogorov diffusions, the theory started with Mandl’s paper [22] in 1961,
and was then developed by many authors (see, in particular, [3, 23, 30]). All these
works assume Mandl’s conditions, which are not satisfied in the situation described
above, since, in particular, the drift is not bounded near 0. It is worth noticing that
the behavior of q at infinity also may violate Mandl’s conditions, since in the lo-
gistic case, for instance, ∫ ∞

1
e−Q(z)

∫ z

1
eQ(y) dy dz < ∞,

where Q(y) := 2
∫ y

1 q(x) dx.
This unusual situation prevents us from using earlier results on q.s.d.’s of so-

lutions of Kolmogorov equations. Hence, we are led to develop new techniques
to cope with this situation. In Section 2 we start with the study of a general Kol-
mogorov diffusion process on the half line and introduce the hypothesis (H1) that
ensures the process to reach 0 in finite time with probability 1. Then we introduce
the measure μ, not necessarily finite, defined as

μ(dy) := e−Q(y) dy,

which is the speed measure of X. We describe the Girsanov transform and show
how to use it in order to obtain L2(μ) estimates for the heat kernel (Theorem 2.3).
The key is the following: starting from any x > 0, the law of the process at time
t is absolutely continuous with respect to μ with a density belonging to L2(μ)

(and explicit bounds). In the present paper we work in Lp(μ) spaces rather than
Lp(dx), since it greatly simplifies the presentation of the spectral theory.

This spectral theory is done in Section 3, where we introduce the hypothesis
(H2):

lim
x→∞q2(x) − q ′(x) = ∞, C := − inf

x∈(0,∞)
q2(x) − q ′(x) < ∞.

This hypothesis ensures the discreteness of the spectrum (Theorem 3.2). The
ground state η1 (eigenfunction associated to the bottom of the spectrum) can be
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chosen nonnegative, even positive as we will see, and furnishes the natural candi-
date η1 dμ for a q.s.d. The only thing to check is that η1 ∈ L1(μ), which is not
immediate since μ is possibly unbounded.

Section 4 gives some sharper properties of the eigenfunctions defined in the
previous section, using, in particular, properties of the Dirichlet heat kernel. More
specifically, we introduce two independent hypotheses, (H3) and (H4), either of
which ensures that the eigenfunctions belong to L1(μ) (Propositions 4.3 and 4.4).
Hypothesis (H3) is ∫ 1

0

1

q2(y) − q ′(y) + C + 2
μ(dy) < ∞,

and (H4) is ∫ ∞
1

e−Q(y) dy < ∞,

∫ 1

0
ye−Q(y)/2 dy < ∞.

Section 5 contains the proofs of the existence of the Yaglom limit (Theorem 5.2) as
well as the exponential decay to equilibrium (Proposition 5.5), under hypotheses
(H1) and (H2), together with either (H3) or (H4). Section 6 contains the results on
the Q-process (Corollaries 6.1 and 6.2).

In Section 7 we introduce condition (H5) which is equivalent to the existence of
an entrance law at +∞, that is, the repelling force at infinity imposes to the process
starting from infinity to reach any finite interval in finite time. The process is then
said to “come down from infinity.” We show that the process comes down from
infinity if and only if there exists a unique q.s.d. which attracts any initial law under
the conditional evolution (Theorem 7.3). In particular, this theorem gives sufficient
conditions for uniqueness of q.s.d.’s. In the context of birth and death chains, the
equivalence between uniqueness of a q.s.d. and “come down from infinity” has
been proved in [5], Theorem 3.2.

The final section contains the description of the underlying biological models,
as well as the application of the whole theory developed in the previous sections
to these models (Theorem 8.2).

In the following statement (which is basically Theorem 8.2), we record the main
results of this paper in terms of the generalized Feller diffusion solution of (1.3).
We say that h satisfies the condition (HH) if

(i) lim
x→∞

h(x)√
x

= −∞, (ii) lim
x→∞

xh′(x)

h(x)2 = 0.

THEOREM 1.1. If h satisfies (HH), then for all initial laws with bounded sup-
port, the law of Zt conditioned on {Zt �= 0} converges exponentially fast to a prob-
ability measure ν, called the Yaglom limit.

The process Z conditioned to be never extinct is well defined and is called the
Q-process. The Q-process converges in distribution to its unique invariant prob-
ability measure. This probability measure is absolutely continuous w.r.t. ν with a
nondecreasing Radon–Nikodym derivative.
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If, in addition, the following integrability condition is satisfied:∫ ∞
1

dx

−h(x)
< ∞,

then Z comes down from infinity and the convergence of the conditional one-
dimensional distributions holds for all initial laws, so that the Yaglom limit ν is
the unique quasi-stationary distribution.

2. One-dimensional diffusion processes on the positive half line. Associ-
ated to q, we consider the functions

�(x) =
∫ x

1
eQ(y) dy and κ(x) =

∫ x

1
eQ(y)

(∫ y

1
e−Q(z) dz

)
dy,(2.1)

where we recall that Q(y) = ∫ y
1 2q(u)du. Notice that � is the scale function for X.

For most of the results in this paper we shall assume sure absorption at zero,
that is,

HYPOTESIS (H1).

For all x > 0, Px(τ = T0 < T∞) = 1.(2.2)

It is well known (see, e.g., [11], Chapter VI, Theorem 3.2) that (2.2) holds if
and only if

�(∞) = ∞ and κ(0+) < ∞.(2.3)

We notice that (H1) can be written as Px(limt→∞ Xt∧τ = 0) = 1.

EXAMPLE 2.1. The main cases that we are interested in are the following
ones:

(1) When X is defined by (1.4) associated to the generalized Feller diffusion Z. It
is direct to show that Q(x) behaves like log(x) near 0, hence, κ(0+) < ∞. The
logistic Feller diffusion corresponds to h(z) = rz − cz2 for some constants c

and r . It is easily seen that (2.3) is satisfied in this case provided c > 0 or c = 0
and r < 0.

(2) When the drift is bounded near 0, in which case κ(0+) < ∞.

We shall now discuss some properties of the law of X up to T0. The first result
is a Girsanov type result.

PROPOSITION 2.2. Assume (H1). For any Borel bounded function F :
C([0, t], (0,∞)) → R it holds

Ex[F(X)1t<T0]
= EWx

[
F(ω)1t<T0(ω) exp

(
1

2
Q(x) − 1

2
Q(ωt) − 1

2

∫ t

0
(q2 − q ′)(ωs) ds

)]
,
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where EWx denotes the expectation w.r.t. the Wiener measure starting from x, and
Ex denotes the expectation with respect to the law of X starting also from x.

PROOF. It is enough to show the result for F nonnegative and bounded. Let
x > 0 and consider ε ∈ (0,1) such that ε ≤ x ≤ 1/ε. Also we define τε = Tε ∧
T1/ε . Choose some ψε which is a nonnegative C∞ function with compact support,
included in ]ε/2,2/ε[ such that ψε(u) = 1 if ε ≤ u ≤ 1/ε. The law of the diffusion
(1.1) coincides up to τε with the law of a similar diffusion process Xε obtained
by replacing q with the cutoff qε = qψε . For the latter we may apply the Novikov
criterion ensuring that the law of Xε is given via the Girsanov formula. Hence,

Ex[F(X)1t<τε ]
= EWx

[
F(ω)1t<τε(ω) exp

(∫ t

0
−qε(ωs) dωs − 1

2

∫ t

0
(qε)

2(ωs) ds

)]

= EWx

[
F(ω)1t<τε(ω) exp

(∫ t

0
−q(ωs) dωs − 1

2

∫ t

0
q2(ωs) ds

)]

= EWx

[
F(ω)1t<τε(ω) exp

(
1

2
Q(x) − 1

2
Q(ωt) − 1

2

∫ t

0
(q2 − q ′)(ωs) ds

)]
.

The last equality is obtained integrating by parts the stochastic integral. But 1t<τε

is nondecreasing in ε and converges almost surely to 1t<T0 both for Px [thanks to
(H1)] and Wx . It remains to use the Lebesgue monotone convergence theorem to
finish the proof. �

The next theorem is inspired by the calculation in Theorem 3.2.7 of [27]. It will
be useful to introduce the following measure defined on (0,∞):

μ(dy) := e−Q(y) dy.(2.4)

Note that μ is not necessarily finite.

THEOREM 2.3. Assume (H1). For all x > 0 and all t > 0 there exists some
density r(t, x, ·) that satisfies

Ex[f (Xt)1t<T0] =
∫ ∞

0
f (y)r(t, x, y)μ(dy)

for all bounded Borel f .
If, in addition, there exists some C > 0 such that q2(y) − q ′(y) ≥ −C for all

y > 0, then for all t > 0 and all x > 0,∫ ∞
0

r2(t, x, y)μ(dy) ≤ (1/2πt)1/2eCteQ(x).
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PROOF. Define

G(ω) = 1t<T0(ω) exp
(

1

2
Q(ω0) − 1

2
Q(ωt) − 1

2

∫ t

0
(q2 − q ′)(ωs) ds

)
.

Denote by

e−v(t,x,y) = (2πt)−1/2 exp
(
−(x − y)2

2t

)

the density at time t of the Brownian motion starting from x. According to Propo-
sition 2.2, we have

Ex[f (Xt)1t<T0] = EWx [f (ωt )E
Wx [G|ωt ]]

=
∫

f (y)EWx [G|ωt = y]e−v(t,x,y) dy

=
∫ ∞

0
f (y)EWx [G|ωt = y]e−v(t,x,y)+Q(y)μ(dy),

because EWx [G|ωt = y] = 0 if y ≤ 0. In other words, the law of Xt restricted to
nonextinction has a density with respect to μ given by

r(t, x, y) = EWx [G|ωt = y]e−v(t,x,y)+Q(y).

Hence,∫ ∞
0

r2(t, x, y)μ(dy)

=
∫ (

EWx [G|ωt = y]e−v(t,x,y)+Q(y))2
e−Q(y)+v(t,x,y)e−v(t,x,y) dy

= EWx
[
e−v(t,x,ωt )+Q(ωt )(EWx [G|ωt ])2]

≤ EWx
[
e−v(t,x,ωt )+Q(ωt )EWx [G2|ωt ]]

≤ eQ(x)EWx
[
1t<T0(ω)e

−v(t,x,ωt )e− ∫ t
0 (q2−q ′)(ωs) ds],

where we have used Cauchy–Schwarz’s inequality. Since e−v(t,x,·) ≤ (1/2πt)1/2,
the proof is complete. �

REMARK 2.4. It is interesting to briefly discuss the conditions we have intro-
duced:

(1) Since q is assumed to be regular, the condition q2 − q ′ bounded from below
has to be checked only near infinity or near 0.

(2) Consider the behavior near infinity. Let us show that if lim infy→∞(q2(y) −
q ′(y)) = −∞, then lim supy→∞(q2(y) − q ′(y)) > −∞, that is, the drift q is
strongly oscillating. Indeed, assume that q2(y) − q ′(y) → −∞ as y → ∞.
It follows that q ′(y) → ∞, hence, q(y) → ∞. For y large enough we may
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thus write q(y) = eu(y) for some u going to infinity at infinity. So e2u(y)(1 −
u′(y)e−u(y)) → −∞, implying that u′e−u ≥ 1 near infinity. Thus, if g = e−u,

we have g′ ≤ −1, that is, g(y) → −∞ as y → ∞, which is impossible since
g is nonnegative.

(3) If X is given by (1.4), we have

q(y) = 1

y

(
1

2
− 2

γ
h

(
γy2

4

))
.

Hence, since h is of class C1 and h(0) = 0, q2(y) − q ′(y) behaves near 0 like
3

4y2 so that q2 −q ′ is bounded from below near 0 (see the Appendix for further
conditions fulfilled by h to get the same result near ∞).

3. L2 and spectral theory of the diffusion process. Theorem 2.3 shows that
for a large family of initial laws, the distribution of Xt before extinction has a
density belonging to L2(μ). The measure μ is natural since the kernel of the killed
process is symmetric in L2(μ), which allows us to use spectral theory.

Let C∞
0 ((0,∞)) be the vector space of infinitely differentiable functions on

(0,∞) with compact support. We denote

〈f,g〉μ =
∫ ∞

0
f (u)g(u)μ(du).

Consider the symmetric form

E(f, g) = 〈f ′, g′〉μ, D(E) = C∞
0 ((0,∞)).(3.1)

This form is Markovian and closable. The proof of the latter assertion is similar to
the one of Theorem 2.1.4 in [8] just replacing the real line by the positive half line.
Its smallest closed extension, again denoted by E , is thus a Dirichlet form which
is actually regular and local. According to the theory of Dirichlet forms (see [8] or
[9]), we thus know the following:

• there exists a nonpositive self adjoint operator L on L2(μ) with domain D(L) ⊇
C∞

0 ((0,∞) such that for all f and g in C∞
0 ((0,∞)) the following holds (see

[8], Theorem 1.3.1):

E(f, g) = −2
∫ ∞

0
f (u)Lg(u)μ(du) = −2〈f,Lg〉μ.(3.2)

We point out that, for g ∈ C∞
0 ((0,∞)),

Lg = 1
2g′′ − qg′.

• L is the generator of a strongly continuous symmetric semigroup of contractions
on L2(μ) denoted by (Pt )t≥0. This semigroup is (sub)-Markovian, that is, 0 ≤
Ptf ≤ 1 μ a.e. if 0 ≤ f ≤ 1 (see [8], Theorem 1.4.1).
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• There exists a unique μ-symmetric Hunt process with continuous sample paths
(i.e., a diffusion process) up to its explosion time τ whose Dirichlet form is E
(see [8], Theorem 6.2.2).

The last assertion implies that, for μ quasi all x > 0 (that is, except for a set
of zero capacity, see [8] for details), one can find a probability measure Qx on
C(R+, (0,∞)) such that, for all f ∈ C∞

0 ((0,∞)),

f (ωt∧τ ) − f (x) −
∫ t∧τ

0
Lf (ωs) ds

is a local martingale with quadratic variation
∫ t∧τ

0 |f ′|2(ωs) ds. Due to our hypoth-
esis q ∈ C1(0,∞), we know that this martingale problem admits a unique solution
(see, e.g., [12], page 444). On the other hand, using Itô’s formula, we know that,
under Px , the law of (Xt∧τ ) is also a solution to this martingale problem.

The conclusion is that the semigroup Pt and the semigroup induced by the
strong Markov process (Xt∧τ ) coincide on the set of smooth and compactly sup-
ported functions. Therefore, for all f ∈ L2(μ) we have that

Ptf (x) = E[f (Xt)1t<τ ].
Let (Eλ :λ ≥ 0) be the spectral family of −L. We can restrict ourselves to the

case λ ≥ 0 because −L is nonnegative. Then ∀t ≥ 0, f, g ∈ L2(μ),∫
Ptfg dμ =

∫ ∞
0

e−λt d〈Eλf,g〉μ.(3.3)

We notice that if absorption is sure, that is, (H1) holds, this semigroup coincides
with the semigroup of X killed at 0, that is, Ptf (x) = E[f (Xx

t )1t<T0].
Note that for f ∈ L2(μ) and all closed interval K ⊂ (0,∞),∫

(Ptf )2 dμ =
∫ (

Pt(f 1K + f 1Kc)
)2

dμ

≤ 2
∫

(Pt (f 1K))2 dμ + 2
∫

(Pt (f 1Kc))2 dμ

≤ 2
∫

(Pt (f 1K))2 dμ + 2
∫

(f 1Kc)2 dμ.

We may choose K large enough in order that the second term in the latter sum is
bounded by ε. Similarly, we may approximate f 1K in L2(μ) by f̃ 1K for some
continuous and bounded f̃ , up to ε (uniformly in t). Now, thanks to (H1), we know
that Pt(f̃ 1K)(x) goes to 0 as t goes to infinity for any x. Since∫

(Pt (f̃ 1K))2 dμ =
∫
K

f̃ P2t (f̃ 1K)dμ,

we may apply the Lebesgue bounded convergence theorem and conclude that∫
(Pt (f̃ 1K))2 dμ → 0 as t → ∞. Hence, we have shown that

∀f ∈ L2(μ)

∫
(Ptf )2 dμ → 0 as t → ∞.(3.4)
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Now we shall introduce the main assumption on q for the spectral aspect of the
study.

HYPOTESIS (H2).

C = − inf
y∈(0,∞)

q2(y) − q ′(y) < ∞ and lim
y→∞q2(y) − q ′(y) = +∞.(3.5)

PROPOSITION 3.1. Under (H2), |q(x)| tends to infinity as x → ∞, and q−(x)

or q+(x) tend to 0 as x ↓ 0. If, in addition, (H1) holds, then q(x) → ∞, as x → ∞.

PROOF. Since q2 − q ′ tends to ∞ as x → ∞, q does not change sign
for large x. If q is bounded near infinity, we arrive to a contradiction because
q ′ tends to −∞ and, therefore, q tends to −∞ as well. So q is unbounded.
If lim infx→∞ |q(x)| = a < ∞, then we can construct a sequence xn → ∞ of
local maxima, or local minima of q whose value |q(xn)| < a + 1, but then
q2(xn) − q ′(xn) stays bounded, which is a contradiction.

Now we prove that q−(x) or q+(x) tend to 0 as x ↓ 0. In fact, assume there exist
an ε > 0 and a sequence (xn) with 0 < xn ↓ 0 such that q(x2n) = −ε, q(x2n+1) =
ε. Then we can construct another sequence zn ↓ 0 such that |q(zn)| ≤ ε and
q ′(zn) → ∞, contradicting (H2).

Finally, assume (H1) holds. If q(x) ≤ −1 for all x > x0, we arrive to a contra-
diction. Indeed, for all t

Px0+1(T0 > t) ≥ Px0+1(Tx0 > t) ≥ Px0+1(Tx0 = ∞).

The assumption q(x) ≤ −1 implies that Xt ≥ Bt + t while t ≤ Tx0 and, therefore,

Px0+1(T0 > t) ≥ Px0+1(Bt + t hits ∞ before x0) = e−2(x0+1) − e2x0

e−2∞ − e2x0
= 1 − e−2,

where we have used that (exp(−2(Bt + t))) is a martingale. This contradicts (H1)
and we have q(x) → ∞ as x → ∞. �

We may now state the following result.

THEOREM 3.2. If (H2) is satisfied, −L has a purely discrete spectrum 0 ≤
λ1 < λ2 < · · ·. Furthermore, each λi (i ∈ N) is associated to a unique (up to a
multiplicative constant) eigenfunction ηi of class C2((0,∞)), which also satisfies
the o.d.e.

1
2η′′

i − qη′
i = −λiηi.(3.6)

The sequence (ηi)i≥1 is an orthonormal basis of L2(μ); η1 can be chosen to be
strictly positive in (0,∞).



1936 P. CATTIAUX ET AL.

For g ∈ L2(μ),

Ptg = ∑
i∈N

e−λi t 〈ηi, g〉μηi in L2(μ),

then for f,g ∈ L2(μ),

lim
t→∞ eλ1t 〈g,Ptf 〉μ = 〈η1, f 〉μ〈η1, g〉μ.

If, in addition, (H1) holds, then λ1 > 0.

PROOF. For f ∈ L2(dx), define P̃t (f ) = e−Q/2Pt(f eQ/2), which exists in
L2(dx) since f eQ/2 ∈ L2(μ). (P̃t )t≥0 is then a strongly continuous semigroup in

L2(dx), whose generator L̃ coincides on C∞
0 ((0,∞)) with 1

2
d2

dx2 − 1
2(q2 − q ′)

since C2
0(0,∞) ⊂ D(L), and eQ/2 ∈ C2(0,∞). The spectral theory of such a

Schrödinger operator on the line (or the half line) is well known, but here the po-
tential v = (q2 − q ′)/2 does not necessarily belong to L∞

loc near 0 as it is generally
assumed. We shall use [2], Chapter 2.

First we follow the proof of Theorem 3.1 in [2]. Since we have assumed that
v is bounded from below by −C/2, we may consider H = L̃ − (C/2 + 1), that
is, replace v by v + C/2 + 1 = w ≥ 1, hence translate the spectrum. Since for
f ∈ C∞

0 (0,∞)

−(Hf,f ) := −
∫ ∞

0
Hf (u)f (u)du =

∫ ∞
0

(|f ′(u)|2/2 + w(u)f 2(u)
)
du

(3.7)
≥

∫ ∞
0

f 2(u) du,

H has a bounded inverse operator. Hence, the spectrum of H (and then the one
of L̃) will be discrete as soon as H−1 is a compact operator, that is, as soon as
M = {f ∈ D(H);−(Hf,f ) ≤ 1} is relatively compact. This is shown in [2] when
w is locally bounded, in particular, bounded near 0. If w goes to infinity at 0, the
situation is even better since our set M is included into the corresponding one with
w ≈ 1 near the origin, which is relatively compact thanks to the asymptotic behav-
ior of v. The conclusion of Theorem 3.1 in [2] is thus still true in our situation, that
is, the spectrum is discrete.

The discussion in Section 2.3 of [2], pages 59–69, is only concerned with the as-
ymptotic behavior (near infinity) of the solutions of f ′′ − 2wf = 0. Nevertheless,
the results there apply to our case. All eigenvalues of L̃ are thus simple (Proposi-
tion 3.3 in [2]), and of course the corresponding set of normalized eigenfunctions
(ψk)k≥1 is an orthonormal basis of L2(dx).

The system (eQ/2ψk)k≥1 is thus an orthonormal basis of L2(μ), each ηk =
eQ/2ψk being an eigenfunction of L. We can choose them to be C2((0,∞)) and
they satisfy (3.6).
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For every t > 0, and for every g,f ∈ L2(μ), we have
∞∑

k=1

e−λkt 〈ηk, g〉μ〈ηk, f 〉μ = 〈g,Ptf 〉μ.

In addition, if g and f are nonnegative, we get

0 ≤ lim
t→∞ eλ1t 〈g,Ptf 〉μ = 〈η1, f 〉μ〈η1, g〉μ,

since λ1 < λ2 ≤ · · · and the sum
∑∞

k=1 |〈ηk, g〉μ〈ηk, f 〉μ| is finite. It follows
that 〈η1, f 〉μ and 〈η1, g〉μ have the same sign. Changing η1 into −η1 if neces-
sary, we may assume that 〈η1, f 〉μ ≥ 0 for any nonnegative f , hence, η1 ≥ 0.
Since Ptη1(x) = e−λ1t η1(x) and η1 is continuous and not trivial, we deduce that
η1(x) > 0 for all x > 0.

Since L is nonpositive, λ1 ≥ 0. Now assume that (H1) holds. Using (3.4), we
get for g ∈ L2(μ)

0 = lim
t→∞〈Ptg,Ptg〉μ = lim

t→∞ e−2λ1t 〈g,η1〉2
μ,

showing that λ1 > 0. �

Moreover, we are able to obtain a pointwise representation of the density r .

PROPOSITION 3.3. Under (H1) and (H2) we have

r(t, x, y) =
∞∑

k=1

e−λktηk(x)ηk(y),(3.8)

uniformly on compact sets of (0,∞) × (0,∞) × (0,∞).
Therefore, on compact sets of (0,∞) × (0,∞) we get

lim
t→∞ eλ1t r(t, x, y) = η1(x)η1(y).(3.9)

PROOF. Using Theorems 2.3 and 3.2, for every smooth function g compactly
supported on (0,∞), we have

n∑
k=1

e−λkt 〈ηk, g〉2
μ ≤

∞∑
k=1

e−λkt 〈ηk, g〉2
μ

=
∫ ∫

g(x)g(y)r(t, x, y)e−Q(x)−Q(y) dx dy.

Then using the regularity of ηk and r, we obtain, by letting g(y) dy tend to the
Dirac measure in x, that

n∑
k=1

e−λktηk(x)2 ≤ r(t, x, x).
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Thus, the series
∑∞

k=1 e−λktηk(x)2 converges pointwise, which by the Cauchy–
Schwarz inequality implies the pointwise absolute convergence of ζ(t, x, y) :=∑∞

k=1 e−λktηk(x)ηk(y) and the bound for all n

n∑
k=1

e−λkt |ηk(x)ηk(y)| ≤ √
r(t, x, x)

√
r(t, y, y).

Using the Harnack inequality (see, e.g., [17]), we get√
r(t, x, x)

√
r(t, y, y) ≤ CKr(t, x, y)

for any x and y in the compact subset K of (0,∞). Using the dominated conver-
gence theorem, we obtain that for all Borel functions g,f with compact support
in (0,∞) ∫ ∫

g(x)f (y)ζ(t, x, y)e−Q(x)−Q(y) dx dy

=
∫ ∫

g(x)f (y)r(t, x, y)e−Q(x)−Q(y) dx dy.

Therefore, ζ(t, x, y) = r(t, x, y) dx dy-a.s., which proves the almost sure version
of (3.8).

Since ηk are smooth eigenfunctions, we get the pointwise equality

e−λktηk(x)2 = e−λkt/3〈r(t/3, x,•), ηk〉μ〈r(t/3, x,•), ηk〉μ
=

∫ ∫
r(t/3, x, y)r(t/3, x, z)e−λkt/3ηk(y)ηk(z)e

−Q(z)−Q(y) dy dz,

which together with the fact r(t/3, x,•) ∈ L2(μ) and Theorem 2.3 allow us to
deduce

∞∑
k=1

e−λktηk(x)2

=
∫ ∫

r(t/3, x, y)r(t/3, x, z)

∞∑
k=1

e−λkt/3ηk(y)ηk(z)e
−Q(z)−Q(y) dy dz

=
∫ ∫

r(t/3, x, y)r(t/3, x, z)r(t/3, y, z)e−Q(z)−Q(y) dy dz = r(t, x, x).

Dini’s theorem then proves the uniform convergence in compacts of (0,∞) for the
series

∞∑
k=1

e−λktηk(x)2 = r(t, x, x).

By the Cauchy–Schwarz inequality, we have for any n∣∣∣∣∣
∞∑

k=n

e−λktηk(x)ηk(y)

∣∣∣∣∣ ≤
( ∞∑

k=n

e−λktηk(x)2

)1/2( ∞∑
k=n

e−λktηk(y)2

)1/2

.



QUASI-STATIONARITY FOR POPULATION DIFFUSION PROCESSES 1939

This together with the dominated convergence theorem yields (3.9). �

In the previous theorem, notice that
∑

k e−λkt = ∫
r(t, x, x)e−Q(x) dx is the

L1(μ) norm of x �→ r(t, x, x). This is finite if and only if Pt is a trace-class oper-
ator on L2(μ).

4. Properties of the eigenfunctions. In this section we study some properties
of the eigenfunctions ηi , including their integrability with respect to μ.

PROPOSITION 4.1. Assume that (H1) and (H2) are satisfied. Then
∫ ∞

1 η1 ×
e−Q dx < ∞, F(x) = η′

1(x)e−Q(x) is a nonnegative decreasing function and the
following limits exist:

F(0+) = lim
x↓0

η′
1(x)e−Q(x) ∈ (0,∞], F (∞) = lim

x→∞η′
1(x)e−Q(x) ∈ [0,∞).

Moreover, ∫ ∞
0

η1(x)e−Q(x) dx = F(0+) − F(∞)

2λ1
.

In particular,

η1 ∈ L1(μ) if and only if F(0+) < ∞.

The function η1 is increasing and
∫ ∞

1 e−Q(y) dy < ∞.

REMARK 4.2. Note that g = η1e
−Q satisfies the adjoint equation 1

2g′′ +
(qg)′ = −λ1g, and then F(x) = g′(x) + 2q(x)g(x) represents the flux at x. Then
η1 ∈ L1(μ) or, equivalently, g ∈ L1(dx) if and only if the flux at 0 is finite.

PROOF. Since η1 satisfies η′′
1(x) − 2qη′

1(x) = −2λ1η1(x), we obtain for x0
and x in (0,∞)

η′
1(x)e−Q(x) = η′

1(x0)e
−Q(x0) − 2λ1

∫ x

x0

η1(y)e−Q(y) dy,(4.1)

and F = η′
1e

−Q is decreasing. Integrating further gives

η1(x) = η1(x0) +
∫ x

x0

(
η′

1(x0)e
−Q(x0) − 2λ1

∫ z

x0

η1(y)e−Q(y) dy

)
eQ(z) dz.

If for some z0 > x0 it holds that η′
1(x0)e

−Q(x0) − 2λ1
∫ z0
x0

η1(y)e−Q(y) dy < 0, then
this inequality holds for all z > z0 since the quantity

η′
1(x0)e

−Q(x0) − 2λ1

∫ z

x0

η1(y)e−Q(y) dy
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is decreasing in z. This implies that for large x the function η1 is negative, because
eQ(z) tends to ∞ as z → ∞. This is a contradiction and we deduce that for all
x > 0

2λ1

∫ ∞
x

η1(y)e−Q(y) dy ≤ η′
1(x)e−Q(x).

This implies that η1 is increasing and, being nonnegative, it is bounded near 0. In
particular, η1(0+) exists. Also, we deduce that F ≥ 0 and that

∫ ∞
1 e−Q(y) dy < ∞.

We can take the limit as x → ∞ in (4.1) to get

F(∞) = lim
x→∞η′

1(x)e−Q(x) ∈ [0,∞),

and η′
1(x0)e

−Q(x0) = F(∞) + 2λ1
∫ ∞
x0

η1(y)e−Q(y) dy. From this equality the re-
sult follows. �

In the next results we give some sufficient conditions, in terms of q , for the
integrability of the eigenfunctions. A first useful condition is the following one:

HYPOTESIS (H3).∫ 1

0

1

q2(y) − q ′(y) + C + 2
e−Q(y) dy < ∞,

where, as before, C = − infx>0(q
2(x) − q ′(x)).

PROPOSITION 4.3. Assume that (H1)–(H3) are satisfied. Then ηi belongs to
L1(μ) for all i.

PROOF. Recall that ψi = e−Q/2ηi is an eigenfunction of the Schrödinger op-
erator H introduced in the proof of Theorem 3.2. Replacing f by ψi in (3.7) thus
yields

(C/2 + 1 + λi)

∫ ∞
0

ψ2
i (y) dy =

∫ ∞
0

(|ψ ′
i |2(y)/2 + w(y)ψ2

i (y)
)
dy.

Since the left-hand side is finite, the right-hand side is finite, in particular,∫ ∞
0

w(y)η2
i (y)μ(dy) =

∫ ∞
0

w(y)ψ2
i (y) dy < ∞.

As a consequence, using the Cauchy–Schwarz inequality, we get, on one hand,∫ 1

0
|ηi(y)|μ(dy) ≤

(∫ 1

0
w(y)η2

i (y)μ(dy)

)1/2(∫ 1

0

1

w(y)
μ(dy)

)1/2

< ∞,

thanks to (H3). On the other hand,∫ ∞
1

|ηi(y)|μ(dy) ≤
(∫ ∞

1
η2

i (y)μ(dy)

)1/2(∫ ∞
1

μ(dy)

)1/2

< ∞,
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according to Proposition 4.1. We have thus proved that ηi ∈ L1(μ). �

We now obtain sharper estimates using properties of the Dirichlet heat kernel.
For this reason we introduce the following:

HYPOTESIS (H4).∫ ∞
1

e−Q(x) dx < ∞ and
∫ 1

0
xe−Q(x)/2 dx < ∞.

PROPOSITION 4.4. Assume (H2) and (H4) hold. Then all eigenfunctions ηk

belong to L1(μ), and there is a constant K1 > 0 such that for any x ∈ (0,∞) and
any k

|ηk(x)| ≤ K1e
λkeQ(x)/2.

Moreover, η1 is strictly positive on R+, and there is a constant K2 > 0 such that
for any x ∈ (0,1] and any k

|ηk(x)| ≤ K2xe2λkeQ(x)/2.

PROOF. In Section 3 we introduced the semigroup P̃t associated with the
Schrödinger equation and showed that ηk = eQ/2ψk , where ψk is the unique eigen-
function related to the eigenvalue λk for P̃t . Using estimates on this semigroup, we
will get some properties of ψk , and we will prove the proposition.

The semigroup P̃t is given for f ∈ L2(R+, dx) by

P̃tf (x) = EWx

[
f (ω(t))1t<T0 exp

(
−1

2

∫ t

0
(q2 − q ′)(ωs) ds

)]
,

where EWx denotes the expectation w.r.t. the Wiener measure starting from x. We
first establish a basic estimate on its kernel p̃t (x, y).

LEMMA 4.5. Assume condition (H2) holds. There exists a constant K3 > 0 and
a continuous increasing function B defined on [0,∞) satisfying limz→∞ B(z) =
∞, such that for any x > 0, y > 0 we have

0 < p̃1(x, y) ≤ e−(x−y)2/4e−B(max{x,y})(4.2)

and

p̃1(x, y) ≤ K3p
D
1 (x, y),(4.3)

where pD
t is the Dirichlet heat kernel in R+ given for x, y ∈ R+ by

pD
t (x, y) = 1√

2πt

(
e−(x−y)2/(2t) − e−(x+y)2/(2t)).
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The proof of this lemma is postponed to the Appendix.
It follows immediately from the previous lemma that the kernel p̃1(x, y) defines

a bounded operator P̃1 from L2(R+, dx) to L∞(R+, dx). As a byproduct, we get
that all eigenfunctions ψk of P̃1 are bounded and, more precisely,

|ψk| ≤ K1e
λk .

One also deduces from the previous lemma that the kernel defined for M > 0
by

p̃M
1 (x, y) = 1x<M1y<Mp̃1(x, y)

is a Hilbert–Schmidt operator in L2(R+, dx), in particular, is a compact oper-
ator (see, e.g., [4], pages 177, 267). In addition, it follows at once again from
Lemma 4.5 that if P̃ M

1 denotes the operator with kernel p̃M
1 , we have the follow-

ing estimate, in the norm of operators acting on L2(R+, dx):

‖P̃ M
1 − P̃1‖L2(R+,dx) ≤ C′e−B(M),

where C′ is a positive constant independent of M . Since limM→∞ B(M) = ∞,
the operator P̃1 is a limit in norm of compact operators in L2(R+, dx) and hence
compact. Since p̃1(x, y) > 0, the operator P̃1 is positivity improving (that is, if
0 �= f ≥ 0, then P̃1f > 0 ), implying that the eigenvector ψ1 is positive.

We now claim that |ψk(x)| ≤ K2xe2λk for 0 < x ≤ 1. We have from Lemma 4.5
and the explicit expression for pD

1 (x, y) the existence of a constant K3 such that

|e−λkψk(x)| ≤ K3

∫ ∞
0

pD
1 (x, y)|ψk(y)|dy

≤ K3‖ψk‖∞

√
2

π
e−x2/2

∫ ∞
0

e−y2/2 sinh(xy) dy.

We now estimate the integral in the right-hand side. Using the convexity property
of sinh, we get sinh(xy) ≤ x sinh(y) ≤ x

2 ey , for x ∈ [0,1], y ≥ 0, which yields∫ ∞
0

e−y2/2 sinh(xy) dy ≤ x

2

∫ ∞
0

e−y2/2ey dy,

proving the claim. Together with hypothesis (H4), this estimate implies that ηk

belongs to L1((0,1), dμ).
Since

ηk(x) = ψk(x)eQ(x)/2,

we have ∫ ∞
1

ηk dμ =
∫ ∞

1
ψk(x)e−Q(x)/2 dx,

which implies ηk ∈ L1((1,∞), dμ) using Cauchy–Schwarz’s inequality. This fin-
ishes the proof of Proposition 4.4. �
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REMARK 4.6. Let us discuss some easy facts about the hypotheses intro-
duced:

(1) If q and q ′ extend continuously up to 0, hypotheses (H2)–(H4) reduce to their
counterpart at infinity.

(2) Consider q(x) = a
x

+ g(x) with g a C1 function up to 0. In order that (2.3)
holds at the origin, we need a > −1

2 . Then μ(dx) = �(x)x−2a dx with �

bounded near the origin, while q2(x) − q ′(x) ≈ (a + a2)/x2. Hence, for (H2)
to hold, we need a ≥ 0. Now we have the estimates∫ ε

0

1

(q2(x) − q ′(x) + C + 2)
μ(dx) ≈

∫ ε

0
�(x)x2(1−a) dx,

and ∫ ε

0
xe−Q(x)/2 dx ≈

∫ ε

0
�(x)x1−a dx.

Therefore, (H3) holds for a < 3
2 and (H4) holds (at 0) for a < 2. The conclu-

sion is that a ∈ [0, 3
2).

We recall that a = 1
2 if X comes from a generalized Feller diffusion.

(3) If q(x) ≥ 0 for x large, hypothesis (H2) implies the first part of hypothesis
(H4). Indeed, take a > 0 to be such that for any x ≥ a we have q(x) > 0 and
q2(x)− q ′(x) > 1. Consider the function y = e−Q/2 which satisfies y′ = −qy

and y′′ = (q2 − q ′)y. For b > a we get after integration by parts

0 =
∫ b

a

(
(q2 − q ′)y2 − yy′′)dx

=
∫ b

a

(
(q2 − q ′)y2 + y′2)

dx − y(b)y′(b) + y(a)y′(a).

Using y′ = −qy, we obtain∫ b

a
y2 dx ≤

∫ b

a

(
(q2 − q ′)y2 + y′2)

dx

= q(a)y(a)2 − q(b)y(b)2 ≤ q(a)y(a)2 < ∞
and the result follows by letting b tend to infinity.

5. Quasi-stationary distribution and Yaglom limit. Existence of the Ya-
glom limit and of q.s.d. for killed one-dimensional diffusion processes have al-
ready been proved by various authors, following the pioneering work by Mandl
[22] (see, e.g., [3, 23, 30] and the references therein). One of the main assump-
tions in these papers is κ(∞) = ∞ and∫ ∞

1
e−Q(y)

(∫ y

1
eQ(z)dz

)
dy = +∞,
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which is not necessarily satisfied in our case. Indeed, under mild conditions, the
Laplace method yields that

∫ y
1 eQ(z) dz behaves like eQ(y)/2q(y) when y tends

to infinity, so the above equality will not hold if q grows too fast to infinity at
infinity. Actually, we will be particularly interested in these cases [our forthcoming
assumption (H5)], since they are exactly those when the diffusion “comes down
from infinity,” which ensures uniqueness of the q.s.d. The second assumption in
the aforementioned papers is that q is C1 up to the origin which is not true in our
case of interest.

It is useful to introduce the following condition:

DEFINITION 5.1. We say that hypothesis (H) is satisfied if (H1) and (H2)
hold, and, moreover, η1 ∈ L1(μ) [which is the case, e.g., under (H3) or (H4)].

We now study the existence of q.s.d. and the Yaglom limit in our framework.
When η1 ∈ L1(μ), a natural candidate for being a q.s.d. is the normalized measure
η1μ/〈η1,1〉μ, which turns out to be the conditional limit distribution.

THEOREM 5.2. Assume that hypothesis (H) holds. Then

dν1 = η1 dμ

〈η1,1〉μ
is a quasi-stationary distribution, that is for every t ≥ 0 and any Borel subset A of
(0,∞),

Pν1(Xt ∈ A | T0 > t) = ν1(A).

Also for any x > 0 and any Borel subset A of (0,∞),

lim
t→∞ eλ1tPx(T0 > t) = η1(x)〈η1,1〉μ,(5.1)

lim
t→∞ eλ1tPx(Xt ∈ A,T0 > t) = ν1(A)η1(x)〈η1,1〉μ.

This implies, since η1 > 0 on (0,∞),

lim
t→∞Px(Xt ∈ A | T0 > t) = ν1(A),

and the probability measure ν1 is the Yaglom limit distribution. Moreover, for any
probability measure ρ with compact support in (0,∞), we have

lim
t→∞ eλ1tPρ(T0 > t) = 〈η1,1〉μ

∫
η1(x)ρ(dx);(5.2)

lim
t→∞ eλ1tPρ(Xt ∈ A,T0 > t) = ν1(A)〈η1,1〉μ

∫
η1(x)ρ(dx);(5.3)

lim
t→∞Pρ(Xt ∈ A | T0 > t) = ν1(A).(5.4)
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PROOF. Thanks to the symmetry of the semigroup, we have for all f in L2(μ),∫
Ptf η1 dμ =

∫
f Ptη1 dμ = e−λ1t

∫
f η1 dμ.

Since η1 ∈ L1(μ), this equality extends to all bounded f . In particular, we may
use it with f = 1(0,∞) and with f = 1A. Noticing that∫

Pt

(
1(0,∞)

)
η1 dμ = Pν1(T0 > t)〈η1,1〉μ

and
∫

Pt1Aη1 dμ = Pν1(Xt ∈ A,T0 > t)〈η1,1〉μ, we have shown that ν1 is a q.s.d.
The rest of the proof is divided into two cases. First assume that μ is a bounded

measure. Thanks to Theorem 2.3, we know that, for any x > 0, any set A ⊂ (0,∞)

such that 1A ∈ L2(μ) and for any t > 1,

Px(Xt ∈ A,T0 > t) =
∫

Py(Xt−1 ∈ A,T0 > t − 1)r(1, x, y)μ(dy)

=
∫

Pt−1(1A)(y)r(1, x, y)μ(dy)

=
∫

1A(y)(Pt−1r(1, x, ·))(y)μ(dy).

Since both 1A and r(1, x, ·) are in L2(μ) and since (H2) is satisfied, we obtain,
using Theorem 3.2,

lim
t→∞ eλ1(t−1)Px(Xt ∈ A,T0 > t) = 〈1A,η1〉μ〈r(1, x, ·), η1〉μ.(5.5)

Since ∫
r(1, x, y)η1(y)μ(dy) = (P1η1)(x) = e−λ1η1(x),

we get that ν1 is the Yaglom limit.
If μ is not bounded [i.e., 1(0,∞) /∈ L2(μ)], we need an additional result to obtain

the Yaglom limit.

LEMMA 5.3. Assuming η1 ∈ L1(μ), then for all x > 0, there exists a locally
bounded function �(x) such that, for all y > 0 and all t > 1,

r(t, x, y) ≤ �(x)e−λ1t η1(y).(5.6)

We postpone the proof of the lemma and indicate how it is used to conclude the
proof of the theorem.

If (5.6) holds, for t > 1, eλ1t r(t, x, ·) ∈ L1(μ) and is dominated by �(x)η1.
Since r(1, x, ·) ∈ L2(μ) by Theorem 2.3, using Theorem 3.2 and writing again
r(t, x, ·) = Pt−1r(1, x, ·) μ a.s., we deduce that limt→∞ eλ1t r(t, x, ·) exists in
L2(μ) and is equal to

eλ1〈r(1, x, ·), η1〉μη1(·) = η1(x)η1(·).
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Recall that convergence in L2 implies almost sure convergence along subse-
quences. Therefore, for any sequence tn → ∞ there exists a subsequence t ′n such
that

lim
n→∞ eλ1t

′
nr(t ′n, x, y) = η1(x)η1(y) for μ-almost all y > 0.

Since

Px(T0 > t ′n) =
∫ ∞

0
r(t ′n, x, y)μ(dy),

the Lebesgue bounded convergence theorem yields

lim
n→∞ eλ1t

′
nPx(T0 > t ′n) = η1(x)

∫ ∞
0

η1(y)μ(dy).

That is, (5.5) holds with A = (0,∞) for the sequence t ′n. Since the limit does
not depend on the subsequence, limt→∞ eλ1tPx(T0 > t) exists and is equal to the
previous limit, hence, (5.5) is still true. The rest of this part follows as before.

For the last part of the theorem, that is, passing from the initial Dirac measures
at every fixed x > 0 to the compactly supported case, we just use that �(•) is
bounded on compact sets included in (0,∞).

PROOF OF LEMMA 5.3. According to the parabolic Harnack’s inequality (see,
for example, [31]), for all x > 0, one can find �0(x) > 0, which is locally bounded,
such that, for all t > 1, y > 0 and z with |z − x| ≤ ρ(x) = 1

2 ∧ x
4 ,

r(t, x, y) ≤ �0(x)r(t + 1, z, y).

It follows that

r(t, x, y) = (
∫
|z−x|≤ρ(x) r(t, x, y)η1(z)μ(dz))

(
∫
|z−x|≤ρ(x) η1(z)μ(dz))

≤ �0(x)
(
∫
|z−x|≤ρ(x) r(t + 1, z, y)η1(z)μ(dz))

(
∫
|z−x|≤ρ(x) η1(z)μ(dz))

≤ �0(x)
(
∫

r(t + 1, z, y)η1(z)μ(dz))

(
∫
|z−x|≤ρ(x) η1(z)μ(dz))

≤ �0(x)
e−λ1(t+1)η1(y)

(
∫
|z−x|≤ρ(x) η1(z)μ(dz))

,

since Pt+1η1 = e−λ1(t+1)η1. But �1(x) = ∫
|z−x|≤ρ(x) η1(z)μ(dz) > 0, otherwise

η1, which is a solution of the linear o.d.e. 1
2g′′ − qg′ + λ1g = 0 on (0,∞), would

vanish on the whole interval |z − x| ≤ ρ(x), hence on (0,∞) according to the
uniqueness theorem for linear o.d.e’s. The proof of the lemma is thus completed
with � = e−λ1�0/�1. �
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The positive real number λ1 is the natural killing rate of the process. Indeed, the
limit (5.1) obtained in Theorem 5.2 shows that, for any x > 0 and any t > 0,

lim
s→∞

Px(T0 > t + s)

Px(T0 > s)
= e−λ1t .

Let us also remark that

Pν1(T0 > t) = e−λ1t .

In order to control the speed of convergence to the Yaglom limit, we first estab-
lish the following lemma.

LEMMA 5.4. Under conditions (H2) and (H4), the operator P1 is bounded
from L∞(μ) to L2(μ). Moreover, for any compact subset K of (0,∞), there is a
constant CK such that, for any function f ∈ L1(μ) with support in K, we have

‖P1f ‖L2(μ) ≤ CK‖f ‖L1(μ).

PROOF. Letting g ∈ L∞(μ), since

|P1g| ≤ P1|g| ≤ ‖g‖L∞(μ),

we get from (H4) ∫ ∞
1

|P1g|2 dμ ≤ ‖g‖2
L∞(μ)

∫ ∞
1

e−Q(x) dx.

We now recall that (see Section 3)

P1g(x) = eQ(x)/2P̃1(e
−Q/2g)(x).

It follows from Lemma 4.5 that uniformly in x ∈ (0,1] we have [using hypothesis
(H4)]

|P̃1(e
−Q/2g)(x)| ≤ O(1)‖g‖L∞(μ)

∫ ∞
0

e−Q(y)/2e−y2/4y dy ≤ O(1)‖g‖L∞(μ).

This implies∫ 1

0
|P1g|2 dμ =

∫ 1

0
|P̃1(e

−Q/2g)(x)|2 dx ≤ O(1)‖g‖2
L∞(μ),

and the first part of the lemma follows. For the second part, we have from the
Gaussian bound of Lemma 4.5 that, for any x > 0 and for any f integrable and
with support in K,

|P̃1(e
−Q/2f )(x)| ≤ O(1)

∫
K

e−Q(y)/2e−(x−y)2/2|f (y)|dy

≤ O(1) sup
z∈K

eQ(z)/2 sup
z∈K

e−(x−z)2/2
∫
K

e−Q(y)|f (y)|dy

≤ O(1)e−x2/4
∫
K

e−Q(y)|f (y)|dy
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since K is compact. This implies∫ ∞
0

|P1f |2 dμ =
∫ ∞

0
|P̃1(e

−Q/2f )(x)|2 dx ≤ O(1)‖f ‖2
L1(μ)

. �

We can now use the spectral decomposition of r(1, x, ·) to obtain the following
convergence result.

PROPOSITION 5.5. Under conditions (H2) and (H4), for all x > 0 and any
measurable subset A of (0,∞), we have

lim
t→∞ e(λ2−λ1)t

(
Px(Xt ∈ A | T0 > t) − ν1(A)

)
(5.7)

= η2(x)

η1(x)

( 〈1, η1〉μ〈1A,η2〉μ − 〈1, η2〉μ〈1A,η1〉μ
〈1, η1〉2

μ

)
.

PROOF. Let h be a nonnegative bounded function, with compact support in
(0,∞). By using the semigroup property, Lemma 5.4 and the spectral decompo-
sition for compact self adjoint semigroups (see Theorem 3.2), we have for any
t > 2, ∫

Px(Xt ∈ A,T0 > t)h(x) dx

= 〈heQ,Pt1A〉μ = 〈
P1(heQ),P(t−2)P11A

〉
μ

= 〈P1(heQ), η1〉μ〈η1,P11A〉μe−λ1(t−2)

+ 〈P1(heQ), η2〉μ〈η2,P11A〉μe−λ2(t−2) + R(h,A, t)

with

|R(h,A, t)| ≤ ∑
i≥3

e−λi(t−2)|〈P1(heQ), ηi〉μ〈ηi,P11A〉μ|

≤ e−λ3(t−2)‖P1(heQ)‖L2(μ)‖P11A‖L2(μ),

due to λ1 < λ2 < λ3 < · · · , the Cauchy–Schwarz inequality and Parseval’s
identity. Note that since P1 is symmetric with respect to the scalar product,
we have 〈P1(heQ), η1〉μ = e−λ1〈heQ,η1〉μ and similarly for η2. We also have
〈η1,P11A〉μ = e−λ1〈η1,1A〉μ and similarly for η2. It follows immediately from
Lemma 5.4 that, for any fixed compact subset K of (0,∞), any A and any h sat-
isfying the hypothesis of the proposition with support contained in K ,

|R(h,A, t)| ≤ O(1)e−λ3(t−2)‖heQ‖L1(μ) ≤ O(1)e−λ3(t−2)‖h‖L1(dx),

since h has compact support in (0,∞). Therefore, letting h tend to a Dirac mass,
we obtain that, for any compact subset K of (0,∞), there is a constant DK such
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that, for any x ∈ K , for any measurable subset A of (0,∞), and for any t > 2, we
have

|Px(Xt ∈ A,T0 > t) − eQ(x)η1(x)〈η1,1A〉μe−λ1t − eQ(x)η2(x)〈η2,1A〉μe−λ2t |
≤ DKe−λ3t .

The proposition follows at once from

Px(Xt ∈ A | T0 > t) = Px(Xt ∈ A,T0 > t)

Px(Xt ∈ (0,∞), T0 > t)
. �

6. The Q-process. As in [3] (Theorem B), we can also describe the law of
the process conditioned to be never extinct, usually called the Q-process (also see
[19]).

COROLLARY 6.1. Assume (H) holds. For all x > 0 and s ≥ 0 we have

lim
t→∞Px(X ∈ B | T0 > t) = Qx(B)

for all B Borel measurable subsets of C([0, s]),
where Qx is the law of a diffusion process on (0,∞), with transition probability
densities (w.r.t. the Lebesgue measure) given by

q(s, x, y) = eλ1s
η1(y)

η1(x)
r(s, x, y)e−Q(y),

that is, Qx is locally absolutely continuous w.r.t. Px and

Qx(X ∈ B) = Ex

(
1B(X)eλ1s

η1(Xs)

η1(x)
, T0 > s

)
.

PROOF. First check, thanks to Fubini’s theorem and κ(0+) < ∞ in hypoth-
esis (H1), that �(0+) > −∞. We can thus slightly change the notation (for this
proof only) and define � as �(x) = ∫ x

0 eQ(y) dy. From standard diffusion theory,
(�(Xt∧T0); t ≥ 0) is a local martingale, from which it is easy to derive that, for
any y ≥ x ≥ 0, Py(Tx < T0) = �(y)/�(x).

Now define v(t, x) = Px(T0>t)
P1(T0>t)

. As in [3], proof of Theorem B, one can prove
for any x ≥ 1, using the strong Markov property at Tx of the diffusion X start-
ing from 1, that v(t, x) ≤ �(x)/�(1). On the other hand, for x ≤ 1 we obtain
v(t, x) ≤ 1. Then for any x ≥ 0 we get v(t, x) ≤ 1 + �(x)/�(1).

Now, thanks to Theorem 5.2, for all x, eλ1tPx(T0 > t) → η1(x)〈1, η1〉μ as t →
∞, and

lim
t→∞v(t, x) = η1(x)

η1(1)
.
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Using the Markov property, it is easily seen that, for large t ,

Px(X ∈ B | T0 > t) = Ex[1B(X)v(t − s,Xs), T0 > s]P1(T0 > t − s)

Px(T0 > t)
.

The random variable in the expectation is (positive and) bounded from above by
1 + �(Xs)/�(1), which is integrable (see below), so we obtain the desired result
using the Lebesgue bounded convergence theorem.

To see that Ex(�(Xs)1s<T0) is finite, it is enough to use Itô’s formula with the
harmonic function � up to time T0 ∧ TM . Since � is nonnegative, it easily yields
Ex(�(Xs)1s<T0∧TM

) ≤ �(x) for all M > 0. Letting M go to infinity, the indicator
converges almost surely to 1s<T0 [thanks to hypothesis (H1)], so the monotone
convergence theorem yields Ex(�(Xs)1s<T0) ≤ �(x). �

Recall that ν1 is the Yaglom limit.

COROLLARY 6.2. Assume (H) holds. Then for any Borel subset B ⊆ (0,∞)

and any x,

lim
s→∞Qx(Xs ∈ B) =

∫
B

η2
1(y)μ(dy) = 〈η1,1〉μ

∫
B

η1(y)ν1(dy).

PROOF. We know from the proof of Theorem 5.2 that eλ1sr(s, x, ·) converges
to η1(x)η1(·) in L2(μ) as s → ∞. Hence, since 1Bη1 ∈ L2(μ),

η1(x)Qx(Xs ∈ B) =
∫

1B(y)η1(y)eλ1sr(s, x, y)μ(dy) → η1(x)

∫
B

η2
1(y)μ(dy)

as s → ∞. We remind the reader that dν1 = η1 dμ/〈η1,1〉μ. �

REMARK 6.3. The stationary measure of the Q-process is absolutely continu-
ous w.r.t. ν1, with Radon–Nikodym derivative 〈η1,1〉μη1, which thanks to Propo-
sition 4.1 is nondecreasing. In particular, the ergodic measure of the Q-process
dominates stochastically the Yaglom limit. We refer to [19, 23] for further discus-
sion of the relationship between q.s.d. and the ergodic measure of the Q-process.

7. Infinity is an entrance boundary and uniqueness of q.s.d. We start with
the notion of quasi limiting distribution q.l.d.

DEFINITION 7.1. A probability measure π supported on (0,∞) is a q.l.d. if
there exists a probability measure ν such that the following limit exists in distrib-
ution:

lim
t→∞Pν(Xt ∈ • | T0 > t) = π(•).

We also say that ν is attracted to π , or is in the domain of attraction of π , for the
conditional evolution.
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Obviously every q.s.d. is a q.l.d., because such measures are fixed points for the
conditional evolution. We prove that the reciprocal is also true, so both concepts
coincide.

LEMMA 7.2. Let π be a probability measure supported on (0,∞). If π is a
q.l.d., then π is a q.s.d. In particular, there exists α ≥ 0 such that, for all s > 0,

Pπ(T0 > s) = e−αs.

PROOF. By hypothesis, there exists a probability measure ν such that
limt→∞ Pν(Xt ∈ • | T0 > t) = π(•), in distribution. That is, for all continuous
and bounded functions f we have

lim
t→∞

Pν(f (Xt), T0 > t)

Pν(T0 > t)
=

∫
f (x)π(dx).

If we take f (x) = Px(Xs ∈ A,T0 > s), since f (x) = ∫
A r(t, x, y)μ(dy), an appli-

cation of Harnack’s inequality and of the dominated convergence theorem ensures
that f is continuous in (0,∞).

First, take A = (0,∞), so that f (x) = Px(T0 > s). Then, we obtain for all s ≥ 0

lim
t→∞

Pν(T0 > t + s)

Pν(T0 > t)
= Pπ(T0 > s).

The left-hand side is easily seen to be exponential in s and then there exists α ≥ 0
such that

Pπ(T0 > s) = e−αs.

Second, take f (x) = Px(Xs ∈ A,T0 > s) to conclude that

Pπ(Xs ∈ A,T0 > s) = lim
t→∞Pν

(
f (Xt) | T0 > t

)

= lim
t→∞Pν(Xt+s ∈ A | T0 > t + s)

Pν(T0 > t + s)

Pν(T0 > t)

= e−αsπ(A),

and then π is a q.s.d. �

Recall from Theorem 5.2 that, under hypothesis (H), the measure dν1 =
η1 dμ/〈η1,1〉μ is the Yaglom limit, which, in addition, is a q.l.d. attracting all
initial distribution with compact support on (0,∞). It is natural to ask about the
uniqueness of the q.s.d. Here again, our assumptions on the behavior of q at infinity
will allow us to characterize the domain of attraction of the q.s.d. ν1 associated to
η1. This turns out to be entirely different from the cases studied in [3], for instance.
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We say that the diffusion process X comes down from infinity if there is y > 0
and a time t > 0 such that

lim
x↑∞ Px(Ty < t) > 0.

This terminology is equivalent to the property that ∞ is an entrance boundary for
X (for instance, see [26], page 283).

Let us introduce the following condition:

HYPOTESIS (H5). ∫ ∞
1

eQ(y)
∫ ∞
y

e−Q(z) dz dy < ∞.

Tonelli’s theorem ensures that (H5) is equivalent to∫ ∞
1

e−Q(y)
∫ y

1
eQ(z) dz dy < ∞.(7.1)

If (H5) holds, then for y ≥ 1,
∫ ∞
y e−Q(z) dz < ∞. Applying the Cauchy–

Schwarz inequality, we get (x − 1)2 = (
∫ x

1 eQ/2e−Q/2 dz)2 ≤ ∫ x
1 eQ dz

∫ x
1 e−Q dz

and, therefore, (H5) implies that �(∞) = ∞.
Now we state the main result of this section.

THEOREM 7.3. Assume (H) holds. Then the following are equivalent:

(i) X comes down from infinity;
(ii) (H5) holds;

(iii) ν1 attracts all initial distributions ν supported in (0,∞), that is,

lim
t→∞Pν(Xt ∈ • | T0 > t) = ν1(•).

In particular, any of these three conditions implies that there is a unique q.s.d.

REMARK 7.4. It is not obvious when condition (H5) holds. In this direction,
the following explicit conditions on q , all together, are sufficient for (H5) to hold:

• q(x) ≥ q0 > 0 for all x ≥ x0,

• lim supx→∞ q ′(x)/2q2(x) < 1,

• ∫ ∞
x0

1
q(x)

dx < ∞.

Indeed, check first that these conditions imply that q(x) goes to infinity as
x → ∞. Then defining s(y) := ∫ ∞

y e−Q(z) dz, the first condition above implies

that s(y)eQ(y) is bounded in y ≥ x0. Integrating by parts on
∫

seQ dz gives∫ x

x0

seQ dz =
∫ x

x0

s

2q
eQ2q dz = s

2q
eQ

∣∣∣∣
x

x0

+
∫ x

x0

1

2q
dz +

∫ x

x0

seQ q ′

2q2 dz.
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Since seQ/2q vanishes at infinity, the third condition implies that seQ(1−q ′/2q2)

is integrable and, thanks to the second condition, we conclude that (H5) holds.
On the other hand, if (H5) holds, q ′(x) ≥ 0 for x ≥ x0 and q(x0) > 0, then q(x)

goes to infinity as x → ∞ and
∫ ∞
x0

1
q(x)

dx < ∞.

We can retain that under the assumption that q ′(x) ≥ 0 for x ≥ x0 and q(x) goes
to infinity as x → ∞, then

(H5) ⇐⇒
∫ ∞

1

1

q(x)
dx < ∞.

Indeed, the only thing left to prove is the sufficiency of (H5). Since s(y) tends to
0 as y → ∞ (because Q grows at least linearly), then by the mean value theorem
we have ∫ ∞

y e−Q(z) dz

e−Q(y)
= 1

2q(ξ)
,

where ξ ∈ [y,∞). Using that q is monotone, we obtain the bound∫ ∞
y e−Q(z) dz

e−Q(y)
≤ 1

2q(y)
,

and the equivalence is shown.

The proof of Theorem 7.3 follows from Propositions 7.5–7.7.

PROPOSITION 7.5. Assume (H1) holds. If there is a unique q.s.d. that attracts
all initial distributions supported in (0,∞), then X comes down from infinity.

PROOF. Let π be the unique q.s.d. that attracts all distributions. We know that
Pπ(T0 > t) = e−αt for some α ≥ 0. Since absorption is certain, then α > 0. For
the rest of the proof let ν be any initial distribution supported on (0,∞), which
by hypothesis is in the domain of attraction of π, that is, for any bounded and
continuous function f we have

lim
t→∞

∫ ∞
0

Pν(Xt ∈ dx | T0 > t)f (x) =
∫ ∞

0
f (x)π(dx).

We now prove that, for any λ < α, Eν(e
λT0) < ∞. As in Lemma 7.2, we have for

any s

lim
t→∞

Pν(T0 > t + s)

Pν(T0 > t)
= e−αs.

Now pick λ ∈ (0, α) and ε > 0 such that (1+ε)eλ−α < 1. An elementary induction
shows that there is t0 such that, for any t > t0, and any integer n,

Pν(T0 > t + n)

Pν(T0 > t)
≤ (1 + ε)ne−αn.
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Breaking down the integral
∫ ∞
t0

Pν(T0 > s)eλs ds over intervals of the form (n,n+
1] and using the previous inequality, it is easily seen that this integral converges.
This proves that Eν(e

λT0) < ∞ for any initial distribution ν.
Now fix λ = α/2 and for any x ≥ 0, let g(x) = Ex(e

λT0) < ∞. We want to show
that g is bounded, which trivially entails that X comes down from infinity. Thanks
to the previous step, for any nonnegative random variable Y with law ν,

E(g(Y )) = Eν(e
λT0) < ∞.

Since Y can be any random variable, this implies that g is bounded. Indeed, ob-
serve that g is increasing and g(0) = 1, so that a := 1/g(∞) is well defined in
[0,1). Then check that

ν(dx) = g′(x)

(1 − a)g(x)2 dx

is a probability density on (0,∞). To conclude, we use the fact that
∫

g dν < ∞
to get ∫

g dν =
∫ ∞

0

g′(x)

(1 − a)g(x)
dx = 1

1 − a
lng(x)|∞0 = lng(∞)

1 − a
,

and then g is bounded. �

PROPOSITION 7.6. The following are equivalent:

(i) X comes down from infinity;
(ii) (H5) holds;

(iii) for any a > 0 there exists ya > 0 such that supx>ya
Ex[eaTya ] < ∞.

PROOF. Since (i) is equivalent to ∞ being an entrance boundary and (ii) is
equivalent to (7.1), we must show that “∞ is an entrance boundary” and (7.1)
are equivalent. This will follow from [14], Theorem 20.12, (iii). For that purpose
consider Yt = �(Xt). Under each one of the conditions (i) or (ii), we have �(∞) =
∞. It is direct to prove that Y is in natural scale on the interval (�(0),∞), that is,
for �(0) < a ≤ y ≤ b < ∞ = �(∞),

Py(T
Y
a < T Y

b ) = b − y

b − a
,

where T Y
a is the hitting time of a for the diffusion Y . Then, ∞ is an entrance

boundary for Y if and only if ∫ ∞
0

ym(dy) < ∞,

where m is the speed measure of Y , which is given by

m(dy) = 2dy

(�′(�−1(y))2
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(see [15], formula (5.51)), because Y satisfies the SDE

dYt = �′(�−1(Yt )
)
dBt .

After a change of variables, we obtain∫ ∞
0

ym(dy) =
∫ ∞

1
e−Q(y)

∫ x

1
eQ(z) dz dx.

Therefore, we have shown the equivalence between (i) and (ii).
We continue the proof with (ii) ⇒ (iii). Let a > 0, and pick xa large enough so

that ∫ ∞
xa

eQ(x)
∫ ∞
x

e−Q(z) dz dx ≤ 1

2a
.

Let J be the nonnegative increasing function defined on [xa,∞) by

J (x) =
∫ x

xa

eQ(y)
∫ ∞
y

e−Q(z) dz dy.

Then check that J ′′ = 2qJ ′ − 1, so that LJ = −1/2. Set now ya = 1 + xa , and
consider a large M > x. Itô’s formula gives

Ex

(
ea(t∧TM∧Tya )J (Xt∧TM∧Tya

)
)

= J (x) + Ex

(∫ t∧TM∧Tya

0
eas(aJ (Xs) + LJ(Xs)

)
ds

)
.

But LJ = −1/2, and J (Xs) < J(∞) ≤ 1/(2a) for any s ≤ Tya , so that

Ex

[
ea(t∧TM∧Tya )J (Xt∧TM∧Tya

)
] ≤ J (x).

But J is increasing, hence, for x ≥ ya one gets 1/(2a) > J(x) ≥ J (ya) > 0. It fol-
lows that Ex(e

a(t∧TM∧Tya )) ≤ 1/(2aJ (ya)) and, finally Ex(e
aTya ) ≤ 1/(2aJ (ya)),

by the monotone convergence theorem. So (iii) holds.
Finally, it is clear that (iii) ⇒ (i). �

PROPOSITION 7.7. Assume (H) holds. If there is x0 such that
supx≥x0

Ex(e
λ1Tx0 ) < ∞, then ν1 attracts all initial distribution supported in

(0,∞).

The proof of this result requires the following control near 0 and ∞.

LEMMA 7.8. Assume (H) holds, and supx≥x0
Ex(e

λ1Tx0 ) < ∞. For h ∈ L1(μ)

strictly positive in (0,∞), we have

lim
ε↓0

lim sup
t→∞

∫ ε
0 h(x)Px(T0 > t)μ(dx)∫
h(x)Px(T0 > t)μ(dx)

= 0,(7.2)

lim
M↑∞ lim sup

t→∞

∫ ∞
M h(x)Px(T0 > t)μ(dx)∫

h(x)Px(T0 > t)μ(dx)
= 0.(7.3)
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PROOF. We start with (7.2). Using Harnack’s inequality, we have for ε < 1
and large t∫ ε

0 h(x)Px(T0 > t)μ(dx)∫
h(x)Px(T0 > t)μ(dx)

≤ P1(T0 > t)
∫ ε

0 h(z)μ(dz)

Cr(t − 1,1,1)
∫ 2

1 h(x)μ(dx)
∫ 2

1 μ(dy)
,

then

lim sup
t→∞

∫ ε
0 h(x)Px(T0 > t)μ(dx)∫
h(x)Px(T0 > t)μ(dx)

≤ lim sup
t→∞

P1(T0 > t)
∫ ε

0 h(z)μ(dz)

Cr(t − 1,1,1)
∫ 2

1 h(x)μ(dx)
∫ 2

1 μ(dy)

= e−λ1〈η1,1〉μ ∫ ε
0 h(z)μ(dz)

Cη1(1)
∫ 2

1 h(x)μ(dx)
∫ 2

1 μ(dy)
,

and the first assertion of the lemma is proven.
For the second limit, we set A0 := supx≥x0

Ex(e
λ1Tx0 ) < ∞. Then for large M >

x0, we have

Px(T0 > t) =
∫ t

0
Px0(T0 > u)Px

(
Tx0 ∈ d(t − u)

) + Px(Tx0 > t).

Using that limu→∞ eλ1uPx0(T0 > u) = η1(x0)〈η1,1〉μ, we obtain that B0 :=
supu≥0 eλ1uPx0(T0 > u) < ∞. Then

Px(T0 > t) ≤ B0

∫ t

0
e−λ1uPx

(
Tx0 ∈ d(t − u)

) + Px(Tx0 > t)

≤ B0e
−λ1tEx(e

λ1Tx0 ) + e−λ1tEx(e
λ1Tx0 ) ≤ e−λ1tA0(B0 + 1),

and (7.3) follows immediately. �

PROOF OF PROPOSITION 7.7. Let ν be any fixed probability distribution
whose support is contained in (0,∞). We must show that the conditional evo-
lution of ν converges to ν1. We begin by claiming that ν can be assumed to have a
strictly positive density h, with respect to μ. Indeed, let

�(y) =
∫

r(1, x, y)ν(dx).

Using Tonelli’s theorem, we have∫ ∫
r(1, x, y)ν(dx)μ(dy) =

∫ ∫
r(1, x, y)μ(dy)ν(dx)

=
∫

Px(T0 > 1)ν(dx) ≤ 1,
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which implies that
∫

r(1, x, y)ν(dx) is finite dy-a.s. Also, � is strictly positive by
Harnack’s inequality. Finally, define h = �/

∫
�dμ. Notice that, for dρ = hdμ,

Pν(Xt+1 ∈ • | T0 > t + 1) = Pρ(Xt ∈ • | T0 > t),

showing the claim.
Consider M > ε > 0 and any Borel set A included in (0,∞). Then∣∣∣∣

∫
Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫

Px(T0 > t)h(x)μ(dx)
−

∫ M
ε Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫ M

ε Px(T0 > t)h(x)μ(dx)

∣∣∣∣
is bounded by the sum of the following two terms:

I1 =
∣∣∣∣
∫

Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫
Px(T0 > t)h(x)μ(dx)

−
∫ M
ε Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫

Px(T0 > t)h(x)μ(dx)

∣∣∣∣,
I2 =

∣∣∣∣
∫ M
ε Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫

Px(T0 > t)h(x)μ(dx)
−

∫ M
ε Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫ M

ε Px(T0 > t)h(x)μ(dx)

∣∣∣∣.
We have the bound

I1 ∨ I2 ≤
∫ ε

0 Px(T0 > t)h(x)μ(dx) + ∫ ∞
M Px(T0 > t)h(x)μ(dx)∫

Px(T0 > t)h(x)μ(dx)
.

Thus, from Lemma 7.8 we get

lim
ε↓0,M↑∞ lim sup

t→∞

∣∣∣∣
∫

Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫
Px(T0 > t)h(x)μ(dx)

−
∫ M
ε Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫ M

ε Px(T0 > t)h(x)μ(dx)

∣∣∣∣ = 0.

On the other hand, we have, using (5.4),

lim
t→∞

∫ M
ε Px(Xt ∈ A,T0 > t)h(x)μ(dx)∫ M

ε Px(T0 > t)h(x)μ(dx)
=

∫
A η1(z)μ(dz)∫

R+ η1(z)μ(dz)
= ν1(A),

independently of M > ε > 0, and the result follows. �

The following corollary of Proposition 7.6 describes how fast the process comes
down from infinity.

COROLLARY 7.9. Assume (H) and (H5) hold. Then for all λ < λ1,
supx>0 Ex[eλT0] < ∞.

PROOF. We have seen in Section 5 (Theorem 5.2) that, for all x > 0,
limt→∞ eλ1tPx(T0 > t) = η1(x)〈η1,1〉μ < ∞, that is, Ex[eλT0] < ∞ for all λ <

λ1. Applying Proposition 7.6 with a = λ and the strong Markov property, it follows
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that supx>yλ
Ex[eλT0] < ∞. Furthermore, thanks to the uniqueness of the solution

of (1.1), Xx
t ≤ X

yλ
t a.s. for all t > 0 and all x < yλ, hence, Ex[eλT0] ≤ Eyλ[eλT0]

for those x, completing the proof. �

The previous corollary states that the killing time for the process starting from
infinity has exponential moments up to order λ1. In [18] an explicit calculation
of the law of T0 is done in the case of the logistic Feller diffusion Z (hence the
corresponding X) and also for other related models. In particular, it is shown in
Corollary 3.10 therein that the absorption time for the process starting from infinity
has a finite expectation. As we remarked in studying examples, a very general
family of diffusion processes (including the logistic one) satisfy all assumptions in
Corollary 7.9, which is thus an improvement of the quoted result.

We end this section by gathering some known results on birth–death processes
that are close to our findings. Let Y be a birth–death process with birth rate λn

and death rate μn when in state n. Assume that λ0 = μ0 = 0 and that extinction
(absorption at 0) occurs with probability 1. Let

S = ∑
i≥1

πi + ∑
n≥1

(λnπn)
−1

∑
i≥n+1

πi,

where

πn = λ1λ2 · · ·λn−1

μ1μ2 · · ·μn

.

In this context sure absorption at 0, that is, (H1), is equivalent to A :=∑
i≥1(λiπi)

−1 = ∞ (see [16], formula (7.9)). On the other hand, we also have
E1(T0) = ∑

i≥1 πi . We may state the following:

PROPOSITION 7.10. For a birth–death process Y that satisfies (H1), the fol-
lowing are equivalent:

(i) Y comes down from infinity;
(ii) There is one and only one q.s.d.;

(iii) limn↑∞ ↑ En(T0) < ∞;
(iv) S < ∞.

PROOF. In [5], Theorem 3.2, it states the following key alternative: S < ∞
iff there is a unique q.s.d.; if S = ∞, then there is no q.s.d. or there are infinitely
many ones. Then the equivalence between (ii) and (iv) is immediate. Also, it is
well known that

En(T0) = ∑
i≥1

πi +
n−1∑
r=1

(λrπr)
−1

∑
i≥r+1

πi;

see, for example, [16], formula 7.10. Therefore, (iii) and (iv) are equivalent. Let
us now examine how this criterion is related to the nature of the boundary at +∞.
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From the table in [1], Section 8.1, we have that +∞ is an entrance boundary iff
A = ∞, E1(T0) < ∞ and S < ∞. Finally, S < ∞ implies that E1(T0) < ∞ and
this ensures P1(T0 < ∞) = 1, that is, A = ∞. This shows the result. �

8. Biological models.

8.1. Population dynamics and quasi-stationary distributions. Our aim is to
model the dynamics of an isolated population by a diffusion Z := (Zt ; t ≥ 0).
Since competition for limited resources impedes natural populations with no im-
migration to grow indefinitely, they are all doomed to become extinct at some finite
time T0. However, T0 can be large compared to a human timescale and it is com-
mon that population sizes fluctuate for a large amount of time before extinction
actually occurs. The notion of quasi-stationarity captures this behavior [25, 29].

The diffusions we consider arise as scaling limits of general birth–death
processes. More precisely, let (ZN)N∈N be a sequence of continuous time birth–
death processes ZN := (ZN

t ; t ≥ 0), renormalized by the weight N−1, hence tak-
ing values in N−1N. Assume that their birth and death rates from state x are equal
to bN(x) and dN(x), respectively, and bN(0) = dN(0) = 0, ensuring that the state
0 is absorbing. We also assume that, for each N and for some constant BN ,

bN(x) ≤ (x + 1)BN, x ≥ 0,

and that there exist a nonnegative constant γ and a function h ∈ C1([0,∞)),
h(0) = 0, called the growth function, such that

lim
N→∞

1

N

(
bN(x) − dN(x)

) = h(x); lim
N→∞

1

2N2

(
bN(x) + dN(x)

) = γ x(8.1)

∀x ∈ (0,∞).

Important ecological examples include the following:

(i) The pure branching case, where the individuals give birth and die indepen-
dently, so that one can take bN(x) = (γN +λ)Nx and dN(x) = (γN +μ)Nx.
Writing r := λ − μ for the Malthusian growth parameter of the population,
one gets h(z) = rz.

(ii) The logistic branching case, where bN(x) = (γN + λ)Nx and dN(x) =
(γN +μ)Nx + c

N
Nx(Nx −1). The quadratic term in the death rate describes

the interaction between individuals. The number of individuals is of order N ,
the biomass of each individual is of order N−1, and c/N is the interaction
coefficient. The growth function is then h(z) = rz − cz2.

(iii) Dynamics featuring Allee effect, that is, a positive density-dependence for
certain ranges of density, corresponding to cooperation in natural populations.
A classical type of growth function in that setting is h(z) = rz( z

K0
− 1)(1 −

z
K

). Observe that, in this last case, the individual growth rate is no longer a
monotone decreasing function of the population size.
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Assuming further that (ZN
0 )N∈N converges as N → ∞ (we thus model the dy-

namics of a population whose size is of order N ), we may prove, following Lipow
[21] or using the techniques of Joffe–Métivier [13], that the sequence (ZN)N∈N

converges weakly to a continuous limit Z. The parameter γ can be interpreted
as a demographic parameter describing the ecological timescale. There is a main
qualitative difference depending on whether γ = 0 or not.

If γ = 0, then the limit Z is a deterministic solution to the dynamical system
Żt = h(Zt). Since h(0) = 0, the state 0 is always an equilibrium, but it can be
unstable. For example, in the logistic case h(z) = rz − cz2 and it is easily checked
that, when r > 0, the previous dynamical system has two equilibria, 0 which is
unstable, and r/c (called carrying capacity) which is asymptotically stable. In the
Allee effect case, 0 and K are both stable equilibria, but K0 is an unstable equilib-
rium, which means the population size has a threshold K0 to growth, below which
it cannot take over.

If γ > 0, the sequence (ZN)N∈N converges in law to the process Z, solution to
the following stochastic differential equation

dZt = √
γZt dBt + h(Zt) dt.(8.2)

The acceleration of the ecological process has generated the white noise. Note that
h′(0+) is the mean per capita growth rate for small populations. The fact that it is
finite is mathematically convenient, and biologically reasonable. Since h(0) = 0,
the population undergoes no immigration, so that 0 is an absorbing state. One can
easily check that when time goes to infinity, either Z goes to ∞ or is absorbed at 0.

When h ≡ 0, we get the classical Feller diffusion, so we call generalized Feller
diffusions the diffusions driven by (8.2). When h is linear, we get the general
continuous-state branching process with continuous paths, sometimes also called
Feller diffusion by extension. When h is concave quadratic, we get the logistic
Feller diffusion [6, 18].

DEFINITION 8.1. (HH) We say that h satisfies the condition (HH) if

(i) lim
x→∞

h(x)√
x

= −∞, (ii) lim
x→∞

xh′(x)

h(x)2 = 0.

In particular, (HH) holds for any subcritical branching diffusion and any logistic
Feller diffusion. Concerning assumption (i), the fact that h goes to −∞ indicates
strong competition in large populations, resulting in negative growth rates (as in
the logistic case). Assumption (ii) is fulfilled for most classical biological models,
and it appears as a mere technical condition.

Gathering all results of the present paper and applying them to our biological
model yields the following statement, which will be proved at the end of this sec-
tion.
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THEOREM 8.2. Let Z be the solution of (8.2). We assume h ∈ C1([0,∞)),
h(0) = 0 and that h satisfies assumption (HH). Then, for all initial laws with
bounded support, the law of Zt conditioned on {Zt �= 0} converges exponentially
fast to a probability measure ν, called the Yaglom limit. The law Qx of the process
Z starting from x and conditioned to be never extinct exists and defines the so-
called Q-process. This process converges, as t → ∞, in distribution, to its unique
invariant probability measure. This probability measure is absolutely continuous
w.r.t. ν with a nondecreasing Radon–Nikodym derivative.

In addition, if the following integrability condition is satisfied,∫ ∞
1

dx

−h(x)
< ∞,

then Z comes down from infinity and the convergence of the conditional one-
dimensional distributions holds for all initial laws. In particular, the Yaglom limit
ν is then the unique quasi-stationary distribution.

PROOF. For Z solution to (8.2), recall that Xt = 2
√

Zt/γ satisfies the SDE
dXt = dBt − q(Xt) dt with

q(x) = 1

2x
− 2h(γ x2/4)

γ x
, x > 0.

In particular, we have

q ′(x) = − 1

2x2 + 2h(γ x2/4)

γ x2 − h′(γ x2/4) and

q2(x) − q ′(x) = 3

4x2 + h(γ x2/4)

(
4

γ 2x2 h(γ x2/4) − 4

γ x2

)
+ h′(γ x2/4).

Under assumption (HH), we have the following behaviors at 0 and ∞: q(x)∼x↓0
1/2x, as well as

q2(x) − q ′(x) ∼
x↓0

3

4x2 and (q2 − q ′)
(
2
√

x/γ
) ∼
x→∞

h(x)2

x

(
1

γ
+ xh′(x)

h(x)2

)
.

Then, it is direct to check that hypothesis (H2) holds

lim
x→∞q2(x) − q ′(x) = ∞, C := − inf

x∈(0,∞)
q2(x) − q ′(x) < ∞.

We recall that

Q(x) =
∫ x

1
2q(y) dy,�(x) =

∫ x

1
eQ(y) dy and

κ(x) =
∫ x

1
eQ(y)

(∫ y

1
e−Q(z) dz

)
dy.
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Straightforward calculations show that

lim
x→∞

Q(x)

x
= ∞ and A := lim

x→0+
(
Q(x) − log(x)

) ∈ (−∞,∞).

In particular, �(∞) = ∞ and the integrand in the definition of κ is equivalent to
y log(y), which ensures κ(0+) < ∞. Thus, X and, consequently, Z, is absorbed at
0 with probability 1, that is, hypothesis (H1) holds.

We now continue with (H3), which is∫ 1

0

1

q2(y) − q ′(y) + C + 2
e−Q(y) dy < ∞.

This hypothesis holds because near 0 the integrand is of the order

1

3/(4y2)
e−Q(y) ∼ 4e−A

3
y.

For the first part of the theorem it remains only to show that (H4) holds∫ ∞
1

e−Q(x) dx < ∞ and
∫ 1

0
xe−Q(x)/2 dx < ∞.

The first integral is finite because Q grows at least linearly near ∞ and the second
one is finite because the integrand is of order 1/

√
x for x near 0.

Hence, we can apply Theorem 5.2, Proposition 5.5, and Corollaries 6.1 and 6.2
to finish with the proof of the first part of the theorem.

For the last part of the theorem we need to show that X comes down from infin-
ity, which is equivalent to (H5). Thanks to Remark 7.4, there is a simple sufficient
condition for this hypothesis to hold, which has three components. The first one,

q(x) ≥ q0 > 0 for all x ≥ x0,

follows from (HH)(i). The second one,

lim sup
x→∞

q ′(x)/2q2(x) < 1,

is equivalent to

lim sup
x→∞

−xh′(x)

h(x)2 <
2

γ
,

which clearly follows from (HH)(ii). Finally the third one,∫ ∞
x0

1

q(x)
dx < ∞,

thanks to (HH)(i), is equivalent to∫ ∞ −γ x

2h(γ x2/4)
dx =

∫ ∞ 1

−h(z)
dz < ∞.

This is exactly the extra assumption made in the theorem and the result is proven.
�



QUASI-STATIONARITY FOR POPULATION DIFFUSION PROCESSES 1963

8.2. The growth function and conditioning. Referring to the previous con-
struction of the generalized Feller diffusion (8.2), we saw why h(z) could be
viewed as the expected growth rate of a population of size z and h(z)/z as the
mean per capita growth rate. Indeed, h(z) informs of the resulting action of den-
sity upon the growth of the population, and h(z)/z indicates the resulting action
of density upon each individual. In the range of densities z where h(z)/z increases
with z, the most important interactions are of the cooperative type, one speaks of
positive density-dependence. On the contrary, when h(z)/z decreases with z, the
interactions are of the competitive type, and density-dependence is said to be neg-
ative. In many cases, such as the logistic one, the limitation of resources forces
harsh competition in large populations, so that, as z → ∞, h(z)/z is negative and
decreasing. In particular, h(z) goes to −∞. The shape of h at infinity determines
the long time behavior of the diffusion Z.

Actually, if h goes to infinity at infinity, such as in the pure branching process
case (where h is linear), Theorem 8.2 still holds if (HH)(i) is replaced with the
more general condition limx→∞ h(x)√

x
= ±∞, provided the generalized Feller dif-

fusion is further conditioned on eventual extinction. Indeed, the following state-
ment ensures that conditioning on extinction roughly amounts to replacing h with
−h.

PROPOSITION 8.3. Assume that Z is given by (8.2), where h ∈ C1([0,∞)),
h(0) = 0, limx→∞ h(x)√

x
= ∞. Define u(x) := Px(limt→∞ Zt = 0) and let Y be the

diffusion Z conditioned on eventual extinction. Then Y is the solution of the SDE,
Y0 = Z0

dYt = √
γ Yt dBt +

(
h(Yt ) + γ Yt

u′(Yt )

u(Yt )

)
dt.(8.3)

If, in addition, h satisfies (HH)(ii), then

h(y) + γy
u′(y)

u(y)
∼

y→∞−h(y).

PROOF. Let J (x) := ∫ x
0

2h(z)
γ z

dz, which is well defined since h ∈ C1([0,∞))

with h(0) = 0. We set

v(x) := a

∫ ∞
x

e−J (z) dz,

with a = (
∫ ∞

0 e−J (z) dz)−1 (well defined by the growth of h near ∞). Now we
prove that u = v. It is easily checked that v is decreasing with v(0) = 1, v(∞) = 0,
and that it satisfies the equation γ

2 xv′′(x) + h(x)v′(x) = 0 for all x ≥ 0.
As a consequence, (v(Zt ); t ≥ 0) is a (bounded hence) uniformly integrable

martingale, so that

v(x) = Ex(v(Zt )) → v(0)Px

(
lim

t→∞Zt = 0
)

+ v(∞)Px

(
lim

t→∞Zt = ∞
)

= u(x),
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as t → ∞, so that indeed u = v.
Using the strong Markov Property of Z, we obtain that, for any Borel set A ⊂

(0,∞) and s ≥ 0,

Px(Ys ∈ A) = Px(Zs ∈ A|T0 < ∞) = Ex

(
PZs (T0 < ∞)

Px(T0 < ∞)
,Zs ∈ A

)

= Ex

(
u(Zs)

u(x)
,Zs ∈ A

)
.

Then for any measurable and bounded function f we get

Ex(f (Ys)) = Ex

(
f (Zs)

u(Zs)

u(x)

)
.

Now if f is C2 and has compact support contained in (0,∞), we get from Itô’s
formula that uf is in the domain of LZ , the generator of Z, and then f is in the
domain of the generator LY of Y and, moreover,

LY (f )(x) = 1

u(x)
LZ(uf )(x) = γ

2
xf ′′(x) +

(
h(x) + γ x

u′(x)

u(x)

)
.

Then, since h is locally Lipschitz, we obtain that the law of Y is the unique solution
to the SDE (8.3).

Let us show the last part of the proposition. Notice that J is strictly increasing
after some x0, so we consider its inverse ϕ on [J (x0),∞). Next observe that, for
x > x0,

− u

u′ (x) = eJ (x)
∫ ∞
x

e−J (z) dz = eJ (x)
∫ ∞
J (x)

e−bϕ′(b) db,

with the change b = J (z). As a consequence, we can write for y > J(x0)

− u

u′ (ϕ(y)) = ey
∫ ∞
y

e−bϕ′(b) db =
∫ ∞

0
e−bϕ′(y + b)db.(8.4)

Because h tends to ∞, J (x) ≥ (1+ε) log(x) for x sufficiently large, so that ϕ(y) ≤
exp(y/(1 + ε)), and ϕ(y) exp(−y) vanishes as y → ∞. Now, since

ϕ′(y) = γ ϕ(y)

2h(ϕ(y))
= o(ϕ(y)),

ϕ′(y) exp(−y) also vanishes. Since h is differentiable, J is twice differentiable,
and so is ϕ, so performing an integration by parts yields

ϕ′(y) =
∫ ∞

0
e−bϕ′(y + b)db −

∫ ∞
0

e−bϕ′′(y + b)db.(8.5)

Since ϕ′(J (x)) = 1/J ′(x), we get J ′(x)ϕ′′(J (x)) = (1/J ′(x))′, so by the technical
assumption (HH)(ii),

ϕ′′(J (x)) = ϕ′(J (x))

(
1

J ′(x)

)′
= γ

2
ϕ′(J (x))

(
1

h(x)
− xh′(x)

h(x)2

)
= o(ϕ′(J (x))),
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as x → ∞. Then, as y → ∞, we have ϕ′′(y) = o(ϕ′(y)). This shows, thanks to
(8.5), that ∫ ∞

0
e−bϕ′(y + b)db ∼

y→∞ϕ′(y),

which entails, thanks to (8.4), that

− u

u′ (ϕ(y)) ∼
y→∞ϕ′(y).

This is equivalent to

γ x
u′

u
(x) ∼

x→∞−γ xJ ′(x) = −2h(x),

which ends the proof. �

Let us examine the case of the Feller diffusion (pure branching process), where
h(z) = rz. First, it is known (see, e.g., [20], Chapter 2) that when r > 0, the su-
percritical Feller diffusion Z conditioned on extinction is exactly the subcritical
Feller diffusion with h(z) = −rz. The previous statement can thus be seen as an
extension of this duality to more general population diffusion processes.

Second, in the critical case (r = 0), our present results do not apply. Actually, the
(critical) Feller diffusion has no q.s.d. [19]. Third, in the subcritical case (r < 0),
our results do apply, so there is a Yaglom limit and a Q-process, but in contrast
to the case when 1/h is integrable at ∞, it is shown in [19] that subcritical Feller
diffusions have infinitely many q.s.d.

APPENDIX: PROOF OF LEMMA 4.5

We first prove the second bound. For any nonnegative and continuous function
f with support in R+, we have from hypothesis (H2)∫

p̃1(x,u)f (u) du = EWx

[
f (ω(1))11<T0(ω) exp

(
−1

2

∫ 1

0
(q2 − q ′)(ωs) ds

)]

≤ eC/2EWx [f (ω(1))11<T0(ω)].
The estimate (4.3) follows by letting f (z) dz tend to the Dirac measure at y with
K3 = eC/2, that is,

p̃1(x, y) ≤ K3p
D
1 (x, y).

Here pD
1 (x, y) = 1√

2π
(e−(x−y)2/2 − e−(x+y)2/2) (see, for example, [15], page 97).

Let us now prove the upper bound in (4.2). Let B1 be the function defined by

B1(z) := inf
u≥z

(
q2(u) − q ′(u)

)
.
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We have∫
p̃1(x, y)f (y) dy

= EWx

[
f (ω(1))11<T011<Tx/3 exp

(
−1

2

∫ 1

0
(q2 − q ′)(ωs) ds

)]

+ EWx

[
f (ω(1))11<T011≥Tx/3 exp

(
−1

2

∫ 1

0
(q2 − q ′)(ωs) ds

)]
.

For the first expectation, we have

EWx

[
f (ω(1))11<T011<Tx/3 exp

(
−1

2

∫ 1

0
(q2 − q ′)(ωs) ds

)]

≤ e−B1(x/3)/2EWx [f (ω(1))11<T0].
For the second expectation, we obtain

EWx

[
f (ω(1))11<T011≥Tx/3 exp

(
−1

2

∫ 1

0
(q2 − q ′)(ωs) ds

)]

≤ eC/2EWx [f (ω(1))11<T011≥Tx/3]
= eC/2(

EWx [f (ω(1))11<T0] − EWx [f (ω(1))11<Tx/3]
)
.

Using a limiting argument as above and the invariance by translation of the law of
the Brownian motion, and first assuming that y/2 < x < 2y, we obtain

p̃1(x, y) ≤ e−B1(x/3)/2pD
1 (x, y) + eC/2(

pD
1 (x, y) − pD

1 (2x/3, y − x/3)
)
,

pD
1 (x, y) − pD

1 (2x/3, y − x/3)

= 1√
2π

(
e−(y+x/3)2/2 − e−(x+y)2/2) ≤ 1√

2π
e−max{x,y}2/18.

Since the function B1 is nondecreasing, we get for y/2 < x < 2y

p̃1(x, y) ≤ 1√
2π

(
e−B1(max{x,y}/6)/2 + e−max{x,y}2/18)

.

If x/y /∈]1/2,2 [, we get from the estimate (4.3)

p̃1(x, y) ≤ K3√
2π

e−(y−x)2/2 ≤ K3√
2π

e−max{x,y}2/8.

We now define the function B by

B(z) := log
(

K3 ∨ 1√
2π

)
+ min{B1(z/6)/4, z2/36}.
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It follows from hypothesis (H2) that limz→∞ B(z) = ∞. Combining the previous
estimates, we get for any x and y in R+

p̃1(x, y) ≤ e−2B(max{x,y}).

The upper estimate (4.2) follows by taking the geometric average of this result and
(4.3). We now prove that p̃1(x, y) > 0. For this purpose, let a = min{x, y}/2 and
b = 2 max{x, y}. We have as above for every nonnegative continuous function f

with support in R+
∫

p̃1(x, y)f (y) dy ≥ EWx

[
f (ω(1))11<T[a,b] exp

(
−1

2

∫ 1

0
(q2 − q ′)(ωs) ds

)]
,

where we denote T[a,b] the exit time from the interval [a, b]. Letting

Ra,b = sup
x∈[a,b]

(
q2(x) − q ′(x)

)
,

this quantity is finite since q ∈ C1((0,∞)). We obtain immediately∫
p̃1(x, y)f (y) dy ≥ e−Ra,b/2

∫
p

[a,b]
1 (x, y)f (y) dy,

where we denote p
[a,b]
t the heat kernel with Dirichlet conditions in [a, b]. The

result follows from a limiting argument as above, since p
[a,b]
1 (x, y) > 0.
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