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Abstract. We consider multi-dimensional Gaussian processes and give a new condition on the covariance, simple and sharp, for the
existence of Lévy area(s). Gaussian rough paths are constructed with a variety of weak and strong approximation results. Together
with a new RKHS embedding, we obtain a powerful – yet conceptually simple – framework in which to analyze differential
equations driven by Gaussian signals in the rough paths sense.

Résumé. Nous donnons une condition simple et optimale sur la covariance d’un processus gaussien pour que celui-ci puisse être
associé naturellement à un rough path. Une fois ce processus construit, nous démontrons un principe de grandes déviations, un
théorème du support, et plusieurs résultats d’approximations. Avec la théorie des rough paths de T. Lyons, nous obtenons ainsi un
cadre puissant, bien que conceptuellement simple, dans lequel nous pouvons analyser les équations différentielles conduites par
des signaux gaussiens dans le sens des rough paths.
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1. Introduction

Let X be a real-valued centered Gaussian process on [0,1] with continuous sample paths and (continuous) covariance
R = R(s, t) = E(XsXt ). From Kolmogorov’s criterion, it is clear that Hölder regularity of R will imply Hölder
continuity of sample paths. One can also deduce p-variation of sample paths from R. Indeed, the condition

sup
D={ti}

∑
i

∣∣E[
(Xti+1 −Xti )

2]∣∣ρ <∞ (1)

implies that X has sample paths of finite p-variation for p > 2ρ, see [22] or the survey [13]. Note that (1) can be
written in terms of R and expresses some sort of “on diagonal ρ-variation” regularity of R.

The results of this paper put forward the notion of genuine ρ-variation regularity of R as a function on [0,1]2
as novel and, perhaps, fundamental quantity related to Gaussian processes. Similar to (1), finite ρ-variation of R, in
symbols R ∈ Cρ-var([0,1]2,R), can be expressed in terms of the associated Gaussian process and amounts to say that

sup
D

∑
i,j

∣∣E[
(Xti+1 −Xti )(Xtj+1 −Xtj )

]∣∣ρ <∞.
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The notion of (2D) ρ-variation of the covariance leads naturally to

H ↪→Cρ-var([0,1],R
)
, (2)

an embedding of the Cameron–Martin or reproducing kernel Hilbert space (RKHS) H into the space of continuous
path with finite ρ-variation. Good examples to have in mind are standard Brownian Motion with ρ = 1 and fractional
Brownian Motion with Hurst parameter H ∈ (0,1/2] for which ρ = 1/(2H). We then consider a d-dimensional,
continuous, centered Gaussian process with independent components,

X = (
X1, . . . ,Xd

)
,

with respective covariances R1, . . . ,Rd ∈ Cρ-var and ask under what conditions there exists an a.s. well-defined lift
to a geometric rough path X in the sense of T. Lyons; [21,25–27]. (This amounts, first and foremost, to define Lévy’s
area and higher iterated integrals of X, and to establish subtle regularity properties.) The answer to this question is the
sufficient (and essentially necessary) condition

ρ ∈ [1,2)

under which there exists a lift of X to a Gaussian geometric p-rough path X (short: Gaussian rough path) for any
p > 2ρ. For fractional Brownian Motion this requires H > 1/4 which is optimal [10,11] and our condition is seen
to be sharp2. Recall that geometric p-rough paths are (limits of) paths together with their first [p]-iterated integrals.
Assuming ρ < 2 one can (and should) choose p < 4; when X has sufficiently smooth sample paths, X· ≡ S3(X) is
then simply given by its coordinates in the three “tensor-levels,” R

d,R
d ⊗R

dand R
d ⊗R

d ⊗R
d , obtained by iterated

integration

Xi· =
∫ ·

0
dXi

r, Xi,j· =
∫ ·

0

∫ s

0
dXi

rdX
j
s , Xi,j,k· =

∫ ·

0

∫ t

0

∫ s

0
dXi

r dX
j
s dXk

t ,

with indices i, j, k ∈ {1, . . . , d}. Our condition ρ < 2 is then easy to explain. Assuming X0 = 0 and i �= j , which is
enough to deal with the second tensor level, we have

E
(∣∣Xi,j

t

∣∣2) = ∫
[0,t]2

Ri(u, v)
∂2

∂u∂v
Rj (u, v)dudv

≡
∫
[0,t]2

Ri(u, v)dRj (u, v).

The integral which appears on the right-hand side above is a 2-dimensional (short: 2D) Young integral. It remains
meaningful provided Ri,Rj have finite ρi resp. ρj -variation with ρ−1

i + ρ−1
j > 1. In particular, if Ri,Rj have both

finite ρ-variation this condition reads ρ < 2. is required. The ρ-variation condition on the covariance encodes some
decorrelation of the increments and this is the (partial) nature of the so-called (h,p)-long time memory condition that
appears in [27] resp. Coutin–Qian’s condition [10] which is seen to be more restrictive than our ρ-variation condition.

Let us briefly state our main continuity result for Gaussian rough paths, taken from Section 4.4.

Theorem 1. Let X = (X1, . . . ,Xd),Y = (Y 1, . . . , Y d) be two continuous, centered jointly Gaussian processes de-
fined on [0,1] such that (Xi, Y i) is independent of (Xj ,Y j ) when i �= j . Let ρ ∈ [1,2) and assume the covariance of
(X,Y ) is of finite ρ-variation,

|R(X,Y )|ρ-var;[0,1]2 ≤K <∞.

Let p > 2ρ and X,Y denote the natural lift of X,Y to a Gaussian rough path. Then there exist positive constants
θ = θ(p,ρ) and C = C(p,ρ,K) such that for all q ∈ [1,∞),∣∣dp-var(X,Y)

∣∣
Lq ≤C

√
q|RX−Y |θ∞;[0,1]2 .

2From [22] and [30] we expect that logarithmic refinements of this condition are possible but we shall not pursue this here.
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The natural lift to a Gaussian rough path is easily explained along the above estimates: take a continuous, centered
d-dimensional process Z with independent components and finite ρ ∈ [1,2)-covariance and consider its piecewise
linear approximations Zn. Applying the above estimate to X = S3(Z

n),Y = S3(Z
m), identifies S3(Z

n) as Cauchy
sequence and we call the limit natural lift of Z. In conjunction with the universal limit theorem [27], i.e. the continu-
ous dependence of solutions to (rough) differential equations of the driving signal X w.r.t. dp-var, the above theorem
contains a collection of powerful limit theorems which cover, for instance, piecewise linear and mollifier approxi-
mations to Stratonovich SDEs as special case. As further consequence, weak convergence results are obtained. For
instance, differential equations driven by fractional Brownian Motion with Hurst parameter H → 1/2 converge to the
corresponding Stratonovich SDEs.

We further note that a large deviation principle holds in the present generality; thanks to the Cameron–Martin em-
bedding (2) this follows immediately from the main result in [19]. Moreover, we shall see that in the same generality,
approximations based on the L2- or Karhunen–Loève expansion

Xi(t,ω)=
∑
k∈N

Zi
k(ω)hi,k(t) (3)

converge in rough path topology to our natural lift X. As corollary, we obtain a support theorem i.e. we characterize
the support of X as closure of S3(H) in suitable rough path topology. The embedding (2) is absolutely crucial for
these purposes: given ρ < 2 it tells us that elements in H (and in particular, Karhunen–Loève approximations which
are finite sums of form (3)) admit canonicially defined second and third iterated integrals.

The lift of certain Gaussian processes including fractional Brownian Motion with Hurst parameter H > 1/4 is due
to Coutin–Qian, [10]. A large deviation principle for the lift of fractional Brownian Motion was obtained in [28], for
the Coutin–Qian class in [19]. Support statements for lifted fractional Brownian Motion for H > 1/3 were obtained
in [17,14]; a Karhunen–Loève type approximations for fractional Brownian Motion is studied in [29].

The interest in our results goes beyond the unification and optimal extension of the above-cited articles. It iden-
tifies a general framework for differential equations driven by Gaussian signal, surprisingly well-suited for further
(Gaussian) analysis: the embedding (2) combined with basic facts of Young integrals shows that, at least for ρ < 3/2,
translations in H-directions are well enough controlled to exploit the isoperimetric inequality for abstract Wiener
spaces; applications towards regularity/integrability statements for stochastic area are discussed in [15]. Relatedly,
solutions to (rough) differential equations driven by Gaussian signals are H-differentiable which allows to establish
density results using Malliavin calculus, see [7]. A Hörmander-type density result is obtained in [6] and relies on the
support theorem.

1.1. Notations

Let (E,d) be a metric space and x ∈ C([0,1],E). It then makes sense to speak of α-Hölder- and p-variation “norms”
defined as

‖x‖α-Höl = sup
0≤s<t≤1

d(xs, xt )

|t − s|α , ‖x‖p-var = sup
D=(ti )

(∑
i

d(xti , xti+1)
p

)1/p

.

It also makes sense to speak of a d∞-distance of two such paths,

d∞(x, y)= sup
0≤t≤1

d(xt , yt ).

Given a positive integer N the truncated tensor algebra of degree N is given by the direct sum

T N(Rd)=R⊕R
d ⊕ · · · ⊕ (Rd)⊗N.

With tensor product ⊗, vector addition and usual scalar multiplication, T N(Rd) = (T N(Rd),⊗,+, ·) is an algebra.
Functions such as exp, ln :T N(Rd) → T N(Rd) are defined immediately by their power-series. Let πi denote the
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canonical projection from T N(Rd) onto (Rd)⊗i . Let p ∈ [1,2) and x ∈ Cp-var([0,1],R
d), the space of continuous

R
d -valued paths of bounded p-variation. We define x≡ SN(x) : [0,1]→ T N(Rd) via iterated (Young) integration,

xt ≡ SN(x)t = 1+
N∑

i=1

∫
0<s1<···<si<t

dxs1 ⊗ · · · ⊗ dxsi

noting that x0 = 1+ 0+ · · · + 0= exp(0)≡ e, the neutral element for ⊗, and that xt really takes values in

GN
(
R

d
)= {

g ∈ T N
(
R

d
)
: ∃x ∈ C1-var([0,1],R

d
)
: g = SN(x)1

}
,

a submanifold of T N(Rd) and, in fact, a Lie group with product ⊗, called the free step-N nilpotent group with d

generators. Because π1[xt ] = xt − x0 we say that x= SN(x) is the canonical lift of x. There is a canonical notion of
increments, xs,t := x−1

s ⊗ xt . The dilation operator δ : R×GN(Rd)→GN(Rd) is defined by

πi

(
δλ(g)

)= λiπi(g), i = 0, . . . ,N,

and a continuous norm on GN(Rd), homogenous with respect to δ, the Carnot–Caratheodory norm, is given

‖g‖ = inf
{
length(x): x ∈ C1-var([0,1],R

d
)
, SN(x)1 = g

}
.

It is symmetric, sub-additive in the sense that ‖g‖ = ‖g−1‖,‖g ⊗ g′‖ ≤ ‖g‖ + ‖g′‖ respectively. By equivalence of
continuous, homogenous norms there exists a constant KN such that

1

KN

max
i=1,...,N

∣∣πi(g)
∣∣1/i ≤ ‖g‖ ≤KN max

i=1,...,N

∣∣πi(g)
∣∣1/i

.

The norm ‖·‖ induces a (left-invariant) metric on GN(Rd) known as Carnot–Caratheodory metric, d(g,h) := ‖g−1⊗
h‖. Now let x, y ∈ C0([0,1],GN(Rd)), the space of continuous GN(Rd)-valued paths started at the neutral element
exp(0)= e. We define α-Hölder- and p-variation distances

dα-Höl(x,y)= sup
0≤s<t≤1

d(xs,t ,ys,t )

|t − s|α ,

dp-var(x,y)= sup
D=(ti )

(∑
i

d(xti ,ti+1 ,yti ,ti+1)
p

)1/p

and also the “0-Hölder” distance, locally 1/N -Hölder equivalent to d∞(x,y),

d0(x,y)= d0-Höl(x,y)= sup
0≤s<t≤1

d(xs,t ,ys,t ).

Note that dα-Höl(x,0) = ‖x‖α-Höl, dp-var(x,0) = ‖x‖p-var where 0 denotes the constant path exp(0), or in fact, any
constant path. The following path spaces will be useful to us:

(i) C
p-var
0 ([0,1],GN(Rd)): the set of continuous functions x from [0,1] into GN(Rd) such that ‖x‖p-var <∞ and

x0 = exp(0).
(ii) C

0,p-var
0 ([0,1],GN(Rd)): the dp-var-closure of{

SN(x), x : [0,1]→R
d smooth

}
.

(iii) C
1/p-Höl
0 ([0,1],GN(Rd)): the set of continuous functions x from [0,1] into GN(Rd) such that d1/p-Höl(0,x) <

∞ and x0 = exp(0).

(iv) C
0,1/p-Höl
0 ([0,1],GN(Rd)): the d1/p-Höl-closure of{

Sn(x), x : [0,1]→R
d smooth

}
.
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Recall that a geometric p-rough path is an element of C
0,p-var
0 ([0,1],G[p](Rd)), and a weak geometric rough

path is an element of C
p-var
0 ([0,1],G[p](Rd)). For a detailed study of these spaces and their properties the reader is

referred to [17].

2. 2D Young integral

2.1. On 2D ρ-variation

For a function f from [0,1]2 into a Banach space (B, | · |) we will use the notation

f

(
s u

t v

)
:= f (s,u)+ f (t, v)− f (s, v)− f (t, u).

If f is the 2D distribution function of a signed measure on [0,1]2 this is precisely the measure of the rectangle
(s, t] × (u, v]. If f (s, t)= E(Xs,Xt ) ∈R for some real-valued stochastic process X, then

f

(
s u

t v

)
= E(Xs,tXu,v).

A similar formula holds when f (s, t)= E(Xs ⊗Xt) ∈R
d ⊗R

d (which we equip with its canonical Euclidean struc-
ture).

Definition 2. Let f : [0,1]2 → (B, | · |). We say that f has finite ρ-variation if |f |ρ-var,[0,1]2 <∞, where3

|f |ρ-var,[s,t]×[u,v] = sup
D=(ti ) subdivision of [s,t]

D′=(t ′j ) subdivision of [u,v]

(∑
i,j

∣∣∣∣f
(

ti t ′j
ti+1 t ′j+1

)∣∣∣∣ρ
)1/ρ

.

Definition 3. A 2D control is a map ω from (s ≤ t, u≤ v) such that for all r ≤ s ≤ t, u≤ v,

ω
([r, s] × [u,v])+ω

([s, t] × [u,v])≤ ω
([r, t] × [u,v]),

ω
([u,v] × [r, s])+ω

([u,v] × [s, t])≤ ω
([u,v] × [r, t]),

and such that lims→t ω([s, t] × [0,1])= lims→t ω([0,1] × [s, t])= 0. Moreover, we will say that the 2D control ω is
Hölder-dominated if there exists a constant C such that for all 0≤ s ≤ t ≤ 1

ω
([s, t]2)≤ C|t − s|.

Lemma 4. Let f be a (B, | · |)-valued continuous function on [0,1]2. Then

(i) If f is of finite ρ-variation for some ρ ≥ 1,

[s, t] × [u,v] �→ |f |ρ
ρ-var;[s,t]×[u,v]

is a 2D control.

3This (semi-)norm was also introduced by [36].
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(ii) f is of finite ρ-variation on [0,1]2 if and only if there exists a 2D control ω such that for all [s, t] × [u,v] ⊂
[0,1]2,

∣∣∣∣f
(

s u

t v

)∣∣∣∣ρ ≤ ω
([s, t] × [u,v])

and we say that “ω controls the ρ-variation of f .”

Proof. Straight-forward. �

Remark 5. If f : [0, T ]2 → (B, | · |) is symmetric (i.e. f (x, y) = f (y, x) for all x, y) and of finite ρ-variation then
[s, t] × [u,v] �→ |f |ρ

ρ-var;[s,t]×[u,v] is symmetric. In fact, one can always work with symmetric controls, it suffices to
replace a given ω with [s, t] × [u,v] �→ ω([s, t] × [u,v])+ω([u,v] × [s, t]).

Lemma 6. A continuous function f : [0,1]2 → (B, | · |) is of finite ρ-variation if and only if

sup
D=(ti ) subdivision of [0,1]

(∑
i,j

∣∣∣∣f
(

ti tj
ti+1 tj+1

)∣∣∣∣ρ
)1/ρ

<∞.

Moreover, the ρ-variation of f is controlled by

ω
([s, t] × [u,v]) := 3ρ−1 sup

D=(ti ) subdivision of [0,1]

∑
i,j

[ti ,ti+1]⊂[s,t]
[tj ,tj+1]⊂[u,v]

∣∣∣∣f
(

ti tj
ti+1 tj+1

)∣∣∣∣ρ.

Proof. Assuming that ω([0,1]2) is finite, it is easy to check that ω is a 2D control. Then, for any given [s, t] and
[u,v] which do not intersect or such that [s, t] = [u,v],∣∣∣∣f

(
s u

t v

)∣∣∣∣ρ ≤ ω
([s, t] × [u,v]).

Take now s ≤ u≤ t ≤ v, then,

f

(
s u

t v

)
= f

(
s u

u v

)
+ f

(
u u

t v

)
= f

(
s u

u v

)
+ f

(
u u

t t

)
+ f

(
s t

u v

)
.

Hence,∣∣∣∣f
(

s u

t v

)∣∣∣∣ρ ≤ 3ρ−1(ω([s, u] × [u,v])+ω
([u, t]2)+ω

([s, u] × [t, v]))
≤ 3ρ−1ω

([s, t] × [u,v]).
The other cases are dealt similarly, and we find at the end that for all s ≤ t, u≤ v,∣∣∣∣f

(
s u

t v

)∣∣∣∣ρ ≤ 3ρ−1(ω[s, t] × [u,v]).
That concludes the proof. �

Example 7. Given two functions g,h ∈ Cρ-var([0, T ], B) we can define

(g⊗ h)(s, t) := g(s)⊗ h(t) ∈ B ⊗ B



Differential equations driven by Gaussian signals 375

and g⊗ h has finite 2D ρ-variation. More precisely,∣∣∣∣(g⊗ h)

(
s u

t v

)∣∣∣∣ρ ≤ |g|ρρ-var;[s,t]|h|ρρ-var;[u,v] =: ω
([s, t] × [u,v])

and since ωis indeed a 2D control function (as product of two 1D control functions!) we see that

|g⊗ h|ρ-var;[s,t]×[u,v] ≤ |g|ρ-var;[s,t]|h|ρ-var;[u,v].

Remark 8. If ω= ω([s, t] × [u,v]) is a 2D control function, then

(s, t) �→ ω
([s, t]2)

is a 1D control function i.e. ω([s, t]2)+ ω([t, u]2) ≤ ω([s, u]2), and s, t → ω([s, t]2) is continuous and zero on the
diagonal.

A function f : [0, T ]2 → (B, | · |) of finite q-variation can also be considered as path t �→ f (t, ·) with values in
the Banach space Cq-var([0, T ], B) with q-variation (semi-)norm. It is instructive to observe that t �→ f (t, ·) has
finite q-variation if and only if f has finite 2D q-variation. Let us now prove a (simplified) 2D version of a result
of Musielak–Semandi [31] where they show that (in 1D) the family Cp-var depends on p “semi-continuously from
above.”

Lemma 9. For all s < t and u < v ∈ [0,1] we have |R|ρ′-var;[s,t]×[u,v] → |R|ρ-var;[s,t]×[u,v] as ρ′ ↘ ρ.

Proof. Write Q = [s, t] × [u,v] for a generic rectangle in [0,1]2. Define ω(Q)1/ρ = lim infρ′↘ρ |R|ρ′-var,Q. As
ρ′ �→ |R|ρ′-var,Q is decreasing, this limit exists in [0,∞], and as |R|ρ′-var,[s,t] ≤ |R|ρ-var,[s,t] <∞, it actually exists in
[0,∞) and we have

ω(Q)= lim
ρ′↘ρ

|R|ρ′
ρ′-var,Q ≤ |R|ρρ-var,Q.

For all s, t ∈ [0,1], for all ρ′

∣∣R(Q)
∣∣≡ ∣∣∣∣R

(
s u

t v

)∣∣∣∣≤ |R|ρ′-var,Q.

Taking the limit, we obtain |R(Q)| ≤ ω(Q)1/ρ . We now show that ω is super-additive. To this end, consider Q̃ =
[r, s] × [u,v], where r < s < t in [0,1]. (Q̃,Q are essentially disjoint in the sense that Q̃∩Q has zero area.)Then

ω(Q̃)+ω(Q) = lim
ρ′→ρ

|R|ρ′
ρ′-var,Q̃

+ lim
ρ′→ρ

|R|ρ′
ρ′-var,Q = lim

ρ′→ρ

(|R|ρ′
ρ′-var,Q̃

+ |R|ρ′
ρ′-var,Q

)
≤ lim

ρ′→ρ
|R|ρ′

ρ′-var,Q∪Q̃
≤ ω(Q∪ Q̃).

This argument shows that ω is super-addivity and so we can strengthen the estimate |R(Q)| ≤ ω(Q)1/ρ to |R|ρ
ρ-var;Q ≤

ω(Q). But we also know ω(Q)≤ |R|ρρ-var,Q and hence have equality. �

2.2. The integral

Young integrals extend naturally to higher dimensions, see [36,37]. We focus on dimension 2 and B = R,which is
what we need in the sequel.
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Definition 10. Let f : [s, t]2 →R, g : [u,v]2 →R be continuous. Let D = (ti) be a dissection of [s, t],D′ = (t ′j ) be a
dissection of [u,v]. If the 2D Riemann–Stieltjes sum

∑
i,j

f (ti , t
′
j )g

(
ti t ′j

ti+1 t ′j+1

)

converges when max{mesh(D),mesh(D′)} → 0 we call the limit 2D Young-integral and write
∫
[s,t]×[u,v] f dg or

simply
∫

f dg if no confusion arises.

We leave it to the reader to check that if g is of bounded variation (i.e. finite 1-variation) it induces a signed Radon
measure, say λg , and∫

f dg =
∫

f dλg.

Example 11. If g(s, t)= ∫ s

0

∫ t

0 r(x, y)dx dy (think of a 2D distribution function!) then∫
[s,t]×[u,v]

f dg =
∫
[s,t]×[u,v]

f (x, y)r(x, y)dx dy.

The following theorem was proved in [36], see also Young’s original paper [37] for a (weaker) result in the same
direction; we include a proof for the reader’s convenience.

Theorem 12. Let f : [0, T ]2 → R, g : [0, T ]2 → R two continuous functions of finite q-variation (respectively of
finite p-variation), with θ ≡ q−1 + p−1 > 1, controlled by ω. Then the 2D Young-integral

∫
[0,T ]2 f dg exists and if

f (s, ·)= f (·, u)= 0∣∣∣∣
∫
[s,t]×[u,v]

f dg

∣∣∣∣≤ Cp,q |f |q-var,[s,t]×[u,v].|g|p-var,[s,t]×[u,v].

Proof. Let ωf ,ωg be controls dominating the q-variation of f and p-variation of g, and let ω = ω
1/(θq)
f ω

1/(θp)
g .

Observe that by Hölder inequality, ω itself is a control. For a fixed x, x′ ∈ [s, t], define the functions fx,x′ , gx,x′ by

fx,x′(y)= f (x, y)− f (x′, y), y ∈ [u,v],
gx,x′(y)= f (x, y)− f (x′, y), y ∈ [u,v].

Observe that y → fx,x′(y) (resp. y → gx,x′(y)) is of finite q-variation (resp. p-variation) controlled by (y, y′)→
ωf ([x, x′] × [y, y′]) (resp. by (y, y′)→ ωg([x, x′] × [y, y′])). That implies in particular by Young 1D estimates that∣∣∣∣

∫ v

u

fx1,x2(y)dgx3,x4(y)

∣∣∣∣≤ Cq,pωf

([x1, x2] × [u,v])1/q
ωg

([x3, x4] × [u,v])1/p
.

For a subdivision D = (xi) of [s, t], let ID
u,v =

∑
i

∫ v

u
fs,xi

(y)dgxi ,xi+1(y). Now, let D\{i} the subdivision D with
the point xi removed. It is easy to see that

∣∣ID
u,v − I

D\{i}
u,v

∣∣ = ∣∣∣∣
∫ v

u

fxi−1,xi
(y)dgxi ,xi+1(y)

∣∣∣∣
≤ Cq,pωf

([xi−1, xi] × [u,v])1/q
ωg

([xi, xi+1] × [u,v])1/p

≤ Cq,pωf

([xi−1, xi+1] × [u,v])1/q
ωg

([xi−1, xi+1] × [u,v])1/p

= Cq,pω
([xi−1, xi+1] × [u,v]).
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Choosing the point i such that ω([xi−1, xi+1]× [u,v])≤ 2
r−1ω([s, t]× [u,v]), where r is the number of points in the

subdivision D. Working from this point as in the proof of Young 1D estimate, we therefore obtain∣∣ID
u,v

∣∣ ≤ C2
q,pω

([s, t] × [u,v])
= C2

q,pωf

([s, t] × [u,v])1/q
ωg

([s, t] × [u,v])1/p
.

We finish as in Young 1D proof, [37]. �

Remark 13. One can take Cp,q as a continuous function of θ = q−1 + p−1 ∈ (1,∞). In the classical 1D case, this
follows readily from the well-known expression of Cp,q = 1+ ζ(θ), where ζ is Riemann’s zeta function, continuous
(and even analytic) for θ > 1. In the 2D case, this follows from the constants given in [36].

3. One dimensional Gaussian processes and the ρ-variation of their covariance

3.1. Examples

3.1.1. Brownian Motion
Standard Brownian Motion B on [0,1] has covariance RBM(s, t) = min(s, t). By Lemma 6, or directly from the
definition, R has finite ρ-variation with ρ = 1, controlled by

ω
([s, t] × [u,v]) = ∣∣(s, t)∩ (u, v)

∣∣
=

∫
[s,t]×[u,v]

δx=y(dx dy),

where δ is the Dirac mass. Since ω([s, t]2)= |t − s|, it is Hölder dominated.

3.1.2. (Gaussian) martingales
We know that a continuous Gaussian martingale M has a deterministic bracket so that

M(t)
D= B〈M〉t .

In particular,

R(s, t)=min
{〈M〉s , 〈M〉t}= 〈M〉min(s,t).

But the notion of ρ-variation is invariant under time-change and it follows that R has finite 1-variation since RBM

has finite 1-variation. One should notice that L2-martingales (without assuming a Gaussian structure) have orthogonal
increments i.e.

E(Xs,tXu,v)= 0 if s < t < u < v

and this alone will take care of the (usually difficult to handle) off-diagonal part in the variation of the covariance
(s, t) �→ E(XsXt ).

3.1.3. Bridges, Ornstein–Uhlenbeck process
Gaussian Bridge processes are immediate generalizations of the Brownian Bridge. Given a real-valued centered
Gaussian process X on [0,1] with continuous covariance R of finite ρ-variation the corresponding Bridge is defined
as

XB(t)=X(t)− tX(1)
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with covariance RB . It is a simple exercise left to the reader to see that RB has finite ρ-variation. Moreover, if R

has its ρ-variation over [s, t]2 dominated by a Hölder control, then RB has also ρ-variation dominated by a Hölder
control.

The usual Ornstein–Uhlenbeck (stationary or started at a fixed point) also has finite 1-variation, Hölder dominated
on [s, t]2. This is seen directly from the explicitly known covariance function and also left to the reader.

3.1.4. Fractional Brownian Motion
Finding the precise ρ-variation for the covariance of the fractional Brownian Motion is more involved. For Hurst
parameter H > 1/2, fractional Brownian Motion has Hölder sample paths with exponent greater than 1/2 which is,
for the purpose of this paper, a trivial case.

Proposition 14. Let BH be fractional Brownian Motion of Hurst parameters H ∈ (0,1/2]. Then, its covariance is of
finite 1/(2H)-variation. Moreover, its ρ-variation over [s, t]2 is bounded by CH |t − s|.

Proof. (Using scaling properties of BH the proof could be reduced to the case when [s, t] = [0,1] but this does not
simplify the analysis.) However, this does let D = {ti} be a dissection of [s, t], and let us look at∑

i,j

∣∣E(
BH

ti ,ti+1
BH

tj,tj+1

)∣∣1/(2H)
.

For a fixed i and i �= j, as H ≤ 1/2, E(BH
ti ,ti+1

BH
tj,tj+1

) is negative, hence,

∑
j

∣∣E(
BH

ti ,ti+1
BH

tj,tj+1

)∣∣1/(2H) ≤
∑
j �=i

∣∣E(
BH

ti ,ti+1
BH

tj,tj+1

)∣∣1/(2H) +E
(∣∣BH

ti ,ti+1

∣∣2)1/(2H)

≤
∣∣∣∣E

(∑
j �=i

BH
ti ,ti+1

BH
tj,tj+1

)∣∣∣∣1/(2H)

+E
(∣∣BH

ti ,ti+1

∣∣2)1/(2H)

≤
(

21/(2H)−1
∣∣∣∣E

(∑
j

BH
ti ,ti+1

BH
tj,tj+1

)∣∣∣∣1/(2H)

+ 21/(2H)−1
E

(∣∣BH
ti ,ti+1

∣∣2)1/(2H)
)

+E
(∣∣BH

ti ,ti+1

∣∣2)1/(2H)

≤ CH

∣∣E(
BH

ti ,ti+1
BH

s,t

)∣∣1/(2H) +CH E
(∣∣BH

ti ,ti+1

∣∣2)1/(2H)
.

Hence,∑
i,j

∣∣E(
BH

ti ,ti+1
BH

tj,tj+1

)∣∣1/(2H) ≤CH

∑
i

E
(∣∣BH

ti ,ti+1

∣∣2)1/(2H) +CH

∑
i

∣∣E(
BH

ti ,ti+1
BH

s,t

)∣∣1/(2H)
.

The first term is equal to CH |t − s|, so we just need to prove that4∑
i

∣∣E(
BH

ti ,ti+1
BH

s,t

)∣∣1/(2H) ≤ CH |t − s|. (4)

To achieve this, it will be enough to prove that for [u,v] ⊂ [s, t],∣∣E(
BH

u,vB
H
s,t

)∣∣≤CH |v − u|2H .

4h(·) = E(BH· BH
s,t ) defines a Cameron–Martin path and estimate (4) says that |h|1/(2H)-var;[s,t] ≤ C|t − s|2H . It is instructive to compare this

with the section on Cameron–Martin spaces.
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First recall that as 2H < 1, if 0 < x < y, then (x + y)2H − x2H ≤ y2H . Hence, using this inequality and the triangle
inequality,∣∣E(

BH
u,vB

H
s,t

)∣∣ = cH

∣∣(t − v)2H + (u− s)2H − (v − s)2H − (t − u)2H
∣∣

≤ cH

(
(t − u)2H − (t − v)2H

)+ cH

(
(v− s)2H − (u− s)2H

)
≤ 2cH (v− u)2H . �

3.1.5. Coutin–Qian condition on the covariance
Coutin and Qian [10] constructed a rough paths over a class of Gaussian process. We prove here that when we look at
the ρ-variation of their covariance, they are not very different than fractional Brownian Motion.5

Definition 15. A real-valued Gaussian process X on [0,1] satisfies the Coutin–Qian conditions if for some H

E
(|Xs,t |2

)≤ cH |t − s|2H for all s < t, (5)∣∣E(Xs,s+hXt,t+h)
∣∣≤ cH |t − s|2H−2h2 for all s, t, h with h < t − s. (6)

Lemma 16. Let X be a Gaussian process on [0,1] that satisfies the Coutin–Qian conditions for some H > 0, and
let ωH the control of the 1

2H
-variation of the covariance of the fractional Brownian Motion with Hurst parameter H .

Then, for s ≤ t and u≤ v,∣∣E(Xs,tXu,v)
∣∣≤ CH ωH

([s, t] × [u,v])2H
.

In particular, the covariance of X has finite 1
2H

-variation.

Proof. Working as in Lemma 6, at the price of a factor 31/(2H−1), we can restrict ourselves to the cases s = u≤ t = v,

and s ≤ t ≤ u ≤ v. The first case it given by assumption (5), so let us focus on the second one. Assume first we can
write t − s = nh, v− u=mh, and that u− t > h. Then,

E(Xs,tXu,v)=
n−1∑
k=0

m−1∑
l=0

E(Xs+kh,s+(k+1)hXt+lh,t+(l+1)h).

Using the triangle inequality and our assumption,

∣∣E(Xs,tXu,v)
∣∣ = n−1∑

k=0

m−1∑
l=0

∣∣E(Xs+kh,s+(k+1)hXu+lh,u+(l+1)h)
∣∣

≤ CH

n−1∑
k=0

m−1∑
l=0

∣∣(u+ lh)− (s + kh)
∣∣2H−2

h2

≤ CH

n−1∑
k=0

m−1∑
l=0

∫ u+lh

u+(l−1)h

∫ s+(k+1)h

s+kh

|y − x|2H−2 dx dy

≤ CH

∫ v−h

u−h

∫ t

s

|y − x|2H−2 dx dy

≤ CH

∣∣E(
BH

u−h,v−hB
H
s,t

)∣∣.
5As remarked in more detail in the Introduction, a slight generalization of this condition appears in [10] and is applicable to certain non-Gaussian
processes.
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Letting h tends to 0, by continuity, we easily see that∣∣E(Xs,tXu,v)
∣∣≤ CH

∣∣E(
BH

u,vB
H
s,t

)∣∣,
which implies our statement for s ≤ t ≤ u≤ v. That concludes the proof. �

3.2. Cameron–Martin space

We consider a real-valued centered Gaussian process X on [0,1] with continuous sample paths and covariance R. The
associated Cameron–Martin space (as known as Reproducing Kernel Hilbert space) H ⊂ C([0,1]) consists of paths

t �→ ht = E(ZXt),

where Z is a {σ(Xt), t ∈ [0,1]}-measurable, Gaussian random variable. If h′ = E(Z′X·) denotes another element in
H, the inner product on H is defined as〈

h,h′
〉

H = E
(
ZZ′

)
.

Regularity of Cameron–Martin paths is not only a natural question in its own right but will prove crucial in our
later sections on support theorem and large deviations.

Proposition 17. If R is of finite ρ-variation, then H ⊂ Cρ-var. More, precisely, for all h ∈ H

|h|ρ-var;[s,t] ≤
√〈h,h〉H

√
Rρ-var;[s,t]2 .

Proof. Let h= E(ZX.), and (tj ) a subdivision of [s, t]. We write |x|lr = (
∑

i x
r
i )

1/r for r ≥ 1. Let ρ′ be the conjugate
of ρ:

(∑
j

|htj ,tj+1 |ρ
)1/ρ

= sup
β,|β|

lρ
′ ≤1

∑
j

βjhtj ,tj+1 = sup
β,|β|

lρ
′ ≤1

E

(
Z

∑
j

βjXtj ,tj+1

)

≤
√

E
(
Z2

)
sup

β,|β|
lρ
′ ≤1

√∑
j,k

βjβkE(Xtj ,tj+1Xtk,tk+1)

≤ √〈h,h〉H sup
β,|β|

lρ
′ ≤1

√√√√(∑
j,k

|βj |ρ′ |βk|ρ′
)1/(ρ′)(∑

j,k

∣∣E(Xtj ,tj+1Xtk,tk+1)
∣∣ρ)1/ρ

≤ √〈h,h〉H

(∑
j,k

∣∣E(Xtj ,tj+1Xtk,tk+1)
∣∣ρ)1/(2ρ)

≤ √〈h,h〉H
√

Rρ-var,[s,t]2 .

Optimizing over all subdivision (tj ) of [s, t], we obtain our result. �

Remark 18. Observe that for Brownian Motion (ρ = 1), this is a sharp result.

3.3. Piecewise-linear approximations

Let X be centered real-valued continuous Gaussian process on [0,1] with covariance R assumed to be of finite ρ-
variation, dominated by some 2D control function ω. Let D = {τi} be a dissection of [0,1] and let XD denote the
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piecewise-linear approximation to X i.e. XD
t =Xt for t ∈D and XD is linear between two successive points of D. If

(s, t)× (u, v)⊂ (τi, τi+1)× (τj , τj+1) then the covariance of XD , denoted by RD , is given by

RD

(
s u

t v

)
= E

(∫ t

s

ẊD
r dr

∫ v

u

ẊD
r dr

)
= t − s

τi+1 − τi

× v − u

τj+1 − τj

R

(
τi τj

τi+1 τj+1

)
. (7)

The aim of this section is to show that the ρ-variation of RD is fully comparable with the ρ-variation of R. As usual,
given s ∈ [0,1], we write sD the greatest element of D such that sD ≤ s, and sD the smallest element of D such that
s < sD .

Lemma 19.

(i) For all u1, v1, u2, v2 ∈D,∣∣RD
∣∣
ρ-var,[u1,v1]×[u2,v2] ≤ 91−1/ρ |R|ρ-var,[u1,v1]×[u2,v2].

(ii) For all s, t ∈ [0,1], with sD ≤ s, t ≤ sD, for all u,v ∈D,

∣∣RD
∣∣
ρ-var,[s,t]×[u,v] ≤ 91−1/ρ

∣∣∣∣ t − s

sD − sD

∣∣∣∣E(|XsD,sD |2)1/2|R|1/2
ρ-var,[u,v]2 .

(iii) For all s1, t1, s2, t2 ∈ [0,1], with s1,D ≤ s1, t1 ≤ sD
1 , s2,D ≤ s2, t2 ≤ sD

2 ,

∣∣RD
∣∣
ρ-var,[s1,t1]×[s2,t2] ≤

∣∣∣∣ t1 − s1

sD
1 − s1,D

∣∣∣∣
∣∣∣∣ t2 − s2

sD
2 − s2,D

∣∣∣∣∣∣E(Xs1,D,s1,DXs2,D,s2,D )
∣∣.

Proof. (i) Without loss of generality [u1, v1] × [u2, v2] = [0,1]2. Remark that RD arises from the 2D function
R = R(s, t) simply by piecewise linear approximation of the partial functions R(·, τi),R(τj , ·) for τi, τj ∈ D; in
conjunction with (7) which specifies the rectangular increments of RD , over small rectangles of form

[s, t] × [u,v] ⊂ [τi, τi+1]︸ ︷︷ ︸
≡I

× [τj , τj+1]︸ ︷︷ ︸
≡J

,

directly in terms of rectangular increments of R. For the proof we introduce a 2D control function ωD on [0,1]2 as
follows: for small rectangles [s, t] × [u,v] ⊂ I × J

ωD

([s, t] × [u,v]) := (t − s)(v − u)

|I × J | |R|ρ
ρ-var;I×J

for s, t ∈ I ;u,v ∈ J ;

then, for vertical “strips” of form [s, t] × (J1 ∪ · · · ∪ Jn) with s, t ∈ I ≡ [τi, τi+1] and Jl = [τj+l−1, τj+l]

ωD

([s, t] × (J1 ∪ · · · ∪ Jn)
) := (t − s)

|I | |R|ρ
ρ-var;I×(J1∪···∪Jn)

for s, t ∈ I ;u,v ∈ J ;

(similarly for horizontal strips); at last, for (possibly) large rectangle with endpoints in D we set

ωD

(
(I1 ∪ · · · ∪ Im)× (J1 ∪ · · · ∪ Jn)

) := |R|ρ
ρ-var;(I1∪···∪Im)×(J1∪···∪Jn)

.

Now, an arbitrary rectangle A= [a, b] × [c, d] ⊂ [0,1]2 decomposes uniquely into (at most) 9 rectangles A1, . . . ,A9

of the above type (4 small rectangles in the corners, 2 vertical and 2 horizontal strips and 1 rectangle with endpoints in
D) and we define ωD(A)=∑9

i=1 ωD(Ai). On the other hand, it is clear from the definition of RD that |RD(Ai)|ρ ≤
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ωD(Ai) for i = 1, . . . ,9 and so6

∣∣RD(A)
∣∣ρ =

∣∣∣∣∣
9∑

i=1

RD(Ai)

∣∣∣∣∣
ρ

≤ 9ρ−1
9∑

i=1

∣∣RD(Ai)
∣∣ρ = 9ρ−1ωD(A).

Since ωD is (easily seen) to be a 2D control function the proof is finished with the remark that ωD([0,1]) =
|R|ρ

ρ-var;[0,1]2 .

(ii) The second estimate is a bit more subtle. Take s, t ∈ [0,1], with sD ≤ s, t ≤ sD, u, v ∈ D, (si) and (tj )

subdivisions of [s, t] and [u,v]. Then, if h
i,D
t = E(XD

si,si+1
XD

t ), we know from Proposition 17 that

∣∣hi,D
∣∣
ρ-var,[u,v] ≤

∣∣RD
∣∣1/2
ρ-var,[u,v]2E

(∣∣XD
si,si+1

∣∣2)1/2

≤ 9ρ−1 si+1 − si

sD − sD
|R|1/2

ρ-var,[u,v]2E
(|XsD,sD |2)1/2

.

Hence, for a fixed i,

∑
j

∣∣E(
XD

sisi+1
XD

tj ,tj+1

)∣∣ρ ≤ ∣∣hi,D
∣∣ρ
ρ-var;[u,v] ≤

(
9ρ−1 si+1 − si

sD − sD
|R|1/2

ρ-var[u,v]2E
(|XsD,sD |2)1/2

)ρ

.

Summing over i and taking the supremum over all subdivision ends the proof of the second estimate. We leave the
easy proof of the third estimate to the reader. �

Corollary 20. Let X be continuous centered real-valued continuous Gaussian process on [0,1] with covariance R

assumed to be of finite ρ-variation. Then:

(i) for s, t ∈D, the ρ-variation of RD , the covariance of XD , is bounded by 9ρ−1|R|ρ-var;[s,t]2 ,
(ii) for all s, t, u, v ∈ [0,1] and ρ ′ > ρ the ρ′-variation of RD over [s, t] × [u,v] converges to |R|ρ′-var;[s,t]×[u,v]

when |D| → 0,
(iii) if |R|ρ-var;[s,t]2 ≤ CR

20|t − s|1/ρ, then, |RD|ρ-var;[s,t]2 ≤ 9CR
20|t − s|1/ρ.

The same estimates apply to the covariance of (X,XD).

Proof. The first statement is an easy corollary of the previous lemma. For the second we note that, by interpolation,
RD →R in ρ′-variation for any ρ′ > ρ so that∣∣RD

∣∣
ρ′-var;[s,t]×[u,v] → |R|ρ′-var;[s,t]×[u,v] with |D| → 0.

(Note that we do not have RD →R in ρ-variation in general but see remark below.) For the third one, without loss of
generalities, we assume that CR

20 = 1. Then, by subadditivity of the ρ-variation at the power ρ,∣∣RD
∣∣ρ
ρ-var,[s,t]2 ≤

∣∣RD
∣∣ρ
ρ-var,[s,sD]2 +

∣∣RD
∣∣ρ
ρ-var,[s,sD]×[sD,tD]

+ ∣∣RD
∣∣ρ
ρ-var,[s,sD]×[tD,t] +

∣∣RD
∣∣ρ
ρ-var,[sD,tD]×[s,sD]

+ ∣∣RD
∣∣ρ
ρ-var,[sD,tD]×[sD,tD] +

∣∣RD
∣∣ρ
ρ-var,[sD,tD]×[tD,t]

+ ∣∣RD
∣∣ρ
ρ-var,[tD,t]×[s,sD] +

∣∣RD
∣∣ρ
ρ-var,[tD,t]×[sD,tD]

+ ∣∣RD
∣∣ρ
ρ-var,[tD,t]2 .

6RD(A) is the rectangular increment RD
(a c
b d

)
.
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We bound each term using the previous lemma, and using on top estimates of the type∣∣∣∣ t − s

sD − sD

∣∣∣∣E(|XsD,sD |2)1/2 ≤
∣∣∣∣ t − s

sD − sD

∣∣∣∣∣∣sD − sD
∣∣1/(2ρ)

=
∣∣∣∣ t − s

sD − sD

∣∣∣∣1−1/ρ

|t − s|1/(2ρ)

≤ |t − s|1/ρ.

We leave the extension to the estimates on the covariation of (X,XD) to the reader. �

4. Multidimensional Gaussian processes

As remarked in the Introduction, any R
d -valued centered Gaussian process X = (X1, . . . ,Xd) with continuous sample

paths gives rise to an abstract Wiener space (E, H,P) with E = C([0,1],R
d) and H ⊂ C([0,1],R

d). If Hi denotes
the Cameron–Martin space associated to the one dimensional Gaussian process Xi and all {Xi : i = 1, . . . , d} are
independent then H ∼=⊕d

i=1 Hi .

4.1. Wiener chaos

Given an abstract Wiener space, there is a decomposition of L2(P) known as Wiener–Itô chaos decomposition, see
[23,32,33] for the case of Wiener measure. Our interest in Wiener chaos comes from the following simple fact.

Proposition 21. Assume the R
d -valued continuous centered Gaussian process X = (X1, . . . ,Xd) has sample paths

of finite variation and let SN(X)≡X denote its natural lift to a process with values in GN(Rd)⊂ T N(Rd). Then, for
n= 1, . . . ,N and any s, t ∈ [0,1] the random variable πn(Xs,t ) is an element in the nth (in general, not homogenous)
Wiener chaos.7

Proof. πn(X) is given by n iterated integrals which can be written out in terms of (a.s. convergent) Riemann–Stieltjes
sums. Each such Riemann–Stieljes sum is a polynomial of degree at most n and of variables of form Xs,t . It now
suffices to remark that the nth Wiener chaos contains all such polynomials and is closed under convergence in proba-
bility. �

As a consequence of the hypercontractivity property of the Ornstein–Uhlenbeck semigroup, Lp- and Lq -norms are
equivalent on the nth Wiener chaos. Usually this is stated for the homogenous chaos, [23,32], but the extension to the
nth (non-homogenous) chaos is not difficult, at least if we do not worry too much about optimal constants.

Lemma 22. Let n ∈N and Z be a random variable in the nth Wiener chaos. Assume 1 < p < q <∞. Then

|Z|Lp ≤ |Z|Lq ≤ |Z|Lp(n+ 1)(q − 1)n/2 max
(
1, (p− 1)−n

)
.

In particular, for q > 2,

|Z|L2 ≤ |Z|Lq ≤ |Z|L2(n+ 1)(q − 1)n/2.

Proof. Only the second inequality requires proof. We need two well-known facts, both found in [32], for instance.
First, if Zk is a random variable in the kth homogeneous Wiener chaos then

|Zk|Lq ≤
(

q − 1

p− 1

)k/2

|Zk|Lp . (8)

7Strictly speaking, the (Rd )⊗n-valued chaos.
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Secondly, the L2-projection on the kth homogeneous chaos, denoted by Jk , is a bounded operator from Lp → Lp for
any 1 < p <∞; more precisely8

|JkZ|Lp ≤
{

(p− 1)k/2|Z|Lp if p ≥ 2,
(p− 1)−k/2|Z|Lp if p < 2.

From Z =∑n
k=0 JkZ, we have |Z|Lq ≤∑n

k=0 |JkZ|Lq and hence

|Z|Lq ≤
n∑

k=0

(
q − 1

p− 1

)k/2

|JkZ|Lp

≤ |Z|Lp

n∑
k=0

{
(q − 1)k/2 if p ≥ 2,
(q − 1)k/2(p− 1)−k if p < 2

≤ |Z|Lp(n+ 1)(q − 1)n/2 max
(
1, (p− 1)−n

)
. �

Here is a immediate, yet useful, application. Assume Z,W are in the nth Wiener chaos. Then there exists C = C(n)

|WZ|L2 ≤ C|W |L2 |Z|L2 . (9)

(There is nothing special about L2 here, but this is how we usually use it.) We now discuss more involved corollaries.

Corollary 23. Let g be a random element of GN(Rd) such that for all 1≤ n≤N the projection πn(g) is an element
of the nth Wiener chaos. Let δ be a positive real. Then, the following statements 1–6 are equivalent:

(i) There exists a constant C1 > 0 such that for all n = 1, . . . ,N there exists q = q(n) ∈ (1,∞): |πn(g)|Lq ≤
C1δ

n;
(ii) There exists a constant C2 > 0 such that for all n= 1, . . . ,N and for all q ∈ [1,∞): |πn(g)|Lq ≤ C2q

n/2δn;
(iii) There exists a constant C3 > 0 such that for all n= 1, . . . ,N there exists q = q(n) ∈ (1,∞): |πn(log(g))|Lq ≤

C3δ
n;

(iv) There exists a constant C4 > 0 such that for all n = 1, . . . ,N and for all q ∈ [1,∞): |πn(log(g))|Lq ≤
C4q

n/2δn;
(v) There exists a constant C5 > 0 and there exists q ∈ (N,∞): E(‖g‖q)1/q ≤ C5δ;

(vi) There exists a constant C6 > 0 such that for all q ∈ [1,∞): E(‖g‖q)1/q ≤ C6q
1/2δ.

When switching from ith to the j th statement, the constant Cj depends only on Ci,N and d .

Remark 24. The restrictions on q in statements 1, 3, 5 comes from Lemma 22 where equivalence of Lp- and Lq -norms
(on the nth Wiener chaos) is shown only for p,q > 1. In fact, this equivalence holds true for all 0 < p < q <∞ (and
hence statements 1, 3, 5 can be formulated with q ∈ (0,∞)). This follows from the work of C. Borell [3–5] and is
easy to see if one accepts a results of Schreiber [34] that convergence in probability and in Lq are equivalent on
the nth Wiener chaos. Indeed, first note that for any p > 0, Lp-convergence implies convergence in probability and
hence in Lq so that the identity map from Lp → Lq is continuous. Assume it is not bounded. Then there exists a
sequence of random variables (Zn) such that |Zn|Lq > n|Zn|Lp . But Wn := Zn/|Zn|Lq satisfies 1/n > |Wn|Lp and
hence converges to 0 in Lp which contradicts |Wn|Lq ≡ 1.

Proof. Clearly, (vi)�⇒(v), (iv)�⇒(iii), (ii)�⇒(i), and Lemma 22 shows (iii)�⇒(iv), and (i)�⇒(ii). It is therefore
enough to prove (ii)�⇒(vi), (v)�⇒(i), and (ii)⇔(iv).

8In fact, this is a simple consequence of (8) when p > 2 and combined with a duality argument for 1 < p < 2.
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(ii)�⇒(vi) By equivalence of homogeneous norm, there exists a constant C > 0 such that,

‖g‖ ≤ C max
n=1,...,N

∣∣πn(g)
∣∣1/n

,

so that,

E
(‖g‖q)1/q ≤ CE

(
max

n=1,...,N

∣∣πn(g)
∣∣q/n

)1/q ≤ C

(
N∑

n=1

E
(∣∣πn(g)

∣∣q/n))1/q

≤ C

(
N∑

n=1

E
(∣∣πn(g)

∣∣q/n))1/q

≤ C

(
N∑

n=1

C
q/n

2

(
qn/2δn

)q/n

)1/q

≤ C6q
1/2δ.

(v)�⇒(i) By equivalence of homogeneous norm, there exists a constant c > 0 such that,

∣∣πn(g)
∣∣1/n ≤ c‖g‖.

Hence,

E
(∣∣πn(g)

∣∣q0/n)n/q0 ≤ cn
E

(‖g‖q0
)n/q0 ≤ |cC|Nδn.

(ii)⇔(iv) An easy consequence of (9) and the formulas

πn(g)=
∑

k1,...,kl∑
i ki=n

ak1,...,kl

⊗
i

πi(lng),

πn(lng)=
∑

k1,...,kl∑
i ki=n

bk1,...,kl

⊗
i

πi(g),

where the real coefficients ak1,...,kl
and bk1,...,kl

can be explicitly computed from the power series definition of ln and
exp. �

Proposition 25. Let X be a continuous GN(Rd)-valued stochastic process. Assume that for all s < t in [0,1] and
n = 1, . . . ,N , the projection πn(Xs,t ) is an element in the nth Wiener chaos and that, for some constant C and 1D
control function ω,∣∣πn(ln Xs,t )

∣∣
L2 ≤ Cω(s, t)n/(2ρ). (10)

Then exists a constant C′ = C′(ρ,N) such that for all q ∈ [1,∞)∣∣d(Xs ,Xt )
∣∣
Lq ≤ C′√qω(s, t)1/(2ρ). (11)

(i) If p > 2ρ then ‖X‖p-var;[0,1] has a Gauss tail i.e. there exists η = η(p,ρ,N,K) > 0, with ω([0,1]) ≤ K , such
that

E
(
eη‖X‖2

p-var;[0,1]
)
<∞.

In particular, X has a.s. sample paths of finite p-variation.
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(ii) If ω(s, t) ≤K|t − s|, then ‖X‖p-var above may be replaced by ‖X‖1/p-Höl and X has a.s. sample paths of 1/p-
Hölder regularity.

Proof. Equation (11) is a clear consequence of the Corollary 67. The rest follows from the results in Appendix B.
Indeed, after setting M = C′√q and r = 2ρ so that (11) reads∣∣d(Xs ,Xt )

∣∣
Lq ≤Mω(s, t)1/r

we can appeal to Corollary 66 to obtain∣∣‖X‖p-var;[0,1]
∣∣
Lq ≤ c1Mω(0,1)1/r = c2

√
q

(where c1 depends on ρ,p and c2 depends on ρ,p,N,K), valid for all q large enough, q ≥ q0(ρ,p). At last, as
is well known, O(

√
q)-growth of the qth moment implies a Gauss tail. More quantitatively, a Taylor expansion of

x �→ eηx2
shows that E(eη‖X‖2

p-var;[0,1]) <∞ provided η= η(c2) small enough. �

The same argument, but using Corollary 68 in Appendix B leads to:

Proposition 26. Let X,Y be two continuous GN(Rd)-valued stochastic processes. Assume that for all s < t in [0,1]
and n = 1, . . . ,N the projection πn(X

−1
s,t ⊗ Ys,t ) is an element in the nth Wiener chaos and that, for some C > 0,

ε ∈ [0,1) and 1D control function ω,∣∣πn(ln Xs,t )
∣∣
L2 ,

∣∣πn(ln Ys,t )
∣∣
L2 ≤ Cω(s, t)n/(2ρ), (12)∣∣πn

(
ln

(
X−1

s,t ⊗Ys,t

))∣∣
L2 ≤ Cεω(s, t)n/(2ρ). (13)

Then for all q ∈ [1,∞) there exists a constant C′ = C′(ρ,N,C) > 0 such that∥∥d(Xs,t ,Ys,t )
∥∥

Lq ≤ C′ε1/N√qω(s, t)1/(2ρ). (14)

(i) If p > 2ρ and then there exist positive constants θ = θ(p,ρ,N) and C′′ = C′′(p,ρ,N,C,K) with ω([0,1]2)≤
K such that∣∣dp-var;[0,1](X,Y)

∣∣
Lq ≤ C′′εθ√q.

(ii) If ω(s, t)≤K|t − s|, then dp-var;[0,1](X,Y) above may be replaced by d1/p-Höl(X,Y).

4.2. Uniform estimates for lifts of piecewise linear Gaussian processes

We recall that all Gaussian processes under consideration are defined on [0,1], centered and with continuous sample
paths. The aim of this section is to construct the lift of X = (X1, . . . ,Xd) for X1, . . . ,Xd independent, provided that
the covariance function for each Xi has finite ρ-variation for some ρ ∈ [1,2).

The proof of the following lemma is left to the reader.

Lemma 27. Let (X1, . . . ,Xd) be a d-dimensional Gaussian process, with covariance R of finite ρ-variation con-
trolled by ω. Then, for every fixed α = (α1, . . . , αd) ∈R

d , the covariance of

α1X1 + · · · + αdXd

has finite ρ-variation controlled by ω times a constant depending on α.

Proposition 28. Let (X,Y ) be a 2-dimensional centered Gaussian process with covariance R of finite ρ-variation
controlled by ω. Then, for fixed s < t in [0,1], the function

(u, v) ∈ [s, t]2 �→ f (u, v) := E(Xs,uYs,uXs,vYs,v)
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satisfies f (s, ·)= f (·, s)= 0 and has finite ρ-variation. More precisely, there exists a constant C = C(ρ) such that

|f |ρ
ρ-var;[s,t]2 ≤ Cω

([s, t]2)2
.

Proof. We fix u < u′, v < v′, all in [s, t]. Using

Xs,u′Ys,u′ −Xs,uYs,u =Xu,u′Ys,u′ +Xs,uYu,u′,

we bound |E((Xs,u′Ys,u′ −Xs,uYs,u)(Xs,v′Ys,v′ −Xs,vYs,v))| by∣∣E(Xu,u′Ys,u′Xv,v′Ys,v′)
∣∣+ ∣∣E(Xs,uYu,u′Xv,v′Ys,v′)

∣∣+ ∣∣E(Xu,u′Ys,u′Xs,vYv,v′)
∣∣+ ∣∣E(Xs,uYu,u′Xs,vYv,v′)

∣∣.
To bound the second expression for example, we use a well-known identity for the product of Gaussian random
variables,

E(Xs,uYu,u′Xv,v′Ys,v′) = E(Xs,uYu,u′)E(Xv,v′Ys,v′)

+E(Xs,uXv,v′)E(Yu,u′Ys,v′)

+E(Xs,uYs,v′)E(Xv,v′Yu,u′),

to obtain

1

Cρ

∣∣E(Xs,uYu,u′Xv,v′Ys,v′)
∣∣ρ ≤ ω

([s, u] × [
u,u′

])
ω

([
v, v′

]× [
s, v′

])
+ω

([s, u] × [
v, v′

])
ω

([
u,u′

]× [
s, v′

])
+ω

([s, u] × [
s, v′

])
ω

([
u,u′

]× [
v, v′

])
≤ ω

([s, t] × [
u,u′

])
ω

([
v, v′

]× [s, t])
+ω

([s, t] × [
v, v′

])
ω

([
u,u′

]× [s, t])
+ω

([s, t] × [s, t])ω([
u,u′

]× [
v, v′

])
.

Working similarly with all terms, we obtain that this last expression controls the ρ-variation of (u, v) ∈ [s, t]2 →
E(Xs,uYs,uXs,vYs,v), and the bound on the ρ-variation on [s, t]2. �

Proposition 29. Assume X = (X1, . . . ,Xd) is a centered continuous Gaussian process with independent compo-
nents with piecewise linear sample paths. Let ρ ∈ [1,2) and assume that the covariance of X is of finite ρ-variation
dominated by a 2D control ω. Let X= S3(X) denote the natural lift of X to a G3(Rd)-valued process. There exists
C = C(ρ) such that for all s < t in [0,1] and indices i, j, k ∈ {1, . . . , d},

(i) E
(∣∣Xi

s,t

∣∣2)≤ ω
([s, t]2)1/ρ

for all i;
(ii) E

(∣∣Xi,j
s,t

∣∣2)≤ Cω
([s, t]2)2/ρ

for i, j distinct;

(iii.1) E
(∣∣Xi,i,j

s,t

∣∣2)≤ Cω
([s, t]2)3/ρ

for i, j distinct;

(iii.2) E
(∣∣Xi,j,k

s,t

∣∣2)≤ Cω
([s, t]2)3/ρ

for i, j, k distinct.

Proof. (i) is obvious. For (ii) fix i �= j and s < t, s′ < t ′. Then, using independence of Xi and Xj ,

E
(
Xi,j

s,t X
i,j

s′,t ′
) = E

(∫ t

s

∫ t ′

s′
Xi

s,uX
i
s′,v dX

j
u dXj

v

)

=
∫ t

s

∫ t ′

s′
E

(
Xi

s,uX
i
s′,v

)
dE

(
X

j
uXj

v

)
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=
∫ t

s

∫ t

s′

[
Ri(u, v)−Ri(s, v)−Ri

(
u, s′

)+Ri

(
s, s′

)]
dRj (u, v)

≤ Cω
([s, t] × [

s′, t ′
])2/ρ by Young 2D estimate.

(ii) follows trivially from setting s = s′, t = t ′ (the general result will be used in the level (iii) estimates, see step 2
below). We break up the level (iii) estimates in a few steps, assuming i �= j throughout.

Step 1. For fixed s < t, s′ < t ′, t ′ < u′ we claim that

E
(
Xi,j

s,t X
i
s′,t ′X

j

t ′,u′
)≤ Cω

([s, t] × [
s′, t ′

])1/ρ
ω

([s, t] × [
t ′, u′

])1/ρ
.

Indeed, with dE(X
j

t ′,u′X
j
u)≡ E(X

j

t ′,u′Ẋ
j
u)du we have

E
(
Xi,j

s,t X
i
s′,t ′X

j

t ′,u′
)= E

(∫ t

s

Xi
s,uX

i
s′,t ′X

j

t ′,u′ dX
j
u

)
=

∫ t

u=s

E
(
Xi

s,uX
i
s′,t ′

)
dE

(
X

j

t ′,u′X
j
u

)
.

Since the 1D ρ-variation of u �→ E(Xi
s,uX

i
s′,t ′) is controlled by (u, v) �→ ω([u,v] × [s′, t ′]), and similarly for u �→

E(X
j

t ′,u′X
j
u), the (classical 1D) Young estimate gives

∣∣∣∣
∫ t

u=s

E
(
Xi

s,uX
i
s′,t ′

)
dE

(
X

j

t ′,u′X
j
u

)∣∣∣∣≤ Cω
([s, t] × [

s′, t ′
])1/ρ

ω
([s, t] × [

t ′, u′
])1/ρ

.

Step 2. For fixed s < t, we claim that the 2D map (u, v) ∈ [s, t]2 �→ E(Xi,j
s,uXi,j

s,v) has finite ρ-variation controlled
by

[u1, u2] × [v1, v2] �→ Cω
([s, t]2)ω([u1, u2] × [v1, v2]

)
.

Then, using the level (ii) estimate and step 1, for u1 < u2, v1 < v2 all in [s, t],

E
((

Xi,j
s,u2 −Xi,j

s,u1

)(
Xi,j

s,v2 −Xi,j
s,v1

)) = E
((

Xi,j
u1,u2 +Xi

s,u1
X

j
u1,u2

)(
Xi,j

v1,v2
+Xi

s,v1
Xj

v1,v2

))
= E

(
Xi,j

u1,u2Xi,j
v1,v2

)
+E

(
Xi,j

u1,u2X
i
s,v1

Xj
v1,v2

)
+E(Xi

s,u1
X

j
u1,u2 Xi,j

v1,v2
)

+E
(
Xi

s,u1
Xi

s,v1

)
E

(
X

j
u1,u2X

j
v1,v2

)
≤ ω

([u1, u2] × [v1, v2]
)2/ρ

+ω
([u1, u2] × [s, v1]

)1/ρ
ω

([u1, u2] × [v1, v2]
)1/ρ

+ω
([s, u1] × [v1, v2]

)1/ρ
ω

([u1, u2] × [v1, v2]
)1/ρ

+ω
([s, u1] × [s, v1]

)1/ρ
ω

([u1, u2] × [v1, v2]
)1/ρ

≤ 4
{
ω

([s, t]2)ω([u1, u2] × [v1, v2]
)}1/ρ

.

(Here we used that ω can be taken symmetric.)
Step 3. We now prove the level (iii) estimates and start with (iii.2). For i, j, k distinct, we have

E

(∣∣∣∣
∫ t

s

Xi,j
s,u dXk

u

∣∣∣∣2)
=

∫ ∫
[s,t]2

E
(
Xi,j

s,uXi,j
s,v

)
dRk(u, v).
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By Young’s 2D estimate, combined with ρ-variation regularity of the integrand established in step 2, we obtain

E

(∣∣∣∣
∫ t

s

Xi,j
s,u dXk

u

∣∣∣∣2)
≤ Cω

([s, t]2)3/ρ
,

as desired. The estimate (iii.1) follows from

E

(∣∣∣∣
∫ t

s

(
Xi

s,u

)2 dXk
u

∣∣∣∣2)
=

∫ ∫
[s,t]2

E
((

Xi
s,u

)2(
Xi

s,v

)2)dRk(u, v)

and Young’s 2D estimate, combined with ρ-variation regularity of the integrand which follows as a special case of
Proposition 28 (the full generality will be used in the next section). �

Corollary 30. With X, ρ,ω as in the last proposition, there exists C = C(ρ,d) such that for all s < t in [0,1] and
n= 1,2,3,

E
(∣∣πn(ln Xs,t )

∣∣2)≤ Cω
([s, t]2)n/ρ

.

Proof. For n = 1,2 this is an immediate consequence of (i), (ii) of the preceding proposition. From Appendix C,
π3(ln Xs,t ) expands with respect to the basis elements [ei, [ej , ek]] with coefficients of only four possible types

Xi,j,k
s,t , Xi,i,j

s,t ,
∣∣Xi

s,t

∣∣2Xj
s,t , Xi

s,tX
i,j
s,t (i, j, k distinct).

The first two are directly handled with (iii.1) and (iii.2). For the last two we use the estimate (9) together with (i), (ii). �

Corollary 31. With X, ρ,ω as in the last proposition,9 there exists C = C(ρ,d) such that for all q ∈ [1,∞)∣∣d(Xs ,Xt )
∣∣
Lq(P)

≤C
√

qω
([s, t]2)1/(2ρ)

,

where C can be chosen continuous in ρ. If p > 2ρ then there exists η = η(p,ρ,K) > 0, with ω([0,1]2) ≤K, such
that

E
(
exp

(
η‖X‖2

p-var;[0,1]
))

<∞. (15)

If ω(s, t)≤K|t − s|, then ‖X‖p-var above may be replaced by ‖X‖1/p-Höl.

Proof. This is just an application of Proposition 25 with 1D control (s, t) �→ ω([s, t]2). To see the continuity of C

with respect to ρ ∈ [1,2), it suffices to trace it back to the first two proposition of this section: the dependence of all
constants with respect to ρ arises from (classical 1D or 2D) Young inequalities and, as pointed out in Remark 13, we
can choose these constants continuous in ρ. �

4.3. Continuity estimates for lifts of piecewise linear Gaussian processes

Proposition 32. Let (X,Y )= (X1, Y 1, . . . ,Xd,Y d) be a centered continuous Gaussian process with piecewise linear
sample paths such that (Xi, Y i) is independent of (Xj ,Y j ) when i �= j . Let ρ ∈ [1,2) and ω a 2D control that
dominates the ρ-variation of the covariance of (X,Y ). Assume ρ′ ∈ (ρ,2) and ω([0,1]2) ≤ K . Then there exists
C32 = C32(ρ,ρ′,K) such that for all s < t in [0,1] and indices i, j, k ∈ {1, . . . , d},

(i) E
(∣∣Xi

s,t −Yi
s,t

∣∣2)≤ |RX−Y |1−ρ/ρ′∞ ω
([s, t]2)1/ρ′

for all i;
(ii) E

(∣∣Xi,j
s,t −Yi,j

s,t

∣∣2)≤ C32|RX−Y |1−ρ/ρ′∞ ω
([s, t]2)2/ρ′

for i, j distinct;

9The optimal choice for ω is the ρ-variation of R raised to power ρ.
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(iii.1) E
(∣∣Xi,i,j

s,t −Yi,i,j
s,t

∣∣2)≤ C32|RX−Y |1−ρ/ρ′∞ ω
([s, t]2)3/ρ′

for i, j distinct;

(iii.2) E
(∣∣Xi,j,k

s,t −Yi,j,k
s,t

∣∣2)≤ C32|RX−Y |1−ρ/ρ′∞ ω
([s, t]2)3/ρ′

for i, j, k distinct.

Proof. We first remark that interpolation inequalities work for 2D variation just as for 1D variation, more specifically,

|RX−Y |ρ′-var;[s,t]2 ≤ |RX−Y |1−ρ/ρ′∞ |RX−Y |ρ/ρ′
ρ-var;[s,t]2

≤ |RX−Y |1−ρ/ρ′∞ ω
([s, t]2)1/ρ′

,

and that the ρ′-variation of the covariance of (X,Y ) is also controlled by ω. The level (i) estimate is then simply

E
(∣∣Xi

s,t −Yi
s,t

∣∣2)≤ |RXi−Yi
|ρ′-var;[s,t]2 ≤ |RX−Y |1−ρ/ρ′∞ ω

([s, t]2)1/ρ′
.

For the level (ii) estimate fix i �= j . By the triangle inequality,

∣∣Xi,j
s,t −Yi,j

s,t

∣∣
L2 ≤

∣∣∣∣Xi,j
s,t −

∫ t

s

Xi
s,u dY

j
u

∣∣∣∣
L2
+

∣∣∣∣
∫ t

s

Xi
s,u dY

j
u −Yi,j

s,t

∣∣∣∣
L2

≤
∣∣∣∣
∫ t

s

Xi
s,u d

(
X

j
u − Y

j
u

)∣∣∣∣
L2
+

∣∣∣∣
∫ t

s

(
Xi

s,u − Y i
s,u

)
dY

j
u

∣∣∣∣
L2

.

Using independence of σ(Xi,Y i) and σ(Xj ,Y j ), the variances of the Riemann–Stieltjes integrals which appear in
the line above, are expressed as 2D Young integrals involving the respective covariances. Using 2D Young estimates
with 1/ρ′ + 1/ρ′ > 1, we see that, with changing constants c,

∣∣Xi,j
s,t −Yi,j

s,t

∣∣2
L2 ≤ c|RX−Y |ρ′-var;[s,t]2ω

([s, t]2)1/ρ′

≤ c|RX−Y |1−ρ/ρ′∞ ω
([s, t]2)2/ρ′

.

We now turn to level (iii) estimates and keep i �= j fixed throughout. We have

∣∣Xi,i,j
s,t −Yi,i,j

s,t

∣∣2
L2 ≤ 2

∣∣∣∣
∫ t

s

(
Xi

s,u

)2 d
(
X

j
u − Y

j
u

)∣∣∣∣2

L2

+ 2

∣∣∣∣
∫ t

s

{(
Xi

s,u

)2 − (
Y i

s,u

)2}dY
j
u

∣∣∣∣2

L2
.

The variance of
∫ t

s
(Xi

s,u)
2 d(X

j
u − Y

j
u ) can be written as 2D Young integral and by Proposition 28 and 2D Young

estimates we obtain the bound∣∣∣∣
∫ t

s

(
Xi

s,u

)2 d
(
X

j
u − Y

j
u

)∣∣∣∣2

L2
≤ c|RX−Y |1−ρ/ρ′∞ ω(s, t)3/ρ′ .

To deal with the other term, we first note that, from Proposition 28, the ρ-variation of

(u, v) �→ g(u, v)≡ E
[{(

Xi
s,u

)2 − (
Y i

s,u

)2}{(
Xi

s,v

)2 − (
Y i

s,v

)2}]
over [s, t]2 is controlled by a constant times ω([s, t]2)2 while its supremum norm on [s, t]2 is bounded by a constant
times

|RX−Y |∞ω
([s, t]2)1/ρ

.
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To see the latter, it suffices to write g(u, v) as expectation of the product of the four factors Xi
s,u ± Y i

s,u,X
i
s,v ± Y i

s,v ,
bounded by the product of the respective L4-norms which are (everything is Gaussian) equivalent to the respective
L2-norms. This leads to∣∣∣∣

∫ t

s

{(
Xi

s,u

)2 − (
Y i

s,u

)2}dY
j
u

∣∣∣∣2

L2

=
∫
[s,t]2

g(u, v)dRYj (u, v)

≤ c|g|ρ′-var;[s,t]|RYj |ρ′-var;[s,t]

≤ c|g|1−ρ/ρ′∞ |g|ρ/ρ′
ρ-var;[s,t]ω

([s, t]2)1/ρ′

≤ c
(|RX−Y |∞ω

([s, t]2)1/ρ)1−ρ/ρ′(
ω

([s, t]2)2)1/ρ′
ω

([s, t]2)1/ρ′

= c|RX−Y |1−ρ/ρ′∞ ω
([s, t]2)1/ρ+2/ρ′

and it follows that∣∣Xi,i,j
s,t −Yi,i,j

s,t

∣∣2
L2 ≤ c|RX−Y |1−ρ/ρ′∞ ω

([s, t]2)1/ρ+2/ρ′
.

It remains to prove (iii.2) and we fix distinct indices i, j, k. To see that

E
(∣∣Xi,j,k

s,t −Yi,j,k
s,t

∣∣2)≤ c|RX−Y |(ρ
′−ρ)/ρ′∞ ω

([s, t]2)3/ρ′

we proceed as in the proof of (ii) and start by subtract/adding∫
[s,t]

Xi,j
s,· dY k.

After using the triangle inequality we are left with two terms. The first is the variance of the 2D Young integral∫
Xi,j

s,· d(X− Y)k which is handled via Proposition 28 and 2D Young estimates, exactly as earlier. The second term is

of form
∫
(Xi,j

s,u −Yi,j
s,u)dY k

u and is handled by the split-up,

Xi,j
s,u −Yi,j

s,u =
∫ u

s

Xi
s,· d

(
Xj − Y j

)+ ∫ u

s

(
Xi

s,· − Y i
s,·

)
dY j .

We leave the remaining details to the reader. �

Corollary 33. With X,Y, ρ,ρ′,ω,K as in the last proposition there exists C33 = C33(ρ,ρ′,K) and θ = θ(ρ,ρ′) > 0
such that for all s < t in [0,1] and n= 1,2,3,

E
(∣∣πn

(
ln

(
X−1

s,t ⊗Ys,t

))∣∣2)≤ C33|RX−Y |θ∞ω
([s, t]2)n/ρ′

.

Proof. For n= 1 this is a trivial consequence of (i) of the preceding proposition. From Appendix C,

∣∣π2
(
ln

(
X−1

s,t ⊗Ys,t

))∣∣≤ ∣∣π2(ln Ys,t )− π2(ln Xs,t )
∣∣+ 1

2
|Ys,t −Xs,t | · |Ys,t |

which is readily handled by (i) and (ii) of the preceding proposition, noting that thanks to Wiener–Itô chaos integra-
bility we can split up the L2-norm of products, cf. Eq. (9),

E
[|Ys,t −Xs,t |2|Ys,t |2

]≤CE
(|Ys,t −Xs,t |2

)
E

(|Ys,t |2
)
.
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From Proposition 71 (Appendix C)

∣∣π3
(
ln

(
X−1

s,t ⊗Ys,t

))∣∣ ≤ ∣∣π3(ln Ys,t )− π3(ln Xs,t )
∣∣+ 1

2

∣∣π2(ln Ys,t )− π2(ln Xs,t )
∣∣|Ys,t |

+ 1

12
|Ys,t −Xs,t |

(|Xs,t |2 + |Ys,t |2 + 6
∣∣π2(ln Xs,t )

∣∣).
The terms which appear in the last two lines are handled by split up of L2-norm as above, the term∣∣π3(ln Ys,t )− π3(ln Xs,t )

∣∣
expands with respect to the basis elements [ei, [ej , ek]] with coefficients of only four possible types,

Yi,j,k
s,t −Xi,j,k

s,t , Yi,i,j
s,t −Xi,i,j

s,t ,
∣∣Y i

s,t

∣∣2
Y

j
s,t −

∣∣Xi
s,t

∣∣2
X

j
s,t , Y i

s,tY
i,j
s,t −Xi

s,tX
i,j
s,t

with i, j, k distinct. The first two difference terms are handled precisely with (iii.1) and (iii.2), the remaining terms
are estimated by the split up of L2-norms combined with the elementary estimates of type∣∣bb′ − aa′

∣∣≤ ∣∣b(
b′ − a′

)+ (b− a)a′
∣∣≤ |b|∣∣b′ − a′

∣∣+ ∣∣a′∣∣|b− a|
and the estimates (i), (ii). �

The above estimates and Proposition 25 lead to the following important corollary. (Note that ω can be taken as
|R(X,Y )|ρρ-var;[·,·],[·,·].)

Corollary 34. Under the above hypothesis, |RX−Y |∞ ≤ 1, p > 2ρ and ω([0,1]2) bounded by K , there exists positive
constants θ = θ(p,ρ) > 0 and C34 = C34(p,ρ,K) such that∣∣dp-var

(
S3(X),S3(Y )

)∣∣
Lq ≤ C34|RX−Y |θ∞

√
q.

If ω(s, t)≤K|t − s|, then dp-var above may be replaced by d1/p-Höl.

4.4. Natural lift of a Gaussian process

We are now able to prove the main theorems of this chapter.

Theorem 35 (Construction of lifted Gaussian processes). Assume X = (X1, . . . ,Xd) is a centered continuous
Gaussian process with independent components. Let ρ ∈ [1,2) and assume the covariance of X if of finite ρ-variation
dominated by a 2D control ω.

(i): (Existence) There exists a continuous G3(Rd)-valued process X, such that a.e. realization is in C
0,p-var
0 ([0,1],

G3(Rd)) for p > 2ρ, and hence a geometric p-rough path for p ∈ (2ρ,4), and which lifts the Gaussian process X

in the sense π1(Xt )=Xt −X0. If ω is Hölder dominated a.e. realization is in C
0,1/p-Hölder
0 ([0,1],G3(Rd)). Finally,

there exists C35 = C35(ρ) such that for all s < t in [0,1] and q ∈ [1,∞),∣∣d(Xs ,Xt )
∣∣
Lq ≤C35

√
qω

([s, t]2)1/(2ρ); (16)

and the random variables πn(Xs,t ), πn(ln Xs,t ), n= 1,2,3, are in the nth (not necessarily homogenous) Wiener–Itô
chaos.

(ii): (Fernique-estimates) Let p > 2ρ and ω([0,1]2)≤K . Then there exists η= η(p,ρ,K) > 0, such that

E
(
exp

(
η‖X‖2

p-var,[0,1]
))

<∞.

If ω([s, t]2)≤K|t − s| for all s < t in [0,1], then we can replace ‖X‖p-var,[0,1] by ‖X‖1/p-Höl;[0,1] above.
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(iii): (Uniqueness) The lift X is unique in the sense that it is the dp-var-limit in Lq(P), for any q ∈ [1,∞), of any
sequence S3(X

D) with |D| → 0. (As usual, XD denotes the piecewise linear approximation of X based on a dissection
D of [0,1].)

(iv): (Consistency) If X has a.s. sample paths of finite [1,2)-variation, X coincides with the canonical lift obtained
by iterated Young-integration of X. If X̃ = (1,π1(X),π2(X)) ∈ C

0,p-var
0 ([0,1],G2(Rd)) a.s. for p < 3 then X̃ is a

geometric p-rough path and X coincides with the Young–Lyons lift of X̃.

Definition 36. We call X natural lift (of the Gaussian process) X. A typical realizations of X is called a Gaussian
rough path.

Proof (Existence, Uniqueness). Let (Dn) be a sequence of dissections with mesh |Dn| → 0. Clearly,
|RXDn−XDm |∞ → 0 and from Corollary 34 for every p > 2ρ,∣∣dp-var

(
S3

(
XDn

)
, S3

(
XDm

))∣∣
Lq → 0.

In particular, we see that (S3(X
Dn)) is Cauchy in probability as sequence of C

0,p-var
0 -valued random variables10 and

so there exists X ∈ C
0,p-var
0 ([0,1],G3(Rd)) so that dp-var(S3(X

Dn),X) → 0 in probability and from the uniform
estimates from Corollary 31 also in Lq for all q ∈ [1,∞). If (D̃n) is another sequence of dissections with mesh
tending to zero, the same construction yields a limit, say X̃. But

dp-var(X, X̃) ≤ dp-var
(
X, S3

(
XDn

))+ dp-var
(
S3

(
XDn

)
, S3

(
XD̃n

))
+ dp-var

(
S3

(
XD̃n

)
, X̃

)
and the right-hand side converges to zero (in probability, say) as n→∞ which shows X = X̃ a.s. We now show

the estimate (16). To this end, let ωn denote the 2D control given by |RXDn |ρ′ρ′-var;[[·,·],[·,·]] for ρ′ ∈ (ρ,2). From
Corollary 31

∣∣d(
S3

(
XDn

)
s
, S3

(
XDn

)
t

)∣∣
Lq ≤ C

√
qωn

([s, t]2)1/(2ρ′)

and after sending n→∞, followed by ρ′ ↓ ρ using Lemma 9, we find∣∣d(Xs ,Xt )
∣∣
Lq ≤ C

√
qω

([s, t]2)1/(2ρ)

and (16) is proved. The statements on πn(Xs,t ), πn(ln Xs,t ) ∈ nth Wiener–Itô chaos are immediate from Proposition 21
and closeness of the nth Wiener–Itô chaos under convergence in Lq . We then see that one can switch to equivalent
estimates in terms of πn(Xs,t ), πn(ln Xs,t ) thanks to Recall that Corollary 23), in particular for n= 1,2,3 and all s < t

in [0,1],∣∣πn(ln Xs,t )
∣∣
L2 ≤ cω

([s, t]2)n/(2ρ)
.

(Regularity, Fernique) An immediate consequence of Proposition 25 applied with 1D control (s, t) �→ ω([s, t]2).
(Consistency) An immediate consequence of our construction and basic continuity statements of the Young resp.

Young–Lyons lift, [26,27]. �

Theorem 37. Let (X,Y ) = (X1, Y 1, . . . ,Xd,Y d) be a centered continuous Gaussian process such that (Xi, Y i) is
independent of (Xj ,Y j ) when i �= j . Let ρ ∈ [1,2) and assume the covariance of (X,Y ) is of finite ρ-variation dom-
inated by a 2D control ω. Then, for every p > 2ρ, there exist positive constants θ = θ(p,ρ) and C35 = C(p,ρ,K),

10A Cauchy criterion for convergence in probability of r.v.s with values in a Polish space is an immediate generalization of the corresponding
real-valued case.
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with ω([0,1]2)≤K, such that for all q ∈ [1,∞),∣∣dp-var(X,Y)
∣∣
Lq ≤C35

√
q|RX−Y |θ∞.

If ω([s, t]2)≤K|t − s| for all s < t in [0,1] we can replace dp-var by d1/p-Höl in the preceding line.

Proof. Pick ρ′ such that p > 2ρ′ > 2ρ and, similarly to the last proof, pass to the limit in Proposition 33. Conclude
with Proposition 33. �

Proposition 38 (Young–Wiener integral). Assume X has covariance R with finite ρ-variation. Let f ∈ Cq-var([0,1],
R), with q−1 + ρ−1 > 1. If Xn is a sequence of Gaussian processes whose covariances are uniformly of finite p-
variation and such that |RXn−X|∞ converges to 0, then in the supremum topology, t → ∫ t

0 fu dXn
u converges in L2.

We define this limit to be the integral

t �→
∫ t

0
fu dXu.

For all s < t in [0,1], we have the Young–Wiener isometry,

E

(∣∣∣∣
∫ t

s

fu dXu

∣∣∣∣2)
=

∫
[s,t]2

fufv dR(u, v),

and if f (s)= 0 we have the Young–Wiener estimate

E

(∣∣∣∣
∫ t

s

fu dXu

∣∣∣∣2)
≤ Cρ,q |f |2q-var;[s,t]|R|ρ-var;[s,t]. (17)

Proof. Proving (17) for X piecewise linear and applying the same methodology developed in this chapter is enough.
But for X piecewise linear, it is obvious that

E

(∣∣∣∣
∫ t

s

fu dXu

∣∣∣∣2)
=

∫
[s,t]2

fufv dR(u, v).

Now, the q-variation of (u, v)→ fufv is of course bounded by |f |2q-var, so applying Young 2D estimates, we are
done. �

Remark 39. When X is Brownian Motion, dR = δ{s=t} and we recover the usual Itô isometry.

4.5. Almost sure convergence

Proposition 40. Let X = (X1, . . . ,Xd) be a centered continuous Gaussian process with independent components,
and assume that the covariance of X is of finite ρ-variation dominated by a 2D control ω, for some ρ < 2. Then, if
D = (ti) is a subdivision of [0,1], and XD be the piecewise linear approximation of X. Then, if p > 2ρ, there exist
positive constants θ = θ(ρ,p) and C = C(ρ,p,K), with ω([0,1]2)≤K , such that for all q ∈ [1,∞),

∣∣dp-var
(
X, S3

(
XD

))∣∣
Lq ≤ C

√
q max

i
ω

([ti , ti+1]2
)θ

.

If ω([s, t]2)≤K|t − s| for all s < t in [0,1] we have∣∣d1/p-Höl
(
X, S3

(
XD

))∣∣
Lq ≤ C

√
q max

i
|ti+1 − ti |θ .
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Proof. A simple corollary of Theorems 35, 37 combined with |RX−XD |∞ ≤maxi ω([ti , ti+1]2)1/ρ. �

As a corollary, we obtain a.s. convergence of dyadic approximations in a Hölder situation. In view of Lemma 16
we have arrived at a substantial generalization of the results in [10].

Corollary 41. Let X,ω,ρ < 2,p > 2ρ as above and assume ω([s, t]2) ≤ K|t − s| for all s < t in [0,1]. If XDn

denote the dyadic piecewise linear approximation of X based on Dn = { k
2n ,0 ≤ k ≤ 2n} then there exist positive

constants θ = θ(ρ,p) and C = C(ρ,p,K) so that for all q ∈ [1,∞)∣∣d1/p-Höl
(
X, S3

(
XDn

))∣∣
Lq ≤C

√
q2−nθ/ρ

and as n tends to infinity, d1/p-Höl(X, S3(X
Dn))→ 0 a.s. and in Lq .

Proof. Only the a.s. convergence statement remains to be seen. But this is a standard Borell–Cantelli argument. �

5. Weak approximations

5.1. Tightness

Proposition 42. Let (Xn) be a sequence of centered, d-dimensional, continuous Gaussian process with independent
components, and assume that the covariances of Xn with finite ρ ∈ [1,2)-variation dominated by a 2D control ω,
uniformly in n. Let p > 2ρ and let Xn denote the natural lift of Xn with a.e. sample path in C

0,p-var
0 ([0,1],G3(Rd)).

Then the family ((Xn)∗P), i.e. the laws of Xn viewed as Borel measures on the Polish space C
0,p-var
0 ([0,1],G3(Rd)),

are tight. If ω is Hölder dominated, then tightness holds in C
0,1/p-Höl
0 ([0,1],G3(Rd)).

Proof. Let us fix p′ ∈ (2ρ,p). Define KR to be the relatively compact set in C
0,p-var
0 ([0,1],G3(Rd)),

{
x: for all s < t in [0,1]: ‖xs,t‖p′ ≤R

∣∣ω([0, t]2)−ω
([0, s]2)∣∣}.

From the results of Appendix B, there exists real random variables Mn such that (i) for some μ small enough,
supn E(exp(μM2

n)) <∞, (ii) for all n≥ 1, for all s, t ∈ [0,1],
∥∥Xn(s, t)

∥∥p′ ≤Mn

∣∣ω([0, t]2)−ω
([0, s]2)∣∣.

Hence, there exists c= c(μ) > 0 such that supn P (Xn ∈KR)≤ exp(−cR2) which shows tightness in C
0,p-var
0 ([0,1],

G3(Rd)). Similarly, for Hölder dominated ω we obtain tightness in C
0,1/p-Höl
0 ([0,1],G3(Rd)) from the relative com-

pactness of{
x: for all s < t in [0,1]: ‖xs,t‖p′ ≤R|t − s|}. �

5.2. Convergence

Theorem 43. Let ρ ∈ [1,2). Let Xn,X∞ be continuous Gaussian process with covariance Rn,R∞ of finite ρ ∈ [1,2)-
variation dominated uniformly in n by a 2D control ω, such that

Rn→R∞ pointwise on [0,1]2.
Let Xn,X∞ denote the associated natural G3(Rd)-valued lifted processes. Then, for any p > 2ρ, the processes Xn

converge in distribution to X∞ with respect to p-variation topology. If ω is Hölder dominated, then convergence holds
with respect to 1/p-Hölder topology.
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Proof. By Prohorov’s theorem [2], tightness already implies existence of weak limits as measures on

C0,p-var([0,1],G3(Rd)
)

resp. C0,1/p-Höl([0,1],G3(
R

d
))

and it will suffice to establish weak convergence on the space E := C([0,1],G3(Rd)) with d∞-metric. By the Port-
manteau theorem [2], it suffices to show that for every f :E→R,bounded and uniformly continuous,

Ef (Xn)→ Ef (X∞). (18)

To see this, fix ε > 0, and δ = δ(ε) > 0 such that d∞(x,y) < δ implies |f (x)− f (y)|< ε. The estimates of Proposi-
tion 40) are more than enough to see that there exists a dissection D, with small enough mesh, such that

sup
0≤n≤∞

P
(
d∞

(
Xn, S3

(
XD

n

))≥ δ
)
< ε.

Hence,

sup
0≤n≤∞

∣∣Ef (Xn)−Ef
(
S3

(
XD

n

))∣∣ ≤ sup
0≤n≤∞

∣∣E[∣∣f (Xn)− f
(
S3

(
XD

n

))∣∣;d∞(
Xn, S3

(
XD

n

))≥ δ
]∣∣

+ sup
0≤n≤∞

∣∣E[∣∣f (Xn)− f
(
S3

(
XD

n

))∣∣;d∞(
Xn, S3

(
XD

n

))
< δ

]∣∣
≤ 2|f |∞ sup

0≤n≤∞
P
(
d∞

(
Xn, S3

(
XD

n

))≥ δ
)+ ε

≤ (
2|f |∞ + 1

)
ε.

On the other hand, Rn → R pointwise gives convergence of the finite-dimensional distributions and hence weak
convergence of (XD

n (t))t∈D to (XD∞(t))t∈D . The map (XD
n (t))t∈D �→ f (S3(X

D
n )) is easily seen to be continuous and

so, for n≥ n0(ε) large enough,∣∣Ef
(
S3

(
XD

n

))−Ef
(
S3

(
XD∞

))∣∣≤ ε.

The proof is then finished with the triangle inequality,∣∣Ef (Xn)−Ef (X∞)
∣∣ ≤ ∣∣Ef (Xn)−Ef

(
S3

(
XD

n

))∣∣
+ ∣∣Ef

(
S3

(
XD∞

))−Ef
(
X∞

)∣∣
+ ∣∣Ef

(
S3

(
XD

n

))−Ef
(
S3

(
XD∞

))∣∣
≤ (

2|f |∞ + 1
)
2ε+ ε. �

Example 44. Set R(s, t)=min(s, t). The covariance of fractional Brownian Motion is given by

RH (s, t)= 1

2

(
s2H + t2H − |t − s|2H

)
.

Take a sequence Hn ↑ 1/2. It is easy to see that RHn → R pointwise and from our discussion of fractional Brownian
Motion, for any ρ > 1,

lim sup
n→∞

∣∣RHn
∣∣
ρ-var <∞.

It follows that RDE solutions driven by (multidimensional) fractional Brownian Motion with Hurst parameter Hn tend
weakly to the usual Stratonovich solution. More elementary, for Hn ↓ 1/2 we see that Young ODE solutions driven by
BHn tend weakly to a Stratonovich solution.
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6. Karhunen–Loève approximations

Any choice of an orthonormal basis in H, say (hk: k ∈ N), yields a L2-expansion of a Gaussian process X as (a.s.
and L2-convergent) sum of the form X =∑

k∈N
Zkh

k where Zk := h̃k := ξ(hk) and h ∈ H �→ h̃ ∈ L2(Ω) is the
classical isometry between H and the Gaussian subspace in L2(Ω); see [23,24], [12], Chapter 3.4. As a reminder,
that we work with continuous Gaussian processes with the concrete index set [0,1], just as for Brownian Motion, we
shall refer to L2-approximation as Karhunen–Loeve (type) approximations, in the same spirit as we prefer to call H
Cameron–Martin space rather than Reproducing Kernel Hilbert Space.

As in previous sections, let X = (Xi : i = 1, . . . , d) be a centered continuous Gaussian process, with independent
components, each with covariance R of finite ρ-variation for some ρ ∈ [1,2) and dominated by some 2D control ω.

Let X be the natural lift of X to a G3(Rd)-valued process. If Hi ⊂ C([0,1],R) denotes the Cameron–Martin space
associated to Xi , the Cameron–Martin space to X is identified with

⊕d
i=1 Hi and if (hk

i )k≥1 is an orthonormal basis

for Hi then {(hk
i (·))i=1,...,d , k ≥ 1} is an orthonormal basis for

⊕d
i=1 H. We can write hk = (hk

1, . . . , h
k
d).

6.1. One-dimensional estimates

The covariance R = R(s, t) of X is a diagonal matrix with d entries. For the purpose of variational regularity of the
covariance of a Karhunen–Loeve approximations we may assume that X is in fact 1-dimensional. For any A⊂N we
define

FA = σ(Zk, k ∈A), XA
t = E[Xt |FA].

If ω([a, b] × [c, d]) is a (2D) control function which controls the ρ-variation of R(·, ·)= E[X·X·] over the indicated
rectangle, i.e.

|R|ρ
ρ-var;[a,b]×[c,d] ≤ ω

([a, b] × [c, d]),
then clearly, E(|XA

s,t |2)≤ E(|Xs,t |2)≤ ω([s, t]2)1/ρ . It is then clear from elementary Gaussian estimates that XA can
be taken with continuous sample paths. Moreover, XA is a Gaussian process in its own right and we shall write RA

for its covariance function,

RA(s, t)= E
[
XA

s XA
t

]
.

Lemma 45. Assume that R is of finite ρ-variation, for some ρ ≥ 1. Then if min{|A|, |Ac|}<∞∣∣RA
∣∣
ρ-var <∞.

In particular, if ρ < 2, there exists a natural lift of XA to a G3(Rd)-valued process denoted by XA.

Proof. Assume first |Ac| <∞. Then |hk ⊗ hk|ρ-var;[s,t]2 ≤ |(hk)|2ρ-var;[s,t] ≤ |R|ρ-var;[s,t]2 thanks to Proposition 17
and |hk|H = 1. It follows that

∣∣RA
∣∣
ρ-var;[s,t]2 =

∣∣∣∣R − ∑
k∈Ac

hk ⊗ hk

∣∣∣∣
ρ-var;[s,t]2

≤ |R|ρ-var;[s,t]2 +
∑
k∈Ac

|hk ⊗ hk|ρ-var;[s,t]2

≤ (
1+ ∣∣Ac

∣∣)|R|ρ-var;[s,t]2 .

If A is finite, the proof is similar but even easier. �
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The interest is in the above lemma is for ρ ∈ [1,2). To obtain uniform estimates valid for all A⊂ N, we unfortu-
nately11 have to work in 2-variation.

Lemma 46. Assume that R is of finite 2-variation. Then, the RA has finite 2-variation, uniformly over all A ⊂ N.
More precisely,

sup
A⊂N

∣∣RA
∣∣
2-var;[s,t]2 ≤ |R|2-var;[s,t]2 .

Proof. Let D = (ti) a subdivision of [s, t] and set XA
i =XA

ti ,ti+1
. Let β be a positive semi-definite symmetric matrix,

and let us estimate |∑i,j βi,jE(XA
i XA

j )|. Now

E
(
XA

i XA
j

)=∑
k∈A

E(ZkXi)E(ZkXj )= 1

2

∑
k∈A

E
((

Z2
k −E

(
Z2

k

))
XiXj

)
,

so that

∑
i,j

βi,jE
(
XA

i XA
j

)= 1

2

∑
k∈A

E

((
Z2

k −E
(
Z2

k

))∑
i,j

βi,jXiXj

)
.

As β is symmetric, we can write β = P T diag(d1, . . . , d#D)P, with PP T the identity matrix and (non-negative)
eigenvalues (di). By simple linear algebra,∑

i,j

βi,jXiXj = (PX)T diag(· · ·)(PX)=
∑

i

di(PX)2
i

and so

∑
i,j

βi,jE
(
XA

i XA
j

) =∑
k∈A

∑
i

di

1

2
E

((
Z2

k −E
(
Z2

k

))
(PX)2

i

)

=
∑

i

di

∑
k∈A

E
(
Zk(PX)i

)2

≤
∑

i

diE
(
(PX)2

i

)
(Parseval inequality)

= E
(
(PX)TD(PX)

)
=

∑
i,j

βi,jE(XiXj )

≤ |β|l2 |R|2-var (Hölder inequality).

11The proof of the following lemma can be extended to showing that if R is of finite ρ-variation, where ρ is an integer greater than 2, then for all

A⊂N and s < t , |RA|
ρ-var,[s,t]2 ≤ |R|ρ-var,[s,t]2 . This is done by choosing βi,j = E(X

n,m
i

X
n,m
j

)ρ−1and indeed if ρ− 1 ∈N then β is a positive
symmetric matrix (this is a simple consequence of Hadamard–Schur’s lemma). We could not prove (or disprove) this for general ρ ≥ 1; with β

being defined as fractional Hadamard power,

E
(
X

n,m
i

X
n,m
j

)ρ−1 sign
[
E

(
X

n,m
i

X
n,m
j

)]
.

If Lemma 46 were to hold true for ρ ∈ [1,2), the rough path convergence of Karhunen–Loève approximations would follow directly from Theo-
rem 37.
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Applying this estimate to βi,j = E(XA
i XA

j ) we find

√∑
i,j

∣∣E(
XA

i XA
j

)∣∣2 ≤ |R|2-var.

The proof is finished by taking the supremum over all dissections of [s, t]. �

6.2. Uniform bounds on the modulus and convergence

We now assume that R has finite ρ-variation for some ρ ∈ [1,2) dominated by some 2D control ω, and we fix A⊂N,
finite or with finite complement, so that XA admits a natural G3(Rd)-valued lift, denoted XA. Of course, XN =X.

Lemma 47 (Martingale). For all s < t in [0,1], the following equality holds in g3(R
d)≡ lnG3(Rd),

E
(
ln(Xs,t )|FA

) = ln
(
XA

s,t

)+ 1

12

∑
i �=j

X
A;j
s,t RXAc;i

(
s s

t t

)[
ei, [ei, ej ]

]

− 1

2

∑
i �=j

∫ t

s

RXAc;i

(
u s

t u

)
dX

A,j
u

[
ei, [ei, ej ]

]
.

(The integral which appears in the last line is a Young–Wiener integral in the sense of Proposition 38.)

Remark 48. Projection to g2(R
d) yields to pleasant equality E(ln(Xs,t )|FA) = ln(XA

s,t )which explains why martin-
gale arguments [11,14,16,20] are enough to discuss the step 2 case. That said, the above lemma shows clearly that
additional estimates are needed to handle the step 3 case.

Proof. Our proposition at level 1 is E(π1(ln Xs,t )|FA) = π1(ln XA
s,t ), which is (almost) the definition of XA. The

estimate at level 2 is implies by E[Xi,j
s,t |FA] = (XA)

i,j
s,t . This is fairly straightforward to prove: one just need to note

that conditioning equal L2-projection is (trivially) L2-continuous; also recalling that both X and XA are L2-limit of
lifted piecewise linear approximations. Level 3 statements are more involved. We can see as above that for distinct
indices i, j, k,

E
[
Xi,j,k

s,t |FA

]= (
XA

)i,j,k

s,t
.

From Proposition 70 in Appendix C, we see that E(ln(Xs,t )|FA)− ln(XA
s,t ) is equal to

∑
i �=j

E

({
Xi,i,j

s,t + 1

12

∣∣Xi
s,t

∣∣2
X

j
s,t −

1

2
Xi

s,tX
i,j
s,t

} ∣∣∣ FA

)[
ei, [ei, ej ]

]

−
∑
i �=j

((
XA

s,t

)i,i,j + 1

12

∣∣(XA
)i

s,t

∣∣2(
XA

)j

s,t
− 1

2

(
XA

)i

s,t

(
XA

)i,j

s,t

)[
ei, [ei, ej ]

]
.

All the three terms can be written as sums (or L2-limits thereof) involving terms of form Xi
r,sX

i
t,uX

j
v,w and since

(write Xi
r,s =X

A;i
r,s +X

Ac;i
r,s and similarly for the other terms)

E
(
Xi

r,sX
i
t,uX

j
v,w|FA

)− (
XA

)i

r,s

(
XA

)i

t,u

(
XA

)j

v,w
=XA;j

v,wE
(
XAc;i

r,s X
Ac

i
t,u

)
.



400 P. Friz and N. Victoir

After integration, we therefore obtain

E
(
Xi,i,j

s,t |FA

)− (
XA

s,t

)i,i,j = 1

2

∫ t

s

E
(∣∣XAc;i

s,u

∣∣2)dX
A;j
u = 1

2

∫ t

s

RXAc;i

(
s s

u u

)
dX

A,j
u ,

E
(∣∣Xi

s,t

∣∣2
X

j
s,t |FA

)− (
X

A;i
s,t

)2
X

A,j
s,t =X

A;j
s,t E

(∣∣XAc,i
s,t

∣∣2)=X
A;j
s,t RXAc;i

(
s s

t t

)

and

E
(
Xi

s,tX
i,j
s,t |FA

)−X
A;i
s,t XA;i,j

s,t =
∫ t

s

E
(
X

Ac;i
s,t XAc;i

s,u

)
dX

A;j
u =

∫ t

s

RXAc;i

(
s s

t u

)
dX

A,j
u .

This finishes the proof. �

Proposition 49. There exists a constant C such that for all s < t in [0,1],A⊂N and i, j ∈ {1, . . . , d} distinct∣∣∣∣
∫ t

s

RXAc;i

(
u s

t u

)
dX

A,j
u

∣∣∣∣2

L2
≤ Cω

([s, t]2)3/ρ
.

Proof. From∫ t

s

RXAc;i

(
u s

t u

)
dX

A,j
u = E

(∫ t

s

RXAc;i

(
u s

t u

)
dX

j
u

∣∣∣ FA

)

it suffices to consider the integral with integrator dXj . We define

f (u) := RXAc;i

(
u s

t u

)

and note that f (s)= 0. It is easy to see that for u < v in [s, t],
|fu,v|2 ≤ |RXAc;i |22-var;[u,v]×[s,t] + |RXAc;i |22-var;[s,t]×[u,v].

Noting super-additivity of the right-hand side in [u,v] and using Lemma 46,

|f |22-var;[s,t] ≤ 2|RXAc;i |22-var;[s,t]2 ≤ 2|RXi |22-var;[s,t]2 ≤ 2ω
([s, t]2)2/ρ

.

Now, f has finite 2-variation and the covariance of the integrator dXj has finite ρ-variation, ρ ∈ [1,2) controlled
by ω. Thanks to 1/2+ 1/ρ > 1 we can conclude with the “Young–Wiener” estimate of Proposition 38. �

Putting the last two results together and using Proposition 25, we obtain the following theorem.

Theorem 50. For all s < t in [0,1] there exists C = C(ρ) such that

sup
A⊂N,min{|A|,|AC |}<∞

E
(∥∥XA

s,t

∥∥2)≤ Cω
([s, t]2)1/ρ

.

For p > 2ρ and ω([0,1]2)≤K there exists η= η(p,ρ,K) > 0 such that

sup
A⊂N,min{|A|,|AC |}<∞

E
(
expη

∥∥XA
∥∥2

p-var;[0,1]
)
<∞.

If ω([s, t]2)≤K|t − s| for all s < t in [0,1] we can replace ‖XA‖p-var;[0,1] by ‖XA‖1/p-Höl;[0,1].
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We now discuss convergence results.

Theorem 51. Let An = {1, . . . , n}. For any p > 2ρ and q ∈ [1,∞),

dp-var;[0,1]
(
XAn,X

)→ 0 in Lq(Ω) as n→∞, (19)∥∥XAc
n
∥∥

p-var;[0,1] → 0 in Lq(Ω) as n→∞. (20)

If ω is Hölder dominated, i.e. sup0≤s<t≤1 ω([s, t]2)/|t − s|1/p <∞, then

d1/p-Höl;[0,1]
(
XAn,X

)→ 0 in Lq(Ω) as n→∞, (21)∥∥XAc
n
∥∥

1/p-Höl;[0,1] → 0 in Lq(Ω) as n→∞. (22)

Proof. Ad (19), (21): From the results in Appendix A and Theorem 50, it is enough to prove that for any fixed
t ∈ [0,1],

d
(
XAn

t ,Xt

)→ 0

in Lq or, in fact, in probability (thanks to the uniform Lq -bounds for all q <∞ in Theorem 50). The topology induced
by d on G3(Rd) is consistent with the manifold topology G3(Rd) ⊂ T 3(Rd) and in particular with the topology
induced from the Euclidean structure on g3(Rd)= ln(G3(Rd)), seen as global chart for G3(Rd). It is therefore enough
to show for N = 1,2,3 we have pointwise convergence,

πN

(
ln

(
XAn

t

)− ln(Xt )
)→ 0 in probability.

By martingale convergence, this is obvious for N = 1,2 but for N = 3 we have to handle the correction which we
identified in Lemma 47,(

1

12
X

A;j
s,t RXAc;i

(
s s

t t

)
− 1

2

∫ t

s

RXAc;i

(
u s

t u

)
dX

A,j
u

)[
ei, [ei, ej ]

]
.

All we need is pointwise convergence in probability to zero of this expression. Clearly, XAc
n = E[X|F{n+1,n+2,...}]→ 0

a.s. and in all Lq as n →∞. It follows that R
XAc

n;i → 0 pointwise which takes care of the first summand. The
second term is a Young–Wiener integral in the sense of Proposition 38. From our uniform estimates and interpolation,
R

XAc
n;i → 0 in (2+ ε)-variation. Using notation from the last proposition,

∫ t

s

f (u)dX
An,j
u = E

(∫ t

s

f (u)dX
j
u

∣∣∣ FAn

)
,

and it is enough to show that
∫ t

s
f (u)dX

j
u → 0 in L2. Now,

|f |2+ε
(2+ε)-var;[s,t] ≤C|R

XAc
n;i |2+ε

(2+ε)-var;[s,t]2 → 0

and using the Young–Wiener estimate for ε chosen small enough (namely such that (2+ ε)−1 + ρ−1 > 1 which is
always possible since ρ ∈ [1,2)) we obtain the required convergence in L2 and hence in probability as required.

Ad (20), (22): As in the first part of the proof, it is enough to show that, for fixed t ∈ [0,1], X
Ac

n
t → 0 in probability

or, equivalently,

ln
(
X

Ac
n

t

)→ 0 in probability.
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We first claim that E(ln(Xt )|FAc
n
)→ 0. Indeed, by backward martingale convergence and Kolmogorov’s 0–1 law,

E
(
ln(Xt )|FAc

n

) → E

(
ln(Xt )

∣∣∣⋂
k

FAc
k

)
a.s. and in all Lq

a.s.= E(ln Xt )= 0

(where E(ln Xt )= 0 follows from Lemma 47 with A=∅). The proof will be finished if we can handle the difference

between ln(X
Ac

n
t ) and E(ln(Xt )|FAc

n
). But using Lemma 47, this is done in the same way as in the first part of the

proof. �

6.3. Support description

We recall the standing assumptions. X = (Xi : i = 1, . . . , d) is a centered continuous Gaussian process on [0,1],
with independent components and finite covariance of finite ρ ∈ [1,2)-variation, dominated by some 2D control ω.
From Section 4.4, we know that, for p ∈ (2ρ,4), X lifts to a (random) geometric p-rough path X with a.e. sample
path in C

0,p-var
0 ([0,1],G3(Rd)). If ω is Hölder dominated we have sample paths in C

0,1/p-Höl
0 ([0,1],G3(Rd)). It

will be convenient in this section to assume that P is a Gaussian measure on C([0,1],R
d) so that X(ω) = ωt can

be realized as coordinate process and X as measurable map from C([0,1],R
d) into C

0,p-var
0 ([0,1],G3(Rd)) resp.

C
0,1/p-Höl
0 ([0,1],G3(Rd)), defined as

X(ω)= lim
n→∞S3

(
ωDn

)
in probability where ωDn denotes the piecewise linear approximation based on some dissection (Dn), assuming
|Dn| → 0. We shall also make the assumption that H enjoys complementary Young regularity by which we mean
that H ↪→C

q-var
0 ([0,1],R

d) for some q ≥ 1 with 1/p+ 1/q > 1. Let us recall that the translation of a “smooth” path
and its first three iterated integrals, x= S3(x), in direction h is defined as (x, h) �→ S3(x + h). By a closing procedure
(cf. [27]) this map extends continuously to (x, h) �→ Thx, known as translation operator, from

C
0,p-var
0

([0,1],G3(
R

d
))×C

q-var
0

([0,1],R
d
)→ C

0,p-var
0

([0,1],G3(
R

d
))

and hence from C
0,p-var
0 ([0,1],G3(Rd))× H → C

0,p-var
0 ([0,1],G3(Rd)). This also holds for x ∈ C

0,1/p-Höl
0 ([0,1],

G3(Rd)).

Lemma 52. Assume complementary Young regularity of H. Then, for P-almost every ω we have

∀h ∈ H: X(ω+ h)= ThX(ω),

where T denotes the translation operator for geometric rough paths.

Proof. By switching to a subsequence if needed we may assume that X(ω) is defined as limn→∞ S3(ω
Dn) whenever

this limit exists (and arbitrarily on the remaining null-set N ). Now fix h ∈ H; using complementary Young regularity
we have

S3
(
ωDn + hDn

)= ThDn S3
(
ωDn

)→ ThX(ω) as n→∞

and thus see that X(ω+ h)= ThX(ω) for all h and ω /∈N . �

Lemma 53. Assume complementary Young regularity of H. Then, for every h ∈ H the laws of X and ThX are equiv-
alent.
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Proof. By Cameron–Martin, the law of X and X + h, as Borel measures on C([0,1],R
d) are equivalent. It fol-

lows that the image measures under the measurable map X(·), Borel measures on C
0,p-var
0 ([0,1],G3(Rd)) resp.

C
0,1/p-Höl

0 ([0,1],G3(Rd)), are equivalent. But this says precisely that the laws of X and X(· + h) are equivalent
and the proof if finished since X(· + h)= ThX almost surely. �

Lemma 54. Let S,S′ be two Polish spaces and μ a Borel measure on S. Assume x ∈ suppμ and f is continuous at
x. Then f (x) ∈ suppf∗μ. If, in addition, S′ = S and f∗μ∼ μ then f (x) ∈ suppμ.

Proof. Write Bδ(x) for an open ball, centered at x of radius δ > 0. For every ε > 0 there exists δ such that Bδ(x)⊂
f−1(Bε(f (x))) and hence 0 < μ(Bδ(x)) ≤ (f∗μ)(Bε(f (x))) so that f (x) ∈ suppf∗μ. If f∗μ ∼ μ then and 0 <

(f∗μ)(Bε(f (x)))�⇒ 0 < μ(Bε(f (x))) and so f (x) ∈ suppμ. �

Theorem 55. Let X∗P denote the law of X, a Borel measure on the Polish space C
0,p-var
0 ([0,1],G3(Rd)) where

p > 2ρ. Assume that H enjoys complementary Young regularity. Then12

supp[X∗P] = S3(H),

where support and closure are with respect to p-variation topology. If ω is Hölder dominated, i.e. ω([s, t]2)≤K|t−s|
for some constant K , we can use 1/p-Hölder topology instead of p-variation topology.

Proof. As a preliminary remark, note that S3(H) is meaningful since any h ∈ H has finite ρ-variation (Proposition 17)
and hence lifts canonicially to a G3(Rd)-valued paths (of finite ρ-variation) by iterated Young integration.

Step1:⊂-inclusion. Since X{1,...,n} := E[X·|F{1,...,n}] ∈ H almost surely and converges to X in the respective rough
path metrics, the first inclusion is clear.

Step2: ⊃-inclusion. The idea is to find at least one fixed ω̂ ∈ C([0,1],R
d) such that X(ω̂) ∈ supp[X∗P] and such

that there exists a (deterministic!) sequence (gn)⊂ H, which can and will depend on ω̂, such that T−gnX(ω̂)=X(ω̂−
gn)→X(0)= S3(0) in rough path metric. Having found such an element ω̂ (with suitable sequence gn) we can apply
Lemma 54 with μ as the law of X, a Borel measure on S = C

0,p-var
0 ([0,1],G3(Rd)) resp. C

0,1/p-Höl
0 ([0,1],G3(Rd)),

S′ = S and continuous function f :S→ S given by f : x �→ T−gnx; using that the law of ThX is equivalent to the law
of X, cf. Lemma 53, we conclude that T−gnX(ω̂) ∈ supp[X∗P]. This holds true for all n and by closeness of the support,
the limit X(0)= S3(0) must be in the support. The same argument shows that any further translate ThS3(0)= S3(h)

must be in the support and thus

supp[X∗P] ⊃ S3(H).

Passing the (p-variation resp. 1/p-Hölder rough path) closure on both sides then finishes the proof. It remains to see
how to find ω̂ with the required properties: X(ω̂) ∈ supp[X∗P] and T−gnX(ω̂)=X(ω̂− gn) hold true for almost every
ω̂ and require no further consideration. Furthermore, Theorem 51 allows us to pick ω̂ in a set of full measure such that

X(ω̂)= lim
m→∞S3

(
m∑

i=1

ξ(hk)

∣∣∣
ω̂
hk(·)

)
= lim

m→∞X{1,...,m}(ω̂),

X{n+1,n+2,...}(ω̂)→ S3(0).

It now suffices to set gn(·)=∑n
i=1 ξ(hk)|ω̂hk(·) ∈ H ↪→Cq-var; we then see that

X(ω̂− gn) = T−gnX(ω̂)= lim
m→∞T−gnX{1,...,m}(ω̂)= lim

m→∞X{n+1,...,m}(ω̂)

= X{n+1,n+2,...}(ω̂)→X(0)= S3(0),

as required, and this finishes the proof. �

12Thanks to H ↪→ Cρ-var and ρ ∈ [1,2), for any h ∈ H, S3(h) is canonically defined by iterated Young integration.
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Remark 56. (i) Theorem 55 may also be obtained by applying the abstract support theorem of Aida–Kusuoka–Stroock
[1], Corollary 1.13.

(ii) The assumption that H enjoys complementary Young regularity also appears naturally in the context of Malli-
avin calculus for Gaussian rough paths [6]. Thanks to Proposition 17, a sufficient condition is finite ρ-variation of
the covariance for ρ < 3/2; this covers, from very general principles, Brownian Motion and fractional Brownian Mo-
tion with H > 1/3. In fact, we can also cover the regime H ∈ (1/4,1/3]: it suffices to use Besov regularity of HH ,
the Cameron–Martin space associated to fractional Brownian Motion, combined with the Besov-variation embedding
theorem established in [18].

(iii) The assumption that H enjoys complementary Young regularity can be slightly relaxed. Namely, it suffices to
assume that a dense subset of H has the correct complementary regularity. More precisely, it suffices to assume that
for some q ≥ 1 with 1/p + 1/q > 1, there exists (hn) ⊂ Cq-var([0,1],R

d) ∩ H, which is dense in H. Indeed, using
a Gram–Schmidt orthonormalization procedure if necessary, we can assume without loss of generality that the (hn)

form an orthonormal basis in H; it then suffices to run through the proof of Theorem 55 using this particular – rather
than an arbitrary – orthonormal basis in H.

(iv) In fact, we conjecture that Theorem 55 holds true without any “complementary regularity” assumption. The
problem faced here is that, for fixed g ∈ H switching from X(ω̂ − g) to X(ω̂) cannot be realized as (continuous)
operation T−g on rough path space. We suspect that it will be necessary to construct a paired13 rough path (X,g), such
that translation can again be realized as continuous operation, as well as exhibiting Karhunen–Loève approximations
as “good” approximations in the sense of [9]; an extension of Lemma 46 to all ρ ∈ [1,2) may also be relevant here.
We hope to return to these matters in future work.

Appendix A: Lq -convergence for rough paths

The following lemma is an elementary consequence of the definition of ⊗ and equivalence of homogenous norms.

Lemma 57. Let g,h ∈GN(Rd). Then there exists C = C(N,d) such that

∥∥g−1 ⊗ h⊗ g
∥∥≤ C max

{‖h‖,‖h‖1/N‖g‖1−1/N
}
.

Recall the notions of d0 and d∞ as defined in Section 1.1.

Proposition 58 (d0/d∞ estimate). On the path-space C0([0,1],GN(Rd)) the distances d∞ and d0 ≡ d0-Höl are
locally 1/N -Hölder equivalent. More precisely, there exists C = C(N,d) such that

d∞(x,y)≤ d0(x,y)≤ C max
{
d∞(x,y), d∞(x,y)1/N

(‖x‖∞ + ‖y‖∞)1−1/N}
.

Proof. Only the second inequality requires a proof. We write gh instead of g⊗ h. For any s < t in [0,1],

x−1
st ys,t = x−1

st y−1
s xsxstx−1

t ytx−1
t yty−1

t xt .

By sub-additivity,∥∥x−1
st ys,t

∥∥ ≤ ∥∥x−1
st y−1

s xsxst

∥∥+ ∥∥x−1
t ytx−1

t yty−1
t xt

∥∥
= ∥∥v−1y−1

s xsv
∥∥+ ∥∥w−1x−1

t ytw
∥∥

13The notation (X,g) is abusive and what we really mean is a G3(Rd ⊕ R
d )-valued geometric rough path which projects on X and S3(g)

respectively. Note that (X,g) contains integrals of form
∫

g dX which are not well-defined Young-integrals but, in fact, Young–Wiener integrals
(i.e. constructed in L2-sense).
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with v = xst and w = y−1
t xt . Note that∥∥y−1

t xt

∥∥= ∥∥x−1
t yt

∥∥= d(xt ,yt )

and ‖v‖,‖w‖ ≤ ‖x‖∞ + ‖y‖∞. The conclusion now follows from Lemma 57. �

We recall the following simple interpolation result [17].

Lemma 59. For 0≤ α′ < α ≤ 1 there exists a constant C = C(α,α′) such that

dα′-Höl(x,y)≤ C
(‖x‖α-Höl ∨ ‖y‖α-Höl

)α′/α
d0(x,y)1−α′/α.

Similarly, for 1≤ p < p′ <∞ there exists C = C(p,p′) such that

dp′-var(x,y)≤C
(‖x‖p-var ∨ ‖y‖p-var

)p/p′
d0(x,y)1−p/p′ .

Corollary 60 (Lq -convergence in rough path metrics). Let Xn,X∞ be continuous GN(Rd)-valued process defined
on [0,1]. Let q ∈ [1,∞) and assume that for some α ∈ (0,1], (resp. p ≥ 1),

sup
1≤n≤∞

E
(∥∥Xn

∥∥q

α-Höl

)
<∞

(
resp. sup

1≤n≤∞
E

(∥∥Xn
∥∥q

p-var

)
<∞

)
(23)

and that we have uniform convergence in Lq(P) i.e.

d∞
(
Xn,X∞

)→ 0 in Lq(P). (24)

Then dα′-Höl(Xn,X∞) for α′ < α, (resp. dp′-var(Xn,X∞) and p′ > p), converges to zero in Lq(P).

Proof. From the d0/d∞ estimate there exists c1 > 0 such that

1

c1
d0

(
Xn,X∞

)≤ d∞
(
Xn,X∞

)+ d∞
(
Xn,X∞

)1/N (∥∥Xn
∥∥∞ + ∥∥X∞

∥∥∞)1−1/N

and so

1

c1
E

(
d0

(
Xn,X∞

)q)1/q ≤ E
(
d∞

(
Xn,X∞

)q)1/q +E
[
d∞

(
Xn,X∞

)q/N (∥∥Xn
∥∥∞ + ∥∥X∞

∥∥∞)q(1−1/N)]1/q
.

By Hölder’s inequality,

E
[
d∞

(
Xn,X

)q/N∥∥Xn
∥∥q(1−1/N)

∞
]≤ E

[
d∞

(
Xn,X

)q]1/N
E

[∥∥Xn
∥∥q

∞
](1−1/N)

.

Since ‖ ·‖∞ is dominated by Hölder and variation norms, assumption (23) is plentiful to bound E(‖Xn‖∞q) uniformly
in n. We thus obtain convergence of d0(Xn,X∞) to 0 in Lq. An almost identical application of Hölder’s inequality,
now using Lemma 59 instead of the d0/d∞ estimate, shows that dα′-Höl(Xn,X∞), resp. dp′-var(Xn,X∞), converges
to zero in Lq(P). �

The assumption (24) can often be weakened to pointwise convergence.

Corollary 61. Let Xn,X∞ be continuous GN(Rd)-valued process defined on [0,1]. Let q ∈ [1,∞) and assume that
we have pointwise convergence in Lq(P) i.e. for all t ∈ [0,1],

d
(
Xn

t ,X∞t
)→ 0 in Lq(P) as n→∞; (25)
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and uniform Hölder bounds, i.e.

sup
1≤n≤∞

E
(∥∥Xn

∥∥q

α-Höl

)
<∞

then for α′ < α,

dα′-Höl
(
Xn,X∞

)→ 0 in Lq(P).

Proof. From the previous corollary, we only need to show d∞-convergence in Lq . For any integer m,

21−q
E

[
d∞

(
Xn,X∞

)q] ≤ E

[
sup

i=1,...,m

d
(
Xn

i/m,X∞i/m

)q
]
+E

[
sup

|t−s|<1/m

(∥∥Xn
s,t

∥∥q + ∥∥X∞s,t
∥∥q)]

≤
m∑

i=1

E
(
d
(
Xn

i/m,X∞i/m

)q)+(
1

m

)αq

× 2 sup
1≤n≤∞

E
[∥∥Xn

∥∥q

α-Höl

]
.

By first choosing m large enough, followed by choosing n large enough we see that d∞(Xn,X∞)→ 0 in Lq as
required. �

Corollary 62. Let Xn,X∞ be continuous GN(Rd)-valued process defined on [0,1]. Let q ∈ [1,∞) and assume that
we have pointwise convergence in Lq(P) i.e. for all t ∈ [0,1],

d
(
Xn

t ,X∞t
)→ 0 in Lq(P) as n→∞;

uniform p-variation bounds,

sup
1≤n≤∞

E
(∥∥Xn

∥∥q

p-var

)
<∞ (26)

and a tightness condition

lim
ε→0

sup
n

E
(∣∣osc

(
Xn, ε

)∣∣q)= 0, (27)

where osc(X, ε)≡ sup|t−s|<ε ‖Xs,t‖, then

dp-var
(
Xn,X∞

)→ 0 in Lq(P).

Conditions (26) and (27) are implied by a Kolmogorov type tightness criterion: there exists a 1D control function ω

and a real number θ ≥ 1
2q
+ 1

p
such that for all s < t in [0,1],

sup
1≤n≤∞

E
(∣∣d(

Xn
s ,Xn

t

)∣∣q)1/q ≤ ω(s, t)θ . (28)

Proof. From our criterion for Lq -convergence in rough path metrics, we only need to show d∞-convergence in Lq,

which is an obvious consequence of the inequality

d∞
(
Xn,X∞

)≤ osc
(
Xn,1/m

)+ osc(X,1/m)+ sup
i=1,...,m

d
(
Xn

i/m,X∞i/m

)
.

Finally, the assumption (28) implies (26) and (27) as an application of Corollary 66. (The bound on θ comes from
q0 = (1/r − 1/p)−1/2.) �

Remark 63. One cannot get rid of the tightness condition. Consider fn(t) = 0 on [0,1/n] and a triangle peak of
height on [1/n,1]. Clearly, fn(t)→ 0 a.s. (and hence in measure) and the 1-variation of {fn} is uniformly bounded.
Yet, fn � 0 in any variation topology which is stronger than the uniform topology.
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Appendix B: Garsia–Rodemich–Rumsey

Similarly to the last appendix, but more quantitatively, we aim for conditions under which GN(Rd)-valued processes
are close in Hölder- (resp. variation-)/Lq(P) sense. When possible, we formulate regularity results in the more general
setting of paths (or processes) with values in a Polish space (E,d). The following result is well known (e.g. [35]) for
R-valued functions but the arguments extend trivially to the case of E-valued functions.

Theorem 64 (Garsia–Rodemich–Rumsey). Let Ψ and p be continuous strictly increasing functions on [0,∞) with
p(0)= Ψ (0)= 0 and Ψ (x)→∞ as x→∞. Given f ∈ C([0,1],E), if

∫ 1

0

∫ 1

0
Ψ

(
d(fs, ft )

p(|t − s|)
)

ds dt ≤ F, (29)

then for 0≤ s < t ≤ 1,

d(fs, ft )≤ 8
∫ t−s

0
Ψ−1x

(
4F

u2

)
dp(u).

In particular, if osc(f, δ)≡ sup|t−s|≤δ d(fs, ft ) denotes the modulus of continuity of f , we have

osc(f, δ)≤ 8
∫ δ

0
Ψ−1

(
4F

u2

)
dp(u).

Corollary 65. Let r ≥ 1 and α ∈ [0,1/r). Then, for any fixed q ≥ q0(r, α),

∫ 1

0

∫ 1

0

d(fs, ft )
q

|t − s|q/r
ds dt ≤Mq,

implies the existence of C = C(r,α) such that osc(f, δ)≤CδαM and

‖f ‖α-Höl;[0,1] ≤CM.

Proof. From Garsia–Rodemich–Rumsey with Ψ (x)= xq, p(u)= u1/r and F =Mq it follows that

d(fs, ft )≤ 8(4F)1/q

∫ t−s

0
u−2/q+1/r−1 du= 8(4F)1/q

1/r − 2/q
|t − s|1/r−2/q ≤ 32M

1/2r
|t − s|α

provided q is large enough so that 0 ≤ α < 1/r − 2/q and 1/r − 2/q > 1/(2r). Both statements follow. (One can
take q0 = (1/r − α)−1/2 ∨ 4r and C = 64/r . Alternatively, at least if α > 0, one can take q0 = (1/r − α)−1/2 and
C = 32/α.) �

Corollary 66. Let ω be a 1D control function and X a continuous (E,d)-valued stochastic process defined on [0,1].
Assume r ≥ 1 and 1/p ∈ [0,1/r). Then, for any fixed q ≥ q0(r,p) (one can take q0 = (1/r − 1/p)−1/2)∣∣d(Xs,Xt )

∣∣
Lq(P)

≤Mω(s, t)1/r for all s, t ∈ [0,1]

implies osc(X, δ)→ 0 in Lq(P) as δ→ 0 and there exists C = C(r,p) such that∣∣‖X‖p-var;[0,1]
∣∣
Lq(P)

≤ CMω(0,1)1/r .

If ω(s, t)≤ t − s for all s, t ∈ [0,1] then ‖X‖p-var;[0,1] above can be replaced by ‖X‖1/p-Höl;[0,1].
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Proof. We first consider the case of Hölder dominated control ω(s, t)≤ t − s. We set α := 1/p. From the preceding
corollary,

‖X‖q
α-Höl;[0,1] ≤ Cq

∫ 1

0

∫ 1

0

d(Xs,Xt )
q

|t − s|q/r
ds dt

and taking expectations gives

E
(‖X‖q

α-Höl;[0,1]
)≤ Cq

∫ 1

0

∫ 1

0

E(d(Xs,Xt )
q)

|t − s|q/r
ds dt ≤ (CM)q

which shows |‖X‖α-Höl;[0,1]|Lq(P) ≤ CM . The statement on osc(X, δ) obvious. We now discuss a general control ω.
At the price of replacing M by Mω(0,1)1/r , we assume ω(0,1) = 1. The function ω(t) := ω(0, t) maps [0,1]
continuously and increasingly onto [0,1] and there exists a continuous process Y such that Yω(t) =Xt for all t ∈ [0,1].
We then have, for all s, t ∈ [0,1],

E
(
d(Ys, Yt )

q
)1/q ≤M|t − s|1/r .

By the Hölder case just discussed, osc(Y, δ)→ 0 (in Lq ) and so osc(X, δ)→ 0 in Lq by (uniform) continuity of ω.
The Hölder case also takes care of the Lq -bound of ‖X‖p-var;[0,1], it suffices to note

‖X‖p-var;[0,1] = ‖Y‖p-var;[0,1] ≤ ‖Y‖1/p-Höl[0,1]. �

We now consider paths with values in GN(Rd) for which we can of increments, xs,t ≡ x−1
s ⊗ xt , and thus of

Hölder- and variation distance.

Corollary 67. Let r ≥ 1 and α ∈ [0,1/r). Then, for any q ≥ q0(r, α) and M > 0, δ ∈ (0,1),∫ 1

0

∫ 1

0

d(xs, xt )
q

|t − s|q/r
ds dt ≤Mq,

∫ 1

0

∫ 1

0

d(ys, yt )
q

|t − s|q/r
ds dt ≤Mq,

∫ 1

0

∫ 1

0

d(xs,t , ys,t )
q

|t − s|q/r
ds dt ≤ (δM)q,

implies the existence of C = C(r;N,d), θ = θ(r,α;N) > 0 such that

dα-Höl[0,1](x, y)≤ CδθM.

Proof. We first note that with α′ = (α + 1/r)/2 and assuming q ≥ q0(r, α) large enough, Corollary 65 implies

‖x‖0;[0,1] ≤ ‖x‖α-Höl;[0,1] ≤ ‖x‖α′-Höl;[0,1] ≤ c0M (30)

and the same estimate holds for y. Let us define zt = yt ⊗ x−1
t . Since zs,t ≡ z−1

s ⊗ zt = xt ⊗ (x−1
s,t ⊗ ys,t ) ⊗ x−1

t

Lemma 57 gives

1

c1
‖zs,t‖ ≤ d(xs,t , ys,t )∨ d(xs,t , ys,t )

1/N‖xt‖1−1/N .

Dividing by |t − s|1/rN and raising everything to power q yields(
1

c1

‖zs,t‖
|t − s|1/(rN)

)q

≤
(

d(xs,t , ys,t )

|t − s|1/r

)q

∨
(

d(xs,t , ys,t )
q

|t − s|q/r

)1/N

‖xt‖q(1−1/N)
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and after integration over (s, t) ∈ [0,1]2, using Hölder’s inequality on the last term, we arrive at(
1

c1

)q ∫ 1

0

∫ 1

0

( ‖zs,t‖
|t − s|1/(rN)

)q

ds dt

≤
∫ 1

0

∫ 1

0

(
d(xs,t , ys,t )

|t − s|1/r

)q

ds dt

+
(∫ 1

0

∫ 1

0

(
d(xs,t , ys,t )

q

|t − s|q/r

)
ds dt

)1/N(∫ 1

0

∫ 1

0
‖xt‖q ds dt

)1−1/N

≤ (δM)q + (δM)q/N
(‖x‖0-Höl;[0,1]

)q(1−1/N)

≤ (δM)q + (δM)q/N (c0M)q(1−1/N) by (30)

≤ (
c2δ

1/NM
)q

.

We can then apply Corollary 65 to z (with M replaced by c1c2δ
1/NM) to see that ‖z‖0;[0,1] ≤ c3δ

1/NM . On the other
hand, d(xs,t , ys,t )= ‖x−1

t ⊗ zs,t ⊗ xt‖ and Lemma 57 implies, again using (30),

d0(x, y)≤ c1 max
{‖z‖0-Höl,‖z‖1/N

0-Höl.‖x‖1−1/N

0-Höl

}≤ c4δ
1/N2

M.

We now use interpolation, Lemma 59, with Hölder exponents α < α′. For c5 = c5(α, r) and again using (30) we have

da-Höl(x, y) ≤ c5
(‖x‖α′-Höl ∨ ‖y‖α′-Höl

)α/α′
d0(x, y)1−α/α′

≤ c5(c0M)α/α′(c4δ
1/N2

M
)1−α/α′

= c6Mδθ with θ = θ(α, r,N) := α′ − α

α′N2
.

The proof is finished. �

Corollary 68. Assume that X,Y are continuous GN(Rd)-valued processes defined on [0,1]. Assume r ≥ 1 and
1/p ∈ [0,1/r). Then, for any fixed q ≥ q0(r,p) and M,δ ∈ (0,1),

E
(
d(Xs,Xt )

q
)≤ (

Mω(s, t)1/r
)q

,

E
(
d(Ys, Yt )

q
)≤ (

Mω(s, t)1/r
)q

,

E
(
d(Xs,t , Ys,t )

q
)≤ (

δMω(s, t)1/r
)q

,

implies the existence of C = C(r;N,d), θ = θ(r,p;N) > 0 such that∣∣dp-var;[0,1](X,Y )
∣∣
Lq(P)

≤ CδθM.

If ω(s, t)≤ t − s for all s, t ∈ [0,1] then dp-var;[0,1] above can be replaced by d1/p-Höl[0,1].

Proof. By a (deterministic) time-change argument, exactly as in the proof of Corollary 66, we may assume ω(s, t)=
t − s. From Corollary 67 there exists c1 = c1(r;N,d), θ = θ(r,p;N) such that for q ≥ q0(r,p) large enough(

1

c1δθ
d1/p-Höl[0,1](X,Y )

)q

≤
∫ 1

0

∫ 1

0

d(xs, xt )
q

|t − s|q/r
ds dt +

∫ 1

0

∫ 1

0

d(ys, yt )
q

|t − s|q/r
ds dt

+
(

1

δq

∫ 1

0

∫ 1

0

d(xs,t , ys,t )
q

|t − s|q/r
ds dt

)
.
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After taking expectations we see that (c1δ
θ )−q

E(d1/p-Höl[0,1](X,Y )q) ≤ 3Mq and the proof is easily finished. (One
can take C = 3c1.) �

Appendix C: Step 3 Lie algebra

As usual, e1, . . . , ed denotes the standard basis in R
d . A vector space basis of the Lie algebra g2(R

d) is given by{
(ei),

([ei, ej ]
)
i<j

}
and if x : [s, t]→R

d be a smooth path with signature S(x)s,t = xs,t then its log-signature satisfies, trivially,

π1(ln xs,t )=
∑

i

xi
s,t ei ∈R

d

and

π2(ln xs,t )= 1

2

∑
i<j

(
xi,j
s,t − xj,i

s,t

)[ei, ej ] ∈ so(d).

We aim for a similar understanding of g3(R
d). We leave the following simple technical lemma to the reader:

Lemma 69 (Step 3 Hall expansion). A vector space basis of the Lie algebra g3(R
d) is given by{

(ei),
([ei, ej ]

)
i<j

,
([

ei, [ej , ek]
])

j≤i<k or j<k≤i

}
for i, j, k ∈ {1, . . . , d}, known as Philip–Hall Lie basis. For any 3-tensor α, the following identity holds:∑

i,j,k

αi,j,k

[
ei, [ej , ek]

]= ∑
j<i<k

or
j<k<i

(αi,j,k − αi,k,j + αj,i,k − αj,k,i )
[
ei, [ej , ek]

]+∑
i �=j

(αi,i,j − αi,j,i)
[
ei, [ei, ej ]

]
.

Proposition 70. Let x : [s, t] →R
d be a smooth path with lift S(x)= x. Then its log-signature projected to the third

level, π3(ln xs,t ), expands to in the Hall-basis as follows.

π3(ln xs,t ) = 1

6

∑
j<i<k

or
j<k<i

(
xi,j,k
s,t + xj,i,k

s,t − 2xi,k,j
s,t + xk,i,j

s,t − 2xj,k,i
s,t + xk,j,i

s,t

)[
ei, [ej , ek]

]

+
∑
i �=j

{
xi,i,j
s,t + 1

12

∣∣xi
s,t

∣∣2
x

j
s,t −

1

2
xi
s,tx

i,j
s,t

}[
ei, [ei, ej ]

]
.

This identity remains valid for (weak) geometric rough paths.

Proof. Without loss of generalities x : [0,1]→R
d and x(0)= 0. The signature of concatenated paths is given by the

group product in the free group. Specializing to the step 3 group (viewed as subset of the enveloping tensor algebra),
the smooth path x = x|[0,t+dt] is the concatenation of x|[0,t] and x|[t,t+dt]. We have S(xt+dt )= S(xt )⊗ exp(dxt ) and
by sending dt → 0 it is easy to (re-)derive the usual control ODE for lifted paths

dxt =Ui(x)dxi,

where xt = S(x)t and Ui(x)= x⊗ ei . To understand the evolution in the step 3 Lie algebra we write

zi (t)= πi

(
lnS(x)t

)
, i = 1,2,3
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and using the Baker–Campbell–Hausdorff formula, we obtain14,

dz1(t)= dxt ,

dz2(t)= 1

2

[
z1(t),dxt

]
,

dz3(t)= 1

2

[
z2(t),dxt

]+ 1

12

[
z1(t),

[
z1(t),dxt

]]
,

which integrates iteratively to

z1(t)= xt ,

z2(t)= 1

2

∫
0<u<v<t

[dxu,dxv],

z3(t)= 1

4

∫
0<u<v<w<t

[[dxu,dxv],dxw

]+ 1

12

∫
0<u<t

[
xu, [xu, dxu]

]
.

In particular, the log-signature of x projected to the third level is precisely z3(1) and given by

1

4

∫
0<u<v<w<t

[[dxu,dxv],dxw

]+ 1

12

∫
0<u<t

[
xu, [xu,dxu]

]
= 1

4

∑
i,j,k

xi,j,k
[[ei, ej ], ek

]+ 1

12

∑
i,j,k

(
xi,j,k + xj,i,k

)[
ei, [ej , ek]

]

= 1

12

∑
i,j,k

(−3xj,k,i + xi,j,k + xj,i,k
)[

ei, [ej , ek]
]
.

Using the step 3 Hall expansion lemma, a few lines of computations give

6z3(1) =
∑

j<i<k

or
j<k<i

(
xi,j,k
t + xj,i,k

t − 2xi,k,j
t + xk,i,j

t − 2xj,k,i
t + xk,j,i

t

)[
ei, [ej , ek]

]

+
∑
i �=j

(−2xi,j,i
t + xi,i,j

t + xj,i,i
t

)[
ei, [ei, ej ]

]
.

When x is defined on [s, t] the last expression is, of course,

1

6

(
xi,i,j
s,t − 2xi,j,i

s,t + xj,i,i
s,t

)
and can be simplified with some calculus. We have

xi,i,j
s,t = 1

2

∫ t

s

∣∣xi
s,u

∣∣2 dx
j
u,

xi,j,i
s,t + xj,i,i

s,t =
∫

s<u<t

xi
s,ux

j
s,u dxi

u

= 1

2

∣∣xi
s,t

∣∣2
x

j
s,t −

1

2

∫
s<u<t

∣∣xi
s,u

∣∣2 dx
j
s,u (by integration by part),

14A recursion formula for zn appears in Chen’s seminal work [8].
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xj,i,i
s,t =

∫
s<u1<u2<u3<t

dx
j
u1 dxi

u2
dxi

u3

= 1

2

∫
s<u<t

∣∣xi
u,t

∣∣2
dx

j
u

= 1

2

∣∣xi
s,t

∣∣2
x

j
s,t − xi

s,t

∫
s<u<t

xi
s,u dx

j
s,u + 1

2

∫ t

s

∣∣xi
s,u

∣∣2 dx
j
u

and therefore

xi,i,j
s,t − 2xi,j,i

s,t + xj,i,i
s,t = xi,i,j

s,t − 2
(
xi,j,i
s,t + xj,i,i

s,t

)+ 3xj,i,i
s,t

= 3
∫ t

s

∣∣xi
s,u

∣∣2 dx
j
u + 1

2

∣∣xi
s,t

∣∣2
x

j
s,t − 3xi

s,tx
i,j
s,t .

For the final statement, it suffices to remark that a (weak) geometric rough path is, in particular, a pointwise limit of
smooth paths. We also note the following simple result. �

Lemma 71. Let a, b be two elements of the Lie algebra g3(R
d) and write ai = πi(a), bi = πi(b). Then

∣∣π2
(
ln

(
e−a ⊗ eb

))∣∣≤ ∣∣b2 − a2
∣∣+ ∣∣b1 − a1

∣∣∣∣b1
∣∣,

∣∣π3
(
ln

(
e−a ⊗ eb

))∣∣≤ ∣∣b3 − a3
∣∣+ ∣∣b2 − a2

∣∣∣∣b1
∣∣+ ∣∣b1 − a1

∣∣(∣∣b2
∣∣+ 1

3

∣∣a1
∣∣2 + 1

3

∣∣b1
∣∣2

)
.

Proof. We only deal with the level 3 estimate and leave the (similar, but easier) step 2 estimate to the reader. From
the Campbell–Baker–Hausdorff formula,

ln
(
e−a ⊗ eb

)=−a + b+ 1

2
[−a, b] + 1

12

[
a, [a, b]]+ 1

12

[
b, [b,−a]].

By antisymmetry of the bracket, [−a, b] = [b− a, b] so that

π3[−a, b] = π3[b− a, b] = π3
(
(b− a)⊗ b

)− π3
(
b⊗ (b− a)

)
and since

∣∣π3
(
(b− a)⊗ b

)∣∣= ∣∣(b2 − a2)⊗ b1 + (
b1 − a1)⊗ b2

∣∣
(and similar for π3(b⊗ (b− a))) we see that∣∣∣∣π3

(
1

2
[−a, b]

)∣∣∣∣≤ ∣∣(b2 − a2)∣∣∣∣b1
∣∣+ ∣∣b1 − a1

∣∣∣∣b2
∣∣.

The same reasoning applies to [a, [a, b]] = [a, [a, b− a]] and [b, [b,−a]] = [b, [b, b− a]] and gives |π3[a, [a, b]]| ≤
4|a1|2|b1 − a1|, |π3[b, [b,−a]]| ≤ 4|b1|2|b1 − a1|. Combing these estimates finishes the proof. �
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