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DYNAMICS OF THE TIME TO THE MOST RECENT COMMON
ANCESTOR IN A LARGE BRANCHING POPULATION

BY STEVEN N. EVANS1 AND PETER L. RALPH2

University of California at Berkeley and University of California at Davis

If we follow an asexually reproducing population through time, then
the amount of time that has passed since the most recent common ancestor
(MRCA) of all current individuals lived will change as time progresses. The
resulting “MRCA age” process has been studied previously when the popu-
lation has a constant large size and evolves via the diffusion limit of standard
Wright–Fisher dynamics. For any population model, the sample paths of the
MRCA age process are made up of periods of linear upward drift with slope
+1 punctuated by downward jumps. We build other Markov processes that
have such paths from Poisson point processes on R++ × R++ with intensity
measures of the form λ⊗μ where λ is Lebesgue measure, and μ (the “family
lifetime measure”) is an arbitrary, absolutely continuous measure satisfying
μ((0,∞)) = ∞ and μ((x,∞)) < ∞ for all x > 0. Special cases of this con-
struction describe the time evolution of the MRCA age in (1 +β)-stable con-
tinuous state branching processes conditioned on nonextinction—a particular
case of which, β = 1, is Feller’s continuous state branching process condi-
tioned on nonextinction. As well as the continuous time process, we also
consider the discrete time Markov chain that records the value of the con-
tinuous process just before and after its successive jumps. We find transition
probabilities for both the continuous and discrete time processes, determine
when these processes are transient and recurrent and compute stationary dis-
tributions when they exist. Moreover, we introduce a new family of Markov
processes that stands in a relation with respect to the general (1 + β)-stable
continuous state branching process and its conditioned version that is similar
to the one between the family of Bessel-squared diffusions and the uncondi-
tioned and conditioned Feller continuous state branching process.

1. Introduction. Any asexually reproducing population has a unique most re-
cent common ancestor, from whom the entire population is descended. In sexually
reproducing species, the same is true for each nonrecombining piece of DNA. For
instance, our “mitochondrial Eve,” from whom all modern-day humans inherited
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their mitochondrial DNA, is estimated to have lived around 180,000 years ago [19]
while our “Y-chromosomal Adam” is estimated to have lived around 50,000 years
ago [33]. There have also been efforts to estimate the time since the MRCA lived
(which we will also call the “age of the MRCA”) in populations of other organisms,
particularly pathogens [32, 34]. These studies, using sophisticated models incor-
porating of demographic history, are focused on estimating the age of the MRCA
at a single point in time (the present).

As time progresses into the future, eventually the mitochondrial lineages of all
but one of the daughters of the current mitochondrial Eve will die out, at which
point the new mitochondrial Eve will have lived somewhat later in time. The age of
the MRCA is thus a dynamically evolving process that exhibits periods of upward
linear growth separated by downward jumps.

Recently, [26] and [29] independently investigated the MRCA age process for
the diffusion limit of the classical Wright–Fisher model. The Wright–Fisher model
is perhaps the most commonly used model in population dynamics: each individual
in a fixed size population independently gives birth to an identically distributed
random number of individuals (with finite variance), and after the new offspring
are produced, some are chosen at random to survive so that the total population
size remains constant. The diffusion limit arises by letting the population size go to
infinity and taking the time between generations to be proportional to the reciprocal
of the population size.

In this paper, we investigate the MRCA age process for a parametric family
of population models in a setting in which the population size varies with time,
and, by suitable choice of parameters, allows control over the extent to which
rare individuals can have large numbers of offspring that survive to maturity. The
model for the dynamics of the population size is based on the critical (1 + β)-
stable continuous state branching process for 0 < β ≤ 1. These processes arise as
scaling limits of Galton–Watson branching processes as follows.

Write Z
(n)
t for the number of individuals alive in a critical continuous time

Galton–Watson branching process with branching rate λ and offspring distribu-
tion γ . The distribution γ has mean 1 (and thus, the process is “critical”). Suppose
that if W is a random variable with distribution γ , then the random walk with steps
distributed as the random variable (W − 1) falls into the domain of attraction of
a stable process of index 1 + β ∈ (1,2]. The case β = 1 corresponds to γ having
finite variance and the random walk converging to Brownian motion after rescal-
ing. Set X

(n)
t = n−1/βZ

(n)
t and suppose that X

(n)
0 → x as n → ∞. Then, up to

a time-rescaling depending on λ and the scaling of the stable process above, the
processes X(n) converge to a Markov process X that is a critical (1 + β)-stable
continuous state branching process, and whose distribution is determined by the
Laplace transform

E[e−θXt |X0 = x] = exp
(
− θx

(1 + θβt)1/β

)
.(1.1)
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If β = 1, this is Feller’s critical continuous state branching process [17, 22]. (Note
that time here is scaled by a factor of 2 relative to some other authors so that the

generator of our “Feller continuous state branching process” is x ∂2

∂x2 .)
Let τ = inf{t > 0 :Xt = 0} denote the extinction time of X (it is not hard to

show that Xt = 0 for all t ≥ τ ). Taking θ → ∞ in (1.1) gives

P{τ > t |X0 = x} = 1 − exp
(
− x

t1/β

)
,

so X dies out almost surely. However, it is possible to condition X to live forever
in the following sense:

lim
T →∞ E[f (Xt)|X0 = x, τ > T ] = 1

x
E[f (Xt)Xt |X0 = x].

Thus if Pt(x
′, dx′′) are the transition probabilities of X, then there is a Markov

process Y with transition probabilities

Qt(y
′, dy′′) = 1

y′ Pt(y
′, y′′)y′′.

The process Y is the critical (1 + β)-stable continuous state branching process X

conditioned on nonextinction. The distribution of Yt is determined by its Laplace
transform

E[exp(−θYt )|Y0 = y] = exp
(
− yθ

(tθβ + 1)1/β

)
(1 + tθβ)−(β+1)/β(1.2)

(see Section 6). Moreover, it is possible to start the process Y from the initial
state Y0 = 0, and the formula (1.2) continues to hold for y = 0. The super-process
generalization of this construction was considered for β = 1 in [11, 14, 15] and for
general β in [16].

For β = 1, the conditioned process Y can be described informally as a single
“immortal particle” constantly throwing off infinitesimally small masses with each
mass then evolving according to the dynamics of the unconditioned process. These
infinitesimal masses can be interpreted as the single progenitors of families whose
lineage splits from the immortal particle at the birth time of the progenitor and are
eventually doomed to extinction. Most such families die immediately, but a rare
few live for a noninfinitesimal amount of time. More formally, there is a σ -finite
measure ν on the space of continuous positive excursion paths

E 0 := {u ∈ C(R+,R+) :u0 = 0 & ∃γ > 0 s.t. ut > 0 ⇔ 0 < t < γ },
such that if 
 is a Poisson point process on R+ × E 0 with intensity λ ⊗ ν where λ

is Lebesgue measure, and (X̄t )t≥0 is an independent copy of X begun at X̄0 = y,
then the process (

X̄t + ∑
(s,u)∈


u(t−s)∨0

)
t≥0

(1.3)
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has the same distribution as (Yt )t≥0 begun at Y0 = y (see [15]). A point (s, u) ∈

 corresponds to a family that grows to nonnegligible size; the time s records
the moment the family splits off from the immortal particle, and the value ur of
the trajectory u gives the size of the family r units of time after it split off. The
family becomes extinct after the period of time γ (u) := inf{r > 0 :u(t) = 0,∀t >

r}. The σ -finite measure ν may be identified explicitly, but it suffices to remark
here that it is Markovian with transition probabilities the same as those of the
unconditioned process X—in other words, ν arises from a family of entrance laws
for the semigroup of X. The process (X̄t )t≥0 records the population mass due
to descendants of individuals other than the immortal particle who are present at
time 0.

An analogous description of the conditioned process Y for the case β ∈ (0,1) is
presented in [16]. There is again a single immortal lineage, but now families split
off from that lineage with a noninfinitesimal initial size, reflecting the heavy-tailed
offspring distributions underlying these models. More precisely, a decomposition
similar to (1.3) holds, but the Poisson point process 
 is now on R+ × E where
E = {u ∈ D(R+,R+) :∃γ > 0 s.t. ut > 0 ⇔ 0 ≤ t < γ }, the set of càdlàg paths
starting above zero that eventually hit zero. The nondecreasing process (Mt)t≥0
where

Mt := ∑
(s,u)∈
∩[0,t]×E

u0

is the total of the initial family sizes that split off from the immortal particle in the
time interval [0, t]. It is a stable subordinator of index β .

Suppose now that β ∈ (0,1] is arbitrary. Take Y0 = 0 so that X̄t ≡ 0 in the
decomposition (1.3) and all “individuals” belong to families that split off from
the immortal particle at times s ≥ 0. Extend the definition of γ (u) given above
for u ∈ E0 to u ∈ E in the obvious way. The individuals, besides the immortal
particle alive at time t > 0, belong to families that correspond to the subset At :=
{(s, u) ∈ 
 : 0 ≤ t − s < γ (u)} of the random set 
. At time t , the amount of
time since the most recent common ancestor of the entire population lived is At :=
sup{t − s : (s, u) ∈ At }. As depicted in Figure 1, the MRCA age process (At )t≥0
has saw-tooth sample paths that drift up with slope 1 until the current oldest family
is extinguished, at which time they jump downward to the age of the next-oldest
family.

It is not necessary to know the Poisson point process 
 in order to construct
the MRCA age process (At )t≥0. Clearly, it is enough to know the point process
� on R+ × R++ given by � := {(s, γ (u)) : (s, u) ∈ 
}. Indeed, if we define the
left-leaning wedge with apex at (t, x) to be the set

�(t, x) := {(u, v) ∈ R
2 :u < t & u + v > t + x},(1.4)

then

At = t − inf{s :∃x > 0 s.t. (s, x) ∈ � ∩ �(t,0)}
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FIG. 1. The points of � are marked “x”; the sample path of the process A is drawn with a solid line;
the oldest extant family at time t is represented by the point in � labeled “O” and the left-leaning
wedge �(t,0) is the darkly shaded region with apex at (t,0). At time T , the family represented by O
will die out and the family represented by N will contain the MRCA because O is on the boundary of
(the lightly shaded) �(T ,0). If the coordinates of O are (u, y) and the coordinates of N are (v, z),
then the size of the jump that A makes at T is AT −AT − = u−v = (T −v)− (T −u) = (T −v)−y.

(see Figure 1).
Note that � is a Poisson point process with intensity λ ⊗ μ where μ is the

push-forward of ν by γ ; that is, μ((t,∞)) = ν({u :γ (u) > t}). We will show in
Section 5 that μ((t,∞)) = (1 + β)/(βt).

With these observations in mind, we see that if � is now any Poisson point
process on R+ × R++ with intensity λ ⊗ μ where μ is any measure on R++ with
μ(R++) = ∞ and 0 < μ((x,∞)) < ∞ for all x > 0, then the construction that
built (At )t≥0 from the particular point process � considered above will still apply
and produce an R+-valued process with saw-tooth sample paths. We are therefore
led to the following general definition.

DEFINITION 1.1. Let � be a Poisson point process on R+ × R++ with inten-
sity measure λ ⊗ μ where λ is Lebesgue measure and μ is a σ -finite measure on
R++ with μ(R++) = ∞ and μ((x,∞)) < ∞ for all x > 0. Define (At )t∈R+ by

At := t − inf{s ≥ 0 :∃x > 0 s.t. (s, x) ∈ � ∩ �(t,0)},
where �(t,0) is defined by (1.4), and At = 0 if � ∩ �(t,0) is empty.

We will suppose from now on that we are in this general situation unless we
specify otherwise. We will continue to use terminology appropriate for the ge-
nealogical setting and refer to (At )t≥0 as the MRCA age process and μ as the
lifetime measure. We will assume for convenience that the measure μ is absolutely
continuous with a density m with respect to Lebesgue measure that is positive
Lebesgue almost everywhere. It is straightforward to remove these assumptions.
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The strong Markov property of the Poisson point processes � implies that
(At )t≥0 is a time-homogeneous strong Markov process. In particular, there is a
family of probability distributions (Px)x∈R+ on the space of R+-valued càdlàg
paths with P

x interpreted in the usual way as the “distribution of (At )t≥0 started
from A0 = x.” More concretely, the probability measure P

x is the distribution of
the process (Ax

t )t≥0 defined as follows. Let �x be a point process on [−x,∞) ×
R++ that has the distribution of the random point set {(t − x, y) : (t, y) ∈ �} ∪
{(−x,Z)} where Z is an independent random variable that is defined on the same
probability space (�, F ,P) as the point process �, takes values in the interval
(x,∞) and has distribution

P{Z ≤ z} = μ((x, z])/μ((x,∞)).

Then we can define

Ax
t := t − inf{s ≥ −x :∃y > 0 s.t. (s, y) ∈ �x ∩ �(t,0)}, t ≥ 0,

where we adopt the convention that Ax
t := 0 if the set above is empty [see the proof

of part (a) of Theorem 1.1 below for further information]. From now on, when we
speak of the process (At )t≥0 we will be referring either to the process constructed
as in Definition 1.1 from the Poisson process � defined on some abstract probabil-
ity space (�, F ,P) or to the canonical process on the space of càdlàg R+-valued
paths equipped with the family of probability measures (Px)x≥0. This should cause
no confusion.

We note in passing that the analogue of (At )t≥0 in the constant population size
Wright–Fisher setting is not Markov (see Remark 4.1.3 of [26]).

We prove the following properties of the process (At )t≥0 in Section 2.

THEOREM 1.1. (a) The transition probabilities of the time-homogeneous
Markov process (At )t≥0 have an absolutely continuous part

P
x{At ∈ dy} = μ((x, x + t])

μ((x,∞))
exp

(
−

∫ x+t

y
μ((z,∞)) dz

)
μ((y,∞)) dy,

for y < x + t and a single atom

P
x{At = x + t} = μ((x + t,∞))

μ((x,∞))
.

(b) The total rate at which the process (At )t≥0 jumps from state x > 0 is

m(x)

μ((x,∞))
,

and when the process jumps from state x > 0, the distribution of the state to
which it jumps is absolutely continuous with density

y �→ exp
(
−

∫ x

y
μ((z,∞)) dz

)
μ((y,∞)), 0 < y < x.
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(c) The probability P
0{∃t > 0 :At = 0} that the process (At )t≥0 returns to the

state zero is positive if and only if∫ 1

0
exp

(∫ 1

x
μ((y,∞)) dy

)
dx < ∞.

(d) If ∫ ∞
1

exp
(
−

∫ x

1
μ((y,∞)) dy

)
dx = ∞,

then for each x > 0 the set {t ≥ 0 :At = x} is P
x-almost surely unbounded.

Otherwise, limt→∞ At = ∞, P
x-almost surely, for all x ≥ 0.

(e) A stationary distribution π exists for the process (At )t≥0 if and only if∫ ∞
1

μ((z,∞)) dz < ∞,

in which case it is unique, and

π(dx) = μ((x,∞)) exp
(
−

∫ ∞
x

μ((z,∞)) dz

)
dx.

(f) If (At )t≥0 has a stationary distribution π , then

dTV(Px{At ∈ ·}, π) ≤ 1 − exp
(
−

∫ ∞
t+x

μ((y,∞)) dy

)
× μ([x, x + t))

μ([x,∞))
,

where dTV denotes the total variation distance. In particular, the distribution
of At under P

x converges to π in total variation as t → ∞.

Specializing Theorem 1.1 to the case when A is the MRCA age process of the
conditioned critical (1 + β)-stable continuous state branching process gives parts
(a) to (d) of the following result. Part (e) follows from an observation that a space–
time rescaling of this MRCA age process is a time-homogeneous Markov process
that arises from another Poisson process by the general MRCA age construction
of Definition 1.1. The proof is in Section 5.

COROLLARY 1.1. Suppose that A is the MRCA age process associated with
the critical (1 + β)-stable continuous state branching process.

(a) The transition probabilities of the process A have an absolutely continuous
part

P
x{At ∈ dy} = (1 + β)ty1/β

β(x + t)2+1/β
dy, 0 < y < x + t,

and a single atom

P
x{At = x + t} = x

x + t
.
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(b) The total rate at which the process A jumps from the state x > 0 is 1/x, and
when it jumps from state x > 0, the distribution of the state to which it jumps
is absolutely continuous with density

(1 + 1/β)
y1/β

x1+1/β
, 0 < y < x.

(c) The probability P
0{∃t > 0 :At = 0} that the process A returns to the state zero

is 0.
(d) For each x ≥ 0, limt→∞ At = ∞, P

x-almost surely.
(e) The process

(e−tAet )t∈R

indexed by the whole real line is a time-homogeneous Markov process under
P

x for any x ≥ 0, and it is stationary when x = 0. Moreover, At/t converges
in distribution to the Beta(1 + 1/β,1) distribution as t → ∞ under P

x for
any x ≥ 0, and At/t has the Beta(1 + 1/β,1) distribution for all t > 0 when
x = 0.

Note that the sample paths of (At )t≥0 have local “peaks” immediately before
jumps and local “troughs” immediately after. We investigate the discrete time
Markov chain of successive pairs of peaks and troughs in Section 4. We also con-
sider the jump heights and inter-jump intervals and describe an interesting duality
between these sequences in Section 3.

Finally, recall that the Bessel-squared process in dimension γ , where γ is an ar-
bitrary nonnegative real number, is the R+-valued diffusion process with infinites-
imal generator 2x d2/dx2 + γ d/dx. When γ is a positive integer, such a process
has the same distribution as the square of the Euclidean norm of a Brownian mo-
tion in R

γ . Feller’s critical continuous state branching process is thus the zero-
dimensional Bessel-squared process, modulo a choice of scale in time or space. It
was shown in Example 3.5 of [28] that for 0 ≤ γ < 2, the Bessel-squared process
with dimension γ conditioned on never hitting zero is the Bessel-squared process
with dimension 4 − γ . Thus for β = 1, the conditioned process Y is the four-
dimensional Bessel-squared process. We introduce a new family of processes in
Section 6 that are also indexed by a nonnegative real parameter and play the role
of the Bessel-squared family for values of β other than 1. These processes will be
studied further in a forthcoming paper.

We end this introduction by commenting on the connections with previous
work. First, we may think of each point (s, x) ∈ � as a “job” that enters a queue
with infinitely many servers at time s and requires an amount of time x to com-
plete. We thus have a classical M/G/∞ queue [31], except we are assuming that
the total arrival rate of jobs of all kinds is infinite. With this interpretation, the
quantity At is how long the oldest job at time t has been in the queue. Properties
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of such M/G/∞ queues with infinite arrival rates have been studied (see, for ex-
ample, [10]), but the age of the oldest job does not appear to have been studied in
this context.

Second, note that the process (At )t≥0 is an example of a piecewise deterministic
Markov process: it consists of deterministic flows punctuated by random jumps.
Such processes were introduced in [5] and studied further in [6] (see also [20],
where the nomenclature jumping Markov processes is used). The general proper-
ties of such processes have been studied further in, for example, [3, 4, 7].

Last, piecewise deterministic Markov processes like (At )t≥0 that have periods
of linear increase interspersed with random jumps have been used to model many
phenomena, such as stress in an earthquake zone [2], congestion in a data trans-
mission network [8] and growth-collapse [1]. They also have appeared in the study
of the additive coalescent [12] and R-tree-valued Markov processes [13].

2. Proof of Theorem 1.1. (a) Suppose that (At )t≥0 is constructed from � as
in Definition 1.1. For s ≥ x consider the conditional distribution of As+t given
As = x. The condition As = x is equivalent to the requirements that there is a
point (s − x,Z) in � for some Z > x and that, furthermore, there are no points
of � in the left-leaning wedge �(s − x, x). The conditional probability of the
event {Z > z}, given As = x, is μ((z,∞))/μ((x,∞)) for z ≥ x. If Z > x + t ,
then As+t = x + t . Otherwise, As+t < x + t . The second claim of part (a) follows
immediately.

Now consider P{As+t ∈ dy|As = x} for y < x + t . This case is depicted in
Figure 2. By construction, As+t = y if and only if there is a point (s + t − y,W) ∈
� for some W > y, and there are no points of � in �(s + t − y, y). From above,
the condition As = x requires there to be no points of � in the wedge �(s − x, x)

FIG. 2. The computation of P{As+t ∈ dy|As = x}.
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(the lightly shaded region in Figure 2). Therefore, if As = x, then As+t = y if and
only if Z ≤ x + t , there are no points of � in the darkly shaded region of Figure 2
and there is a point of � of the form (s + t − y,w) with w > y.

Now, the conditional probability of the even {Z ≤ x + t} given As = x is

μ((x, x + t])
μ((x,∞))

.

The probability that no points of � are in the darkly shaded region is

exp
(
−

∫ x+t

y
μ((u,∞)) du

)
.

The probability that � has a point in the infinitesimal region [s + t − y, s + t −
y + dy] × (y,∞) is μ((y,∞)) dy. Multiplying these three probabilities together
gives the first claim of part (a).

(b) Both claims follow readily by differentiating the formulae in (a) at t = 0. It
is also possible to argue directly from the representation in terms of �.

(c) Suppose that (At )t≥0 is constructed from � as in Definition 1.1. Note that

{t > 0 :At = 0} = R++
∖ ⋃

(t,x)∈�

(t, t + x).

The question of when such a “Poisson cut out” random set is almost surely empty
was asked in [23], and the necessary and sufficient condition presented in part (c)
is simply the one found in [30] (see also [18]).

(d) For x > 0, the random set {t ≥ 0 :At = x} is a discrete regenerative set under
P

x that is not almost surely equal to {0}. Hence this set is a renewal process with an
inter-arrival time distribution that possibly places some mass at infinity; in which
case, the number of arrivals is almost surely finite with a geometric distribution,
and the set is almost surely bounded.

Suppose that the set {t ≥ 0 :At = x} is P
x-almost surely unbounded for some

x > 0. Let 0 = T0 < T1 < · · · be the successive visits to x. It is clear that P
x{∃t ∈

[0, T1] :At = y} > 0 for any choice of y > 0 and hence, by the strong Markov
property, the set {t ≥ 0 :At = y} is also P

x-almost surely unbounded. Another
application of the strong Markov property establishes that the set {t ≥ 0 :At = y}
is P

y -almost surely unbounded. Thus the set {t ≥ 0 :At = x} is either unbounded
P

x-almost surely for all x > 0 or bounded P
x -almost surely for all x > 0.

Recall that away from the set {t ≥ 0 :At = 0} the sample paths of A are piece-
wise linear with slope 1. It follows from the coarea formula (see, e.g., Section 3.8
of [24]) that ∫ ∞

0
f (At) dt =

∫ ∞
0

f (y)#{t > 0 :At = y}dy

for a Borel function f : R+ → R+. Hence by Fubini’s theorem,∫ ∞
0

f (y)Ex[#{t > 0 :At = y}]dy =
∫ ∞

0
f (y)

∫ ∞
0

P
x{At ∈ dy}

dy
dt dy
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for any x > 0. It follows from the continuity of the transition probability densities
that

E
x[#{t > 0 :At = y}] =

∫ ∞
0

P
x{At ∈ dy}

dy
dt

for all x, y > 0 and, in particular, that the expected number of returns to x > 0
under P

x is ∫ ∞
0

P
x{At ∈ dx}

dx
dt.

Using the expression from part (a) and the argument above, this quantity is infinite,
and hence the number of visits is P

x-almost surely infinite, if and only if∫ ∞
1

exp
(
−

∫ u

1
μ((y,∞)) dy

)
du = ∞.

If the set {t ≥ 0 :At = x} is P
x-almost surely bounded for all x > 0, then by an

argument similar to the above, the set {t ≥ 0 :At = y} is P
x-almost surely bounded

for all x, y > 0. It follows that, for all x > 0, P
x-almost surely all of the sets

{t ≥ 0 :At = y} are finite. This implies that limt→∞ At exists P
x-almost surely,

and the limit takes values in the set {0,∞}. However, it is clear from the Poisson
process construction that 0 does not occur as a limit with positive probability.

(e) Suppose there exists a probability measure π on R+ such that∫
R+

P{At ∈ dy|A0 = x}π(dx) = π(dy), y ∈ R+.

Taking t → ∞ in part (a) gives

π(dy) = lim
t→∞

∫
R+

μ((x, x + t])
μ((x,∞))

× exp
(
−

∫ x+t

y
μ((u,∞)) du

)
π(dx)μ((y,∞)) dy

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if
∫ ∞
y

μ((u,∞)) du = ∞,

exp
(
−

∫ ∞
y

μ((u,∞)) du

)
μ((y,∞)) dy,

otherwise.

Therefore, a stationary probability distribution exists if and only if
∫ ∞
y μ((u,

∞)) du < ∞, and if a stationary distribution exists, then it is unique.
(f) It will be useful to begin with a concrete construction of a stationary

version of the process A in terms of a Poisson point process. Suppose that∫ ∞
x μ((u,∞)) du < ∞ for all x > 0, so that a stationary distribution exists. Let
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�↔ be a Poisson point process on R × R++ with intensity measure λ ⊗ μ. Define
(A↔

t )t∈R by

A↔
t := t − inf{s :∃x > 0 s.t. (s, x) ∈ �↔ ∩ �(t,0)}.

The condition on μ ensures that almost surely any wedge �(t, x) with x > 0 will
contain only finitely many points of �↔, and so (A↔

t )t∈R is well defined. The
process (A↔

t )t∈R is stationary and Markovian, with the same transition probabili-
ties as (At )t≥0.

Recall the construction of the process Ax started at x for x > 0 that was de-
scribed preceding the statement of Theorem 1.1. Construct the point process �x

that appears there by setting �x := {(t, y) ∈ �↔ : t > −x} ∪ {(−x,Z)} where Z is
an independent random variable with values in the interval (x,∞) and distribution
P{Z > z} = μ((z,∞))/μ((x,∞)).

By construction, Ax
t = A↔

t for all t ≥ T where T is the death time of all families
alive at time −x in either process:

T := inf{t > 0 :Z ≤ t + x and �↔ ∩ �(−x, t + x) = ∅}.
Thus

dTV(Px{At ∈ ·}, π) ≤ P{Ax
t �= A↔

t }
≤ P{T > t}
= 1 − P{Z ≤ t + x}P{�↔ ∩ �(−x, t + x) = ∅}

and part (f) follows.

3. Duality and time-reversal. Suppose in this section that
∫ ∞
x μ((y,

∞)) dy < ∞ for all x > 0, so that, by part (e) of Theorem 1.1, the process A has
a stationary distribution. Let (A↔

t )t∈R be the stationary Markov process with the
transition probabilities of A that was constructed from the Poisson point process
�↔ in the proof of part (f) of Theorem 1.1.

Define the dual process (Â↔
t )t∈R by Â↔

t := inf{s > 0 :�(t, s)∩�↔ = ∅}. See
Figures 3 and 4. Thus Â↔

t is the amount of time that must elapse after time t until
all families alive at time t have died out, or, equivalently, until the MRCA for the
population lived at some time after t . The càdlàg R+-valued process (Â↔

t )t∈R has
saw-tooth sample paths that drift down with slope −1 between upward jumps.

PROPOSITION 3.1. The dual process, (Â↔
t )t∈R, has the same distribution as

the time-reversed process, (Ā↔
t )t∈R, where Āt := limu↓t A

↔−u.

PROOF. Define bijections ϕ and σ of R × R++ by ϕ(t, x) := (t + x, x)

and σ(t, x) := (−t, x). In the usual manner, we may also think of ϕ and σ as
mapping subsets of R × R++ to other subsets of R × R++. Note that ϕ maps
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FIG. 3. The process A↔
t and the dual process Â↔

t . The points in the shaded area represent the
families alive at time t , and the solid line is the sample path of A↔

t . The point marked “O” is the
oldest living family at time t ; the point marked “Y” is the family extant at time t that will live the
longest into the future.

FIG. 4. The (coupled) processes A↔ and Â↔ for the same set of family lifetimes (the “x”s). The
paths of Â↔ begin at points in �(�↔) and descend; while the paths of A↔ ascend to points in
ϕ(�(�↔)). The mapping ϕ is shown by the horizontal dotted lines in the lower diagram.
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left-leaning wedges to right-leaning wedges, and σ maps right-leaning wedges to
left-leaning wedges. Thus the composition σ ◦ ϕ maps left-leaning wedges to left-
leaning wedges. More precisely,

σ ◦ ϕ(�(t, x))

= {σ ◦ ϕ(s, y) : (s, y) ∈ �(t, x)}
= {(−(s + y), y

)
: s < t & s + y > t + x

}
(3.1)

= {(u, v) :u < −(t + x) & u + v > −t = −(t + x) + x}
= �(σ ◦ ϕ(t, x)),

where we stress that �(σ ◦ ϕ(t, x)) is the left-leaning wedge with its apex at the
point σ ◦ ϕ(t, x) ∈ R × R++. Define a map � that takes a subset of R × R++ and
returns another such subset by

�(S) := {(t, x) ∈ S :�(t, x) ∩ S = ∅}.
The points of �(�↔) correspond precisely to those families that at some time

will be the oldest surviving family in the population. These points determine the
jumps of both the MRCA process and the dual process: as can be seen with the
help of Figure 4, the linear segments of the paths of the dual process (Â↔

t )t∈R

each begin at a point in �(�↔) and descend with slope −1 whereas the linear
segments of the paths of the MRCA process (A↔

t )t∈R ascend with slope +1 to
points in ϕ ◦ �(�↔).

This implies that the path of the time-reversed process, (Āt )t∈R, begin at points
in σ ◦ ϕ ◦ �(�↔) and descend with slope −1, and so the points of σ ◦ ϕ ◦ �(�↔)

determine the path of (Āt )t∈R in the same way that the points of �(�↔) determine
the path of (Ât )t∈R. Therefore, all we need to do is show that σ ◦ ϕ ◦ �(�↔) has
the same distribution as �(�↔).

To see this, first note that, for an arbitrary subset S ⊂ R × R++,

σ ◦ ϕ ◦ �(S)

= {σ ◦ ϕ(t, x) : (t, x) ∈ S and �(t, x) ∩ S = ∅}
= {

(t, x) :ϕ−1 ◦ σ−1(t, x) ∈ S and �(
ϕ−1 ◦ σ−1(t, x)

) ∩ S = ∅
}

= {(t, x) :ϕ−1 ◦ σ−1(t, x) ∈ S and ϕ−1 ◦ σ−1(�(t, x)) ∩ S = ∅}
= {(t, x) : (t, x) ∈ σ ◦ ϕ(S) and �(t, x) ∩ σ ◦ ϕ(S) = ∅}
= � ◦ σ ◦ ϕ(S),

where the third equality follows from identity (3.1). Thus σ ◦ ϕ ◦ �(�↔) = � ◦
σ ◦ ϕ(�↔). However, both maps ϕ and σ preserve the measure λ ⊗ μ and hence
σ ◦ ϕ(�↔) has the same distribution as �↔. Therefore, σ ◦ ϕ ◦ �(�↔) has the
same distribution as �(�↔), as required. �
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REMARK 3.1. There is an interesting connection between the jump sizes and
the inter-jump intervals, stemming from the observation that the paths of A↔ and
Â↔ have the same sequences of “trough” and “peak” heights, while the roles of
the jump sizes and inter-jump intervals for the two are exchanged. The following
situation is depicted in Figure 4. To explain the connection, suppose that T ∈ {t ∈
R :A↔

t− �= A↔
t } is a jump time for the process A↔. Let T < := sup{t < T :A↔

t− �=
A↔

t } and T > := inf{t > T :A↔
t− �= A↔

t } be the jump times on either side of T . Put
L := A↔

T − and R := A↔
T , and define L<, R<, L> and R> as the analogous left

limits and values of A↔ at the times T < and T >. Write � := L−R for the size of
the jump at time T and H := T − T < for the length of the time interval since the
previous jump. Observe that T − L is a jump time for the dual process Â↔ with
Â↔

(T −L)− = R< and Â↔
(T −L) = L. Moreover,

H = L − R< = Â↔
(T −L) − Â↔

(T −L)−
and

� = (T > − L>) − (T − L) = inf{t > T − L : Â↔
t− �= Â↔

t } − (T − L).

Note that the map T �→ T − L sets up a monotone bijection between the jump
times of the process A↔ and those of the process Â↔. It thus follows from Propo-
sition 3.1 that the point processes,

{(T , T − T <,A↔
T − − A↔

T ) :A↔
T − �= A↔

T }
and

{(T ,A↔
T − − A↔

T , T − T <) :A↔
T − �= A↔

T },
have the same distribution.

4. Jump chains. Suppose again that
∫ ∞
x μ((y,∞)) dy < ∞ for all x > 0

so that the process A has a stationary distribution. Recall the stationary Markov
process, (A↔

t )t∈R, with the transition probabilities of A that was constructed from
the Poisson point process, �↔, in the proof of part (f) of Theorem 1.1.

For t ∈ R, denote by Jt := inf{u > 0 :A↔
u �= A↔

u−} the next jump time of A↔
after time t . Define an increasing sequence of random times, 0 < T0 < T1 < · · ·, by
T0 := J0 and Tn+1 := JTn for n ≥ 0. Put Ln := A↔

Tn− and Rn := A↔
Tn

. Thus the se-
quences (Ln)

∞
n=0 and (Rn)

∞
n=0 record, respectively, the “peaks” and the “troughs”

of the path of A↔ that occur between the times 0 and supn Tn.
The next result can be proved along the same lines as part (a) of Theorem 1.1,

and we leave the proof to the reader.

PROPOSITION 4.1. The sequence, (L0,R0,L1,R1, . . .), is Markovian with
the following transition probabilities:

P{Rn ∈ dy|Ln = x} = μ((y,∞)) exp
(
−

∫ x

y
μ((u,∞)) du

)
dy, 0 < y ≤ x,
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and

P{Ln+1 ∈ dz|Rn = y} = m(z)

μ((y,∞))
dz, z > y.

In particular, the sequence of pairs ((Ln,Rn))
∞
n=0 is a time-homogeneous Markov

chain.

Now we may compute the transition probabilities of the peak and trough chains.
By Proposition 4.1,

P{Ln+1 ∈ dz|Ln = x}/dz

=
∫ x

0
exp

(
−

∫ x

y
μ((u,∞)) du

)
μ((y,∞))

m(z)1y≤z

μ((y,∞))
dy(4.1)

= m(z)

∫ x∧z

0
exp

(
−

∫ x

y
μ((u,∞)) du

)
dy

and

P{Rn+1 ∈ dz|Rn = x}/dz

=
∫ ∞
x

m(y)

μ((x,∞))
μ((z,∞)) exp

(
−

∫ y

z
μ((u,∞)) du

)
1y>z dy(4.2)

= μ((z,∞))

∫ ∞
x∨z

m(y)

μ((x,∞))
exp

(
−

∫ y

z
μ((u,∞)) du

)
dy.

It follows from (4.1) that the peak chain, (Ln)
∞
n=0, is λ-irreducible where λ is

Lebesgue measure on R++. That is, if A is a Borel subset of R++ with λ(A) > 0,
then, for any x ∈ R++, there is positive probability that the the peak chain begun at
x will hit A at some positive time (see Chapter 4 of [25] for more about this notion
of irreducibility). It follows that the peak chain is either recurrent, in the sense that

∞∑
n=0

P{Ln ∈ A|L0 = x} = ∞

for all x ∈ R++ and all Borel subsets of A ⊆ R++ with λ(A) > 0, or it is transient,
in the sense that there is a countable collection of Borel sets (Aj )

∞
j=1 and finite

constants (Mj )
∞
j=1 such that

⋃∞
j=1 Aj = R++ and

sup
x∈R++

∞∑
n=0

P{Ln ∈ Aj |L0 = x} ≤ Mj

(see Theorem 8.0.1 of [25]).
The peak chain is strong Feller; that is, the function,

x �→ E[f (Ln+1)|Ln = x],
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is continuous for any bounded Borel function f . Also, because the support of λ is
all of R++, if the peak chain is recurrent, then each point x of R++ is topologically
recurrent in the sense that

∞∑
n=0

P{Ln ∈ U |L0 = x} = ∞

for every open neighborhood U of x. Hence, by Theorem 9.3.6 of [25], if the peak
chain is recurrent, then it is Harris recurrent, which means that given any Borel
set A with λ(A) > 0, the chain visits A infinitely often almost surely starting from
any x. Moreover, the chain is recurrent (equivalently, Harris recurrent) if and only
if it is nonevanescent; that is, started from any x, there is zero probability that the
chain converges to 0 or ∞ (see Theorem 9.2.2 of [25]).

If the peak chain is recurrent (equivalently, Harris recurrent or nonevanescent),
then it has an invariant measure that is unique up to constant multiples (see The-
orem 10.4.4 of [25]). If the invariant measure has finite mass, so that it can be
normalized to be a probability measure, then the chain is said to be positive, oth-
erwise the chain is said to be null.

Conversely, if the peak chain has an invariant probability measure, then it is
recurrent (equivalently, Harris recurrent or nonevanescent) (see Proposition 10.1.1
of [25]).

All of the remarks we have just made for the peak chain apply equally to the
trough chain (Rn)

∞
n=0. Recall that we are in the situation when A has a stationary

version, so the transience or recurrence of L and R depends on their behavior near
zero.

PROPOSITION 4.2. Consider the two Markov chains, (Ln)
∞
n=0 and (Rn)

∞
n=0.

(a) Both chains are transient if and only if∫ 1

0
exp

(∫ 1

x
μ((y,∞)) dy

)
dx < ∞.

(b) Both chains are positive recurrent if and only if∫ 1

0
m(x) exp

(
−

∫ 1

x
μ((y,∞)) dy

)
dx < ∞.

(c) Both chains are null recurrent if and only if both∫ 1

0
exp

(∫ 1

x
μ((y,∞)) dy

)
dx = ∞

and ∫ 1

0
m(x) exp

(
−

∫ 1

x
μ((y,∞)) dy

)
dx = ∞.
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PROOF. Consider the set Z := {t ∈ R :A↔
t = 0}. It follows from part (c) of

Theorem 1.1 that P{Z �= ∅} > 0 if and only if∫ 1

0
exp

(∫ 1

x
μ(y,∞) dy

)
dx < ∞.(4.3)

By the stationarity of (A↔
t )t∈R and the nature of its sample paths, it is clear that

for x > 0, the set {t ∈ R :A↔
t = x} is unbounded above and below almost surely

[this also follows from part (d) of Theorem 1.1]. It follows from a simple renewal
argument that if (4.3) holds, then Z is unbounded above and below almost surely.

Because the paths of (A↔
t )t∈R increase with slope 1 in the intervals [Tn,Tn+1),

it follows that if condition (4.3) holds, then limn→∞ Tn = inf{t > 0 :A↔
t = 0} < ∞

almost surely, and limn→∞ Ln = limn→∞ Rn = 0 almost surely. In this case, both
chains are evanescent, and hence transient.

On the other hand, if (4.3) does not hold, then limn→∞ Tn = ∞. Moreover, the
set {t ∈ R :A↔

t = x} is almost surely unbounded above and below for any x > 0,
as we observed above. If we split the path of (A↔

t )t∈R into excursions away from
x, then each excursion interval will contain only finitely many jumps almost surely
and, because the excursions are independent and identically distributed, it cannot
be the case that Ln or Rn converges to 0 or ∞ with positive probability. Thus, both
chains are nonevanescent and hence recurrent.

It is clear from (4.1) that the kernel giving the transition densities of the peak
chain (Ln)

∞
n=0 is self-adjoint with respect to the measure having density

p(x) = m(x) exp
(
−

∫ ∞
x

μ((u,∞)) du

)

with respect to Lebesgue measure, and so this measure is invariant for the peak
chain. Clearly,

∫ ∞
0 p(x)dx < ∞ if and only if the condition in part (b) holds in

which case the peak chain is positive recurrent. Otherwise, the peak chain is either
null recurrent or transient, and so part (a) shows that the peak chain is null recurrent
if the two conditions in part (c) hold.

Similarly, it is clear from (4.2) that the kernel giving the transition densities of
the trough chain (Rn)

∞
n=0 is self-adjoint with respect to the measure having density

q(x) = μ((x,∞))2 exp
(
−

∫ ∞
x

μ((u,∞)) du

)

with respect to Lebesgue measure, and so this measure is invariant for the trough
chain. An integration by parts shows that

∫ ∞
0 q(x) dx < ∞ if and only if the con-

dition in part (b) holds, and so the trough chain is positive if and only if the peak
chain is positive. Alternatively, we can simply observe from Proposition 4.1 that
integrating the conditional probability kernel of Rn given Ln against an invariant
probability measure for the peak chain gives an invariant measure for the trough
chain, and integrating the conditional probability kernel of Ln+1 given Rn against



DYNAMICS OF THE MRCA 19

an invariant probability measure for the trough chain chain gives an invariant mea-
sure for the trough chain, so that one chain is positive recurrent if and only if the
other is. �

REMARK 4.1. If m(x) = αx−2 for x ∈ (0,1], then both the peak and trough
chains are:

(1) transient ⇔ 0 < α < 1;
(2) null recurrent ⇔ α = 1;
(3) positive recurrent ⇔ α > 1.

REMARK 4.2. It follows from parts (b) and (e) of Theorem 1.1 that the sta-
tionary point process {t ∈ R :A↔

t− �= A↔
t } has intensity

ρ :=
∫

m(x) exp
(
−

∫ ∞
x

μ((u,∞)) du

)
dx

and so the peak and trough chains are positive recurrent if and only if ρ is finite.
Suppose that ρ is finite and consider the point process

� := {(t,A↔
t−,A↔

t ) ∈ R × R+ × R+ :A↔
t− �= A↔

t }.
The companion Palm point process ϒ has its distribution defined by

P{ϒ ∈ ·} = ρ−1
E

[ ∑
{n : 0≤Tn≤1}

1{θTn� ∈ ·}
]
,

where θsB = {(t − s, �, r) : (t, �, r) ∈ B} for B ⊂ R × R+ × R+. Enumerate the
points of ϒ as ((T̃n, L̃n, R̃n))n∈Z where · · · < T̃−1 < T̃0 = 0 < T̃1 < · · ·. A funda-
mental result of Palm theory for stationary point processes says that the random
sequence ((T̃n − T̃n−1, L̃n, R̃n))n∈Z is stationary and that the distribution of the
point process � may be reconstructed from the distribution of this sequence (see,
e.g., Theorem 12.3.II of [9] or [21]). It is clear that the stationary random se-
quences (L̃n)

∞
n=0 and (R̃n)

∞
n=0 have the same distribution as the peak and trough

chains started in their respective stationary distributions.

5. The (1 + β)-stable MRCA process. In this section we specialize to the
motivating example of the MRCA process of a critical (1 + β)-stable continuous
state branching process conditioned to live forever. Recall that the unconditioned
continuous state branching process has Laplace transforms (1.1), and the condi-
tioned process has Laplace transforms (1.2). For β = 1, the unconditioned process
has generator x ∂2

∂x2 with this choice of time scale.
As mentioned in the Introduction, the set of points (t, x) ∈ R+ × R++, where t

is the time that a family splits from the immortal lineage and x is its total lifetime, is
a Poisson point process with intensity measure λ⊗μ for some σ -finite measure μ.
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LEMMA 5.1. The lifetime measure μ associated with the critical (1 + β)-
branching process conditioned on nonextinction is given by

μ((x,∞)) = 1 + β

βx
, x > 0.

PROOF. As we remarked in the Introduction,

P{Xt > 0|X0 = x} = 1 − exp
(
− x

t1/β

)
.(5.1)

First consider the case of β = 1. Recall from the Introduction that if 
 is a
Poisson point process on R+ × E 0 with intensity λ ⊗ ν, then( ∑

(s,u)∈


u(t−s)∨0

)
t≥0

(5.2)

has the same distribution as the conditioned process, (Yt )t≥0, with Y0 = 0, and
recall that μ is the push-forward of ν by the total lifetime function γ . Also,( ∑

(s,u)∈
 : s≤y/2

ut

)
t≥0

(5.3)

has the same distribution as the unconditioned process (Xt)t≥0 with X0 = y (see
[15]). The factor of 2 differs from [15] and arises from our choice of time scale.
Therefore,

P{Xt > 0|X0 = y} = P{∃(s, u) ∈ 
 : s ≤ y/2 and γ (u) > t}
= 1 − exp

(−yμ((t,∞))/2
)
,

and comparing with (5.1) gives μ((t,∞)) = 2/t .
Now take β ∈ (0,1). It is shown in [16] that the mass thrown off the immortal

lineage is determined by the jumps of a stable subordinator: if Ms is the amount of
mass thrown off during the time interval [0, s], then

E[e−θMs ] = exp
(
−s

1 + β

β
θβ

)

= exp
(
−s

∫ ∞
0

(1 − e−θx)ν(dx)

)
,

where ν(dx) = 1+β
�(1−β)

x−(1+β) dx is the Lévy measure of the subordinator.
Since the jump size of the subordinator corresponds to the initial size of the new

family, the lifetime measure μ is given by

μ((t,∞)) =
∫ ∞

0
P{Xt > 0|X0 = x}ν(dx),
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and so, from the above and an integration by parts,

μ((t,∞)) =
∫ ∞

0
(1 − e−x/t1/β

)ν(dx)

= 1 + β

βt
. �

PROOF OF COROLLARY 1.1. Parts (a) to (d) follow immediately from Theo-
rem 1.1. Part (e) will also follow from parts (e) and (f) of Theorem 1.1 after the
following time and space change.

Define a new time parameter u by t = eu. If the MRCA at time t lived at time
t − x on the original scale, then on the new time scale she lived at time u − y

where t − x = eu−y . Solving for y, the MRCA age process in the new time scale
is the process (Bt )t≥0 given by Bu = − log(1 − e−uAeu). The process (Bt )t≥0 is
obtained by applying the construction (1.1) to the point process given by{(

log s, log
(

1 + x

s

))
, (s, x) ∈ �

}
,

which is a Poisson point process on R × R+ with intensity measure λ ⊗ ρ where

ρ((y,∞)) = 1 + β

β(ey − 1)
, y ∈ R++.

Note that, in general, a time and space change of the Poisson process � gives a
new Poisson point process, but the resulting intensity measure will not typically
be of the form λ ⊗ κ for some measure κ : it is a special feature of μ and the
transformation that the product measure structure is maintained in this case.

It is straightforward to check parts (e) and (f) of Theorem 1.1 that (Bt )t≥0 has
the stationary distribution

π(dx) = 1 + β

β
e−x(1 − e−x)1/β dx

and that the distribution of Bt converges to π in total variation as t → ∞. Part (e)
of the corollary then follows from the observation that At

t
= 1 − e−Blog(t) and an

elementary change of variables. �

6. An analogue of the Bessel-squared family. In this last section, we de-
termine the Laplace transform of the (1 + β)-stable continuous state branching
process conditioned on nonextinction. For β = 1, the unconditioned process is
the Bessel-squared process with dimension 0 and it is well known that the condi-
tioned process is the Bessel-squared process with dimension 4. A comparison of
Laplace transforms will suggest that the unconditioned and conditioned processes
for a given general β may also be embedded in a family of Markov processes that
is analogous to the Bessel-squared family. We show that such a family exists for
each β and we establish some of the properties of these families.
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Recall that the transition probabilities of the unconditioned (1 + β)-stable con-
tinuous state branching process, (Xt)t≥0, are characterized by the Laplace trans-
forms,

E
x[exp(−θXt)] = exp

(−xθ(tθβ + 1)−1/β)
.

Hence the transition probabilities of the conditioned process Y are characterized
by the Laplace transforms,

E
y[exp(−θYt )] = 1

y
E

y[exp(−θXt)Xt ]

= −1

y

∂

∂θ
E

y[exp(−θXt)]

= exp
(−yθ(tθβ + 1)−1/β)

(tθβ + 1)−(β+1)/β,

thus establishing (1.2).
Recall also that if β = 1, then (Xt)t≥0 and (Yt )t≥0 are, up to a constant multiple,

the Bessel-squared processes with dimensions 0 and 4, respectively. The Bessel-
squared process, (Zt )t≥0, with dimension d (not necessarily integral) is (up to
constants) the Markov process characterized by the Laplace transforms,

E
z[exp(−θZt)] = exp

(−zθ(tθ + 1)−1)
(tθ + 1)−d/2.

This suggests that for 0 < β < 1 and δ ≥ 0, there might be a semigroup, (Pt )t≥0,
such that

Pt exp(−θ ·)(x) = exp
(−xθ(tθβ + 1)−1/β)

(tθβ + 1)−δ.(6.1)

We first verify that, for a fixed value of x, the right-hand side of (6.1) is the
Laplace transform of a probability distribution (as a function of θ ). We already
know that

exp
(−xθ(tθβ + 1)−1/β)

is the Laplace transform of a probability measure, so it suffices to show that

(tθβ + 1)−δ

is also a Laplace transform of a probability distribution. Let (St )t≥0 be the β-stable
subordinator starting from S0 = 0 normalized so that

E[exp(−θSt )] = exp(−θβt)

and let (Tt )t≥0 be the gamma subordinator starting from T0 = 0 normalized so that
for t > 0,

P{Tt ∈ dy} = yt−1

�(t)
exp(−y)dy,
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and hence

E[exp(−θTt )] = (θ + 1)−t .

Then if S and T are independent,

E[exp(−θStTδ )] = E[exp(−θβtTδ)] = (tθβ + 1)−δ.

We next verify that (Pt )t≥0 is a semigroup. Observe that

PsPt exp(−θ ·)(x)

= (tθβ + 1)−δPs exp
(−θ(tθβ + 1)−1/β ·)(x)

= (tθβ + 1)−δ exp
(−xθ(tθβ + 1)−1/β(

sθβ(tθβ + 1)−1 + 1
)−1/β)

× (
sθβ(tθβ + 1)−1 + 1

)−δ

= exp
(−xθ

(
(s + t)θβ + 1

)−1/β)(
(s + t)θβ + 1

)−δ

= Ps+t exp(−θ ·)(x).

It is clear that limt↓0 Pt exp(−θ ·)(x) = exp(−θx) and so limt↓0 Ptf (x) =
f (x) for f ∈ C0(R+). Also, limy→x Pt exp(−θ ·)(y) = Pt exp(−θ ·)(x), and so
limy→x Ptf (y) = f (x) for f ∈ C0(R+). The standard Feller construction gives
that there is a strong Markov process, (Zt )t≥0, with semigroup (Pt )t≥0.

This family of Markov processes shares many features of the Bessel-squared
family. For example, it follows for a, b > 0, that

E
az[exp(−θa−1Zbt )] = exp

(
−yθ

(
bt

(
θ

a

)β

+ 1
)−1/β)(

bt

(
θ

a

)β

+ 1
)−δ

.

Thus, the process (b−1/βZbt )t≥0 is Markovian with the same transition probabil-
ities as Z. Similarly, if Z0 = 0, then the process (e−t/βZet )t∈R is Markovian and
stationary.

Furthermore, if (Z′
t )t≥0 and (Z′′)t≥0 are two independent such processes with

parameters δ′ and δ′′, then the process (Z′
t +Z′′

t )t≥0 also belongs to the family and
has parameter δ′ + δ′′.

In a forthcoming paper, we will present a more thorough study of this family
along the lines of [27, 28].
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ful readings of the paper and a number of suggestions that contributed to its clarity.
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