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Abstract. In the spirit of a classical result for Crump–Mode–Jagers processes, we prove a strong law of large numbers for frag-
mentation processes. Specifically, for self-similar fragmentation processes, including homogenous processes, we prove the almost
sure convergence of an empirical measure associated with the stopping line corresponding to first fragments of size strictly smaller
than η for 1 ≥ η > 0.

Résumé. Dans l’esprit d’un résultat classique concernant les processus de Crump–Mode–Jagers, nous démontrons une loi forte
des grands nombres pour des processus de fragmentation. Plus précisément, pour des processus auto-similaires de fragmentation,
incluant les processus homogènes, nous prouvons la convergence presque sûre de la mesure empirique associée à la ligne d’arrêt
correspondant aux premiers fragments de taille strictement plus petite qu’un η dans (0,1].
MSC: 60J25; 60G09
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1. Fragmentation processes

Fragmentation processes have been the subject of an increasing body of literature and the culmination of this activity
has recently been summarised, for example, in the recent book of Bertoin [9]. Some of the mathematical roots of
fragmentation processes lay with older families of spatial branching processes that have also seen periods of exten-
sive interest such as branching random walks and Crump–Mode–Jagers processes. Irrespective of modern or classical
perspectives, such models exemplify the phenomena of random splitting according to systematic rules and, as sto-
chastic processes, they may be seen as modelling the growth of special types of multi-particle systems. In such cases
where there is a random accumulation of many particles, from a mathematical perspective, it is natural to look for
classical behaviour such as large deviations, central limit theorems, local limit theorems and strong laws of large
numbers. Many studies have already been carried out in this spirit, see, for example, [4,6–10,12,14,27]. In this arti-
cle our aim is to contribute to this family of literature by proving a strong law of large numbers for fragmentation
processes. To state more clearly the main result, we shall first devote some time defining several of the quantities
involved.

We are interested in the Markov process X := {X(t): t ≥ 0} where X(t) = (X1(t),X2(t), . . .) and takes values in

S :=
{

s = (s1, s2, . . .): s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si ≤ 1

}
,

that is to say, the infinite simplex of decreasing numerical sequences with sum bounded from above by 1. Its prob-
abilities will be denoted by {Ps: s ∈ S} and, for s ∈ (0,1], we shall reserve the special notation Ps as short hand
for P(s,0,...) and in particular write P for P1. The process X possesses the fragmentation property, to be understood
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as follows. Given that X(t) = (s1, s2, . . .), where t ≥ 0, then for u > 0, X(t + u) has the same law as the variable
obtained by ranking in decreasing order the sequences X(1)(u),X(2)(u), . . . where the latter are independent, random
mass partitions with values in S having the same distribution as X(u) under Ps1 , Ps2 , . . . respectively. The process X,
henceforth called a mass fragmentation process, is said to be self-similar with index α ∈ R if further, for every r > 0,
the law of {rX(rαt): t ≥ 0} under P is Pr . In the special case that α = 0, we call X a homogenous fragmentation
process. The monograph of Bertoin [9] gives a very precise and complete account of the existence and characteriza-
tion of such processes. However, for later convenience, we shall provide here some additional but modest insight into
the stochastic structure of homogenous processes.

It is known that homogenous fragmentation processes can be characterized by a dislocation measure ν on S such
that ν({(1,0, . . .)}) = 0 and∫

S
(1 − s1)ν(ds) < ∞.

One may also include the possibility of continuous erosion of mass, however, this feature will be excluded in this
article. In the case, that

ν

( ∞∑
i=1

si < 1

)
= 0 (1)

we say that the fragmentation process is conservative and otherwise dissipative.
Roughly speaking, the dislocation measure specifies the rate at which blocks split so that a block of mass x dis-

locates into a mass partition xs, where s ∈ S , at rate ν(ds). To be more precise, consider a Poisson point process
{(s(t), k(t)): t ≥ 0} with values in S × N and intensity measure ν ⊗ � where � denotes the counting measure on
N = {1,2, . . .}. Then the homogenous fragmentation process associated with ν changes state at all times t ≥ 0 for
which an atom (s(t), k(t)) occurs in S\{(1,0, . . .)} × N. At such a time t , the sequence X(t) is obtained from X(t−)

by replacing its k(t)th term, Xk(t)(t−), with the sequence Xk(t)(t−)s(t) and ranking the terms in decreasing order.
When ν(S) < ∞ there is finite activity over finite intervals of time in the underlying Poisson point process. Oth-
erwise said, individual blocks remain unchanged for exponential periods of time with parameter ν(S). In this case,
by taking the negative logarithm of fragment sizes, the fragmentation process is akin to a Markovian (or continuous
time) branching random walk; see, for example, Biggins [16] or Uchiyama [30]. One may also think of a fragmen-
tation process in this setting as closely related to a Crump–Mode–Jagers process where the negative logarithm of
fragment sizes plays the role of birth times; see, for example, Jagers [26] and Bertoin and Martinez [11]. The case
that ν(S) = ∞ is the more interesting case in the sense that there are a countable but infinite number of dislocations
over any finite time horizon and therefore, mathematically speaking, many results need to be handled differently to
the case of branching random walks or Crump–Mode–Jagers processes.

The above construction focuses on mass partitions, however, it can also be seen as the natural consequence of a
more elaborate Poissonian procedure concerning the partition of the natural numbers. Let P be the space of partitions
of the natural numbers. Here a partition of N is a sequence π = (π1,π2, . . .) of disjoint sets, called blocks, such
that

⋃
i πi = N. The blocks of a partition are enumerated in the increasing order of their least element; that is to say

minπi ≤ minπj when i ≤ j (with the convention that min∅ = ∞). Now consider the measure on P ,

μ(dπ) =
∫

S
�s(dπ)ν(ds), (2)

where �s is the law of Kingman’s paint-box based on s (cf. Chapter 2 of Bertoin [9]). It is known that μ is an
exchangeable partition measure, meaning that it is invariant under the action of finite permutations on P . It is also
known (cf. Chapter 3 of Bertoin [9]) that it is possible to construct a fragmentation process on the space of partitions
P with the help of a Poisson point process on P × N, {(π(t), k(t)) : t ≥ 0}, which has intensity measure μ ⊗ �.
The aforementioned P -valued fragmentation process is a Markov process which we denote by Π = {Π(t): t ≥ 0},
where Π(t) = (Π1(t),Π2(t), . . .) is such that at all times t ≥ 0 for which an atom (π(t), k(t)) occurs in (P \N) × N,
Π(t) is obtained from Π(t−) by partitioning the k(t)th block into the sub-blocks (Πk(t)(t−) ∩ πj (t): j = 1,2, . . .).
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Thanks to the properties of the exchangeable partition measure μ it can be shown that, for each t ≥ 0, the distribution
of Π(t) is exchangeable and moreover, blocks of Π(t) have asymptotic frequencies in the sense that for each i ∈ N,

∣∣Πi(t)
∣∣ := lim

n↑∞
1

n
�
{
Πi(t) ∩ {1, . . . , n}}

exists almost surely. Further, these asymptotic frequencies, when ranked in decreasing order, form a homogenous
mass fragmentation process with dislocation measure ν.

For future reference we also note from Proposition 2.8 of Bertoin [9] that the ordered asymptotic frequencies of π

sampled under �s, written |π |↓, satisfy |π |↓ = s almost surely and |π1| is a size-biased sample of s almost surely. Here
“size-biased sample” means that �s(|π1| = si) = si for i = 1,2, . . . . It thus follows from (2) and Fubini’s theorem that
for test functions f : [0,1] → [0,∞) with f (0) = 0 and g : S → [0,∞),∫

P
g
(|π |↓)

f
(|π1|

)
μ(dπ) =

∫
S

g(s)
(∫

P
f

(|π1|
)
�s(dπ)

)
ν(ds)

=
∫

S
g(s)

( ∞∑
i=1

sif (si)

)
ν(ds). (3)

In the forthcoming discussion, unless otherwise stated, we shall exclusively understand (X,P) to be a homogenous
mass fragmentation processes as described above and refer to the underlying P -valued fragmentation process as Π .

Let us introduce the constant

p := inf

{
p ∈ R:

∫
S

∣∣∣∣∣1 −
∞∑
i=1

s
1+p
i

∣∣∣∣∣ν(ds) < ∞
}

which is necessarily in (−1,0]. It is well known that

Φ(p) :=
∫

S

(
1 −

∞∑
i=1

s
1+p
i

)
ν(ds)

is strictly increasing and concave for p ∈ (p,∞). Let us assume the following.

(A1) If p = 0 then

Φ ′(0+) =
∫

S

( ∞∑
i=1

si log

(
1

si

))
ν(ds) < ∞.

The function Φ has a special meaning in the context of the growth of a “tagged” fragment. If one considers the
process ξ = {ξt : t ≥ 0}, where

ξt := − log
∣∣Π1(t)

∣∣,
then the underlying Poissonian structure implies that ξ is a subordinator. Moreover, Φ turns out to be its Laplace
exponent meaning that

Φ(p) = −t−1 log E
(
e−pξt

)
for all p ≥ 0. The subordinator ξ is killed at rate Φ(0) ≥ 0 (with zero killing rate meaning that there is no killing).
Further, when p < 0, ξ has finite mean, that is to say Φ ′(0+) < ∞ and the same is true when p = 0 thanks to (A1).

Through the exponent Φ we may introduce the Malthusian parameter p∗ which is the unique solution to the
equation Φ(p∗) = 0 when it exists. In the conservative case, it always exists and satisfies p∗ = 0. For the dissipative
case we introduce an extra assumption to cater for its existence.
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(A2) If ν is dissipative, there exists a p∗ > p such that Φ(p∗) = 0.

Note that necessarily in the dissipative case p∗ < 0 and then Φ(0) > 0. A second assumption we will need with
regard to the Malthusian parameter in the dissipative case is the following.

(A3) If ν is dissipative then there exists a p0 ∈ (1,2] such that

∫
S

( ∞∑
i=1

s
1+p∗
i

)p0

ν(ds) < ∞.

From this moment on we shall always assume, unless otherwise stated, that assumptions (A1), (A2) and (A3) are
in force.

Let Xη := {Xη,j : j ≥ 1} be an arbitrary enumeration of fragments as they are frozen at the instant they become
strictly smaller than 1 ≥ η > 0. The set Xη is a classic example of the resulting family of fragments obtained when
sampling the fragmentation process X at a stopping line (corresponding to the first fragment in its line of descent to be
smaller than η in size) for which the so-called extended fragmentation property holds. The latter says that, if Fη is the
natural filtration generated by sweeping through the fragmentation process up to the stopping line Xη, then given Fη

the subsequent evolution of the fragments in Xη are independent copies of X with respective laws PXη,1 ,PXη,2, . . . .

See Definition 3.4 and Lemma 3.14 of Bertoin [9], respectively. Moreover, we may talk of {Xη: 1 ≥ η > 0} as a
monotone sequence of stopping lines since, if η′ < η, then every fragment in Xη′ is either a fragment of Xη or the
result of a sequence of dislocations of a fragment in Xη. For convenience, when η ≥ 1 we shall simply define Xη as a
block of unit size.

Bertoin and Martinez [11] propose the idea of using a fragmentation process to model the crushing of rocks in
the mining industry. In that setting one assumes that rock fragments, occurring as the consequence of subjecting a
single boulder to a continuous crushing process, are represented by the evolution of X. If rock fragments are no longer
subject to crushing the moment that they are small enough to pass through a mesh of fixed diameter, then one may
think of the stopping line Xη as the sizes of what falls through the mesh throughout the entire crushing process.

In the setting of a C–M–J process, where birth times correspond to the negative logarithm of fragment sizes, the
analogue of the stopping line Xη is what is known as the coming generation.

2. Main result

The main object of interest in this paper is the following family of random measures on [0,1]

ρη(·) =
∑
j

X
1+p∗
η,j δXη,j /η(·), 1 ≥ η > 0, (4)

where δx(·) is the Dirac measure, assigning unit mass to sets which contain the point x. For all bounded measurable
functions f : [0,1] → [0,∞) we write

〈ρη,f 〉 =
∑
j

X
1+p∗
η,j f (Xη,j /η).

Our objective is to show that 〈ρη,f 〉 behaves asymptotically as η ↓ 0 like the limit of a classical, unit mean martingale,
up to a multiplicative constant which depends on f .

The aforementioned classical unit mean martingale is {∑∞
i=1 X

1+p∗
i (t), t ≥ 0}; it is the analogue of the classical ad-

ditive martingale for branching random walks. In Theorem 1 of [13] the analogue of the classical Biggins’ martingale
convergence theorem was proved which shows in particular that

Λ
(
p∗) := lim

t↑∞

∞∑
i=1

X
1+p∗
i (t)
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exists in the L1(P) sense (in addition to being a P-almost sure limit). See [15] for the original setting of this result.
Note, in the conservative case we have trivially that Λ(p∗) = 1 on account of the fact that p∗ = 0 and total mass is
preserved at all times,

∑∞
i=1 Xi(t) = 1 for all t ≥ 0. As a prelude to the main result, the next lemma shows us that the

total mass of the empirical measure (4) is a uniformly integrable martingale with the same limit Λ(p∗).

Lemma 1. We have that

〈ρη,1〉 = E
(
Λ

(
p∗)|Fη

)
for 1 ≥ η > 0,

showing in particular that {〈ρη,1〉: 1 ≥ η > 0} is a uniformly integrable, unit mean martingale.

Proof. Suppose that Aη(t) corresponds to the indices of fragments in X(t) which are neither fragments in Xη nor
descendants of fragments in the stopping line Xη; that is to say, Aη(t) corresponds to the indices of fragments in X(t)

which are greater than or equal to η in size. Also write Dη(t) for the indices of fragments in Xη which are either in X(t)

or have descendants in X(t). Then by the extended fragmentation property and the fact that E(
∑∞

i=1 X
1+p∗
i (t)) = 1

for all t ≥ 0, we have

E

( ∞∑
i=1

X
1+p∗
i (t)

∣∣∣Fη

)
=

∑
i∈Aη(t)

X
1+p∗
i (t) +

∑
j∈Dη(t)

X
1+p∗
η,j . (5)

It is known that the largest fragment decays at an exponential rate (cf. Bertoin [7]) and hence there exists an almost
surely finite time T such that Aη(t) = ∅ (and thus Dη(t) contains all the indices of the stopping line Xη) for all t ≥ T .
In that case, taking limits as t ↑ ∞ in (5) we get

lim
t↑∞E

( ∞∑
i=1

X
1+p∗
i (t)

∣∣∣Fη

)
= 〈ρη,1〉. (6)

Note also that, since Λ(p∗) is an L1(P) limit and

E

(∣∣∣∣∣E
( ∞∑

i=1

X
1+p∗
i (t)

∣∣∣Fη

)
− E

(
Λ

(
p∗)∣∣Fη

)∣∣∣∣∣
)

≤ E

(∣∣∣∣∣
∞∑
i=1

X
1+p∗
i (t) − Λ

(
p∗)∣∣∣∣∣

)
,

the random variable E(Λ(p∗)|Fη) is the L1(P) limit of E(
∑∞

i=1 X
1+p∗
i (t)|Fη) as t ↑ ∞. Referring back to (6) we

deduce that in fact

〈ρη,1〉 = E
(
Λ

(
p∗)∣∣Fη

)
,

which implies the statement of the lemma. �

In the conservative case, 〈ρη,1〉 is of course trivially identically equal to 1 for all 1 ≥ η > 0. In the dissipa-
tive case, although the limiting variable Λ(p∗) is the result of L1(P) convergence, it is not immediately clear that
P(Λ(p∗) > 0) = 1. However, by conditioning on the state of the fragmentation process at time t > 0, one easily
shows that if φ(x) := Px(Λ(p∗) = 0) for any 1 ≥ x > 0, then

φ(x) = Ex

( ∞∏
i=1

φ
(
Xi(t)

))
.

Note, however, that by homogeneity, for all 1 ≥ x > 0, Px(Λ(p∗) = 0) = P(xΛ(p∗) = 0) = P(Λ(p∗) = 0). It follows
that if P(Λ(p∗) = 0) < 1 then φ(x) = 0 for all 1 ≥ x > 0. In particular, P(Λ(p∗) = 0) = 0. The only other possibility
is that P(Λ(p∗) = 0) = 1, which contradicts the fact that Λ(p∗) is an L1(P)-limit.
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Now consider the completely deterministic measure ρ on [0,1] which is absolutely continuous with respect to
Lebesgue measure and satisfies

ρ(du) = 1

Φ ′(p∗)

(∫
S

∞∑
n=1

1{u>sn}s1+p∗
n ν(ds)

)
du

u
,

where, in the case that p∗ = 0 we understand Φ ′(p∗) = Φ ′(0+). For bounded measurable functions f : [0,1] →
[0,∞) we write

〈ρ,f 〉 = 1

Φ ′(p∗)

∫ 1

0
f (u)

(∫
S

∞∑
n=1

1{u>sn}s1+p∗
n ν(ds)

)
du

u
. (7)

The measure ρ has a special meaning for the subordinator ξ . Let us suppose that P is taken as the intrinsic law
associated with ξ . On account of the fact that Φ(p∗) = 0, the quantity Φ(p∗)(q) := Φ(q + p∗) for p ≥ 0 represents
the Laplace exponent of ξ under the change of measure

dP(p∗)

dP

∣∣∣∣
σ {ξs :s≤t}

= e−p∗ξt .

If m is the jump measure associated with (ξ,P) and m(p∗) is the jump measure associated with (ξ,P(p∗)), then standard
theory tells us that m(p∗)(dx) = e−p∗xm(dx) for x > 0. In terms of the dislocation measure ν we may thus write (cf.
p. 142 of Bertoin [9]) that

m(p∗)(dx) = e−x(1+p∗)
∞∑
i=1

ν(− log si ∈ dx) (8)

for x ∈ (0,∞). It is also known from classical renewal theory (cf. Bertoin [5]) that, as E(p∗)(ξ1) = Φ ′(p∗) < ∞,

lim
x↑∞ E(p∗)(ξτ(x) − x ∈ dz) = 1

Φ ′(p∗)
m(p∗)((z,∞)

)
dz,

where τ(x) = inf{t > 0: ξt > x}. It is therefore straightforward to show, using (8) and a change of variables, that for
any bounded measurable f : [0,1] → [0,∞),

lim
x↑∞ E(p∗)f

(
e−(ξτ(x)−x)

) = 〈ρ,f 〉. (9)

Our main theorem, below, relates the limiting behaviour of ρη to ρ.

Theorem 1 (Strong law of large numbers). For any homogenous fragmentation process we have

lim
η↓0

〈ρη,f 〉
〈ρ,f 〉 = Λ

(
p∗)

P-a.s.

for all bounded measurable functions f : [0,1] → [0,∞).

The above result can also be rephrased in a slightly different way which is more in line with classical results of this
type for spatial branching processes. As a consequence of the forthcoming Lemma 2 it can easily be shown that

E
(〈ρη,f 〉) = E(p∗)[f (

e−(ξτ(− logη)+logη)
)]

,

in which case, taking note of (9), the statement of the theorem may also be read as

lim
η↓0

〈ρη,f 〉
E(〈ρη,f 〉) = Λ

(
p∗)

P-almost surely.
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Theorem 1 extends Corollary 2 of Bertoin and Martinez [11] in which L2(P) convergence had been established in
the conservative case. See also Proposition 1.12 of [9]. It also lends itself to classical strong laws of large numbers that
were proved by Nerman [29] in the setting of C–M–J processes, Asmussen and Hering [1,2] in the context of spatial
branching processes and, more recently, Engländer, Harris and Kyprianou [21], Chen and Shiozawa [18] and Chen,
Ren and Wang [19] for branching diffusions and Engländer [20] and Engländer and Winter [22] for superdiffusions.

Theorem 1 also gives rise to a strong law of large numbers for self-similar fragmentation processes. Recall that
any self-similar fragmentation process with a given dislocation measure ν and index α ∈ R may be obtained from the
associated homogenous process via the use of stopping lines. Indeed it is known (cf. Bertoin [6]) that, in the P -valued
representation of a given homogenous fragmentation process, if one defines the stopping times

θi(t) = inf

{
u ≥ 0:

∫ u

0

∣∣Πi(s)
∣∣−α ds > t

}

for each i ∈ N, then stopping the block in Π which contains the integer i at θi(t) for each i ∈ N produces a stop-
ping line of fragments whose asymptotic frequencies exist. We denote the associated mass fragments of the latter
by X(α)(t). As a process in time, X(α) := {X(α)(t): t ≥ 0} is defined to be the α-self-similar fragmentation process
associated to the dislocation measure ν. Now, returning to the definition of Xη, one notes that, as a stopping line
concerned with fragment sizes, it is blind to any time-changes made along individual nested sequences of fragments.
Therefore, if one considers in the process X(α)(t) the first fragments in their line of descent to be smaller than η in
size, then one obtains precisely Xη again. We thus obtain the following corollary to Theorem 1.

Corollary 1. Theorem 1 is valid for any self-similar fragmentation process.

We conclude this section by noting that the remainder of the paper is set out into two further sections. Some initial
preliminary results followed by the proof of the main result.

3. Preliminary results

In this section we produce a number of initial results which will be collectively used in the proof of Theorem 1. A key
element of much of the reasoning is the now very popular spine decomposition which we briefly recall here; for a
fuller account the reader should consult Bertoin and Rouault [12,13] or Bertoin [9], however.

The process

Λt(p) :=
∞∑
i=1

X
1+p
i (t)eΦ(p)t , t ≥ 0,

is a P-martingale for all p ∈ (p,∞) which (thanks to positivity) converges almost surely to a limit which we denote
by Λ(p). When p = p∗ it is the same martingale discussed in the previous section. For each p ∈ (p,∞) define the

measure P
(p) via

dP
(p)

dP

∣∣∣∣
σ {X(s):s≤t}

=
∞∑
i=1

X
1+p
i (t)eΦ(p)t . (10)

Following the classical analysis of Lyons [28], Bertoin and Rouault [12,13] show that the process (X,P
(p)) is equal

in law to the ranked asymptotic frequencies of a P -valued fragmentation process with a distinguished nested sequence
of fragments known as a spine. The evolution of the latter is the same as the process Π except for a modification to
the way in which the block containing the integer 1, Π1(t), evolves for t ≥ 0. This is done by working with a Poisson
point process on P × N with intensity adjusted to be equal to

(
μ(p) ⊗ �

)∣∣
P ×{1} + (μ ⊗ �)|P ×{2,3,...}, where μ(p)(dπ) := |π1|pμ(dπ).
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An important consequence of this change of measure is that {− log |Π1(t)|: t ≥ 0}, has the characteristics of an ex-
ponentially tilted subordinator. Indeed note that with the help of a telescopic sum, an application of the compensation
formula for Poisson point processes and (3), we have for λ, t ≥ 0

1 − E
(p)

(∣∣Π1(t)
∣∣λ) = E

(p)

(∑
s≤t

(
1 − ∣∣π1(s)

∣∣λ)∣∣Π1(s−)
∣∣λ)

=
∫ t

0
E

(p)
(∣∣Π1(s)

∣∣λ)ds

∫
P

(
1 − |π1|λ

)
μ(p)(dπ)

=
∫ t

0
E

(p)
(∣∣Π1(s)

∣∣λ)ds

∫
S

∞∑
i=1

s
1+p
i

(
1 − sλ

i

)
ν(ds)

= Φ(p)(λ)

∫ t

0
E

(p)
(∣∣Π1(s)

∣∣λ)ds,

where Φ(p)(λ) := Φ(λ + p) − Φ(p). Solving the above integral equation for E
(p)(|Π1(t)|λ) shows that the intrinsic

law of − log |Π1(·)| is precisely that of (ξ,P(p)) where

dP(p)

dP

∣∣∣∣
σ {ξs :s≤t}

= e−pξt+Φ(p)t .

We also mention that the natural analogue of Biggins’ martingale convergence theorem proved in Theorem 1 of
[13] states that there is L1(P) convergence of the martingale to Λ(p) if and only if p ∈ (p,p) where p is the unique
solution to the equation (1 + p)Φ ′(p) = Φ(p) and otherwise Λ(p) = 0 almost surely. Note in particular that, since
p ≥ p if and only (1 + p)Φ ′(p) ≤ Φ(p), it follows that p∗ < p.

Our first preparatory lemma is sometimes referred to as a “many-to-one” identity (see, for example, [24,25]) and
has appeared in many guises throughout the study of spatial branching processes as one sees, for example, in early
work such as Bingham and Doney [17] on Crump–Mode–Jagers processes.

Lemma 2. For all measurable f : [0,1] → [0,∞) we have

E

(∑
j

X
1+p∗
η,j f (Xη,j )

)
= E(p∗)(f (

e−ξτ(− logη)
))

.

Proof. It will be convenient to introduce a third representation of fragmentation processes. Denote by Θ =
{Θ(t): t ≥ 0} the interval representation of the fragmentation process (see [3]). That is to say Θ is a sequence of
nested random open subsets of (0,1) in the sense that Θ(t + s) is a refinement of Θ(t) for s, t ≥ 0. The process X(t)

can be recovered from Θ(t) by ranking the sequence of the lengths of the intervals of which Θ(t) is comprised.
Next, define for each u ∈ (0,1),

Tη(u) = inf
{
t ≥ 0:

∣∣Iu(t)
∣∣ < η

}
,

where |Iu(t)| denotes the length of the component of Θ(t) containing u. We may now write

E

(∑
j

X
1+p∗
η,j f (Xη,j )

)
= E

∫ 1

0

∣∣Iu

(
Tη(u)

)∣∣p∗
f

(∣∣Iu

(
Tη(u)

)∣∣)du

= E
[∣∣IU

(
Tη(U)

)∣∣p∗
f

(∣∣IU

(
Tη(U)

)∣∣)],
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where U is an independent and uniformly distributed random variable. It is known however (cf. Bertoin and Martinez
[11]) that the process {− log |IU (t)|: t ≥ 0} under P has the same law as the subordinator ξ and hence we have

E

(∑
j

X
1+p∗
η,j f (Xη,j )

)
= E

[
e−p∗ξτ(− logη)f

(
e−ξτ(− logη)

)]

= E(p∗)[f (
e−ξτ(− logη)

)]
,

thus completing the proof. �

Next we define for 1 ≥ η > 0 the families of subindices of the stopping line Xη

Jη,s = {
j = 1,2, . . . : Xη,j ≥ ηs

}
and J c

η,s = {
j = 1,2, . . . : Xη,j < ηs

}
.

Note in particular that J c
η,1 is the full set of indices of fragments in Xη.

Lemma 3. There exists an s0 > 1 such that for all s ≥ s0

lim
η↓0

∑
j∈Jη,s

X
1+p∗
η,j = Λ

(
p∗)

P-almost surely.

Proof. We deal with the conservative and dissipative cases separately. Consider first the conservative case, p∗ = 0. In
the terminology of the proof of the previous lemma we may easily write

∑
j∈J c

η,s

Xη,j =
∫ 1

0
1{|Iu(Tη(u))|<ηs } du. (11)

Let us temporarily write ξu(t) = − log |Iu(t)|, x = − logη and let τu(x) = inf{t > 0: ξu(t) > x}. Note that the
event {|Iu(Tη(u))| < ηs} is equivalent to the event

{
ξu(τu(x)) − x

x
> s − 1

}
.

Since ξu is a subordinator with Laplace exponent Φ , and thus has finite mean by assumption (A1), it follows from the
classical theory of subordinators (cf. Bertoin [5]) that

lim
x↑∞

ξu(τu(x)) − x

x
= 0

almost surely. The result now follows by an application of the dominated convergence theorem in (11).
Next consider the dissipative case so that p∗ < 0. In that case with p ∈ (p,p∗) we may write (11) as follows,

∑
j∈J c

η,s

X
1+p∗
η,j ≤ ηs(p∗−p)

∑
j∈J c

η,s

X
1+p
η,j eΦ(p)ση,j −Φ(p)ση,j

≤ ηs(p∗−p)e−Φ(p)ση
∑
j

X
1+p
η,j eΦ(p)ση,j , (12)

where ση,j is the time that the block Xη,j enters the stopping line Xη and ση := inf{t > 0: X1(t) < η}, the first
time the largest block becomes smaller than η. We claim that ση < ∞ almost surely finite. Indeed, the almost sure
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finiteness of ση is a consequence of the classical result that the speed of the largest particle obeys the strong law of
large numbers

lim
t↑∞− logX1(t)

t
= Φ ′(p) > 0

P-almost surely. See, for example, Corollary 1.4 of Bertoin [9]. (The latter result was proved for homogenous frag-
mentation processes with finite dislocation measure, however the proof passes through verbatim for the case of infinite
dislocation measure.) Note also that since X1(·) is a right continuous process with inverse σ(·), standard arguments
for right continuous monotone functions and their inverses imply that

lim
η↓0

− ση

logη
= 1

Φ ′(p)

P-almost surely. We therefore may proceed with the estimate (12) and deduce that for all η sufficiently small and
ε > 0 ∑

j∈J c
η,s

X
1+p∗
η,j ≤ ηs(p∗−p)+(1+ε)Φ(p)/Φ ′(p)

∑
j

X
1+p
η,j eΦ(p)ση,j .

Using similar arguments to those found in the proof of Lemma 1 one may show that the sum on the right-hand side
above is the projection of the L1(P)-martingale limit Λ(p) onto the filtration Fη and therefore is a uniformly inte-
grable martingale for 1 ≥ η > 0. It now follows that by choosing s > −(1 + ε)Φ(p)[(p∗ − p)Φ ′(p)]−1 (recall that
Φ(p) < 0) we have

lim
η↓0

∑
j∈J c

η,s

X
1+p∗
η,j = 0

as required. �

The previous lemma allows us to establish the following result.

Lemma 4. For all bounded measurable f : [0,1] → [0,∞) and all s sufficiently large,

lim
η↓0

∣∣E(〈ρηs , f 〉|Fη

) − 〈ρ,f 〉Λ(
p∗)| = 0

P-almost surely.

Proof. We introduce the notation

ψ(x,η) = E(p∗)(f (
e−ξτ(− logx)/η

))
for bounded measurable f : [0,1] → [0,∞) noting in particular by (9) that limη↓0 ψ(η,η) = 〈ρ,f 〉. For convenience
we prove the result when η is replaced by η2 or equivalently with s replaced by 2s. By splitting the fragments in Xη2s

into descendants of fragments in Xη whose mass is no smaller than ηs , descendants of fragments in Xη whose mass
lies between [η2s , ηs) and fragments which belong to both Xη and Xη2s we get with the help of the fragmentation
property applied at the stopping line Xη and Lemma 2 that

E
(〈ρη2s , f 〉|Fη

) =
∑

j∈Jη,s

X
1+p∗
η,j ψ

(
η2s/Xη,j , η

2s/Xη,j

)

+
∑

j∈Jη,2s\Jη,s

X
1+p∗
η,j ψ

(
η2s/Xη,j , η

2s/Xη,j

)

+
∑

j∈J c
η,2s

X
1+p∗
η,j f

(
Xη,j /η

2s
)
. (13)
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Note that

sup
j∈Jη,s

η2s/Xη,j ≤ ηs → 0 P-a.s. as η ↓ 0

and hence, using Lemma 3, the first term on the right-hand side of (13) converges almost surely to 〈ρ,f 〉Λ(p∗).
Without loss of generality we may assume that f is uniformly bounded by 1 in which case ψ is uniformly bounded
by 1 and then the second term on the right-hand side of (13) satisfies

lim
η↓0

∑
j∈Jη,2s\Jη,s

X
1+p∗
η,j ψ

(
η2s/Xη,j , η

2s/Xη,j

) ≤ lim
η↓0

∑
j∈J c

η,s

X
1+p∗
η,j = 0

P-almost surely, where the final equality follows by Lemma 3. Similar reasoning shows that the third term on the
right-hand side of (13) converges P-almost surely to zero. �

The previous lemma shows that E(〈ρηs , f 〉|Fη) is a good approximation for 〈ρ,f 〉. For a random variable Y we
denote the Lp(P) norm in the usual way, ‖Y‖p = E(|Y |p)1/p . The next proposition shows that E(〈ρηs , f 〉|Fη) is also
a good approximation for 〈ρηs , f 〉 but now with respect to the Lp(P)-norm.

Proposition 1. Suppose that f : [0,1] → [0,∞) is bounded and measurable. Then there exist constants p ∈ (1,2]
and κp ∈ (0,∞) such that for all s > 1 and 1 ≥ η > 0,

∥∥〈ρηs , f 〉 − E
(〈ρηs , f 〉|Fη

)∥∥
p

≤ κpη(p−1)(1+p∗)/p.

Before moving to the proof of this proposition, it will be convenient to first establish the following supporting
lemma.

Lemma 5. There exist constants p ∈ (1,2] and Kp ∈ (0,∞) such that

sup
1≥η>0

E
(〈ρη,1〉p) ≤ Kp.

Proof. We need only address the proof for the dissipative case as 〈ρη,1〉 = 1 in the conservative case. The proof is
based on series of computations inspired by ideas which are found in Hardy and Harris [23]. Throughout the proof we
shall take p = p0 where p0 was specified in (A3). Write q = p − 1 ∈ (0,1]. We have

E
(〈ρη,1〉p) = E

(〈ρη,1〉〈ρη,1〉q)
= E

(p∗)[
E

(p∗)(〈ρη,1〉q |G
)]

≤ E
(p∗)[

E
(p∗)(〈ρη,1〉|G

)q]
, (14)

where G = σ {(π(t), k(t)): t ≥ 0, k(t) = 1} is the σ -algebra generated by the spine and the final line above follows
from Jensen’s inequality. Appealing to the spine decomposition described at the beginning of this section, and writing
Tη = inf{t > 0: |Π1(t)| < η}, we may further decompose

〈ρη,1〉 = ∣∣Π1(Tη)
∣∣1+p∗ +

∑
t≤Tη

1{k(t)=1}
∣∣Π1(t−)

∣∣1+p∗ ∞∑
i=2

∣∣πi(t)
∣∣1+p∗

Ξi,

where, given G , for each i = 2,3, . . . Ξi are defined as follows. If ηi := η/(|Π1(t−)||πi(t)|) > 1 then Ξi := 1 and
otherwise if ηi ≤ 1 then, given G, Ξi under P

(p∗) is an independent copy of 〈ρη,1〉 under P with η = ηi Taking account
of the inequality (

∑∞
j=1 aj )

q ≤ ∑∞
j=1 a

q
j , which holds for any non-negative sequence of numbers {aj : j ≥ 1}, using

the fact that E
(p∗)(Ξi |G) = E(Ξi |G) = 1 for all i = 2,3, . . . , referring back to (14), making use of the compensation
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formula for Poisson random measures and recalling that under P
(p∗) the process − log |Π1(·)| is equal in law to

(ξ,P(p∗)), we get the following estimate,

E
(〈ρη,f 〉p)
≤ E

(p∗)
[∣∣Π1(Tη)

∣∣(1+p∗)q +
∑
t<∞

1{k(t)=1}
∣∣Π1(t−)

∣∣(1+p∗)q
( ∞∑

i=1

∣∣πi(t)
∣∣1+p∗

)q]

≤ 1 +
∫ ∞

0
E(p∗)(e−q(1+p∗)ξt

)
dt ·

∫
P

( ∞∑
i=1

|πi |1+p∗
)q

μ(p∗)(dπ)

= 1 +
∫ ∞

0
e−Φ(p∗)(q(1+p∗))t dt ·

∫
P

( ∞∑
i=1

|πi |1+p∗
)q

|π1|p∗
μ(dπ). (15)

Both integrals on the right-hand side of (15) converge. The first integral converges because

Φ(p∗)(q(
1 + p∗)) = Φ

(
p∗ + (p − 1)

(
1 + p∗)) = Φ

(
p
(
1 + p∗) − 1

)
> Φ

(
p∗) = 0.

The second integral can be shown, with the help of (3), to satisfy

∫
P

( ∞∑
i=1

|πi |1+p∗
)q

|π1|p∗
μ(dπ) =

∫
S

( ∞∑
i=1

|si |1+p∗
)q( ∞∑

i=1

si · sp∗
i

)
ν(ds)

=
∫

S

( ∞∑
i=1

|si |1+p∗
)p

ν(ds),

which is finite thanks to assumption (A3).
Noting that the right-hand side of (15) is independent of η, the result follows. �

Proof of Proposition 1. Fix s > 1. Begin by noting that fragments in Xηs are either descendants of fragments in Xη

or belong themselves to Xη. With the help of the extended fragmentation property applied at the stopping line Xη, this
induces the decomposition

〈ρηs , f 〉 − E
(〈ρηs , f 〉|Fη

)
=

∑
j∈J c

η,s

X
1+p∗
η,j f (Xη,j /η) − E

( ∑
j∈J c

η,s

X
1+p∗
η,j f (Xη,j /η)

∣∣∣Fη

)

+
∑

j∈Jη,s

X
1+p∗
η,j

(
Δj − E(Δj |Fη)

)

=
∑

j∈Jη,s

X
1+p∗
η,j

(
Δj − E(Δj |Fη)

)
, (16)

where, given Fη, Δj are independent, each having the same law as 〈ρϑ,f 〉 under P with ϑ = ηs/Xη,j .
For the next part of the proof we need to make use of two inequalities. The first is lifted from Lemma 1 of Biggins

[16]. For independent, zero mean random variables {Y1, . . . , Yn} with reference expectation operator E and p ∈ [1,2]
we have

E

(∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣
p)

≤ 2p

n∑
i=1

E
(|Yi |p

)
. (17)
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Note that an easy calculation using Fatou’s lemma also implies that if one has an infinite sequence of such variables
then the same inequality holds except with infinite sums. The second inequality is a direct consequence of Jensen’s
inequality and says that for all u,v ∈ R and p ≥ 1,

|u + v|p ≤ 2p−1(|u|p + |v|p)
. (18)

We may now proceed to compute for the p mentioned in Lemma 5 (that is to say p = p0)

E
[∣∣〈ρηs , f 〉 − E

(〈ρηs , f 〉|Fη

)∣∣p|Fη

]
≤ 2p

∑
j∈Jη,s

X
(1+p∗)p
η,j E

(∣∣Δj − E(Δj |Fη)
∣∣p|Fη

)

≤ 22p−1
∑

j∈Jη,s

X
(1+p∗)p
η,j E

(
Δ

p
j + E(Δj |Fη)

p|Fη

)

≤ 22p
∑

j∈Jη,s

X
(1+p∗)p
η,j E

(
Δ

p
j |Fη

)

≤ 22pKp

∑
j∈Jη,s

X
(1+p∗)p
η,j , (19)

where in the first inequality we have used (16) and (17) for infinite sums, in the second inequality we have used (18)
and in the third inequality we have used Jensen’s inequality. For the final inequality we may assume without loss
of generality that f is uniformly bounded by 1 in which case, with the help of Lemma 5 one may use the fact that
E(Δ

p
j |Fη) ≤ Kp .

It follows from (19) that

E
[∣∣〈ρηs , f 〉 − E

(〈ρηs , f 〉|Fη

)∣∣p] ≤ 22pKpη(p−1)(1+p∗)
E

(∑
j

X
1+p∗
η,j

)

= 22pKpη(p−1)(1+p∗), (20)

where we have used that E(
∑

j X
1+p∗
η,j ) = 1. (Note that in the conservative case p∗ = 0 and the equality even holds

without taking expectations.) Taking the pth root completes the proof. �

Before proceeding to the proof of the main theorem, let us conclude this section by stating a corollary of the
previous proposition which, apart from being contemporary with a similar classical result for various spatial branching
processes (see, for example, Hardy and Harris [23]), is otherwise of no consequence as far as the remainder of the
paper is concerned.

Corollary 2. Suppose that ν is a dissipative measure. Then the martingale {〈ρη,1〉: 1 ≥ η > 0}, and hence the
martingale {Λt(p

∗): t ≥ 0}, converges in Lp0(P), where p0 was specified in assumption (A3).

Proof. The proof is complete, thanks to standard arguments using dominated convergence and Doob’s maximal in-
equality, as soon as it can be shown that

E

(
lim
η↓0

〈ρη,1〉p
)

< ∞. (21)

However, taking f = 1 in the statement of Proposition 1 and noting that, for all 1 ≥ η1 ≥ η2 > 0, E(〈ρη2,1〉|Fη1) =
〈ρη1,1〉, we see that when p = p0

lim
η1,η2↓0

∥∥〈ρη1,1〉 − 〈ρη2,1〉∥∥
p

= 0,
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showing that {〈ρη,1〉: 1 ≥ η > 0} is a Cauchy family in the space of right-continuous Lp(P) martingales adapted to
{Fη: 1 ≥ η > 0}. It follows that the almost sure limit point Λ(p∗) = limη↓0〈ρη,1〉 also belongs to Lp(P), and hence
(21) holds. �

4. Proof of Theorem 1

The proof appeals to ideas which are inspired by the analysis of branching processes appearing in Asmussen and
Hering [1]. First we prove almost sure convergence of 〈ρη,f 〉 on log-lattice sequences and this is then upgraded to
convergence along the continuous sequence 1 ≥ η > 0.

We start by appealing to the Markov–Chebyshev inequality followed by an application of Proposition 1 to deduce
that for any δ, ε > 0, p = p0 as specified in (A3), m = 2,3, . . . and bounded measurable f : [0,1] → [0,∞)

∞∑
n=1

P
[∣∣〈ρe−mnδ , f 〉 − E

(〈ρe−mnδ , f 〉|Fe−nδ

)∣∣ > ε
]

≤ 1

εp

∞∑
n=1

∥∥〈ρe−mnδ , f 〉 − E
(〈ρe−mnδ , f 〉|Fe−nδ

)∥∥p

p

≤ κ
p
p

εp

∞∑
n=1

e−nδ(p−1)(1+p∗) < ∞.

Together with the Borel–Cantelli lemma this implies that, for any δ > 0,∣∣〈ρe−mnδ , f 〉 − E
(〈ρe−mnδ , f 〉|Fe−nδ

)∣∣ → 0 (22)

P-almost surely as n ↑ ∞.
Next appealing to the triangle inequality, we have for s > 1 and 1 ≥ η > 0 that∣∣〈ρe−mnδ , f 〉 − 〈ρ,f 〉∣∣ ≤ ∣∣〈ρe−mnδ , f 〉 − E

(〈ρe−mnδ , f 〉|Fe−nδ

)∣∣
+ ∣∣E(〈ρe−mnδ , f 〉|Fe−nδ

) − 〈ρ,f 〉Λ(
p∗)∣∣

and hence (22) and Lemma 4 imply that there exists a natural number m0 such that for each m ≥ m0 and δ > 0,

lim
n↑∞〈ρe−mnδ , f 〉 = 〈ρ,f 〉Λ(

p∗)
P-almost surely. Since we may choose δ > 0 in an arbitrary way (it does not depend on the value m0), we may rescale
δ by m−1 and get

lim
n↑∞〈ρe−nδ , f 〉 = 〈ρ,f 〉Λ(

p∗)
P-a.s. (23)

for any δ > 0.
To remove the assumption that convergence holds only along log-lattice sequences, fix δ > 0 and take t ∈ (nδ,

(n + 1)δ) for n = 1,2, . . . . Let us extend the domain of f to [0,∞) by defining f (x) = 0 for x > 1. Amongst those
fragments in the stopping line Xe−t are fragments which are also to be found in Xe−nδ . It follows that

〈ρe−t , f 〉 =
∑

j∈J c
e−t ,1

∩J c
e−nδ ,t/nδ

X
1+p∗
e−t ,j

f
(
Xe−t ,j /e−t

)

+
∑

j∈J c
e−t ,1

\J c
e−nδ ,t/nδ

X
1+p∗
e−t ,j

f
(
Xe−t ,j /e−t

)
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≥
∑

j∈J c
e−nδ ,t/nδ

X
1+p∗
e−nδ,j

f
(
Xe−nδ,j /e−t

)

=
∑
j

X
1+p∗
e−nδ,j

f
(
Xe−nδ,j /e−t

)

=
∑
j

X
1+p∗
e−nδ,j

f
(
et−nδXe−nδ,j /e−nδ

)
.

If we assume in addition that f is continuous and compactly supported (and therefore uniformly continuous) then for
any given ε > 0 we have that there exists a δ0 > 0 such that whenever δ < δ0, for all x ∈ suppf , f (xet−nδ) ≥ f (x)−ε.
In that case we have with the help of (23) that

lim inf
t↑∞ 〈ρe−t , f 〉 ≥ lim inf

n↑∞
[〈ρe−nδ , f 〉 − ε〈ρe−nδ ,1〉] = (〈ρ,f 〉 − ε

)
Λ

(
p∗)

P-almost surely for all δ < δ0. As ε > 0 can be chosen arbitrarily small, we have that for all continuous f : [0,1] →
[0,∞) which are compactly supported,

lim inf
t↑∞ 〈ρe−t , f 〉 ≥ 〈ρ,f 〉Λ(

p∗)
P-almost surely. Next, given any continuous bounded f : [0,1] → [0,∞), suppose that {fn: n = 1,2, . . .} is a se-
quence of continuous and compactly supported positive functions such that fn ↑ f in the pointwise sense. It follows
that

lim inf
t↑∞ 〈ρe−t , f 〉 ≥ lim

k↑∞ lim inf
t↑∞ 〈ρe−t , fk〉 ≥ lim

k↑∞〈ρ,fk〉Λ
(
p∗)

= 〈ρ,f 〉Λ(
p∗) (24)

P-almost surely, where the final equality follows from the monotone convergence theorem taking account of the ex-
pression in (7). If f : [0,1] → [0,∞) is now a positive, bounded and measurable function, then it can be approximated
from below by an increasing sequence of positive continuous functions and the computations in (24) go through ver-
batim. On the other hand, for such an f , assuming without loss of generality that it is uniformly bounded by 1, we
have, recalling that {〈ρe−t ,1〉: t ≥ 0} is a martingale with almost sure limit Λ(p∗),

lim sup
t↑∞

〈ρe−t , f 〉 ≤ lim
t↑∞〈ρe−t ,1〉 − lim inf

t↑∞
〈
ρe−t , (1 − f )

〉
≤ [

1 − 〈
ρ, (1 − f )

〉]
Λ

(
p∗)

= 〈ρ,f 〉Λ(
p∗)

P-almost surely, where in the last inequality we have used (24) and in the final equality we have used that 〈ρ,1〉 = 1.
This completes the proof of Theorem 1.
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