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The Sign Statistic, One-Way Layouts and
Mixture Models

R. T. EImore, T. P. Hettmansperger and F. Xuan

Abstract. We consider the use of sign statistics in two different types of
one-way layouts. The first layout is for data collected to compare several
treatments. The second layout is for independent repeated measures on sev-
eral subjects. In the first case we discuss hypothesis testing and multiple com-
parisons. In the second case we fit mixture models. We then show how fitting
mixture models can be helpful in follow-up multiple comparisons in the first
case.
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1. INTRODUCTION litter, one rat was selected at random for the treatment
group and one for the control group. Both groups got
which the simple sign statistic is very useful. We pri- exactly the same food _and drink. E_ach animal in the

' treatment group lived with 10 others in a large cage fur-

marily discuss the one-way layout. First, we consider nished with toys which were changed daily. Animals
the one-way layout in the context of comparing several . ; S .
the control group lived in isolation. After a month

. > i
treatments and, second, we consider a special case oﬂ . X . .
the animals were killed and their cortex weights were

mixture models in which we have repeated MEASUres. e corded. We wish to test the hypothesis that the treat-

Before turning tp the one-way Iayput we briefly review ment group tended to have higher cortex weights. The
the use of the sign statistic in a single sample of data. . :
data are given in Table 1.

Suppose we have independent and identically dis-

This article presents some statistical settings in

tributed observations denoted by, . .., x,,. Define This is a paired-data design in which litter mates
m determine the pairings. Let denote the population

(1) S(t) = Zl(xi <1), median for the difference score distribution. Then we
i=1 wish to testHp: 6 = 0 versusHy : 0 > 0. We reject the

whereI(A) is the indicator of the event, meaning null hypothesis ifS(O_), the number of differences less
that 7(A) = 1 if A occurs and O otherwise. Hence, than or equal to_O, |s_sma_1||. _Unc_jer th? nullhypothe-
S(1) counts the number of observations outrofthat sis, S(0) has a binomial distribution with parameters

are less than or equal toS(¢) is called the sign statis- " = 11 andp = 0.5. SinceS(0) = 1, the p value for
tic. the test isP(S(0) < 1) = 0.0059 from the binomial ta-

ble. Hence, we conclude at reasonable significance lev-
EXAMPLE 1 (Hypothesis testing with the sign test). els that environment positively impacts cortex weight.
In the 1960s psychologists suspected that environment The sign test and the corresponding point estimate
affects the anatomy of the brain. The subjects for this (the sample median) have relative efficiency with re-
study were a genetically pure strain of rats. From eachspect to the test and sample mean equal to 0.64 when
the underlying distribution is normal. However, if the
R T. Elmore is a former graduate student, T. P. underlying distribution has heavy tails (such as Laplace

Hettmansperger is Professor and F. Xuan is a grad- or double exponential distribution), then the efficiency
uate student, Department of Satistics, Pennsylvania can be greater than 1 and the sign test is more efficient.
Sate University, University Park, Pennsylvania 16802, Because they are robust against outliers and gross er-
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TABLE 1
Cortex weights

Treatment 689 656 668 660 679 663 664 647 694 633 653
Control 657 623 652 654 658 646 600 640 605 635 642
T-C 32 33 16 6 21 17 64 7 89 -2 11

analyses. See Hettmansperger and McKean (1998) for Let § denote the combined sample median for

more discussion. the M = 42 total observations. Mood’s test is built
from S;(6), the number of observations in thih
2. ONE-WAY LAYOUT: COMPARING sample that are less than or equaléte= 1.21 for
n TREATMENTS i=1,...,5 The test statistic is

In a basic nonparametric statistics course, the "o ~omi\2
Kruskal-Walllis rank test is introduced to test hypothe- (2) T=4%" _— <Si ) — 7) ,
ses concerning the equality of several distributions. In =17
this section we discuss the corresponding test that canvhere the constants are introduced in the formula so
be considered an extension of the sign test for one samthat, underHy, T is approximately distributed as chi
ple. Mood (1950) discussed this test and Minitab has asquared witln — 1 degrees of freedom. See Appendix 1
command to implement it. The test appears in standardfor details about the asymptotic distribution. Since un-
texts as the median test for several samples. Of courseger Hy all permutations of the data are equally likely, it
it can also be used to compare two samples. is possible to approximate the permutation distribution

In the one-way layout we have samples. In the  of 7 by repeated sampling of the permutations. For the
ith sample we haven; independent observations, datain Table 27 = 12.33 and the approximaevalue
X1y .o Xmpi fOr i =1,...,n. We haveM = 3 m; is 0.015 from the chi squared table with 4 degrees of
total observations and we wish to teslo:F1 =  freedom. Based on a sample of,800 permutations
-+ = Fy, versus the alternative that they are not all of the data, the permutatiop value is approximately
equal. Here is an example. 0.0127, close to the asymptotic approximation. Hence,

EXAMPLE 2 (Sulfur content of coal). A study was for significance levels greater than 1.5% we can reject
carried out to ascertain the sulfur content of five major the null hypothesiso: F1 = --- = F5 and claim that
coal seams in Texas. Core samples were taken at ranthere is a difference in sulfur content across the five
dom from each of the seams and analyzed. The dates€ams. This immediately raises the question of multi-
consist of the percentage of sulfur per plug and are Ple comparisons; since, we want to know which distri-
given in Table 2. The research hypothesis is that thebutions are different from the others.

seams differ in sulfur content. We consider simple pairwise multiple comparisons.
Supposexr is the assigned family error rate. Then
TABLE 2 using the Bonferonni inequality, we distribute the er-

Sulfur content of coal ror across the family ofi(n — 1)/2 pairwise com-

parisons and assign an individual comparison rate of

Seam o = 2ap/n(n — 1). Since the vector ok sign sta-

A B c D E tistics is approximately multivariate normal, it can be
151 169 1856 130 073 showr_1 using the _de_tall'_s in Appendix 1 that the differ-
192 064 122 075 080 ence in sign statistics is also approximately normally
1.08 090 132 1.26 0.90 distributed. We declare thi¢h and jth treatments sig-
204 141 139 069 1.24 nificantly different ater when
214 101 133 0.62 0.82 _

1.76 0.84 154 090 0.72 3 2|S; — S -
117 128 104 120 0.57 ©) Um+Lm, Za/2;
159 225 032 118 y1/mi+1/m;
1.49 0.54 _ A ,
1.30 where S; =m; ~S;(0) andz,/2 is the upper/2 per-

centile from a standard normal table. In our exam-
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subjects are presented with a luminous frame that con-
tains a luminous rod tilted from the vertical. The task
is to adjust the rod to a vertical position. Psychologi-
cal theory suggests that there are two types of subjects:
field-independent subjects who can, without much er-
ror, adjust the rod to the vertical and field-dependent
subjects who tend to make large errors. The measure-
ment is the absolute error from the vertical. The data
consist of 83 sets of eight measurements. The 83 sub-
jects were college students. Henge: 83 andm = 8.

This is quite different from the one-way layout dis-
cussed in the previous section since now we have a
very large number for and a small number for. The

ple there are 10 pairwise comparisons. If we assignoriginal data set can be downloaded fraiip://www.

ar = 0.10, then the individual pairwise comparisons blackwellpublishing.com/rss/\olumes/Bv62p4.htm and

are conducted at = 0.01 andzp 005 = 2.58. The only was analyzed by Hettmansperger and Thomas (2000).
two comparisons that are significant are C versus D Thus, we expect to reduce the complete set of dis-
and C versus E. Hence, we do not have much power totribution functionsFy, ..., F3; to perhaps two or so
group the seams. Figure 1 shows the 95% confidenceprimary components and group the subjects into field-
intervals (shaded areas) and suggests that A and C araindependent and field-dependent groups.

different from D and E, while B cannot be separated
from any of the seams.

In the next section we consider analyzing the one-
way layout via a mixture model. We return to the coal
data later and see how fitting a mixture model to the
data may help group the seams.

Fic. 1. Boxplotsand 95% confidenceintervalsfor the coal data.

In general, since we do not know the underlying dis-
tributions, we transform the data on each subjectcLet
be a cut point in the data, and for thid subject com-
pute S;(c) = >_; I (xji < c), the number of measure-
ments on theéth subject that are less than or equad to
In the previous section we toakto be the combined
. sample median. In the rod and frame example we take

3. ONE-WAY LAYOUT. MIXTURE MODELS ¢ = 6°. If the rod is within & of vertical, the subject is

Recall that the one-way layout hassets of mea-  considered to have mastered the task.
surements. In this section we begin by assuming that If we know that theith subject is associated with,
the number of measurements in each set.isaterwe  say F1, then, conditioned on this knowledge, we de-
consider the case when there are different numbers ofduce thats; (c) is binomially distributed with parame-
measurements in the sets. In the previous section, théersm and Fi(c), the probability that a measurement
sets of measurements came franreatments. In this ~ on theith subject will be less than or equal to We
section, then sets come from: subjects. Hence, we can then write the binomial in the manner
consider data that come from an experiment in which m s
we havem measurements on each mfsubjects. We P(Si(e)=s1F1) = ( s ) Ao’ (1= F(©)
assume that the measurements within a subject are in{4)
dependent and identically distributed. If we f&t rep- = b(s;m, F1(c)),
resent the distribution associated with tite subject,  whereb(s; m, p) is the binomial mass function with
then as in the case of multiple comparisons, we wish to parametersn and p. In fact, theith subject could
reducefy, ..., F; to a smaller set, say, ..., Fk, come from any off, ..., Fx. Suppose thaiy is the
where K < n, and group the subjects into homoge- probability that a subject is associated wity for
neous groups. That is, we wish to categorize as k=1,..., K. Then, for theith subject we have
Fy for somek in 1,..., K. This shortly leads us to a K
mixture model. We do not wish to assume any distri- (5) P(Si(c)=s) = Zkkb(S; m, Fi(c)).
butional form for F*. We first set the context with an =1

example. This is called theK-component binomial mixture

ExampLE 3 (Rod and frame task). Subjects are model. It is important that the cut point be close to the
seated in a darkened room without visual cues. Thecenter of the data. For general data sets we often take
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the combined sample medidnThis induces some de- mentioned above can also be used to fit a multino-
pendence and the binomial mixture model is then only mial mixture. See Cruz-Medina, Hettmansperger and
approximate. Simulations have shown that the bino- Thomas (2004) and Elmore (2003) for additional infor-

mial mixture still fits quite well; see Hettmansperger mation regarding multinomial mixtures in this setting.

and Thomas (2000) for more discussion. For more de-We illustrate these ideas on the rod and frame data.

tailed explanations of all aspects of mixture models, ,
see McLachlan and Peel (2000). ExAmMPLE 4 (Rod and frame continued from Ex-

There are X — 1 parameters in model (5 (c), ample 3). The 83 subjects provide(6), ..., Sg3(6),

oo\  Fx(¢), M, ..., hk_1, Sinceirg is determined by which are integers ranging from O to 8. As a prelimi-
the others. The problem is to estimate the parameterd'@y check we computé = 295 from (2) and refer it
for a fixed K. We then varyk and study the value 1© @ chi squared distribution with 82 degrees of free-
of the (penalized) log-likelihood, choosing that value 90m- '*Fhe resultln*ga value is 0.000 and we easily re-
of K that maximizes the (penalized) log-likelihood. We €€t F = --- = Fga. Hence, we fit binomial mixture
use a penalty since the dimension of the model changegnodels withm = 8 and unknown probabilities of suc-
with K. In this discussion we use the Bayesian infor- C€SS. Since: = 8, we can identify up t& = 4 compo-

mation criterion (BIC) of Schwarz (1978). We calcu- nents. We next compute the BIC from (6) for various
late values ofK. The values forK = 2, 3,4 are 404, 366

o and 375. The minimum occurs &t = 3 and so we fit
(6) BIC = —2lIn(likelihood) + d In(n), a three-component model to the data. We report in Ta-

whered is the number of parameters that must be es-ble 3 the proportions.q, > and 3 along with £y (6),
timated. Minimizing BIC is equivalent to maximizing the binomial probability of getting the rod to the verti-
the (penalized) log-likelihood. See Appendix 2 for ad- cal position (success) fér= 1, 2, 3. In Table 4 we give
ditional comments on BIC. the observed frequencies 6f(6) for i =1,...,83

Provided thatn > 2K — 1, the mixture model is In addition, we provide the posterior probabilities for
identifiable and there is a unique mixture model rep- each of the possible valuesD)..., 8 along with their
resentation. Ifm is smaller than X — 1, there may  respective classification. This classification is related
be many different mixture model representations. This to the “soft” clustering described by Hastie, Tibshirani
puts a limit on the number of components that we can and Friedman (2001).
fit to a given data set.

We use an expectation—maximization (EM) algo-
rithm (Dempster, Laird and Rubin, 1977) to fit the
binomial mixture model and compute the parameter : o
estimates using maximum likelihood. In addition to the POPUlation, has a success probability of about 0.52.
estimates, we also get a set of posterior probabilities for I IS suggests that the subjects associated with this

each subject. These are the probabilities that the subEOMPonent are guessing when they try to make the
ject comes from the various component distributions. Fod vertical, since they have roughly a 50-50 chance

By using the posterior probabilities as weights in an of getting it correct. The second component subjects

empirical c.d.f., we can use all of the data to estimate &€ €ven worse. They virtually never get it correct. The
the component c.d.f’sFy, ..., Fx. The estimator of  third component consists of subjects who know exactly

the Component Cdf iS a We|ghted Version Of the Sign hOW to dO the ta.Sk. Hence, the mixture mOdeI ConSiStS

statistic (1) in which the weights are based on the pos-of two degenerate binomial components and a proper
terior probabilities. See Appendix 3 for a description component. We summarize by saying that about 31%
of an EM algorithm for binomial mixtures and Appen- ©f the population know precisely how to do the task
dix 4 for estimates of the component c.d.f.'s.

We provide R/S-Plus functions for binomial mix- TABLE 3
ture model estimation at the webst#p://mww.stat. Parameter estimates for the rod and frame data
psu.edu/"tph/SatScience/. We note that it is possible
to use several cut points; however, this results in a
multinomial mixture rather than a binomial mixture. 3, 0.52 0.17 0.31
Estimation ofAi1, ..., Ax and the component c.d.f’s 7 () 0.52 0.01 0.94
is more efficient in this case. The R/S-Plus functions

First consider Table 3. We have seen from BIC that
the 83 subjects can be grouped into three components.
The first component, which accounts for 52% of the

First component Second component Third component
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TABLE 4
Count data and posterior probabilities for the rod and frame data; &, denotesthe
posterior probability of being in the kth component given the observed count

0 1 2 3 4 5 6 7 8

Frequency 13 2 5 6 13 13 4 11 16

Rel. freq. 0.16 0.02 0.06 0.07 016 0.16 0.05 0.13 0.19
& 0.01 054 099 100 1.00 098 0.76 0.17 0.01
& 099 046 0.01 000 0.00 0.00 0.00 0.00 0.00
&3 0.00 0.00 0.00 0.00 0.00 0.02 0.24 0.83 0.99

Classification 2 1 1 1 1 1 1 3 3

and we call these subjects field independent. The re-estimate theP1(X < x) by a weighted average of

maining 69% are field dependent and become confusedS1(x), ..., S, (x), where the weights come from the

by the tilt of the frame. The field-dependent population posterior probabilities computed with the EM algo-

breaks into two further subgroups: one that never getsrithm. See Appendix 4 for the formula and a discus-

it correct and one that guesses. sion. In Figure 2 we show the estimates of the three
In Table 4 we show the data and the posterior proba-component distributions. Note that one distribution has

bilities for assignment to components. For example, if almost all of the distribution below 6 degrees, one is al-

a subject scores four correct out of eight trials, then we most completely above 6 degrees and the guessers are

estimate that there is roughly a 100% chance that he ormore spread out.

she came from the first component in which subjects We also compute the means and standard deviations

guess. So far, the analysis is descriptive. We recom-from the estimated component c.d.f’s. They are given

mend the parametric bootstrap (Efron and Tibshirani, in Table 5.

1993) based on the estimated binomial mixture to esti- We now wish to return to the coal seam data and con-

mate standard errors. We do not pursue standard errorsider how mixture models can help us identify the pos-

further in this article. sible different distributions underlying the data. Recall
We can also analyze the original absolute error data.that we rejected the null hypothesis tHgt= - - - = Fs.

We wish to estimate the three-component c.d.f.'s. Note

that if we assume that a subject comes from, Bay

then lettingX denote the absolute error measurement,

we estimateP1(X < x) = F1(x) by n™1Y; I (xj1 <

x) =n"181(x). However, we do not know from which

component a randomly chosen subject is drawn. We

EXAMPLE 5 (Sulfur content of coal continued from
Example 2). Now the five coal seams are the sub-
jects. There are different numbers of observations per
subject, but that does not present any additional diffi-
culties in the EM algorithm; see Appendix 3 for a dis-
cussion of the algorithm. Since we have decided that
there are subgroups, the question is how many. Fig-
N ‘ ure 1 along with the multiple comparisons suggest that
K seams A and C are different from D and E, while B
. - cannot be separated from either of the two groupings.
v We condition our analysis on the combined sample me-
] L - dian 1.21 and us&1(1.21), ..., S5(1.21), the essential

P | ingredients for Mood’s test statistic (2). Our goal is to

1.0

0.8

ecdf
06
+

0.4

- o TABLE 5
’ - — Estimated means and standard deviations for the rod and
' Ry frame components

0.2
(

First component

Second component

Third component

0 10 2 %0 (guessers) (poor) (excellent)
Lk 7.29 19.05 2.80
FIG. 2. Theestimated c.d.f.”sand their respective mixing propor- 6k 5.34 683 2.27

tions for the rod and frame data.
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TABLE 6 TABLE 7
Mixture model analysis for sulfur content; &, denotes the posterior Estimated mixing proportions, means and standard
probability of being in the kth component given the observed count deviations for the componentsin the coal data
Seam First component Second component

A B c D E Ak 0.57 0.43
T i
S;(1.21) 2 4 1 6 8
& 0.11 0.76 0.00 1.00 1.00
& 0.89 0.24 1.00 0.00 0.00 o
Classification 2 1 2 1 1 deviation and means separated by roughly 0.5% of sul-

fur content.

Thus we have a more complete followup analysis.
identify the underlying distributions, display the distri- We do not advocate mixture models as a replacement
butions and assign the seams to the distributions. Wefor multiple comparisons, only as a supplement which
first compute BIC (6) for the two-, three- and four- provides additional insight.
component models. We find values of 25.16, 28.37 and
31.59. This suggests that we have two groups and a APPENDIX 1: ASYMPTOTIC DISTRIBUTION FOR
two-component mixture underlying the combined data. SIGN STATISTICS
In Table 6 we provide the posterior probabilities for the

: In this appendix we sketch the derivations for the as-
five seams.

ymptotic distributions that underlie formulas (2) and (3)

Consistent with the multiple comparisons and Fig- in Section 2. See Section 2 for notation. We assume
ure 1, A and C are grouped and D and E are grouped. Inthat F1 = Fo = --- = F, = F, say, thatF’ is continu-
addition, B is assigned to the group with D and E on the 0us and the density functiofi(¢) > 0, whereg is the
basis of the posterior probability. Using the posterior true median of the common c.d.f. Furthermore, we as-
probabilities from the EM algorithm as weights, we sume thatM =37/, m; and M — oo in such a way
can estimate the component distributions as discussedhatm;/M — m;, where O<m; <1fori=1,2,...,n.
earlier. The component c.d.f. estimate is described in L€t

Appendix 4. Finally, using the estimator for the com- - AL My
N . T; = Si0) — —

ponent distributions, we can plot the two components; /m; 2
see Figure 3. We also compute the means and standard

_ . . 2 n;
deviations of the two components in Figure 3. These = (S,- ®) — _)
are given in Table 7. Note that the component distribu- Vi 2
tions for sulfur content have roughly the same standard 1 2£(0) ’_mi(é —0)+0,(1)

whereo, (1) are terms that converge to zero in prob-
ability. This expansion was given by Hettmansperger
and McKean (1998, Section 1.5.2). LEt=2/,/m; -
o (Si(0) —m;/2). Then

(7 Ti=Ti+2f(0)ymi@ —0)+o0p(1).

Furthermore, from the definition of the medi@and
applying the expansion again, we have

| J"I‘ 2 n o m; . M
J_,: 0p(D) = \/—M[Z Z I(xj; <0)— E:|

1.0

0.8

06

ecdfs

0.4
s
[
oo
= o
&89

0.2

______________ i=1j=1
T - » » . 2 [ n_m M
=——| Y > I(xji<0)— —
VM iS5 2

FiG. 3. The estimated c.d.f.’s. and their respective mixing pro-
portions for the coal data. + M2f(9)(é —0)+o0,(1).
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Hence Let ¥ denote the parameter vector associated with
A the K-component mixture model given in (10) and
2fOVM©E —0) let /(W ) be the log-likelihood of a sample from this

" mr 2 my model. The BIC for this situation is given by
® = _I;l\/ M g (S"(Q) B 7) +opd) BICxk = —2/(¥k) +dInn,
__ i ST + 0, (). where d is the dimension of the parameter space

and \ilK represents the maximum likelihood estimator

k=1
) ) (MLE) of ¥ g . Choose the value d&& which minimizes
Substitute (8) into (7) and we have BIC.
R n Our motivation for using a penalized form of the
) Ti=T — i Y VAT +0p(D). likelihood is due to the following reason. Notice that
k=1 the parameter spadgx for the K-component mixture
Let T = (T4, T», ..., T,)T. Then by the central limit model is a subset 021, the parameter space for

the (K + 1)-component mixture model. Therefore, the

value of the likelihood at the MLE will not decrease as
T2, 7 ~MVN O, 1), we increase the number of components in the mixture.

The penalty term is designed to penalize the likelihood
where MVN(O, /) means a multivariate normal distri-  phased on the complexity of the model. In the case of
bution with mean vecto and covariance matrix the  B|C, the penalty is primarily due to the dimension of
nxn Identlty matrix/. Let the parameter space.

1-m —mm2- —/MTn—1 — /17,
—Jmem1 l—mo 0 — /T2Tp—1 — /T2,

theorem,

APPENDIX 3: EXPECTATION-MAXIMIZATION FOR

A= BINOMIAL MIXTURES
: : ' ' Let S1, So, ..., S, be a sample of observations from
— /T — /A2 —/Ap—1 1—m > on
VI = Tn T2 VT " the K -component binomial mixture distribution of the
Then form
2 D N T K
T=AT+0op(D) = AZ~MVN(O. AAT). (10)  P(Si=s)= Ab(siimi. o),
However, AAT = A% = A, idempotent, with rank k=1
n — 1. Hence from (2), where YK | a; = 1 andb(s;; m;, py) is the binomial

mass function withm; trials and probability of suc-
cesspy. We describe an expectation—maximization al-
The asymptotic distribution for the multiple compar- gorithm for finding maximum likelihood estimators
isons (3) also follows from the limiting multivariate Of the parameters in (108 = (A4,...,Ax—1) and

T=TTT 25 2TAZ ~ y2(n — 1).

normal distribution off . p = (p1,..., pk). The standard reference on EM al-
gorithms is Dempster, Laird and Rubin (1977); how-
APPENDIX 2° BAYESIAN ever, a more comprehensive account was given by
INFORMATION CRITERION McLachlan and Krishnan (1997).

An EM algorithm formulates the problem as a

Employing finite mixture model methodology as a missing-data problem and then iterates between an ex-
multiple comparisons diagnostic requires choosing the pectation (E) step and a maximization (M) step until
number of components that the mixture model con- convergence is attained. These steps are outlined be-
tains. As we mentioned in Section 3, we use a penal-low for this problem.
ized likelihood approach to this problem, namely, the
Bayesian information criterion. See Schwarz (1978)
for the seminal article of the BIC and McLachlan and  The missing data are defined as the multinomial
Peel (2000) for a discussion of the BIC, as well as other indicator vectors of component membershif, Z»,
penalized likelihood approaches applied to finite mix- ..., Z,, whereZ; = (Zi1, ..., Zix)". If the observa-
ture models. tion S; is actually from thekth component, then the

A.3.1 Complete-Data Formulation
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vector Z; has a 1 in thekth position and O’s else- by defining the objective function
where. For example, if the first observation is from

N

the third component, theZ; = (0,0,1,0,...,0)7. (14) Q(¥; ¥)

The complete-data distribution (i.e., joint distribution n K 5 )

of S; andZ;) can be written as => "> Z I+ Inb(sis mi, pi)l.
i=1k=1

The (r + 1)st iteration of the M step requires the max-

K
. ) — L. . Zik
(A1) felsiz) = [T DuabCsis mis pio) imization of Q(¥; ¥™) to obtain updated estimates

k=1 of the parameter vectob "+ . Upon differentiating
with complete-data log-likelihood and simplifying the resulting expressions, we have
i WD =5, 28 /n. In other words, each observation
1.(¥) =In 1—[ Fo(sis i) pontrlbutes its respective poste_rlor probability of be_l_ng
im1 in the kth component to the estimate of the probability
(12) of membership in this component. In addition, it can
n K .
_ Z ZZ'k[lnkk S+ INbGsi: mis po)] be shown that the updated parameter estimates of the
== ' e ’ binomial probabilities for alk are given by

. PRRAR
wherew = (A, p)”. Since theZ; are unknown, we can- P;Erﬂ) — %

not maximize (11) directly. Instead, we replalige¥) Y1 Ziy mi
by its conditional expectation in the E step below.
We then maximize the conditional expectation in the
M step. McLachlan and Peel (2000) showed that this  For the examples given in this paper, we use a rela-
iterative process leads to a sequence of estimates thaive difference stopping criterion to assess convergence
does not decrease the original likelihood. of an EM algorithm. This is based on the absolute rel-
ative difference between parameter estimates at suc-
cessive iterations of the algorithm. If we I& be the

The (r + 1)st E step of the algorithm requires tak- dimepsion of the parameter vectr, then we suggest
ing the conditional expectation &f(¥) given the ob-  StOPPing the algorithm when

A.3.4 Convergence and Starting Values

A.3.2 E Step

served data and the current value of the parameter, say |‘I’L(1k) _ ‘I’L(zk+l)|
¥ |n this case, the conditional expectation of (12) (15) —m  <¢
reduces to taking the expectation&f, givens;. Note d

that Z;; givens; is a Bernoulli random variable with  for d = 1,2, ..., D, given some small, prespecified

conditional probability of success given by value ofe (e.g.,e = 10e-6). This stopping rule was
A discussed by Schafer (1997).
Zl.(,? =Eyn (ZiklS) We close this section by noting that this algorithm
should converge to at least a local maximum, not nec-
(13) = Pyn[Zix =1ls] essarily a global maximum. Therefore, we recommend

starting the algorithm at several random initial values
k(r)b(s-'m- (r)) 0 . . .
_ k i>»Mi, Py ¥ © to increase the chance that a global maximum is

B Z,{{:l)»,((’)b(s,-; m;, p,(c’)) indeed found; see McLachlan and Peel (2000).
from Bayes’ theorem. Notice that|; is the posterior APPENDIX 4: EMPIRICAL COMPOUND
probability that the'th sample member belongs to the DISTRIBUTION FUNCTION

kth component, gives; and¥ "), at the(r + 1)st iter-

. ) As a result of fitting an EM algorithm to a mixture
ation of the algorithm.

model, the posterior probabilities of being in thh
A.3.3 M Step componer_ltl( =12 ...,K) are given for ee;ch qbsgr-
vation. This leads to an empirical cumulative distribu-
The M step is so named because we are performingtion function-like estimator in the setting described in
a maximization at this stage of the problem. We begin Section 3. That is, suppose we are given a sample of
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sign statisticsS1, So, ..., S,. If we regard these obser- ACKNOWLEDGMENT
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