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MODEL MISSPECIFICATION IN PEAKS OVER
THRESHOLD ANALYSIS

BY MÁRIA SÜVEGES AND ANTHONY C. DAVISON1

Ecole Polytechnique Fédérale de Lausanne

Classical peaks over threshold analysis is widely used for statistical mod-
eling of sample extremes, and can be supplemented by a model for the sizes of
clusters of exceedances. Under mild conditions a compound Poisson process
model allows the estimation of the marginal distribution of threshold ex-
ceedances and of the mean cluster size, but requires the choice of a threshold
and of a run parameter, K , that determines how exceedances are declustered.
We extend a class of estimators of the reciprocal mean cluster size, known
as the extremal index, establish consistency and asymptotic normality, and
use the compound Poisson process to derive misspecification tests of model
validity and of the choice of run parameter and threshold. Simulated exam-
ples and real data on temperatures and rainfall illustrate the ideas, both for
estimating the extremal index in nonstandard situations and for assessing the
validity of extremal models.

1. Introduction. When extreme-value statistics are applied to time series it
is common to proceed as though the data are independent and identically distrib-
uted, although they may be nonstationary with complex covariate effects and with
rare events generated by several different mechanisms. Moreover, models that are
mathematically justified only as asymptotic approximations may be fitted to data
for which these approximations are poor. In this paper we suggest diagnostics for
failure of these models and illustrate their application.

A standard approach to modeling the upper tail of a distribution is the so-called
peaks over threshold procedure [Davison and Smith (1990)], under which a thresh-
old u is applied to data x1, . . . , xn from a supposedly stationary time series, leav-
ing N positive exceedances xj − u. Extrapolation beyond the tail of the data is
based on a fit of the generalized Pareto distribution [Pickands (1975)]

H(y) =
{

1 − (1 + ξy/σ)−1/ξ , ξ �= 0,
1 − exp(−y/σ), ξ = 0,

(1)

to the N exceedances, treated as independent. The parameters in (1) are a scale
parameter σ > 0 and a shape parameter ξ ∈ R that controls the weight of the tail
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of the distribution, whose r th moment exists only if rξ < 1. In many applications ξ

appears to lie in the interval (−0.5,0.5), but uncertainty about its value generally
leads to alarmingly wide confidence intervals for quantities of interest such as a
return period T or a return level xT ; these satisfy pr(X > xT ) = 1/T . If the time
series is white noise, n is large and N/n is small, then exceedances of u appear as
a Poisson process, and under mild conditions we may use the tail approximation
pr(X > x) ≈ (N/n){1 − Ĥ (x − u)}, where Ĥ is the estimate of (1). A crucial
preliminary to using such methods is the choice of threshold u, which is usually
performed graphically using stability properties of (1): if Y ∼ H and u > 0, then
conditional on Y > u the exceedance Y − u has distribution (1) with parameters ξ

and σ ′ = σ + ξu; and if ξ < 1, then the mean residual life E(Y − u | Y > u) =
σ ′/(1 − ξ). It is standard practice to plot empirical versions of these quantities
for a range of potential thresholds, and to use only values of u above which the
estimates appear to be stable and the empirical mean residual life appears to be
linear. See Coles [(2001), Chapter 4] or Beirlant et al. (2004) for more details,
and Beirlant, Vynckier and Teugels (1996) and Sousa and Michailidis (2004) for
variants of the last plot intended to stabilize it in the presence of heavy-tailed data.

This approach to tail modeling is based on a general and well-developed proba-
bilistic theory of extremes [Leadbetter, Lindgren and Rootzén (1983), Embrechts,
Klüppelberg and Mikosch (1997), Falk, Hüsler and Reiss (2004)] and is widely
used: in 2008 alone the Web of Science records around 450 articles in which the
terms “peaks over threshold” or “generalised Pareto distribution” appear in the ab-
stract or title. Thus, it is important to develop simple tools for diagnosis of the
failure of such models.

One source of failure is the choice of threshold. A bad choice may yield a poor
tail approximation, both because the generalized Pareto distribution is inappropri-
ate if u is too small and because independence assumptions used to fit the model
are invalid: in practice, the observations, and therefore the exceedances, are al-
most always dependent. This dependence is often reduced by declustering the ex-
ceedances, for example, declaring that those lying closer together than a run para-
meter K belong to the same cluster, and fitting (1) only to the largest exceedance
of each cluster. However, a poor choice of K will give a poor inference, so it is
essential to check how the results depend on the choices of threshold u and run
parameter K .

A key issue is thus the effect of possible model misspecification on inference.
White (1994) gives conditions under which the maximum likelihood estimator de-
rived from a misspecified model is a consistent and normally distributed estimator
of the parameter that minimizes the Kullback–Leibler discrepancy between the
true and the assumed models, and constructs tests for misspecification. In the con-
text of statistics of extremes, the peaks over the threshold model may be justified
by a compound Poisson process model for the exceedances of a random process
above a high threshold [Hsing (1987), Hsing, Hüsler and Leadbetter (1988)]. This
model, which we outline in Section 2.1, can be checked through the projection of
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the two-dimensional limiting point process of exceedances onto the time axis: if
the projection is misspecified, we should be wary about using peaks over thresh-
olds.

The main contribution of this paper is to construct diagnostics for the adequacy
of peaks over threshold models. Section 2 introduces inter-exceedance times trun-
cated by the run parameter K , which we call K-gaps, and discusses the selection
of an appropriate run parameter and threshold. We propose the use of an infor-
mation sandwich as a diagnostic for model failure, and, as a byproduct, we extend
the maximum likelihood estimator of the reciprocal mean cluster size, the extremal
index, given in Süveges (2007). Section 3 uses data simulated from two autoregres-
sive models and a Markov chain model to illustrate the application of our ideas.
Section 4 applies them to real data, to elucidate nonstationarity and tuning para-
meter selection and to aid extremal index estimation when the basic assumptions
of extreme-value theory are violated. Section 5 contains a brief discussion.

2. Theory.

2.1. Likelihood. We consider asymptotic models for the upper extremes of a
strictly stationary random sequence X1, . . . ,Xn with marginal distribution func-
tion F . A standard approach is to consider the limiting point process of rescaled
variables Nn = ∑n

i=1 δi/n,(Xj−bn)/an as n → ∞, where the sequences {bn} ⊂ R

and {an} ⊂ R+ are chosen so that the maximum a−1
n (max{Xi} − bn) has a non-

degenerate limiting distribution G [Resnick (1987)]. Under mild conditions, if Nn

converges in distribution to a point process N as n → ∞, this must have the rep-
resentation [Hsing (1987)]

N =
∞∑
i=1

Mi∑
j=1

δ(Si,Xij ),

where (Si,Xi1) are the points of a nonhomogeneous Poisson point process with
mean measure | · |× τ(·) on [0,1)× (xL, xR], | · | is the Lebesgue measure, xL and
xR are the left and right endpoints of G and τ(x,∞] = − logG(x). The Xij are
such that, for all i, the variables

Yij = − logG(Xij )

− logG(Xi1)
, j = 1, . . . ,Mi,

are the points of a point process γi on [1,∞) with an atom at unity. The γi are
independent of the nonhomogeneous Poisson process (Si,Xi1) and of each other,
and are identically distributed. Thus, the point process limit of Nn is a compound
Poisson process N comprising independent identically distributed clusters, the ith
of which has Mi exceedances Yi1, . . . , YiMi

that may have different sizes but occur
simultaneously.
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This result implies convergence in distribution of maxima to the generalized
extreme-value distribution, convergence of threshold exceedances to the general-
ized Pareto distribution, and convergence of the projection N ∗

n = ∑n
i=1 δi/n to a

compound Poisson process with points at Si and marks Mi . In the limit the inter-
exceedance times follow a mixture of an exponential distribution and a point mass
at zero [Ferro and Segers (2003)], and this remains true for inter-exceedance times
truncated by some fixed positive value; see below. For a sequence of thresholds un,
define the inter-exceedance times in the sequence {Xi} by

T (un) = min{k ≥ 1 :Xk+1 > un|X1 > un},
and the corresponding K-gaps by

S(K)(un) = max{T (un) − K,0}, K = 0,1, . . . .

Then Theorem 1 of Ferro and Segers (2003) can be modified to yield a limiting
distribution for the K-gaps, which Süveges (2007) gave for K = 1. The proof re-
quires only small modifications of the original, by considering pr{F(un)[T (un) −
K] > t}, where F(un) = 1 − F(un). Let Fi,j (un) denote the σ -field generated
by the events Xr ≤ un, r = i, . . . , j . For any A ∈ F1,k(un) with pr(A) > 0,
B ∈ Fk+l,n(un) and k, l integers such that k = 1, . . . , n − l, define

α∗(n, l) = max
k

sup
A,B

|pr(B | A) − pr(B)|.

Then we have the following result.

THEOREM 2.1. Suppose there exist sequences of integers {rn} and of thresh-
olds {un} such that as n → ∞, we have rn → ∞, rnF (un) → τ and pr{Mrn ≤
un} → e−θτ for some τ ∈ (0,∞) and θ ∈ (0,1]. Moreover, assume that there ex-
ists a sequence ln = o(n) for which α∗(crn, ln) → 0 as n → ∞ for all c > 0. Then
as n → ∞,

pr
{
F(un)S

(K)(un) > t
} −→ θ exp(−θt), t > 0,(2)

where the extremal index θ lies in the interval (0,1] and is the reciprocal of the
mean cluster size, that is, E(Mi) = θ−1.

Equation (2) corresponds to a limiting mixture model for the intervals between
successive exceedances: with probability θ the interval is an exponential vari-
able with rate θ , and otherwise it is of length zero, yielding a compound Poisson
process of exceedance times and a likelihood-based estimator of θ . Suppose that
N observations from a stationary random sequence X1, . . . ,Xn exceed the thresh-
old un, let the indices {ji :Xji

> un} denote the locations of the exceedances, let

Ti = ji+1 − ji denote the inter-exceedance times, and let S
(K)
i = max(Ti − K,0)
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denote the ith K-gap, for i = 1, . . . ,N − 1 and K = 0,1, . . . . Assuming inde-
pendence of the gaps S

(K)
1 , . . . , S

(K)
N−1, the limiting distribution (2) leads to the log

likelihood

	K

(
θ;S(K)

i

) = (N − 1 − NC) log(1 − θ) + 2NC log θ − θ

N−1∑
i=1

F(un)S
(K)
i(3)

for θ , where NC = ∑N−1
i=1 I (S

(K)
i �= 0), and to a closed-form maximum likelihood

estimator θ̂n, which is the smaller root of a quadratic equation. Below we modify
the log likelihood (3) to allow nonstationarity to be detected by using smoothing
[Fan and Gijbels (1996), Süveges (2007)].

2.2. Model misspecification. The point process approach can fail because the
assumptions of strict stationarity and independence at extreme levels are violated,
but even if they are fulfilled, the chosen threshold parameter un and the run pa-
rameter K may be inappropriately small, thereby leading to a poor extreme-value
approximation or to dependent threshold exceedances. In order to detect such diffi-
culties, we turn to classical work on model misspecification [White (1982)]. Under
broad assumptions, the maximum likelihood estimator derived from a misspeci-
fied likelihood 	(θ) exists as a local maximum of 	(θ). When the true model 	0
is not contained in the postulated model family, that is, there is no θ0 such that
	0 = 	(θ0), this estimator is consistent for that parameter value θ∗ within the mis-
specified family 	(θ) that minimizes the Kullback–Leibler discrepancy with the
true distribution. Define J (θ) = E0{	′(θ, Sj )

2}, I (θ) = −E0{	′′(θ, Sj )}, where the
prime denotes differentiation with respect to θ , and E0 means expectation under
the true model, and their empirical counterparts

J̄n(θ) = (N − 1)−1
N−1∑
j=1

	′(θ, Sj )
2, Īn(θ) = −(N − 1)−1

N−1∑
j=1

	′′(θ, Sj ).

Under regularity conditions satisfied by the limiting distribution (2) when 0 <

θ < 1, Theorem 3.2 of White (1982) yields that, as n → ∞,
√

n(θ̂n − θ∗)
d−→ N{0, I (θ∗)−2J (θ∗)}, Īn(θ̂n)

−2J̄n(θ̂n)
a.s.−→ I (θ∗)−2J (θ∗),

where
d−→ and

a.s.−→ denote weak and almost sure convergence, respectively. Thus,
the estimator derived from (3) using an arbitrary run parameter K is consistent
for the value θ∗ minimizing the Kullback–Leibler divergence with the true dis-
tribution, and is asymptotically normally distributed with the sandwich variance
I (θ∗)−1J (θ∗)I (θ∗)−1, which can be estimated by its empirical counterpart evalu-
ated at θ̂n.

It is straightforward to verify that the above theory applies to the log likeli-
hood (3), so that as un increases in such a way that N → ∞, the corresponding
maximum likelihood estimator is consistent and asymptotically normal.
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2.3. Diagnostics: the information matrix test. Tests to detect model misspec-
ification may be based on the fact that the Fisher information for a well-specified
regular model equals the variance of the score statistic, that is, J (θ) = I (θ). If we
write [White (1982)]

D(θ) = J (θ) − I (θ),(4)

then one possible misspecification test amounts to testing the null hypothesis H0 :
D(θ) = 0 against the alternative H1 :D(θ) �= 0. Let d(sj , θ) denote the one-
observation version of D(θ), let Dn(θ) = n−1 ∑n

j=1 d(sj , θ) denote the empirical
counterpart of D(θ), and let

V (θ) = E{[d(Sj , θ) + D′(θ)I (θ)−1	′(θ, Sj )]2}
and Vn(θ) denote the asymptotic variance of D(θ) and its empirical counterpart.
Detailed formulae are given in the Appendix. Under mild regularity conditions,
White (1982) proves the following theorem, here given for a scalar parameter.

THEOREM 2.2. If the assumed model 	(Sj , θ) contains the true model for

some θ = θ0, then as n → ∞,
√

nDn(θ̂n)
d−→ N(0,V (θ0)), Vn(θ̂n)

a.s.−→ V (θ0),
and the test statistic T (θ̂n) = nDn(θ̂n)

2Vn(θ̂n)
−1 is distributed as χ2

1 .

To check the quality of this chi-squared approximation, we performed simula-
tions from the AR(1) and AR(2) processes described in Section 3, using choices
of threshold and run parameter under which the models are well specified. Proba-
bility plots of the simulated T (θ̂n) showed that the χ2

1 approximation is good for
N ≥ 80, and tends to be conservative if N < 80. Thus, relying on this approxi-
mation can lead to a loss of power when the number of exceedances is small, in
which case it is difficult to detect misspecification anyway. Below we shall use the
chi-squared quantiles without further comment.

3. Simulated examples. For a numerical assessment of the ideas in Section 2,
we apply them to three processes:

AR(1): Yi = φYi−1 + Zi with φ = 0.7 and Zi standard Cauchy, with K = 1
and θ = 0.3;

AR(2): Yi = φ1Yi−1 +φ2Yi−2 +Zi , with φ1 = 0.95, φ2 = −0.89 and Zi Pareto
with tail index 2, with K = 5 and θ = 0.25;

Markov chain: With Gumbel margins, a symmetric logistic bivariate distribu-
tion for consecutive variables and dependence parameter r = 2 [Smith (1992)],
with θ = 0.33 and K unknown.

For each process we generated series of length n = 8000 and obtained sequences
of inter-exceedance times; the top row of Figure 1 shows a short sample with
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FIG. 1. Illustration of the diagnostics, based on data simulated from an AR(1) model (left col-
umn), an AR(2) model (middle column) and a Markov chain (right column). The top row gives an
impression of each series, together with its 0.95 and 0.99 quantiles (dashed and dotted horizontal
lines, respectively). The second row shows the information matrix test T (θ̂) (gray surface) and its
5% critical value χ2

1 (0.95) = 3.84 (thick dashed black line around the box), with the values above
3.84 accentuated by black blobs. The third row shows the estimated extremal index θ̂ (black surface)
as a function of the run parameter K and threshold u, with the true value of θ (thick dash-dotted
black line).

a typical extreme cluster from each process. We then calculated the maximum
likelihood estimates θ̂ for K = 1, . . . ,12 and thresholds corresponding to the
0.95,0.955, . . . ,0.995 quantiles. The second row of Figure 1 shows the result-
ing surfaces for the information matrix statistic T (θ̂). The lowest panels show
the estimated extremal index. For the AR(1) process, the information matrix test
suggests misspecification for the combination of low thresholds with small run pa-
rameter K , but this disappears when u or K is increased. For the AR(2) process,
the information matrix test indicates clear misspecification for most thresholds
when K ≤ 5, and there is then also substantial overestimation of the extremal
index. The information matrix test for the Markov chain suggests that although
well-specifiedness cannot be rejected for K = 1 and 2, inference with a larger run
parameter will be more reliable. Correspondingly, the extremal index estimate is
closer to the true value for larger run parameters.
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FIG. 2. Root mean squared error (top row) and relative bias (bottom row) of the K-gaps maximum
likelihood (solid), the iterative least squares [Süveges (2007), dashed] and the intervals (dotted)
estimators on the AR(1) process (left panels), on the AR(2) process (middle panels) and on the
Markov chain (right panels). K = 1 for the AR(1) process, K = 6 for the AR(2) process, and K = 5
for the Markov chain. The number of observations was n = 30,000.

To assess the quality of the extremal index estimator based on (3), a simula-
tion study was performed with 1000 replications of each of these processes, using
K = 1 for the AR(1) process, K = 6 for the AR(2), and K = 5 for the Markov
chain as suggested by the misspecification tests. We simulated processes of lengths
n = 2000 and n = 30,000, and used thresholds corresponding to the 0.95, 0.96,
0.97, 0.98 and 0.99 quantiles. The median relative bias and the root mean squared
error for the case n = 30,000 are shown in Figure 2. The plots confirm that if a suit-
able run parameter is chosen, then the maximum likelihood estimator has generally
lower bias and root mean squared error than the most commonly used competitor,
the intervals estimator, and another good estimator based on an iterative weighted
least squares fit to the longest inter-exceedance times [Süveges (2007)].

In order to explore the behavior of the misspecification tests in the case of
long-range dependence, we simulated fractionally differenced ARIMA(1,0, d)

processes of length n = 8000, with Gaussian white noise innovations, autoregres-
sive parameter 0.5 and difference parameter d = 0,0.3 and 0.49. The sequence
with d = 0 corresponds to a stationary normal AR(1) process, and therefore has
extremal index θ = 1. For the other cases, no theoretical calculations are known to
us concerning the existence of the extremal index. The autocorrelation functions
of the data, shown in the second row of Figure 3, show long memory when d > 0.
The test statistic, plotted in the third row of Figure 3, shows a lengthening depen-
dence range: misspecification is indicated at thresholds up to u = F−1(0.985) and
K < 8 for d = 0.3, and at all thresholds and K < 8 for d = 0.49. The absence of
misspecification at very high thresholds for d = 0.3 may be due to the effect of
increasing the threshold while keeping the length of the series fixed.
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FIG. 3. The behavior of the information matrix test as a function of the dependence range of the
process. The top row shows three ARIMA(1,0, d) sequences, with d = 0 (left column), d = 0.3
(middle column) and d = 0.49 (right column), and the second row their autocorrelation functions.
The third row contains the information matrix test T (θ̂) (gray surface), with the thick dashed black
lines indicating the critical value for the information matrix test χ2

1 (0.95) = 3.84, and the black
blobs indicating T (θ̂) > 3.84. The fourth row presents the extremal index estimate, with the thick
dash-dotted lines representing the theoretical value θ = 1 for the case d = 0.

4. Data examples.

4.1. Neuchâtel daily minimum summer temperatures. For a first application to
real data we use daily minimum summer temperatures from Neuchâtel from 1 Jan-
uary 1901 to 31 May 2006. Climatic change raises the question whether changes
in temperature extremes can be summarized simply by a smooth variation of the
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mean and the variance of the entire temperature distribution, or whether there are
additional changes in the extremes. The daily summer minimum temperatures at
Neuchâtel show a strong trend in the averages, and we investigate whether this is
accompanied by a change in the clustering of the extremes. The data have been
carefully homogenized, so such changes should not be due to changes in instru-
ment siting or type, or urban effects.

We stationarized the raw data by first centering and scaling by the annual me-
dian and median absolute deviation (MAD) cycle, and then de-trending by using a
ten-year moving median and MAD. Below we treat the resulting standardized tem-
perature anomalies for the months June–August in successive years as a continuous
time series. Figure 4, which shows the deseasonalized series before de-trending,
shows a strong irregular variation in the mean. The presence of trend also moti-
vates a careful misspecification analysis, not only for appropriate estimation of the
extremal index, but for the assumption of stationarity.

Initially assuming stationarity of the anomalies in the 1901–2006 period, we
applied the threshold selection procedures mentioned in Section 1 and described
in more detail by Coles [(2001), Section 4.3] to the entire sequence. There seems
to be stability above the 0.98 quantile, and generalized Pareto analysis of the com-
plete sequence showed acceptable diagnostics. However, Figure 5, which shows
these plots when applied separately to three 41-year-long periods centered on the
years 1925, 1955 and 1985, casts some doubt on the overall results.

We therefore checked model misspecification as a function of time, by center-
ing 41-year long windows successively at 15 July of each year, and calculating the
information matrix test defined by equation (4), for every combination of thresh-
old u and run parameter K . The calculations thus gave 106 sets of T (θ̂) values,
with extremal index estimates for all (u,K) pairs for the sequence of anomalies.

FIG. 4. The deseasonalized Neuchâtel daily minimum temperatures (black) with their trend, esti-
mated by a cubic spline-smoothed 10-year moving median (heavy white line). The horizontal line is
intended to help appreciate the trend.



MISSPECIFICATION IN PEAKS OVER THRESHOLDS 213

FIG. 5. Classical threshold selection plots for three 41-year windows centered on 1925, 1955
and 1985 for the Neuchâtel daily minimum temperature anomalies, showing the parameter estimate
(bold) and pointwise 95% confidence limits (solid) as functions of the threshold. The dashed lines
show the average estimates for the different thresholds.

The three main potential sources of misspecification here are threshold selec-
tion, the choice of run parameter and possible nonstationarity, so the test statistics
proposed above must depend on these. Figure 6, which presents the surfaces of
T (θ̂) for twelve different years, suggests misspecification in the period 1935–
1970 for thresholds around the 0.97- and 0.98-quantile for all run parameters.
Smaller instabilities were also found, mostly between 1985–2000, though these
rarely exceeded the critical χ2

1 -quantile. These two periods roughly coincide with
the strongest nonstationarity in the summer mean temperatures: see Figure 4, in
which the most marked periods of change in the 10-year median are in the 1940s
and in the 1980s. The threshold suggested by classical selection methods, the 0.98-
quantile, should be avoided: the ridge indicating misspecification is located at this
threshold.

Although our motivation for testing is different from the usual one leading to
the definition of the false discovery rate (FDR), the multiple testing setup and
the dependence between information matrix tests applied successively in sliding
windows should be taken into account when we want to justify the existence of
a misspecification region. Our main interest does not lie in the discovery of re-
gions where the null hypothesis of well-specifiedness is rejected at a given level
of FDR [Benjamini and Hochberg (1995)], but in finding those where it cannot be
rejected. Nevertheless, we tested the significance of the departure from the null hy-
pothesis by the procedure proposed in Benjamini and Yekutieli (2001) separately
for each u,K pair, and found that the misspecification is significant for all K and
for F(u) = 0.98 between roughly 1940–1965. The information matrix test was
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FIG. 6. Misspecification as a function of time for the Neuchatel summer daily minimum temper-
ature anomalies. Horizontal foreground axis: threshold u as F(u); horizontal left axis: run pa-
rameter K ; vertical axis: T (θ̂). The thick dashed lines around the box correspond to the critical
0.95-quantile of the χ2

1 distribution, the black blobs emphasize the parameter combinations where
T (θ̂) ≥ χ2

1 (0.95). Years are indicated above the plots.



MISSPECIFICATION IN PEAKS OVER THRESHOLDS 215

FIG. 7. Comparison of the maximum likelihood estimator using K = 4 and F(u) = 0.99 (heavy
solid in both panels) to the intervals (top panel, thick dashed) and to the iterative weighted least
squares (bottom panel, thick dotted) estimators. The 95% confidence intervals are shown by thin
versions of the lines.

closest to zero at the point F(u) = 0.99, K = 4 over the whole century, so we
chose these for smooth estimation of the extremal index. Figure 7 shows the re-
sulting locally constant weighted K-gaps estimates, compared to intervals and to
iterative weighted least squares estimates based on 41-year long sliding windows.
The confidence intervals for the K-gaps estimator are based on asymptotic nor-
mality. Nonparametric bootstrap intervals were also calculated, but showed only
slight differences mostly in the middle of the century, where the bootstrap interval
was slightly wider. The value of θ dips in the 1950s and in recent years, but overall
any evidence for changes in the clustering of summer minimum daily temperatures
seems to be weak.

The information matrix test suggests the existence of fluctuations in the time
point process of extreme anomalies. Using the ten-year moving window to de-
trend the series, and a 41-year window for the information matrix tests and the
estimation of the extremal index, only the combination of a high threshold and a
relatively high run parameter seem to yield a well-specified model. The period
where the models are misspecified roughly coincides with a local peak in the
10-year moving median of the data set. Changes in the median temperatures
may be accompanied by changes in clustering characteristics, but perhaps using a
10-year moving window for de-trending is insufficient to remove mean fluctua-
tions, so the anomalies display traces of residual nonstationarity that then appear
in the 41-year moving windows. Our investigation thus emphasizes the importance
of an appropriate treatment of long-term trends. Many studies of climate extremes
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use varying thresholds based on local quantile estimation or on an assumption of
a trend of simple parametric form, the first of which corresponds to our ad hoc
selection of window length for de-trending; see, for example, Kharin and Zwiers
(2005), Nogaj et al. (2006) or Brown, Caesar and Ferro (2008). Our results indi-
cate that model quality is highly sensitive to such choices, so it is necessary to
check whether the models are well specified, in order to avoid biased estimates
with underestimated variances. Climatological studies commonly directly com-
pare periods of a few decades, which are assumed stationary, but this too should
be performed with care. In our study, the time-scale of the fluctuations found at
extreme levels is shorter than a few decades on thresholds u < F−1(0.99) in the
period 1940–1965. As this is a period where the global mean temperature based on
observational data has a marked local peak, this might arise at other stations also,
and other climate variables may also show instability on such time-scales.

4.2. Daily rainfall in Venezuela. The rainfall data recorded daily between
1 January 1961 and 31 December 1999 at Maiquetia airport in Venezuela provide
a striking example of the difficulties of using simple extreme-value methods for
risk estimation. Prior to December 1999, the annual maxima of the data set were
fitted with a Gumbel model, with no diagnostics indicating a bad fit. However, af-
ter an unusually wet fortnight in December 1999, extensive destruction and around
30,000 deaths [Larsen et al. (2001)] were caused by three consecutive daily pre-
cipitation totals of 120, 410.4 and 290 mm, the largest of which was almost three
times greater than the maximum of the preceding 40 years. The return period for
the peak value of 410.4 mm under simple models can be expressed in thousands or
even millions of years. Why do classical extreme-value methods fail so catastroph-
ically, and could more sophisticated methods have given a different return period
estimate for such an event?

Coles and Pericchi (2003) apply a Bayesian approach to the point process rep-
resentation [Smith (1989)], which is essentially equivalent to fitting the general-
ized Pareto distribution. They use a threshold corresponding approximately to the
0.96-quantile and including all exceedances, and argue in favor of partitioning the
sequence into two seasons, the one of interest being from mid-November to April.
With these refinements, they obtain a predictive return period of approximately
150 years for 410.4 mm. However, the classical threshold selection plots for these
months, shown in the left three panels of Figure 8, indicate trouble with the model:
parameter stability is compatible with the confidence intervals only for thresholds
much higher than the 0.96-quantile. Ignoring the tendency of extremes to cluster
may also have implications for the estimates and their variance, because the inde-
pendence assumption is violated. Moreover, which estimate should we choose if
different methods give very different answers?

Following Coles and Pericchi (2003) and backed by meteorological infor-
mation, we took only the months December–April, initially excluding Decem-
ber 1999, and calculated our diagnostics for u ∈ [F−1(0.95),F−1(0.995)] and
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FIG. 8. Classical threshold selection plots for the Venezuelan daily rainfall data for the months
December–April, between January 1961 and April 1999. The three panels on the left show the mean
excess plot and the modified scale and the shape parameters of GPD fits as a function of threshold.
The rightmost panel is the statistic T (θ̂) as a function of the run parameter K and the threshold u

on the probability scale F(u).

K = 1, . . . ,12. The graph of the statistic T (θ̂) in the rightmost panel of Figure 8
displays three clear features: a region of misspecification at thresholds below the
0.96-quantile; a ridge along the 0.98-quantile with relatively higher values than
the surrounding region, corresponding to the most marked instability interval in
the classical threshold selection plots; and higher test statistic values for K = 1,2,
implying misspecification for combinations with F(u) < 0.97, K ≤ 2. The best
regions appear to be either F(u) ≈ 0.97, K = 3 or F(u) ≈ 0.99, K = 3, but there
is no further indication which is preferable, and because of the ridge, the existence
of a contiguous area of well-specifiedness is doubtful.

The generalized Pareto model (1) was fitted with F(u) = 0.97, K = 3 and
F(u) = 0.99, K = 3. The resulting parameter estimates and standard errors
are very different: ξ̂ = 0.27 (0.14), σ̂ = 14.8 (2.4) for 0.97 quantile, and ξ̂ =
−0.03 (0.14), σ̂ = 26.6 (5.3) for the 0.99 quantile. Corresponding diagnostic plots
are shown in the upper row of Figure 9, the left two plots referring to the lower
threshold, and the right two to the higher. Neither model seems poor, but they give
very different return periods for the value 410.4 mm: approximately 600 years
for the model with threshold F(u) = 0.97, and an unreasonable 30 million years
for the other. The catastrophe seems to be compatible only with the lower thresh-
old model, despite the fact that in extreme-value statistics, models above higher
thresholds are generally considered to be closer to the limiting distribution. In-
clusion of December 1999 does not change the misspecification tests much, but
changes the estimates to ξ̂ = 0.5 (0.15), σ̂ = 12.6 (2.2) for the lower threshold
and ξ̂ = 0.27 (0.15), σ̂ = 25.1 (5.2) for the higher one. The corresponding return
periods become 65 and 300 years, respectively. A look at the diagnostic plots in
the bottom row of Figure 9 confirms that the former model admits the catastrophe
quite smoothly, whereas it remains an outlier in the latter.

One explanation of this apparent paradox might be that the underlying process
is a mixture. Rainfall is generated by different atmospheric processes, such as con-
vective storms, cold fronts or orographic winds. If so in this case, the observed
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FIG. 9. Diagnostic and return level plots for the generalized Pareto fits to the Venezuelan rainfall
data. The fits excluding December 1999 are shown in the top row. The left pair of plots presents
the quantile-quantile and return level plots using the 0.97-quantile as the threshold, the right pair
those using the 0.99-quantile. The run parameter was K = 3 for both. The same plots for model fits
including December 1999, with the same thresholds and run parameters, are presented in the bottom
row. Each panel shows the ordered data (×) with a line representing the fitted model and a pointwise
95% envelope.

extreme process corresponds to the extremes of a mixture distribution
∑m

i=1 piFi

with the component distribution functions Fi appearing with probabilities pi ,
where the Fi could have different extreme-value limits: with m = 2, for example,
F1 might correspond to the short-tailed case ξ = −1/2 and F2 to the long-tailed
case ξ = 1. Such a mixture can show unstable behavior like that of Figure 8, which
hints at the presence of at least two components: a more frequent light-tailed one
with relatively high location and scale parameters, dominating the levels around
the 0.99-quantile, and a rarer heavy-tailed one concentrated at lower levels and
having a smaller scale parameter, but generating extremely large observations oc-
casionally. A more sophisticated model for the clustering of extremes also suggests
a mixture character, but will be reported elsewhere. This failure of simple extreme-
value techniques is a warning to beware of oversimplification, and suggests that an
approach linking atmospheric physics and statistical methods would provide better
risk estimates.

5. Discussion. Inference about the extremal behavior of a process involves as-
sumptions such as asymptotic independence at extreme levels and stationarity, and
also entails the selection of auxiliary quantities such as threshold and run parame-
ters in order to apply asymptotic models with finite samples. Careful investigation
of possible model misspecification is therefore essential.

In this paper we have applied standard methods of detecting misspecification
to the point mass-exponential mixture model (2) for the inter-exceedance times.
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These tests assist in the selection of the threshold and the run parameter K and thus
help to provide better estimates of both the extremal index and of the generalized
Pareto distribution. Failure of the model (2) indicates failure of a more general
limit, and consequently of the GPD approximation (1). Analysis of the Venezuelan
rainfall data shows that misspecification tests can provide a valuable supplement
to classical threshold selection procedures, can lead to improved models and better
variance estimates, and may yield further insight into the structure of the data.

We have also described a maximum likelihood estimator for the extremal index,
based on the point mass-exponential model (2) and on the existence of a selection
procedure for K . The maximum likelihood estimator is consistent and asymp-
totically normal under an appropriate choice of K , and shows small asymptotic
bias and root mean square error compared to the best competing estimators. The
joint application of the misspecification tests and the smoothed maximum likeli-
hood estimator proved the good properties of the procedure as an efficient method
to detect violations of underlying assumptions such as nonstationarity or indicate
other model problems like mixture character that cannot be disregarded using finite
thresholds. It can be therefore a useful aid to fine-tuning parameters of extreme-
value models or investigating their limitations.

One natural question is whether the assessment of misspecification for extremal
models might better be based on (1). The difficulty with this is that the r th moment
of the score statistic for ξ exists only if rξ > −1, so the maximum likelihood es-
timators of ξ and σ are regular only if ξ > −1/2 [Smith (1985)] and the observed
information has finite variance only if ξ > −1/4, and information quantities for (1)
have poor finite-sample properties. The distribution (2), on the other hand, is reg-
ular for 0 < θ < 1, and so has no such disadvantages.

APPENDIX: FORMULAE FOR THE INFORMATION MATRIX TEST

Assume that X1, . . . ,Xn satisfy the necessary conditions for Theorem 2.1. For
a threshold un, suppose that N < n observations exceed the threshold un. Let
the indices {ji : Xji

> un} denote the times of the exceedances, and let c
(K)
i =

F(un)s
(K)
i = F(un)max(ji+1 − ji − K,0) denote the ith observed K-gap s

(K)
i

normalized by the tail probability F(un) for i = 1, . . . ,N − 1 and K = 0,1, . . . .

Then, denoting derivatives with respect to θ by a prime, it follows from the likeli-
hood (3) that

	′
K

(
θ; c(K)

i

) = −I (c
(K)
i = 0)

(1 − θ)
+ 2I (c

(K)
i > 0)

θ
− c

(K)
i ,

J̄n(θ) = (N − 1)−1
N−1∑
j=1

{I (c
(K)
j = 0)

(1 − θ)2 + 4I (c
(K)
j > 0)

θ2 + c
(K)
j − 4c

(K)
j

θ

}
,

Īn(θ) = (N − 1)−1
N−1∑
j=1

{I (c
(K)
j = 0)

(1 − θ)2 + 2I (c
(K)
j > 0)

θ2

}
,
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where I (A) is the indicator function of the set A. Then we can derive the one-
observation version, the sample mean of the difference D between the variance of
the score and the Fisher information and the sample variance of the latter as

d
(
θ; c(K)

i

) = 2I (c
(K)
i > 0)

θ2 + c
(K)
j − 4c

(K)
j

θ
,

Dn(θ) = J̄n(θ) − Īn(θ),

D′
n(θ) = (N − 1)−1

N−1∑
j=1

{
−4I (c

(K)
j > 0)

θ3 + 4c
(K)
i

θ2

}
,

Vn(θ) = (N − 1)−1
N−1∑
j=1

{
d
(
c
(K)
j

) − D′
nĪn(θ)−1	′

K

(
θ; c(K)

i

)}
,

and from there, the information matrix test statistic is obtained by substituting the
appropriate quantities and the estimated value of θ̂

(K)
n as

T
(
θ̂ (K)
n

) = nDn

(
θ̂ (K)
n

)2
Vn

(
θ̂ (K)
n

)−1
.
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