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Abstract. We prove that the uniform infinite random quadrangulations defined respectively by Chassaing–Durhuus and Krikun
have the same distribution.

Résumé. On démontre que les quadrangulations aléatoires infinies uniformes définies respectivement par Chassaing–Durhuus et
par Krikun ont la même loi.
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1. Introduction

Planar maps are proper embeddings of connected graphs in the two-dimensional sphere S2. Their combinatorial prop-
erties have been studied by Tutte [19] and many others. Planar maps have recently drawn much attention in the
theoretical physics literature as models of random surfaces, especially in the setting of the theory of two-dimensional
quantum gravity (see in particular the book [1]). A powerful tool to study these objects is the encoding of planar maps
in terms of labelled trees, which was first introduced by Cori and Vauquelin in [9] and was much developed in Scha-
effer’s thesis [18] (see also Bouttier, Di Francesco and Guitter [6] for a generalized version of this encoding). This
correspondence between planar maps and trees makes it possible to derive certain asymptotics of large random planar
maps in terms of continuous random trees (see the work of Chassaing and Schaeffer [8]) and to define a Brownian
map (see Marckert and Mokkadem [16]) which is a continuous random metric space conjectured to be the scaling
limit of various classes of planar maps (see the papers by Marckert and Miermont [15], Le Gall [13], Le Gall and
Paulin [14]). This approach has led to new asymptotic properties of large planar maps.

Another point of view is to study properties of random infinite planar maps, more precisely to study probability
measures on certain classes of infinite planar maps, which are uniform in some sense. This has been done by Angel
and Schramm [4] who introduced a uniform infinite triangulation of the plane, later studied by Angel [2,3] and Krikun
[10].

In the present paper, we are interested in infinite random planar quadrangulations. Recall that Schaeffer’s bijection
(see, e.g., [8]) yields a one-to-one correspondence between rooted planar quadrangulations with n faces and well-
labelled trees with n edges. Then, there are two natural ways to define a uniform infinite quadrangulation of the
sphere: one as the local limit of uniform finite quadrangulations as their size goes to infinity, and one going through
Schaeffer’s bijection and using local limits of uniform well-labelled trees. The first approach is developed in Krikun
[11] while the second one is developed in Chassaing and Durhuus [7]. The topologies in which the uniform finite
quadrangulations converge to the infinite object differ in the two cases: in the Chassaing–Durhuus paper, the topology
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on quadrangulations is induced by Schaeffer’s bijection and the natural topology of local convergence of rooted
trees, while the topology used in Krikun’s paper is the natural topology of local convergence of rooted planar maps.
Therefore, the two uniform infinite random quadrangulations defined in these papers are a priori two different objects.
The goal of the paper is to show that these two definitions coincide. This result is stated in Theorem 4 below. Note
that our work also gives an alternative approach to Theorem 1 of Krikun [11]: independently of the results of [11],
Theorem 4 shows that the uniform probability measure on the space of all rooted planar quadrangulations with n faces
converges as n → ∞ to a probability measure on the space of infinite quadrangulations, in the sense of the metric
used in [11].

Let us briefly explain the main point of our argument. Consider a sequence of (deterministic or random) finite
well-labelled trees θn, that converges as n → ∞ towards an infinite well-labelled tree θ∞, in the sense that, for every
k ≥ 1, the restriction of θn to the first k generations is equal to the same restriction of θ∞, when n is sufficiently large.
Let Qn be the quadrangulation associated with θn via Schaeffer’s bijection and let Q∞ be the infinite quadrangulation
associated with θ∞ via the extension of Schaeffer’s bijection that is presented in Section 2.3 below (θ∞ needs to satisfy
certain properties so that this makes sense). Then it is not always true that Q∞ is the local limit of Qn as n → ∞. The
problem comes from the fact that θn may have small labels at generations larger than k(n) with k(n) → ∞. Note that
this problem may occur even if one knows that θ∞ has finitely many labels smaller than K , for every integer K (the
latter property holds for the uniform infinite well-labelled tree thanks to the estimates of [7], see Proposition 3 below).
Nonetheless, in the case when θn is uniformly distributed over all well-labelled trees with n edges, the preceding
phenomenon does not occur: for every fixed R > 0, the probability that θn has a label less than R above generation S

tends to 0 as S → ∞, uniformly in n. This uniform estimate is stated in Proposition 6 below.
We can combine this estimate with the following combinatorial argument. If two well-labelled trees coincide up

to generation S, then the associated quadrangulations are also the same within distance R from the root, where R is
essentially the minimum label above generation S in either tree. See Proposition 4 below for a precise statement.

The paper is organized as follows: Section 2 gives some notation and an extension of Schaeffer’s bijection to the
infinite case; Section 3 presents the two different definitions of the uniform infinite quadrangulation; and Section 4
contains the key estimates that allow us to prove that these definitions actually lead to the same object.

2. Preliminaries

2.1. Spatial trees

Throughout this work we will use the standard formalism on planar trees as found in [17]. Let

U =
∞⋃

n=0

Nn,

where by convention N = {1,2, . . .} and N0 = {∅}. An element u of U is thus a finite sequence of positive integers. If
u,v ∈ U , uv denotes the concatenation of u and v. If v is of the form uj with j ∈ N, we say that u is the parent of v

or that v is a child of u. More generally, if v is of the form uw for u,w ∈ U , we say that u is an ancestor of v or that
v is a descendant of u. A rooted planar tree τ is a subset of U such that:

1. ∅ ∈ τ ( ∅ is called the root of τ ),
2. if v ∈ τ and v �= ∅, the parent of v belongs to τ ,
3. for every u ∈ U there exists ku(τ ) ≥ 0 such that uj ∈ τ if and only if j ≤ ku(τ ).

The edges of τ are the pairs (u, v), where u,v ∈ τ and u is the father of v. |τ | denotes the number of edges of τ and is
called the size of τ . h(τ) denotes the maximal generation of a vertex in τ and is called the height of τ . We denote by
Tn the set of all rooted planar trees of size n and by T∞ the set of all infinite rooted planar trees. Then T =⋃∞

n=0 Tn

is the set of all finite rooted planar trees and T = T ∪ T∞ is the set of all rooted (finite or infinite) planar trees. A spine
of a tree τ is an infinite linear sub-tree of τ starting from its root.

A rooted labelled tree (or spatial tree) is a pair θ = (τ, (�(u))u∈τ ) that consists of a planar tree τ and a collection
of integer labels assigned to the vertices of τ such that if u,v ∈ τ and v is a child of u, then |�(u) − �(v)| ≤ 1. For
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Fig. 1. A spatial tree and its pair of contour functions (C,V ).

every l ∈ Z, we denote by T
(l)

the set of all spatial trees for which �(∅) = l, by T(l)∞ the set of all such trees with an
infinite number of edges, by T(l)

n the set of all such trees with n edges and by T(l) the set of all such trees with finitely
many vertices. Similarly as before, T(l) =⋃∞

n=0 T(l)
n .

If �(∅) = l and in addition �(u) ≥ 1 for every vertex u of τ , we say that θ is an l-well-labelled tree. The corre-

sponding sets of spatial trees are denoted by T
(l)

, T(l), T
(l)∞ and T

(l)
n . For l = 1 we will simply say well-labelled tree

and denote the corresponding sets by T, T, T∞ and Tn.
A finite spatial tree ω = (τ, �) can be coded by a pair (C,V ), where C = (C(t))0≤t≤2|τ | is the contour function of

τ and V = (V (t))0≤t≤2|τ | is the spatial contour function of ω (see Fig. 1). To define these contour functions, let us
consider a particle which, starting from the root, traverses the tree along its edges at speed one. When leaving a vertex,
the particle visits the first non-visited child of this vertex if there is such a child, or returns to the parent of this vertex.
Since all edges will be crossed twice, the total time needed to explore the tree is 2|τ |. For every t ∈ [0,2|τ |], C(t)

denotes the distance from the root of the position of the particle. In addition if t ∈ [0,2|τ |] is an integer, V (t) denotes
the label of the vertex that is visited at time t . We then complete the definition of V by interpolating linearly between
successive integers. See Fig. 1 for an example. A spatial tree is uniquely determined by its pair of contour functions.

To conclude this section, let us introduce some relevant notation. If ω = (τ, �) is a labelled tree, |ω| = |τ | is the
size of ω, h(ω) = h(τ) is the height of ω and, for S ≥ 0, gS(ω) is the set of all vertices of ω at generation S. Finally,
for every l ∈ N, we let Nl(ω) denote the number of vertices of ω that have label l. We define S as the set of all trees
of T that have at most one spine, and for which labels takes each integer value a finite number of times:

S = {
ω ∈ T∞: ∀l ≥ 1,Nl(ω) < ∞ and ω has a unique spine

}∪ T. (1)

2.2. Planar maps and quadrangulations

Consider a proper embedding of a finite connected graph in the sphere S2 (loops and multiple edges are allowed). A
(finite) planar map is an equivalent class of such embedded graphs with respect to orientation preserving homeomor-
phisms of the sphere. A planar map is rooted if it has a distinguished oriented edge, and the origin of the root is called
the root vertex. In what follows, planar maps are always rooted even if this is not mentioned explicitly. The set of
vertices will always be equipped with the graph distance. The faces of the map are the connected components of the
complement of the union of its edges. A finite planar map is a quadrangulation if all its faces have degree 4.

For every integer n ≥ 1 we let Qn denote the set of all (rooted) quadrangulations with n faces and Q =⋃
n≥1 Qn

denote the set of finite quadrangulations. Each set Qn is in bijective correspondence with the set Tn by Schaeffer’s
bijection [9,18]. There is no bijection between infinite well-labelled trees and infinite quadrangulations, but Schaeffer’s
correspondence has been extended to S in [7]. To discuss this extention, we first have to define precisely what we
mean by an infinite quadrangulation. To this end we recall some definitions of [4,7] in a slightly different form.

Throughout this work, we consider only infinite graphs such that the degree of every vertex is finite. Consider a
proper embedding of an infinite graph in the plane R2. We say that this embedding is locally finite if every compact
subset of R2 intersects only finitely many edges.

Definition 1. An infinite planar map M is an equivalent class of locally finite embeddings of an infinite graph in R2,
with respect to orientation preserving homeomorphisms of the plane.
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The faces of an infinite planar map M are the bounded connected components of the complement of the union of
its edges. With this definition, every edge of M is not necessarily adjacent to a face; for example infinite trees have
only one “face” of infinite degree, which is not a face in the sense of the previous definition. This motivates the next
definition.

Definition 2. A regular infinite planar map is an infinite planar map such that every connected component of the
complement of the union of its edges is bounded.

In a regular infinite planar map, every edge is either shared by two faces or appears twice in the border of a face.

Remark. With the previous definitions, an infinite tree can be embedded as an infinite planar map in R2, but not as a
regular infinite planar map.

Definition 3. An infinite planar quadrangulation is a regular infinite planar map having every face bordered by four-
sided polygons. A rooted infinite quadrangulation is an infinite quadrangulation with a distinguished oriented edge
(v0, v1) called the root of the quadrangulation; v0 is called the root vertex of the quadrangulation. We denote by Q the
set of all (finite or infinite) rooted planar quadrangulations and we have the self-evident decomposition Q = Q ∪ Q∞.

2.3. Schaeffer’s correspondence

We are now going to describe the extension of Schaeffer’s correspondence to the set S . We refer to Section 6 of [7]
for details and proofs.

With every infinite well-labelled tree ω ∈ S we will associate an infinite planar quadrangulation Φ(ω). We identify
S2 with the set R2 ∪ {∞}, and we fix an infinite tree ω ∈ S . We can also fix an embedding of ω into R2 as in
Definition 1 above. We root ω at the edge between vertices ∅ and 1. Let F0 denote the complement of the union of
edges of ω in S2.

Definition 4. A corner of F0 is a sector between two consecutive edges around a vertex. The label of a corner is the
label of the corresponding vertex.

A vertex of degree d defines d corners and a tree ω ∈ S has a finite number Ck(ω) ≥ Nk(ω) of corners with
label k. The map Φ(ω) is defined in three steps.

Step 1 (see Fig. 2). A vertex v0 with label 0 is added in F0 \ {∞} and one edge is added between this vertex and each
of the C1(ω) corners with label 1. The new root is taken to be the edge that connects v0 to the corner before the root
edge of ω.

Remark. Notice that the construction in step 1 is possible because ω has at most one spine.

After step 1, a uniquely defined rooted infinite planar map M0 with C1(ω) − 1 faces is obtained (in the sense of
the definitions of Section 2.2, in particular, the faces are bounded subsets of R2). Notice that each face of M0 has a
unique corner with label 0 and two corners with label 1. Such a face is bordered by the two edges joining v0 to the
two corners with label 1 and, in the case where the two corners with label 1 correspond to two different vertices, the
unique injective path in the tree between these two vertices with label 1.

It is natural to consider the complement of M0 and its faces as an additional face of infinite degree. Let us denote
this face by F∞. It possesses a unique corner with label 0 and two corners with label 1 lying on each side of the spine
of ω. In addition, these two corners are the last visited corners with label 1 during a contour of the left side and right
side of ω. F∞ is thus delimited by the two edges joining these vertices and v0, and the unique injective path in the
tree joining these two vertices. The spine of ω lies in this face, except for finitely many vertices.

The second step takes place independently in each face of M0, including F∞. Let F be a face of M0 and let c0 be
its corner with label 0. If F has finitely many vertices – and therefore finitely many corners – we number its corners
from 0 to k − 1 in clockwise order along the border, starting with c0. If F is the infinite face, we number its corners on
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Fig. 2. Left: step 1, edges are added between v0 and corners with label 1. Middle: step 2, numbering of a few corners in F∞. Right: step 2, a chord
between the two sides of the spine.

the right side of the spine with non-negative integers in clockwise order, starting right after c0. Similarly, we number
its corners on the left side of the spine with negative integers in counterclockwise order, starting right after c0. See,
for example, Fig. 2. Let �(i) denote the label of the ith corner, so that �(0) = 0 and �(1) = �(k − 1) = 1 for a finite
face whereas �(1) = �(−1) = 1 for F∞ (note that the function � depends of the considered face).

In each face, let us define the successor function for all corners except the corners with label 0 or 1 by

s(i) =

⎧⎪⎨⎪⎩
min

{
j > i: �(j) = �(i) − 1

}
if i < 0,

min
{
j > i: �(j) = �(i) − 1

}
if i > 0 and

{
j > i: �(j) = �(i) − 1

} �= ∅,

min
{
j ≤ 0: �(j) = �(i) − 1

}
if i > 0 and

{
j > i: �(j) = �(i) − 1

}= ∅.

For a finite face, only the second case occurs, while for F∞ the second property of Definition 1 ensures that {j ≤
0 :�(j) = �(i) − 1} is finite.

Step 2. In every face, for each corner i with label �(i) ≥ 2 and such that |s(i) − i| �= 1 a chord (i, s(i)) is added
inside the face.

Proposition 1 ([7], Property 6.1). Step 2 can be done in such a way that the various chords (i, s(i)) do not intersect.

Remark. The condition |s(i) − i| �= 1 means that the chord (i, s(i)) does not already exist in ω. In F∞, a chord
(i, s(i)) can connect two corners that lie on different sides of the spine (see, e.g., Fig. 2). This happens in the third
case occurring in the definition of s(i). In that case, the corner i is visited after the last occurrence of the label �(i)−1
during the contour of the right side of the spine.

Step 2 defines a uniquely determined regular planar map M1 whose faces are described by the following proposi-
tion:

Proposition 2 ([7], Property 6.2). The faces of M1 are either triangular with labels l, l + 1, l + 1 or quadrangular
with labels l, l + 1, l + 2, l + 1.

Step 3. All edges of M1 with the same label on both ends are deleted.

After this last step, a unique infinite quadrangulation Φ(ω) is obtained (see [7] for details). In addition, labels of
vertices in the tree ω coincide with distances from the root of the corresponding vertices in Φ(ω). Furthermore, the
function Φ is one-to-one.



The two UIPQ have the same law 195

3. Uniform infinite quadrangulations

This section presents two different ways to define a uniform infinite random quadrangulation of the plane.

3.1. Direct approach

In [11], the uniform infinite quadrangulation is defined as the law of the local limit of uniformly distributed finite
random quadrangulations. This limit is taken with respect to the following topology: for Q ∈ Q and R ≥ 0, we denote
by BQ,R(Q) the union of the faces of Q that have a vertex at distance strictly smaller than R from the root vertex. We
may view BQ,R(Q) as a finite rooted planar map. The set Q is equipped with the distance

dQ(Q1,Q2) = (
1 + sup

{
R: BQ,R(Q1) = BQ,R(Q2)

})−1
,

where the equality BQ,R(Q1) = BQ,R(Q2) is in the sense of equality between two finite rooted planar maps.
Let (Q, dQ) be the completion of the metric space (Q, dQ). Elements of Q that are not finite quadrangulations are

called infinite rooted quadrangulations in the sense of Krikun.
Note that this definition is not equivalent to Definition 3. For example, the quadrangulation Qn of Fig. 3 converges

as n goes to infinity in (Q, dQ) to an infinite quadrangulation Q in Krikun’s sense that is not an infinite planar map in
the sense of Definition 1: any proper embedding of Q in R2 is not locally finite.

Theorem 1 ([11], Theorem 1). For every n ≥ 1 let νn be the uniform probability measure on Qn. The sequence
(νn)n∈N converges to a probability measure ν in the sense of weak convergence in the space of all probability measures
on (Q, dQ). Moreover, ν is supported on the set of infinite rooted quadrangulations (in the sense of Krikun).

Remark. One can extend the function Q ∈ Q 
→ BQ,R(Q) to a continuous function BQ,R on Q. BQ,R(Q) is naturally
interpreted as the union of faces of Q that have a vertex at distance strictly smaller than R from the root.

3.2. Indirect approach

Another possible approach to define a uniform infinite random quadrangulation is to start from a uniform infinite well-
labelled tree and to consider the image of its law under Schaeffer’s correspondence. This method has been developed
in [7], to which we refer for details and for proofs of what follows in this section. Let us equip T with the distance

dT

(
ω,ω′)= (

1 + sup
{
S: BT,S(ω) = BT,R

(
ω′)})−1

,

where BT,S(ω) is the subtree of ω up to generation S. The metric space (T, dT) is complete.
We have the following result:

Theorem 2 ([7], Theorem 3.1). Let μn be the uniform probability measure on the set of all well-labelled trees with n

edges. The sequence (μn)n∈N converges weakly to a probability measure μ supported on T∞. This limit law is called
the law of the uniform infinite well-labelled tree.

Fig. 3. A quadrangulation that converges in Krikun’s sense to an infinite quadrangulation that is not an infinite planar map.
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One of the key steps to prove this result is to show the convergence

μn

(
ω ∈ T: BT,S(ω) = ω�

) −→
n→∞μ

(
ω ∈ T: BT,S(ω) = ω�

)
for every integer S > 0 and every well-labelled tree ω� of height S. This is done by explicit computations. Let ω�

be a well-labelled tree of height S, and assume that ω� has exactly k vertices at generation S, with respective labels
l1, . . . , lk . Then,

μn

(
ω ∈ T: BT,S(ω) = ω�

)= 1

Dn

∑
n1+···+nk=n−|ω�|

k∏
j=1

D
(lj )
nj

, (2)

μ
(
ω ∈ T: BT,S(ω) = ω�

)= 1

12|ω�|
k∑

i=1

dli

∏
j �=i

wlj , (3)

where, for every l ≥ 1, D
(l)
n is the cardinal of T

(l)
n , D

(1)
n = Dn and

wl = 2
l(l + 3)

(l + 1)(l + 2)
, (4)

dl = 2wl

560

(
4l4 + 30l3 + 59l2 + 42l + 4

)
. (5)

Proposition 3 ([7], Theorem 4.3 and Theorem 5.9). The measure μ is supported on S . Furthermore,

Eμ[Nl] = O
(
l3) as l → ∞.

A tree with law μ has almost surely a unique spine; [7] gives a precise description of the law of the labels of this
spine and of the subtrees attached to each of its vertices. For every l > 0, let ρ(l) be the measure on T(l) defined
by ρ(l)(ω) = 12−|ω| for every ω ∈ T(l). Then 1

2ρ(l) is the law of the Galton–Watson tree with geometric offspring
distribution with parameter 1

2 and with random labels generated according to the following rules. The root has label
l and the label of every other vertex is chosen uniformly in {m − 1,m,m + 1} where m is the label of its parent.
Furthermore, these choices are made independently for every vertex. Proposition 2.4 of [7] proves that ρ(l)(T(l)) = wl ,
therefore the measure ρ̂(l) defined on T(l) by ρ̂(l)(ω) = w−1

l ρ(l)(ω) = w−1
l 12−|ω| for every ω ∈ T(l) is a probability

measure. The following result will be useful for our purposes.

Theorem 3 ([7], Theorem 4.4). Let ω be a random tree distributed according to μ and let u0, u1, u2, . . . be the
sequence of the vertices of its spine listed in genealogical order. For every n ≥ 0, let Yn be the label of un.

1. The process (Yn)n≥0 is a Markov chain taking values in N with transition kernel Π defined by:

Π(l, l − 1) = (wl)
2

12dl

dl−1 := ql if l ≥ 2,

Π(l, l) = (wl)
2

12
:= rl if l ≥ 1,

Π(l, l + 1) = (wl)
2

12dl

dl+1 := pl if l ≥ 1.

2. Conditionally given (Yn)n≥0 = (yn)n≥0, the sequence (Ln)n≥0 of subtrees of ω attached to the left side of the spine
and the sequence (Rn)n≥0 of subtrees attached to the right side of the spine form two independent sequences of
independent labelled trees distributed according to the measures ρ̂(yn).
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We can now map the law of the uniform infinite random tree on the set of quadrangulations using Schaeffer’s
correspondence. Let us equip Φ(S ) with the distance dΦ so that Φ is an isometry from S onto Φ(S ). We denote
by μΦ,n and μΦ the respective image measures of μn and μ under Φ . The measure μΦ is well defined because μ is
supported on S .

Since Φ is a bijection between Tn and Qn, μΦ,n = νn is the uniform probability measure on the set of quadran-
gulations with n faces. As a direct consequence of Theorem 2, the sequence (μΦ,n)n∈N converges weakly to μΦ in
the space of all probability measures on (Φ(S ), dΦ). Thus, in some sense, μΦ can also be viewed as a uniform
probability measure on the space of infinite quadrangulations.

Remark. The topology induced by dΦ on the set Φ(S ) is rather different than the one that would be induced by dQ.
Indeed it may happen that two trees ω and ω′ are close for the metric dT, but the quadrangulations Φ(ω) and Φ(ω′)
are very different for dQ. For example, the linear tree ωn with 2n − 1 vertices and with labels given by the sequence
1,2, . . . , n − 1, n,n − 1, . . . ,2,1 converges as n goes to infinity to the infinite linear tree ω with labels given by the
sequence 1,2, . . . . As a consequence, the quadrangulation Φ(ωn) converges to the infinite quadrangulation Φ(ω) in
(Φ(S ), dΦ) as n goes to infinity. On the other hand, for every n ≥ 1, the quadrangulation Φ(ωn) has two vertices
at distance 1 from its root whereas Φ(ω) has only one vertex at distance 1 from its root and therefore the sequence
(Φ(ωn))n∈N does not converge to Φ(ω) in (Q, dQ).

It is then a natural question to ask whether the two notions of uniform infinite quadrangulation that we have
introduced coincide.

4. Equality of the two uniform infinite quadrangulations

In this section, we will show that the two definitions of the uniform infinite quadrangulation coincide. The first problem
comes from the fact that we have two different notions of infinite quadrangulations: elements of Φ(S ), which are
regular planar maps on one hand, and elements of the completion Q of Q on the other hand. This problem can be
solved by identifying Φ(S ) with a subset of Q, allowing us to consider μΦ as a measure on Q supported on Φ(S ).

More precisely, let R > 0 and ω ∈ S . Define BR(Φ(ω)) as the union of all faces of Φ(ω) that have a vertex at
distance strictly smaller than R from the root. Since the tree ω has only finitely many vertices with labels smaller than
R + 1, there are finitely many such faces and BR(Φ(ω)) is a finite map. Therefore S2 \ BR(Φ(ω)) has finitely many
connected components; and the boundaries of these components are finite length cycles of Φ(ω).

Let γ be such a cycle. Each edge of γ is adjacent to two faces of Φ(ω). One has a vertex at distance strictly smaller
than R from the root, and the other one has only vertices at distance at least R from the root. The quadrangulation being
bipartite, each edge of γ connects a vertex at distance R from the root with a vertex at distance R + 1 from the root.
Therefore, by adding to BR(Φ(ω)) an extra vertex in the connected component of S2 \ BR(Φ(ω)) bounded by γ and
an edge between this vertex and each vertex of γ at distance R+1 from the root, and repeating this operation for every
connected component of S2 \ BR(Φ(ω)), we obtain a finite quadrangulation. The sequence of finite quadrangulations
obtained in this way for every R > 0 converges to Φ(ω) as R goes to infinity, in the sense of Krikun, showing that for
every tree ω ∈ S , Φ(ω) can be identified with an element of Q.

To be able to consider μΦ as a measure on Q, we now need to verify that the mapping Φ : S → Q is measurable
with respect to the Borel σ -field of (Q, dQ). The following lemma is proved in Section 4.1:

Lemma 1. Fix R > 0 and ω0 ∈ S . The set A = {ω ∈ S : BQ,R(Φ(ω)) = BQ,R(Φ(ω0))} is measurable with respect
to the Borel σ -field of (S , dT).

Fix Q� ∈ Q. Lemma 1 implies that

Φ−1
({

Q ∈ Q: dQ
(
Q,Q�

)≤ 1

R + 1

})
= Φ−1({Q ∈ Q: BQ,R(Q) = BQ,R(Q�)

})
is measurable with respect to the Borel σ -field of (S , dT), proving that Φ :S → Q is measurable. Therefore, we
may and will see μΦ as a probability measure on (Q, dQ).

We are now ready to state our main result:
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Theorem 4. The sequence (μΦ,n)n∈N converges weakly to μΦ in the space of all probability measures on (Q, dQ).
Therefore μφ viewed as a probability measure on (Q, dQ) coincides with ν.

Since μΦ,n = νn and ν is defined as the limit of the sequence (νn) in the space of all probability measures on
(Q, dQ), the second assertion is a direct consequence of the first one.

To establish the first assertion, we have to show that for every Q� ∈ Q and R > 0 one has

μΦ,n

(
Q ∈ Q: BQ,R(Q) = BQ,R

(
Q�
)) −→

n→∞μΦ

(
Q ∈ Q: BQ,R(Q) = BQ,R

(
Q�
))

.

The remaining part of this work is devoted to the proof of this convergence.

4.1. A property of Schaeffer’s correspondence

For integers S > 0 and R > 0 we let

ΩS(R) = {ω ∈ T: ω has a label ≤ R + 1 strictly above generation S}. (6)

In the first two statements of this section, S and R are two fixed positive integers.

Proposition 4. Let ω be a tree of S which does not belong to ΩS(R) (i.e., ω is such that the label of every vertex at
a generation strictly greater than S is at least R + 2). Then BQ,R(Φ(ω)) = BQ,R(Φ(BT,S(ω))).

Proof. The proof follows step by step the construction of Φ(ω) in Section 2.3. Fix an embedding of ω as an infinite
planar map.

In the first step, an infinite planar map M0(ω) is obtained from ω by adding an extra vertex v0 with label 0 and
edges between v0 and corners with label 1. Similarly, we can construct a planar map M0(BT,S(ω)). The extra edges
in these two maps are uniquely determined by corners with label 1, and these corners are determined by BT,S(ω) (no
vertex at a generation greater than S has a label less than 2). We consider the unique “infinite face” of M0 as an
extra face. The maps M0(ω) and M0(BT,S(ω)) then have the same number of faces, say p, which in addition have
the same boundaries, composed by the two edges joining v0 to the corners with label 1 and, in the case when these
corners with label 1 belong to different vertices, the unique injective path in the tree between these two vertices. Let
F1(ω), . . . ,Fp(ω) and F1(BT,S(ω)), . . . ,Fp(BT,S(ω)) denote the faces of M0(ω) and M0(BT,S(ω)) respectively,
listed in such a way that, for every i, the faces Fi(ω) and Fi(BT,S(ω)) have the same boundary.

In the second step, edges (c, s(c)) are added inside each face for every corner c, finally giving two regular planar
maps M1(ω) and M1(BT,S(ω)). Let us consider a face Fi(ω) of M0(ω) and the corresponding face Fi(BT,S(ω)).
The corners of these faces are numbered (ci,j )j∈Ji

for Fi(ω) and (c′
i,j )j∈J ′

i
for Fi(BT,S(ω)), the numbering being

in clockwise order for a finite face and counterclockwise order for corners on the left side of the spine of the tree,
clockwise order for corners on the right side of the spine of the tree, in the case of the infinite face.

For every i ∈ {1, . . . , p}, let vi,1, . . . , vi,ki
be the vertices of Fi(ω) at generation S that have at least one child. These

vertices are also vertices of Fi(BT,S(ω)) at generation S and their labels are greater than R + 1. For every j ≤ ki , let
ei,j be the last corner before vi,j in Fi(ω) and with label R + 1. This corner is the same in Fi(ω) and Fi(BT,S(ω)).
The same edge (ei,j , s(ei,j )) joining ei,j to the first corner following ei,j with label R is thus added to Fi(ω) and
Fi(BT,S(ω)) (note that this corner is also the first corner with label R following every corner of vi,j , see Fig. 4).

Therefore for every j ∈ {1, . . . , ki} the same cycle γi,j composed by the edge (ei,j , s(ei,j )) and the genealogical
path between ei,j and s(ei,j ) appears in both Fi(ω) and Fi(BT,S(ω)) (see Fig. 4). For j �= j ′ the (strict) interiors of
the cycles γi,j and γi,j ′ are either disjoint, or one of them is contained in the other one. Here we define the interior of
a cycle as the connected component of the complement of this cycle which does not contain v0.

Let us now show that if a face f of Φ(ω) intersects the interior of a cycle γi,j , the labels of vertices of f are greater
than or equal to R. We first deal with the case when f has a vertex u that belongs to the interior of the cycle γi,j . If
the label of u is greater than or equal to R + 2 the conclusion is obvious. If not, the label of u is R + 1 and for f to
have a vertex with label R − 1, u must be connected to vertices with label R by two edges: the only possible choice
for a vertex with label R is s(ei,j ) and the last vertex of f would then belong to the domain bounded by the union of
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Fig. 4. A face Fi and a cycle γi,j associated with a vertex vi,j at generation S.

the two edges connecting u to s(ei,j ) (see Fig. 4) so that its label could not be R − 1. The case when no vertex of f

belongs to the interior of the cycle γi,j is treated in a similar manner.
The previous discussion shows that faces of Φ(ω), respectively of Φ(BT,S(ω)), that intersect the interior of a cycle

γi,j , are not taken into account in the definition of BQ,R(Φ(ω)), respectively of BQ,R(Φ(BT,S(ω))).
Let us denote by Φ1(ω) the planar map obtained after the second step of the construction of Φ(ω) (this map is

denoted by M1 in Section 2.3). Let us consider the map Φ̃1(ω) obtained by removing every edge and vertex of Φ1(ω)

lying in the interior of a cycle γi,j . By construction, every vertex of ω with generation strictly greater than S belongs
to the interior of a cycle γi,j . It follows that

Φ̃1(ω) = Φ̃1
(
BT,S(ω)

)
. (7)

Finally, let Φ2(ω) denote the map obtained by removing every edge of Φ̃1(ω) connecting two vertices of Φ̃1(ω)

with the same label less than or equal to R. Every face of Φ(ω) that is taken into account in the ball BQ,R(Φ(ω)) is
also a quadrangular face of Φ2(ω). Conversely, every quadrangular face of Φ2(ω) having a vertex with a label strictly
smaller than R is also a face of BQ,R(Φ(ω)). In other words, the ball BQ,R(Φ(ω)) is the union of the quadrangular
faces of Φ2(ω) having a vertex with a label strictly smaller than R. From (7) we have

Φ2(ω) = Φ2
(
BT,S(ω)

)
,

and the previous observations allow us to conclude that

BQ,R

(
Φ(ω)

)= BQ,R

(
Φ
(
BT,S(ω)

))
,

which completes the proof. �

Corollary 1. Let ω0 ∈ S . There exists a countable collection (ω
S,R
i )i∈I of trees in S ∩ ΩS(R)c verifying for all

i ∈ I

BQ,R

(
Φ
(
ω

S,R
i

))= BQ,R

(
Φ(ω0)

)
and such that for every ω ∈ S ∩ ΩS(R)c the following assertions are equivalent:

1. BQ,R(Φ(ω)) = BQ,R(Φ(ω0));
2. there exists i ∈ I such that BT,S(ω) = BT,S(ω

S,R
i ).
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Proof. The collection (ω
S,R
i )i∈I that consists of all finite trees ω′ having at most S generations and such that

BQ,R(Φ(ω′)) = BQ,R(Φ(ω0)) is countable and has the desired properties. Indeed, if ω ∈ S ∩ ΩS(R)c and if

there exists i ∈ I such that BT,S(ω) = BT,S(ω
S,R
i ), Proposition 4 ensures that BQ,R(Φ(ω)) = BQ,R(Φ(ω

S,R
i )) =

BQ,R(Φ(ω0)). Conversely, if BQ,R(Φ(ω)) = BQ,R(Φ(ω0)) and ω ∈ S ∩ ΩS(R)c , then ω′ = BT,S(ω) verifies

BQ,R(Φ(ω)) = BQ,R(Φ(ω′)) by Proposition 4 and ω′ belongs to the collection (ω
S,R
i )i∈I . �

We conclude this section with the proof of Lemma 1.

Proof of Lemma 1. Fix R > 0. For every S > 0 the set ΩS(R) is open and closed in T. In addition one has

A =
⋃
S>0

({
ω ∈ S : BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

)}∩ ΩS(R)c
)

=
⋃
S>0

⋃
i∈IS,R

({
ω ∈ S : BT,S(ω) = BT,S

(
ω

S,R
i

)}∩ ΩS(R)c
)
,

where (ω
S,R
i )i∈IS,R

is the collection given by Corollary 1. This shows that the set A is measurable. �

4.2. Asymptotic behavior of labels on the spine

Recall that the sequence (Yk)k≥0 of the successive labels of vertices of the spine is a Markov chain with transition
matrix Π given by Theorem 3. In this section we study the asymptotic behavior of this Markov chain.

Lemma 2. The Markov chain (Yk)k≥0 is transient. In addition, for every ε > 0 there exists α > 0 such that for k large
enough one has

P[Yj ≥ αk,∀j ≥ 0|Y0 = k] ≥ 1 − ε.

Proof. The Taylor expansion qk

pk
= 1 − 8

k
+ O( 1

k2 ) ([7], Lemma 5.5) implies that there exists C > 0 such that

k∏
i=2

qi

pi

∼
k→∞Ck−8.

A standard argument for birth and death processes then ensures that Y is transient. Furthermore, for every k > j ≥ 1,

Pk[Tj = ∞] =
k−1∑
i=j

qi

pi

qi−1

pi−1
· · · qj+1

pj+1

/ ∞∑
i=j

qi

pi

qi−1

pi−1
· · · qj+1

pj+1
,

where Tj is the hitting time of j . Therefore one has, for α < 1,

Pk[T[αk] = ∞] =
(

1

k

k−1∑
i=[αk]

qi

pi

qi−1

pi−1
· · · q[αk]+1

p[αk]+1

)/(
1

k

∞∑
i=[αk]

qi

pi

qi−1

pi−1
· · · q[αk]+1

p[αk]+1

)

−→
k→∞

∫ 1

α

(
α

t

)8

dt
/∫ ∞

α

(
α

t

)8

dt = 1 − α7.

The desired result follows. �

Proposition 5. Let Z be a nine-dimensional Bessel process started at 0. Then(
1√
n
Y[nt]

)
t≥0

−→
n→∞(Z2t/3)t≥0
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in the sense of convergence in distribution in the space D(R+,R+).

Proof. The convergence in the proposition is a direct consequence of a more general result by Lamperti [12] which
we now recall. Let (Xn)n≥0 be a time-homogeneous Markov chain on R+ verifying:

1. for every K > 0 one has uniformly in x ∈ R+

lim
n→∞

1

n

n−1∑
i=0

P(Xi ≤ K|X0 = x) = 0;

2. for every k ∈ N the following moments exist and are bounded as functions of x ∈ R+

mk(x) = E
[
(Xn+1 − Xn)

k|Xn = x
];

3. there exist β > 0 and α > −β/2 such that

lim
x→∞m2(x) = β,

lim
x→∞xm1(x) = α.

Let us define the process (x
(n)
t )t∈R+ by x

(n)
t = n−1/2Xi if t = i

n
, i = 0,1,2, . . . , and linear interpolation on intervals of

the form [ i−1
n

, i
n
]. Lamperti’s theorem states that (x

(n)
t )t∈R+ converges in distribution to the diffusion process (xt )t∈R+

with generator

L = α

x

d

dx
+ β

2

d2

dx2
.

In our case, we consider the Markov chain Ỹ whose transition matrix is given by Π̃(x, y) = Π([x], [y]) if y =
x + 1, x − 1 or x. Assertion 1 easily follows from Lemma 2 and Assertion 2 is trivial. In addition one has pn =
1
3 + 4

3n
+ O(n−2) and qn = 1

3 − 4
3n

+ O(n−2) ([7], Lemma 5.5) giving:

lim
x→∞m2(x) = 2

3
,

lim
x→∞xm1(x) = 8

3
,

and therefore Assertion 3 holds with α = 8/3 and β = 2/3.
The rescaled chain Y thus converges in law to the diffusion process with generator

L = 2

3

(
4

x

d

dx
+ 1

2

d2

dx2

)
,

which was the desired result. �

4.3. Asymptotic properties of small labels

Thanks to Corollary 1, the proof of Theorem 4 will reduce to showing that the μn-measure of certain balls in the space
of trees converges to the corresponding μ-measure. Still we need to show that the error made by disregarding trees
that belong to ΩS(R) is small when S is large. In this section we fix R,ε > 0 and we write ΩS = ΩS(R) to simplify
notation.

Lemma 3. There exists an integer S� > 0 such that μ(ΩS) ≤ ε for every S > S�.
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Proof. Let Ω =⋂∞
S=1 ΩS . If ω ∈ Ω then ω has infinitely many vertices with labels in {1, . . . ,R + 1} and there exists

l ∈ {1, . . . ,R + 1} such that Nl(ω) = ∞. Sin ce μ is supported on S , one has μ(Ω) = 0 and therefore μ(ΩS) → 0
as S → ∞. �

The main ingredient of the proof of Theorem 4 is Proposition 6, which gives an analog of Lemma 3 when μ is
replaced by μn, with uniformity in n. To establish this estimate, we will need an upper bound for the probability that
there exists a vertex at generation S with a label smaller than Sα , where α < 1/2 is fixed (see Lemma 5 below). Let
us first give an easy preliminary lemma:

Lemma 4. Fix S > 0. There exist positive integers N1(S) and Kε(S) such that for every n > N1(S):

μn

(
ω:
∣∣BT,S(ω)

∣∣> Kε(S)
)
< ε.

Proof. This result is a direct consequence of the convergence of the measures μn to μ. Indeed, as |BT,S(ω)| is finite
for every tree ω, one can choose Kε(S) large enough that

μ
(
ω:
∣∣BT,S(ω)

∣∣> Kε(S)
)
< ε.

The convergence of μn to μ then gives N1(S) such that the inequality of the lemma is true for n > N1(S). �

There exists a finite number of well-labelled trees with height exactly S and having at most Kε edges. Let us denote
this number by Mε(S).

For every S > 0 and α ∈ [0, 1
2 [ we let

Aα(S) = {ω ∈ T: ω has a vertex at generation S with a label ≤ Sα}.

Lemma 5. Fix α < 1
2 . For every sufficiently large integer S, there exists N2(S) such that, for every n > N2(S), one

has

μn

(
Aα(S)

)
< ε.

Proof. We first observe that it is enough to prove the bound μ(Aα(S)) < ε when S is large. Indeed the set Aα(S) is
closed in T, and thus we have lim supn μn(Aα(S)) ≤ μ(Aα(S)).

Recall the notation ρ(l) and ρ̂(l) introduced in Section 3.2. For H > 0 and l > 0 one has

ρ̂(l)
(
h(ω) > H

)= 1

wl

∑
ω∈T(l)

h(ω)>H

12−|ω| ≤ 1

wl

∑
ω∈T(l)

h(ω)>H

12−|ω| = 1

wl

ρ(l)
(
h(ω) > H

)
.

Therefore,

ρ̂(l)
(
h(ω) > H

)≤ 2

wl

PGW(1/2)

[
h(ω) > H

]
,

where PGW(1/2) is the law of a Galton–Watson tree whose offspring distribution is geometric with parameter 1/2.
Theorem 1 (page 19) of [5] gives

lim
H→∞HPGW(1/2)

[
h(ω) > H

]= 1.

From the explicit formula for wl we have 2
wl

≤ 3
2 for every l ≥ 0. Hence there exists H1 > 0 such that for H > H1,

ρ̂(l)
(
h(ω) > H

)≤ 2

H
.
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Fix η ∈]0, 1
2 [. Recall that gS(ω) is the set of vertices of ω at generation S and that, for every integer k, Lk and Rk

are the subtrees of ω attached respectively to the left side and to the right side of the kth vertex of the spine of ω. For
S > (1 − η)−1H1, Theorem 3 and the previous bound give

μ

[
gS(ω) ∩

⋃
0≤k≤[ηS]−1

(Lk ∪ Rk) �= ∅

]
≤ 2

[ηS]−1∑
k=1

2

S − k
≤ 4

η

1 − η
≤ 8η,

and therefore

μ
(
Aα(S)

)≤ 8η + μ

(
∃s ∈ gS(ω) ∩

S⋃
k=[ηS]

(Lk ∪ Rk): �(s) ≤ Sα

)
.

Applying the Markov property at time [ηS] to the Markov chain Y and then using Proposition 5 and Lemma 2 we find
δ > 0 and S1 such that for S > S1 one has

μ
(
Yk ≥ [

δ
√

S
]
,∀k ≥ [ηS])≥ 1 − η.

We now have

μ
(
Aα(S)

)≤ 9η + μ

({
∃s ∈ gS(ω) ∩

S⋃
k=[ηS]

(Lk ∪ Rk): �(s) ≤ Sα

}
∩ {∀k ≥ [ηS], Yk ≥ [

δ
√

S
]})

. (8)

Let us fix a collection (yk)[ηS]≤k≤S such that yk ≥ [δ√S] for every k Theorem 3 gives

μ

(
∃s ∈ gS(ω) ∩

S⋃
k=[ηS]

(Lk ∪ Rk): �(s) ≤ Sα|Yk = yk, [ηS] ≤ k ≤ S

)

≤ 2
S∑

k=[ηS]
ρ̂(yk)

(∃s ∈ gS−k(ω): �(s) ≤ Sα
)= 2

S−[ηS]∑
k=0

ρ̂(yS−k)
(∃s ∈ gk(ω): �(s) ≤ Sα

)
. (9)

If 0 ≤ k ≤ S − [ηS], one has

ρ̂(yS−k)
(∃s ∈ gk(ω): �(s) ≤ Sα

) ≤ ρ̂(yS−k)
(

inf
s∈ω

�(s) ≤ Sα
)

= 1

wyS−k

∑
ω∈T(yS−k)

infs∈ω �(s)≤Sα

12−|ω|

= 1

wyS−k

∑
ω∈T(yS−k)

0<infs∈ω �(s)≤Sα

12−|ω|

= 1

wyS−k

ρ(yS−k)
(

0 < inf
s∈ω

�(s) ≤ Sα
)
.

But

ρ(yS−k)
(

inf
s∈ω

�(s) > 0
)

= wyS−k

and

ρ(yS−k)
(

inf
s∈ω

�(s) > Sα
)

= ρ(yS−k−[Sα])( inf
s∈ω

�(s) > 0
)

= wyS−k−[Sα ].
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We thus have

ρ̂(yS−k)
(
∃s ∈ gk(ω): �(s) ≤ Sα

)
≤ 1

wyS−k

(wyS−k
− wyS−k−[Sα]) = 1 − wyS−k−[Sα ]

wyS−k

.

Using our assumption yS−k ≥ [δ√S], a Taylor expansion gives

1 − wyS−k−[Sα]
wyS−k

= 4Sαy−3
S−k + o

(
Sαy−3

S−k

)≤ 4

δ3
Sα−3/2 + o

(
Sα−3/2),

and the right-hand side of (9) is smaller than 8
δ3 Sα−1/2 + o(Sα−1/2). From (8) we now get

μ
(
Aα(S)

)≤ 9η + 8

δ3
Sα−1/2 + o

(
Sα−1/2).

Hence μ(Aα(S)) < 10η as soon as S is large enough. This completes the proof. �

Proposition 6. For every sufficiently large integer S, there exists an integer N(S) such that, for every n > N(S), one
has

μn(ΩS) ≤ ε.

Proof. In this proof α ∈] 1
3 , 1

2 [ is fixed. For S > 0, Lemma 4 gives Kε(S) > 0 and N1(S) > 0 such that if n > N1(S)

then μ(ω: |BT,S(ω)| > Kε(S)) < ε. Let us also recall that the number of well-labelled trees with height S and size
smaller than Kε(S) is denoted by Mε(S). Lemma 5 shows that, for S large enough, there exists N2(S) such that
μn(Aα(S)) < ε for every n > N2(S). Therefore, for S large enough and for n > N1(S) ∨ N2(S) one has

μn(ΩS) =
∑

ω� /∈Aα(S)

|ω�|≤Kε(S),h(ω�)=S

μn

({
ω: BT,S(ω) = ω�

}∩ ΩS

)+ μn

(
Aα(S)

)+ μn

(
ω:
∣∣BT,S(ω)

∣∣> Kε(S)
)

≤ 2ε +
∑

ω� /∈Aα(S)

|ω�|≤Kε(S),h(ω�)=S

μn

({
ω: BT,S(ω) = ω�

}∩ ΩS

)
. (10)

Fix a tree ω� /∈ Aα(S) with height S and size smaller than Kε(S). We assume that S is large enough so that
Sα > R + 1. We denote by k the number of vertices of ω� at generation S and by l1, . . . , lk the labels of these vertices.
By considering the subtrees of ω originating from vertices at generation S, one obtains:

μn

({
ω: BT,S(ω) = ω�

}∩ ΩS

)≤ 1

Dn

∑
n1+···+nk=n−|ω�|

k∑
i=1

D(li)
ni

(R)
∏
j �=i

D
(lj )
nj

, (11)

where D
(l)
n (R) is the number of trees in T

(l)
n with at least one vertex with a label less than or equal to R + 1 (compare

(11) with formula (2)). Since ω /∈ Aα(S), we have li > Sα > R + 1 and thus D
(li)
ni

(R) = D
(li )
ni

− D
(li−R−1)
ni

for i =
1, . . . , k. The bound (11) then gives

μn

({
ω: BT,S(ω) = ω�

}∩ ΩS

)
≤ 1

Dn

∑
n1+···+nk=n−|ω�|

k∑
i=1

(
D(li)

ni
− D(li−R−1)

ni

)∏
j �=i

D
(lj )
nj

= k

Dn

∑
n1+···+nk=n−|ω�|

k∏
j=1

D
(lj )
nj

− 1

Dn

k∑
i=1

∑
n1+···+nk=n−|ω�|

D(li−R−1)
ni

∏
j �=i

D
(lj )
nj

.
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By Theorem 2, μn(ω: BT,S(ω) = ω�) → μ(ω: BT,S(ω) = ω�) as n → ∞. Using this convergence and identities
(2) and (3), we get the existence of an integer N(ω�,S) such that for n > N(ω�,S) one has

1

Dn

∑
n1+···+nk=n−|ω�|

k∏
j=1

D
(lj )
nj

≤ 12−|ω�|
k∑

t=1

dlt

∏
s �=t

wls + ε

Kε(S)Mε(S)

and for i = 1, . . . , k,

1

Dn

∑
n1+···+nk=n−|ω�|

D(li−R−1)
ni

∏
j �=i

D
(lj )
nj

≥ 12−|ω�|
(

dli−R−1

∏
j �=i

wlj +
∑
t �=i

dlt wli−R−1

∏
j �=t,i

wlj

)
− ε

Kε(S)Mε(S)
.

We now have for every n > N(ω�,S):

μn

({
ω: BT,S(ω) = ω�

}∩ ΩS

)
≤ 2ε

Mε(S)
+ k12−|ω�|

k∑
t=1

dlt

∏
s �=t

wls − 12−|ω�|
k∑

i=1

(
dli−R−1

∏
j �=i

wlj +
∑
t �=i

dlt wli−R−1

∏
j �=t,i

wlj

)

= 2ε

Mε(S)
+ 12−|ω�|

k∑
t=1

(dlt − dlt−R−1)
∏
s �=t

wls + 12−|ω�|
k∑

t=1

dlt

(∑
i �=t

(wli − wli−R−1)
∏
s �=t,i

wls

)
. (12)

Define

d(ω�) = max
i=1,...,k

(
1 − dli−R−1

dli

)
,

w(ω�) = max
i=1,...,k

(
1 − wli−R−1

wli

)
.

From the bound (12), we get

μn

({
ω: BT,S(ω) = ω�

}∩ ΩS

)
≤ 2ε

Mε(S)
+ d

(
ω�
)
12−|ω�|

k∑
t=1

dlt

∏
s �=t

wls + kw
(
ω�
)
12−|ω�|

k∑
t=1

dlt

∏
s �=t

wls

= 2ε

Mε(S)
+ (

d
(
ω�
)+ kw

(
ω�
))

μ
(
ω: BT,S(ω) = ω�

)
, (13)

where we used (3) in the last equality.
Let us now define N�(S) = max|ω�|≤Kε(S) N(ω�,S) ∨ N1(S) ∨ N(S). For S large enough and for n > N�(S) we

obtain using (10) and (13):

μn(ΩS) ≤ 4ε +
∑

ω� /∈Aα(S)

|ω�|≤Kε(S),h(ω�)=S

(
d
(
ω�
)+ ∣∣gS

(
ω�
)∣∣w(ω�

))
μ
(
ω: BT,S(ω) = ω�

)
.
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A Taylor expansion gives w(ω�) ≤ 4(5R + 2)S−3α + o(S−3α) where the remainder is uniform over ω� /∈ Aα(S).
In addition, supω� /∈Aα(S) d(ω�) → 0 as S → ∞. This allows us to find S� such that for S > S� and n > N�(S):

μn(ΩS) ≤ 4ε +
∑

ω� /∈Aα(S)

|ω�|≤Kε(S),h(ω�)=S

(
ε + ∣∣gS

(
ω�
)∣∣4(5R + 2)S−3α

)
μ
(
ω: BT,S(ω) = ω�

)

≤ 5ε + 4(5R + 2)S−3α
∑

ω� /∈Aα(S)

|ω�|≤Kε(S),h(ω�)=S

∣∣gS

(
ω�
)∣∣μ(ω: BT,S(ω) = ω�

)

≤ 5ε + 4(5R + 2)S−3αEμ

[∣∣gS(ω)
∣∣]. (14)

The description of μ given in Theorem 3 allows us to estimate Eμ[|gS(ω)|]. Indeed we have for every integer
H > 0 and k ≥ 1

Eρ̂(k)

[∣∣gH (ω)
∣∣]≤ 1

wk

Eρ(k)

[∣∣gH (ω)
∣∣]= 2

wk

EGW(1/2)

[∣∣gH (ω)
∣∣]= 2

wk

≤ 2.

It follows that

Eμ

[∣∣gS(ω)
∣∣]≤ 4S + 1.

Recalling that α > 1
3 , we get that for every S large enough and for n > N�(S),

μn(ωS) ≤ 6ε.

This completes the proof. �

4.4. Proof of the main result

In this section we fix Q� ∈ Q and R > 0. As in the previous section, we write ΩS = ΩS(R) to simplify notation. From
the remarks following Theorem 4, the proof reduces to verifying the convergence

μn

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Q�
)) −→

n→∞μ
(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Q�
))

. (15)

First of all, we need to reformulate the problem in terms of trees. Since Q� ∈ Q, we know that there exists a
finite quadrangulation Q0 ∈ Q such that dQ(Q0,Q

�) < 1
R+1 and therefore BQ,R(Q0) = BQ,R(Q�). Then there exists

ω0 ∈ T such that Φ(ω0) = Q0. The convergence (15) can now be restated as

μn

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

)) −→
n→∞μ

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))
. (16)

We fix ε > 0 in the remaining part of this proof.
We need to characterize the trees ω for which Φ(ω) has the same ball of radius R as Φ(ω0). As we have already

mentioned at the end of Section 3, the main difficulty comes from the fact that two trees that are very similar in T can
give very different quadrangulations if they have vertices with small labels in high generations. We can remedy this
problem thanks to Proposition 6.

Note that ω0 is a finite tree. Let S0 denote the height of ω0. According to Lemma 3 and Proposition 6 we can
choose S1 > S0 such that if S ≥ S1 and n ≥ N(S) then μ(ΩS) < ε and μn(ΩS) < ε.

Let S > S1 and let (ωi)i∈I be the collection of trees given by Corollary 1, such that, for every ω ∈ S ∩ Ωc
S , the

equality BQ,R(Φ(ω)) = BQ,R(Φ(ω0)) holds if and only if there exists i ∈ I such that BT,S(ω) = BT,S(ωi). If A � B

denotes the symmetric difference between two sets A and B , we have

μ

({
ω ∈ T :BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

)}
�
⋃
i∈I

{
ω ∈ T :BT,S(ω) = BT,S(ωi)

})
≤ μ(ΩS) < ε.



The two UIPQ have the same law 207

We deduce from this last bound that∣∣μn

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))− μ
(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))∣∣
≤
∣∣∣∣μ(⋃

i∈I

{
ω: BT,S(ω) = BT,S(ωi)

})− μn

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))∣∣∣∣
+
∣∣∣∣μ(⋃

i∈I

{
ω: BT,S(ω) = BT,S(ωi)

})− μ
(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))∣∣∣∣
≤
∣∣∣∣μ(⋃

i∈I

{
ω: BT,S(ω) = BT,S(ωi)

})− μn

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))∣∣∣∣+ ε.

The set
⋃

i∈I {ω ∈ T: BT,S(ω) = BT,S(ωi)} is both open and closed in T, and thus

μn

(⋃
i∈I

{
ω: BT,S(ω) = BT,S(ωi)

}) −→
n→∞μ

(⋃
i∈I

{
ω: BT,S(ω) = BT,S(ωi)

})
.

Therefore there exists N ′(S) > 0 such that for n > N ′(S):∣∣μn

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))− μ
(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))∣∣
≤
∣∣∣∣μn

(⋃
i∈I

{
ω: BT,S(ω) = BT,S(ωi)

})− μn

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))∣∣∣∣+ 2ε

=
∣∣∣∣μn

(⋃
i∈I

{
ω: BT,S(ω) = BT,S(ωi)

}∩ ΩS

)
− μn

({
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

)}∩ ΩS

)∣∣∣∣
+ 2ε

by the choice of the collection (ωi)i∈I .
We also know that μn(ΩS) < ε for n > N(S), and it follows that, for n > N(S) ∨ N ′(S),∣∣μn

(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))− μ
(
ω: BQ,R

(
Φ(ω)

)= BQ,R

(
Φ(ω0)

))∣∣≤ 3ε.

This completes the proof of Theorem 4.
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