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Comment: Classifier Technology and
the Illusion of Progress
Robert A. Stine

It is my pleasure to contribute to the discussion of
this paper. David Hand has the credibility one needs
to write such an article and not have it dismissed out
of Hand. Along with publishing numerous papers and
books on classification and data mining, he “works in
the trenches” with real data. His contributions to credit
modeling are particularly well known and respected,
and his knowledge of that domain reaches far deeper
into the substance than the casual illustration often cho-
sen to show off a new methodology. He is a fascinat-
ing lecturer and I have learned a great deal by listening
carefully to his ideas. When he writes that claims of
the superiority of neural networks and support vector
machines “fail to take account of important aspects of
real problems,” I have to stop and think about my own
research and experiences.

The thrust of Hand’s paper is the argument that
most recent developments in classification, say any-
thing since Fisher’s linear discriminant function, offer
little benefit in practice. The mismatch between the-
ory and practice dwarfs incremental claims for superi-
ority established in theorems. For instance, theory that
shows that a support vector machine classifies better
than a simple linear model is an “illusion,” bordering
on sophistry.

I have a great deal of sympathy for this point of
view, but I doubt that many statisticians will change
what they do after reading this paper. I agree with
many of his criticisms, but I am already in the choir.
I suspect that it will take quite a bit more to con-
vince others, particularly along the lines of proposals
for what ought to be done. Consider the impact of
Tukey’s “The future of data analysis” (Tukey, 1962).
After chastising the field for its preoccupation with
“optimization in terms of a precise, similarly inade-
quate criterion,” Tukey proposed alternatives, includ-
ing exploratory data analysis and robust methods. Forty
years later, Hand’s criticisms echo his concerns.
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Hand presents a range of criticisms of modern clas-
sifiers. I find it useful to organize my discussion by
grouping them into two clusters:

• Creeping incrementalism
• Square pegs in round holes.

Let me start with the first of these.

Creeping incrementalism. Hand argues that con-
cerns for optimality emphasize tiny improvements that
are dwarfed by other issues in real applications. He
argues that the first predictor or the most simple of
models finds most of the structure. Adding bells and
whistles contributes little more than complex window
dressing, and the advantages are illusions that disap-
pear during the application. The argument is analo-
gous to saying that linear Taylor series make pretty
good approximations to most functions; generally, you
do not need those messy, higher order terms. I cer-
tainly agree that simple models—or at least simple
methodologies—take you a long way. Dean Foster and
I wrote a paper to make just this point when mining
financial data: with a few adjustments, stepwise linear
regression can predict bankruptcy as well as elaborate
trees (Foster and Stine, 2004).

A convincing argument for preferring simpler mod-
els requires careful discussions of applications. Given
the depth of his experience, I had expected Hand to of-
fer a rich portfolio of examples that demonstrate the
failures of complex models. Instead, he relies more on
an idealized example (one of equally correlated pre-
dictors) and a summary of fitted models to selected
data sets from the repository at UC Irvine. One has to
be careful basing arguments on made-up examples, be-
cause it is too easy to turn the examples around. With
equally correlated predictors, the first one or two pre-
dictors capture most of the signal, with diminishing
benefits left to the others. Although I have had simi-
lar experiences modeling real data, it is all too easy to
make up normal models in which later variables appear
to explain the most variation. For example, define

X1 = τY + ε1 + ε2,

X2 = τY + ε1 − ε2,

X3 = τY − ε1 + ε3,

X4 = τY − ε1 − ε3,

where Y, εi
i.i.d.∼ N(0,1).(1)
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Each predictor Xj has equal correlation τ with Y and
the predictors have a block structure. In this setting,
what happens as we greedily expand the regression
model is shown in Table 1. With τ = 0.25, we have
superadditive growth in the fit of the model: the addi-
tion of a subsequent predictor adds more to the model
than any predecessor. I am not claiming that this exam-
ple is more natural than the one in the paper. That is
not the point. The point is that, separated from a real
application, it is easy to construct examples that sup-
port any argument. What matters is what is useful in
practice, and we need to see more evidence from real
applications to appreciate the flaws of complex models.

I think that one needs to “go easy” when it comes
to criticism of the use of statistical inference to judge
improvements in a model. Inferential statistics con-
cerns the separation of even a little signal from noise.
This perspective is ideally suited to applications in tra-
ditional science. Discovery of statistically significant
anomalies from the standard theory is important. A sta-
tistically significant anomaly, even a small one, cannot
be dismissed as random variation and leads to revisions
of the current theory. However, there needs to be a cur-
rent theory in the first place. Without an established
point of reference, the yardstick used to gauge im-
provements should be different. Most real applications
lack such a benchmark and resemble an entirely new
domain. When I was first learning about the connection
between statistics and information theory, I was inter-
ested in the use of statistical models for data compres-
sion. (Think of tools used to compress the files on your
computer disk.) Early on, improvements to algorithms
for data compression regularly brought reductions of
20 or 30% in the amount of disk space required to store
a data file. As the area matured, the gains got smaller
and issues of statistical significance became relevant.
Statistical significance in this context amounts to re-
solving whether you can save two or three more bits!

TABLE 1

Number of
predictors

Explained variation

τ = 0.25 τ = 0.5

0 0 0

1 1
1+2/τ 2 = 0.03 0.11

2 1
1+1/(2τ 2)

= 0.11 0.33

3 1
1+1/(5τ 2)

= 0.24 0.55

4 1 1

It is also important to establish what it means for
a model to be better than another. Statistical signifi-
cance offers one scale, but it may be poorly suited to
the task. Finding an acceptable alternative can be par-
ticularly hard (e.g., in the social sciences), but is often
easy in business. In business, improvements generally
get measured in dollars, and statistical significance sel-
dom guarantees much in the way of economic benefits.
This point needs to be stressed as prominently and con-
cretely as possible. Hand discusses the choice of the
loss function used to judge classifiers and rightfully
criticizes the casual use of error rates. Unfortunately,
the survey of fitted models summarized in his Table 1,
however, compares error rates. Who is to say that a
small improvement in predictive accuracy is not valu-
able? Consider the data set “Segmentation” in the first
row of his Table 1. Perhaps the reduction in the error
rate from 0.083 to 0.014 is worth quite a lot of money.
Without deeper insights into these applications, I can-
not judge whether the improvements are impressive or
unimportant. I doubt that enough is known about these
applications to set costs, but perhaps Hand could offer
other examples from his own experience in which the
costs are known.

Square peg in the round hole. Statistics has rightly
been criticized for often devoting too much energy to
unrealistic problems. As Tukey pointed out, “Better to
have an approximate answer to the right question than
the exact answer to the wrong question.” Knowing the
right question, however, often means knowing more
about the application than most of us get from clients.
In working with banks on credit modeling, the propri-
etary nature of their business makes it nearly impossi-
ble for them to be able to disclose enough for me to
think that I am answering the right question. That does
not mean that I have stopped trying, but it gets painful
to jam your foot in the door over and over. It can be a
lot more satisfying to prove a theorem or write code for
a new algorithm.

Another reason for solving the wrong problem is that
by the time one has the data and builds a model, the
problem has changed. I would push to the front of the
line to agree with Hand that changes in the underly-
ing population pose a serious problem. This problem
is particularly acute in business because of its compet-
itive environment. If a company builds a model that
produces a change in its behavior (such as a better way
to evaluate the risk of loans that it makes), you can be
sure that the competition will react and change as well.

I recently had a first-hand experience with this type
of problem. The task was to help a company improve
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the methods that it uses to evaluate prospective em-
ployees. Based on attributes known at the time of an
application, we developed a classifier that was able to
identify those most likely to succeed. The usual sorts of
validation exercises showed that the effects we found
were real, at least for the population represented by our
data. As pointed out by Hand in Section 3, it takes a
long time to get the data needed for this type of model-
ing. In our case, we had to wait and see which employ-
ees succeeded before we got the response. The delay
was two years. By the time that the company tried to
use the model, the economy had changed and the na-
ture of the people applying for jobs had shifted. In fact,
because we identified certain factors as important, the
company changed the way that it collected these fac-
tors, rearranging the application form to emphasize the
presentation of the key questions. I have little doubt
that the revised questions measure different things than
those used to build our model. Our model was a disap-
pointment, but then I doubt that any model would have
handled these disruptions.

I owe a favorite example of how the use of a model
changes the population to Professor Hand. Suppose we
are building a model to score the credit-worthiness of
our customers. We discover that customers who, like
me, drive white cars are poor risks. As a result, we stop
offering loans to those driving white cars. Now think
about what happens in several years when it is time to
refresh the scoring model. By this time, none of our
customers drives a white car, so this characteristic no
longer appears to be a risk factor. Our successor will
have to learn this all over again—that is, if these drivers
have not changed their color preference. In the utopian
world of repeated sampling from the population, these
things do not happen. The population does not change
because you start to use a model.

What next? Einstein once remarked, “Everything
should be made as simple as possible, but not simpler.”
Given a preference for simple models, I would very
much like for Hand to offer some guidance suited to
applications on how one is supposed to decide whether
it is useful to look for more structure. If not by the ruler

given by statistical inference, then how? In my toy ex-
ample, the sum X1 + X2 + X3 + X4 predicts Y per-
fectly. What should we do, however, when we have
a wide data set with relatively few cases and 1000 pre-
dictors? How would we know to try the sum of them all
as a predictor? Stepwise methods that build up models
are good at finding subadditive models, but superad-
ditive structures are difficult to identify. Similarly, we
have methods that capture nonlinear features in data,
but how are we to know whether to try them? If we
only look for simple models, then we will always find
simple models. To find nonlinearities requires that we
entertain models that allow them. For example, our re-
gression model for predicting bankruptcy uses interac-
tions that, in effect, segment the population. Without
them, the predictions were much less able to predict
bankruptcies and left a lot of money on the table (Foster
and Stine, 2004).

Professor Hand has had more experience with the
challenges of dealing with real applications than most
statisticians. I would be very interested in his ap-
proach to deciding when additions to a simple model
are worthwhile. Similarly, what are his thoughts on
methods to assess population drift? Certainly, statisti-
cians have been concerned about population drift for a
long time. For example, consider the article by Brown,
Durbin and Evans (1975) on detecting changes in a
linear model, Kalman filters that explicitly model an
evolving state variable or models for evolutionary time
series dating back to Priestley (1965). Do these fail in
practice?
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