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Comment: A Selective Overview of
Nonparametric Methods in
Financial Econometrics
Peter C. B. Phillips and Jun Yu

Abstract. These comments concentrate on two issues arising from Fan’s
overview. The first concerns the importance of finite sample estimation bias
relative to the specification and discretization biases that are emphasized in
Fan’s discussion. Past research and simulations given here both reveal that
finite sample effects can be more important than the other two effects when
judged from either statistical or economic viewpoints. Second, we draw at-
tention to a very different nonparametric technique that is based on comput-
ing an empirical version of the quadratic variation process. This technique is
not mentioned by Fan but has many advantages and has accordingly attracted
much recent attention in financial econometrics and empirical applications.
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1. INTRODUCTION

In recent years there has been increased interest in
using nonparametric methods to deal with various as-
pects of financial data. The paper by Fan gives an
overview of some nonparametric techniques that have
been used in the financial econometric literature, focus-
ing on estimation and inference for diffusion models in
continuous time and estimation of state price and tran-
sition density functions.

Continuous time specifications have been heavily
used in recent work, partly because of the analytic
convenience of stochastic calculus in mathematical fi-
nance and partly because of the availability of high-
frequency data sets for many financial series. While
the early work in continuous-time finance began in
the 1970s with the work of Merton [29] and Black
and Scholes [16], economists have been looking at the
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econometric problems of fitting continuous time sys-
tems for much longer. The idea of statistically fitting
diffusion models and continuously distributed lagged
dependencies with discretely observed data has a long
history dating back to some original work in econo-
metrics by Koopmans [27] and subsequent work by
Phillips [31], Bergstrom [14], Sims [35], Phillips [32]
and Sargan [34]. Bartlett and Rajalakshman [13] and
Bartlett [12] are two references in the early statistical
literature on fitting linear diffusions. Bergstrom [15]
provides a short history of some of this early work.
Also, the history of mathematical finance and sto-
chastic integration prior to 1970 has recently been
overviewed in an interesting historical review by Jarrow
and Protter [24].

Our comments on Fan’s paper will concentrate on
two issues that relate in important ways to the paper’s
focus on misspecification and discretization bias and
the role of nonparametric methods in empirical finance.
The first issue deals with the finite sample effects of
various estimation methods and their implications for
asset pricing. A good deal of recent attention in the
econometric literature has focused on the benefits of
full maximum likelihood (ML) estimation of diffusions
and mechanisms for avoiding discretization bias in the
construction of the likelihood. However, many of the
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problems of estimating dynamic models that are well
known in discrete time series, such as the bias in ML
estimation, also manifest in the estimation of contin-
uous time systems and affect subsequent use of these
estimates, for instance in derivative pricing. In conse-
quence, a relevant concern is the relative importance
of the estimation and discretization biases. As we will
show below, the former often dominates the latter even
when the sample size is large (at least 500 monthly ob-
servations, say). Moreover, it turns out that correction
for the finite sample estimation bias continues to be
more important when the diffusion component of the
model is itself misspecified. Such corrections appear
to be particularly important in models that are nonsta-
tionary or nearly nonstationary.

The second issue we discuss deals with a very differ-
ent nonparametric technique, which is not discussed by
Fan, but which has recently attracted much attention in
financial econometrics and empirical applications. This
method involves the use of quadratic variation mea-
sures of realized volatility using ultra high frequency
financial data. Like other nonparametric methods, em-
pirical quadratic variation techniques also have to deal
with statistical bias, which in the present case arises
from the presence of microstructure noise. The field of
research on this topic in econometrics is now very ac-
tive.

2. FINITE SAMPLE EFFECTS

In his overview of diffusion equation estimation, Fan
discusses two sources of bias, one arising from the dis-
cretization process and the second from misspecifica-
tion. We review these two bias effects and then discuss
the bias that comes from finite sample estimation ef-
fects.

The attractions of Itô calculus have made it partic-
ularly easy to work with stochastic differential equa-
tions driven by Brownian motion. Diffusion processes
in particular have been used widely in finance to model
asset prices, including stock prices, interest rates and
exchange rates. Despite their mathematical attractabil-
ity, diffusion processes present some formidable chal-
lenges for econometric estimation. The primary reason
for the difficulty is that sample data, even very high-
frequency data, are always discrete and for many popu-
lar nonlinear diffusion models the transition density of
the discrete sample does not have a closed form expres-
sion, as noted by Fan. The problem is specific to non-
linear diffusions, as consistent methods for estimating
exact discrete models corresponding to linear systems

of diffusions have been available since Phillips [32].
A simple approach discussed in the paper is to use the
Euler approximation scheme to discretize the model,
a process which naturally creates some discretization
bias. This discretization bias can lead to erroneous
financial pricing and investment decisions. In conse-
quence, the issue of discretization has attracted a lot of
attention in the literature and many methods have been
proposed to reduce the bias that it causes. Examples are
Pedersen [30], Kessler [26], Durham and Gallant [18],
Aït-Sahalia [2, 3] and Elerian, Chib and Shephard [19],
among many others.

Next, many diffusion models in practical use are
specified in a way that makes them mathematically
convenient. These specifications are typically not de-
rived from any underlying economic theory and are
therefore likely to be misspecified. Potential misspec-
ifications, like discretization, can lead to erroneous fi-
nancial decisions. Accordingly, specification bias has
attracted a great deal of attention in the literature and
has helped to motivate the use of functional estimation
techniques that treat the drift and diffusion coefficients
nonparametrically. Important contributions include
Aït-Sahalia [1], Stanton [36], Bandi and Phillips [5]
and Hong and Li [21].

While we agree that both discretization and specifi-
cation bias are important issues, finite sample estima-
tion bias can be of equal or even greater importance for
financial decision making, as noted by Phillips and Yu
[33] in the context of pricing bonds and bond options.
The strong effect of the finite sample estimation bias in
this context can be explained as follows. In continuous
time specifications, the prices of bonds and bond op-
tions depend crucially on the mean reversion parameter
in the associated interest rate diffusion equation. This
parameter is well known to be subject to estimation
bias when standard methods like ML are used. The bias
is comparable to, but generally has larger magnitude
than, the usual bias that appears in time series autore-
gression. As the parameter is often very close to zero
in empirical applications (corresponding to near mar-
tingale behavior and an autoregressive root near unity
in discrete time), the estimation bias can be substantial
even in very large samples.

To reduce the finite sample estimation bias in para-
meter estimation as well as the consequential bias that
arises in asset pricing, Phillips and Yu [33] proposed
the use of jackknife techniques. Suppose a sample ofn

observations is available and that this sample is decom-
posed intom consecutive sub-samples each with� ob-
servations (n = m × �). The jackknife estimator of a
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parameterθ in the model is defined by

θ̂jack = m

m − 1
θ̂n −

∑m
i=1 θ̂�i

m2 − m
,(2.1)

whereθ̂n and θ̂�i are the extreme estimates ofθ based
on the entire sample and thei ’th sub-sample, respec-
tively. The parameterθ can be a coefficient in the dif-
fusion process, such as the mean reversion parameter,
or a much more complex function of the parameters
of the diffusion process and the data, such as an asset
price or derivative price. Typically, the full sample ex-
treme estimator has bias of orderO(n−1), whereas un-
der mild conditions the bias in the jackknife estimate is
of orderO(n−2).

The following simulation illustrates these various
bias effects and compares their magnitudes. In the ex-
periment, the true generating process is assumed to be
the following commonly used model (CIR hereafter)
of short term interest rates due to Cox, Ingersoll and
Ross [17]:

dr(t) = κ
(
µ − r(t)

)
dt + σr1/2(t) dB(t).(2.2)

The transition density of the CIR model is known to
bece−u−v(v/u)q/2Iq(2(uv)1/2) and the marginal den-
sity isw

w2
1 rw2−1e−w1r/�(w2), wherec = 2κ/(σ 2(1−

e−κ�)), u = cr(t)e−κ�, v = cr(t + �), q = 2κµ/

σ 2−1, w1 = 2κ/σ 2, w2 = 2κµ/σ 2, � is the sampling
frequency, andIq(·) is the modified Bessel function of
the first kind of orderq. The transition density together
with the marginal density can be used for simulation
purposes as well as to obtain the exact ML estimator of
θ (= (κ,µ,σ )′). In the simulation, we use this model
to price a discount bond, which is a three-year bond
with a face value of $1 and initial interest rate of 5%,
and a one-year European call option on a three-year
discount bond which has a face value of $100 and a
strike price of $87. The reader is referred to [33] for
further details.

In addition to exact ML estimation, we may dis-
cretize the CIR model via the Euler method and es-
timate the discretized model using (quasi-) ML. The
Euler scheme leads to the discretization

r(t + �) = κµ� + (1− κ�)r(t)

+ σN
(
0,�r(t)

)
.

(2.3)

One thousand samples, each with 600 monthly ob-
servations (i.e.,� = 1/12), are simulated from the
true model (2.2) with(κ,µ,σ )′ being set at(0.1,0.08,
0.02)′, which are settings that are realistic in many
financial applications. To investigate the effects of

discretization bias, we estimate model (2.3) by the
(quasi-) ML approach. To investigate the finite sample
estimation bias effects, we estimate model (2.2) based
on the true transition density. To examine the effects
of bias reduction in estimation, we apply the jackknife
method (withm = 3) to the mean reversion parame-
ter κ , the bond price and the bond option price.

To examine the effects of specification bias, we fit
each simulated sequence from the true model to the
misspecified Vasicek model [37] to obtain the exact
ML estimates ofκ , the bond price and the option price
from this misspecified model. The Vasicek model is
given by the simple linear diffusion

dr(t) = κ
(
µ − r(t)

)
dt + σ dB(t).(2.4)

We use this model to price the same bond and bond
option. Vasicek [37] derived the expression for bond
prices and Jamshidian [23] gave the corresponding for-
mula for bond option prices. The transition density for
the Vasicek model is

r(t + �)|r(t)
∼ N

(
µ(1− e−κ�)

+ e−κ�rt , σ
2(1− e−2κ�)/(2κ)

)
.

(2.5)

This transition density is utilized to obtain the exact
ML estimates ofκ , the bond price and the bond op-
tion price, all under the mistaken presumption that the
misspecified model (2.4) is correctly specified.

Table 1 reports the means and root mean square er-
rors (RMSEs) for all these cases. It is clear that the
finite sample estimation bias is more substantial than

TABLE 1
Finite sample properties of ML and jackknife estimates of κ , bond
price and option price for the (true) CIR model using a (correctly

specified ) fitted CIR model and a (misspecified ) fitted Vasicek
model (sample size n = 600)

Parameter κ Bond price Option price

True value 0.1 0.8503 2.3920

Exact ML Mean 0.1845 0.8438 1.8085
of CIR RMSE 0.1319 0.0103 0.9052
Euler ML Mean 0.1905 0.8433 1.7693
of CIR RMSE 0.1397 0.0111 0.9668
Jackknife (m = 3) Mean 0.0911 0.8488 2.1473
of CIR RMSE 0.1205 0.0094 0.8704
ML of Vasicek Mean 0.1746 0.8444 1.8837
(misspecified) RMSE 0.1175 0.0088 0.7637
Jackknife (m = 2) of Mean 0.0977 0.8488 2.2483
Vasicek (misspecified) RMSE 0.1628 0.0120 1.0289
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the discretization bias and the specification bias for all
three quantities, at least in this experiment. In particu-
lar, κ is estimated by the exact ML method with 84.5%
upward bias, which contributes toward the−0.76%
bias in the bond price and the−24.39% bias in the
option price. Relative to the finite sample bias, the
bias in κ due to the discretization is almost negli-
gible since the total bias inκ changes from 84.5%
to 90.5%. (The increase in the total bias indicates
that the discretization bias effect is in the same di-
rection as that of the estimation bias.) The total bias
changes from−0.76% to −0.82% in the bond price
and from−24.39% to −26.03% in the option price.
These changes are marginal. Similarly, relative to the
finite sample bias, the bias inκ due to misspecification
of the drift function is almost negligible since the total
bias changes from 84.5% to 74.6%. (The decrease in
the total bias indicates that the misspecification bias ef-
fect is in the opposite direction to that of the estimation
bias.) The total bias changes from−0.76% to−0.69%
in the bond price and from−24.39% to−21.25% in
the option price. Once again, these changes are mar-
ginal. When the jackknife method is applied to the cor-
rectly specified model, the estimation bias is greatly
reduced in all cases (from 84.5% to−8.9% for κ ;
from −0.76% to −0.18% for the bond price; and
from −24.39% to−10.23% for the option price).

Even more remarkably, when the jackknife method
is applied to the incorrectly specified model (see the fi-
nal row of Table 1), the estimation bias is also greatly
reduced in all cases (from 84.5% to−2.3% for κ ;
from −0.76% to −0.18% for the bond price; and
from −24.39% to−6.01% for the option price). These
figures reveal that dealing with estimation bias can be
much more important than ensuring correct specifica-
tion in diffusion equation estimation, suggesting that
general econometric treatment of the diffusion through
nonparametric methods may not address the major
source of bias effects on financial decision making.

Although the estimation bias is not completely re-
moved by the jackknife method, the bias reduction is
clearly substantial and the RMSE of the jackknife es-
timate is smaller in all cases than that of exact ML. In
sum, it is apparent from Table 1 that the finite sample
estimation bias is larger in magnitude than either of the
biases due to discretization and misspecification and
correcting this bias is therefore a matter of importance
in empirical work on which financial decisions depend.

Although this demonstration of the relative impor-
tance of finite sample estimation bias in relation to dis-
cretization bias and specification bias is conducted in

a parametric context, similar results can be expected
for some nonparametric models. For example, in the
semiparametric model examined in [1], the diffusion
function is nonparametrically specified and the drift
function is linear, so that the mean reversion parameter
is estimated parametrically as in the above example. In
such cases, we can expect substantial finite sample es-
timation bias to persist and to have important practical
implications in financial pricing applications.

3. REALIZED VOLATILITY

As noted in Fan’s overview, many models used in fi-
nancial econometrics for modeling asset prices and in-
terest rates have the fully functional scalar differential
form

dXt = µ(Xt) dt + σ(Xt) dBt ,(3.1)

where both drift and diffusion functions are nonpara-
metric and where the equation is driven by Brownian
motion incrementsdBt . For models such as (3.1), we
have(dXt)

2 = σ 2(Xt) dt a.s. and hence the quadratic
variation ofXt is

[X]T =
∫ T

0
(dXt)

2 dt =
∫ T

0
σ 2(Xt) dt,(3.2)

where
∫ T
0 σ 2(Xt) dt is the accumulated or integrated

volatility of X. WereXt observed continuously,[X]T
and, hence, integrated volatility, would also be ob-
served. For discretely recorded data, estimation of (3.2)
is an important practical problem. This can be accom-
plished by direct nonparametric methods using an em-
pirical estimate of the quadratic variation that is called
realized volatility. The idea has been discussed for
some time, an early reference being Maheswaran and
Sims [28], and it has recently attracted a good deal of
attention in the econometric literature now that very
high frequency data has become available for empirical
use. Recent contributions to the subject are reviewed in
[4] and [8].

SupposeXt is recorded discretely at equispaced
points(�,2�, . . . , n��(≡ T )) over the time interval
[0, T ]. Then,[X]T can be consistently estimated by the
realized volatility ofXt defined by

[X�]T =
n�∑
i=2

(
Xi� − X(i−1)�

)2
,(3.3)

as� → 0, as is well known. In fact, any construction
of realized volatility based on an empirical grid of ob-
servations where the maximum grid size tends to zero
will produce a consistent estimate. It follows that the
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integrated volatility can be consistently estimated by
this nonparametric approach, regardless of the form of
µ(Xt) andσ(Xt). The approach has received a great
deal of attention in the recent volatility literature and
serves as a powerful alternative to the methods dis-
cussed by Fan, especially when ultra-high frequency
data are available.

While this approach is seemingly straightforward,
it is not without difficulties. First, in order for the
approach to be useful in empirical research, it is
necessary to estimate the precision of the realized
volatility estimates. Important contributions on the
central limit theory of these empirical quadratic vari-
ation estimates by Jacod [22] and Barndorff-Nielson
and Shephard [10, 11] has facilitated the construction
of suitable methods of inference. Second, in practical
applications, realized volatility measures such as (3.3)
are usually contaminated by microstructure noise bias,
especially at ultra high frequencies and tick-by-tick
data. Noise sources arise from various market frictions
and discontinuities in trading behavior that prevent the
full operation of efficient financial markets. Recent
work on this subject (e.g., [8, 9, 21, 38]) has devel-
oped various methods, including nonparametric kernel
techniques, for reducing the effects of microstructure
noise bias.

4. ADDITIONAL ISSUES

Given efficient market theory, there is good reason to
expect that diffusion models like (3.1) may have non-
stationary characteristics. Similar comments apply to
term structure models and yield curves. In such cases,
nonparametric estimation methods lead to the estima-
tion of the local time (or sojourn time) of the cor-
responding stochastic process and functionals of this
quantity, rather than a stationary probability density.
Moreover, rates of convergence in such cases become
path dependent and the limit theory for nonparametric
estimates of the drift and diffusion functions in (3.1)
is mixed normal. Asymptotics of this type require an
enlarging time span of data as well as increasing in-fill
within each discrete interval asn → ∞. An overview
of this literature and its implications for financial data
applications is given in [6]. Nonparametric estimates
of yield curves in multifactor term structure models are
studied in [25].

Not all models in finance are driven by Brown-
ian motion. In some cases, one can expect noise to
have to have some memory and, accordingly, models

such as (3.1) have now been extended to accommo-
date fractional Brownian motion increments. The sto-
chastic calculus of fractional Brownian motion, which
is not a semi-martingale, is not as friendly as that of
Brownian motion and requires new constructs, involv-
ing Wick products and versions of the Stratonovich in-
tegral. Moreover, certain quantities, such as quadratic
variation, that have proved useful in the recent empiri-
cal literature may no longer exist and must be replaced
by different forms of variation, although the idea of
volatility is still present. Developing a statistical theory
of inference to address these issues in financial econo-
metric models is presenting new challenges.
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