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Ranked Set Sampling: An Approach to
More Efficient Data Collection

Douglas A. Wolfe

Abstract. This paper is intended to provide the reader with an introduction

to ranked set sampling, a statistical technique for data collection that gen-
erally leads to more efficient estimators than competitors based on simple
random samples. Methods for obtaining ranked set samples are described,
and the structural differences between ranked set samples and simple random
samples are discussed. Properties of the sample mean associated with a bal-
anced ranked set sample are developed. A nhonparametric ranked set sample
estimator of the distribution function is discussed and properties of a ranked
set sample analog of the Mann—-Whitney—Wilcoxon statistic are presented.
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1. INTRODUCTION for situations where taking the actual measurements

o . for sampl rvations is difficult (e.g. I -
One of the keys to any statistical inference is that the or sampie obse ato.s s difficult (e g costly, _de
structive, time-consuming), but mechanisms for either

data involved be obtained via some formal mechanism : .
that enables the experimenter to make valid judge_!nforme}lly or formally ranklng a set O.f sample units
ments on the question(s) of interest. One of the most'> relfatlvely easy a_nd rel'fible' In partllcglar,_ Mcln_tyre
common mechanisms for obtaining such data is that ofV_VaS interested |n_ improving the precision in estima-
a simple random sample. Other more structured sam.ion Of average yield from large plots of arable crops
pling designs, such as stratified sampling or probability without a substa'ntlal increase in the nu'mber of fields
sampling, are also available to help make sure that theffom which detailed expensive and tedious measure-
obtained data collection provides a good representation™ents needed to be collected. For discussions of some
of the population of interest. Any such additional struc- Of the settings where ranked set sampling techniques
ture of this type revolves around how the sample datahave found application, see Patil (1995) and Barnett
themselves should be collected to provide an informa-and Moore (1997).
tive image of the larger population. With any of these ~ Since its inception with the paper by Mcintyre,
approaches, once the sample items have been chosea, good deal of attention has been devoted to the topic
the desired measurement(s) is collected freath of in the statistical literature, particularly over the past
the selected items. 15 years. Some of this work has been geared toward
The concept of ranked set sampling is a recent devel-specific parametric families and some has been devel-
opment that enables more structure to be provided tooped under minimal nonparametric distributional as-
the collected sample items. The name is a bit of a mis- sumptions. However, many of the important concepts
nomer because it is not as much a sampling techniqueand features of the ranked set sampling methodology
as itis a data measurement technique. This approach teranscend the parametric or nonparametric categories.
data collection was first proposed by Mcintyre (1952) \We structure this paper around these more general fea-
tures, but make a point to illustrate them with nonpara-
Douglas A. Wolfe is Professor and Chair, Department metric procedures. We begin with a description of the
of Satistics, Ohio Sate University, Columbus, Ohio basic structure, leading to collection of a ranked set
43210-1247, USA (e-mail: daw@stat.ohio-state.edu). sample from a single population.
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2. OBTAINING A RANKED SET SAMPLE to ordering on the attribute of interest via some rank-
ing process. This judgement ranking can result from
a variety of mechanisms, including expert opinion, vi-
sual comparisons or the use of easy-to-obtain auxiliary
variables, but it cannot involve actual measurements of
the attribute of interest on the sample units. Once this
judgement ranking of thé units in our initial random
sample has been accomplished, the item judged to be
the smallest is included as the first item in our ranked
set sample and the attribute of interest will be formally
measured on this unit. The remainikg- 1 unmea-
sured units in the first random sample are not con-

When we select a simple random samfile ..., X,,
from a fixed population of interest, what makes result-
ing statistical inference procedures appropriate is not
the fact that each individual measurement in the sam-
ple is likely to be representative of the population char-
acteristic, say mean or median, of interest. Rather it
is through the concept of sampling distributions of the
relevant statistics that we should, “on the average,” ob-
tain a set of sample observations that are truly repre-
sentative of the entire population. However, in practice
we obtain only a single random sample and the on-the-", :
average concept does not help much if the particularSidered further. We denote this measuremeniby,
population items selected for our sample are, in fact, Where a square brackgt] is used instead of the usual
not really very representative of the entire population. "0Und bracket (1) for the smallest order statistic, be-
We are simply bound by the statistical inferences for CaUS€X[1 is only the smallest judgement ordered item.
this particular sample that go with the on-the-average It may or may not actually have the _smallest attribute
concept unless we are willing to increase our sample Measurementamong ousampled units. Note that the
size and expand the number of sample observations. "®maining (other tharXy) units in our first random

There are a number of ways to address the problem§ample are not considered further_ln the selection of
associated with obtaining an unrepresentative samplePUr ranked set sample or eventual inference about the
from a population. One method for dealing with this Population. The sole purpose of these other1 units
issue is to involve a more structured sampling scheme!S t0 help select an item for measurement that repre-
than simple random sampling. Such approaches in-S€nts the_ smaller qttrlbute values in the populanon.
clude stratified sampling schemes, proportional sam- Following selecnon Of)_f[ll- a second independent
pling and the use of concomitant variables to help random sample of sizé is selected from the popu-
select appropriate sampling units for measurement.lation and judgement ranked without formal measure-
All of these approaches provide more structured sam-menton the attribute of interest. This time we select the
ple data than that resulting from a simple random sam- item judged to be the second smallest of thenits in
ple scheme. Note that this additional structure aboutthis second random sample and include it in our ranked
which items to collect and measure is imposed on Ourset Sample for measurement of the attribute of interest.
data collection procegsior to the actual decision and, This second measured observation is denoted py
as such, is correctly viewed as a sampling technique. ~ From a third independent random sample we se-

On the other hand, despite the name, ranked setfect the unit judgement ranked to be the third small-
sampling is more a data collection technique rather €st, X(3, for measurement and inclusion in the ranked
than simply a more representative sampling scheme.sét sample. This process is continued until we have se-
It utilizes the basic intuitive properties associated with lected the unit judgement ranked to be the largest of
simple random samples, but it also takes advantagethek units in thekth random sample, denoted By,
of additional information available in the population for measurement and inclusion in our ranked set sam-
to provide an “artificially stratified” sample with more ple. This entire process is referred to asyale and
structure that enables us to direct our attention towardthe number of observations in each random sample,
the actual measurement of more representative units ink in our example, is called theet size. Thus to com-
the population. The net result is a collection of mea- plete a single ranked set cycle, we need to judgement
surements that are more likely to span the range of val-rankk independent random samples of stzavolving
ues in the population than can be guaranteed by virtuea total ofk? sample units to obtaikh measured obser-
of a simple random sample. vations X1, X2y, ..., X1k). Thesek observations rep-

We now describe how this additional structure is resent abalanced ranked set sample with set size k,
captured in a single ranked set samplekaheasured  where the descriptor “balanced” refers to the fact that
observations. First, an initial simple random sample we have collected one judgement order statistic for
of k units from the population is selected and subjected each of the ranks =1, ..., k. To obtain a ranked set
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sample with a desired total number of measured obser-.d.f. F(x). It is this extra structure provided by the

vationskm, we repeat the entire cycle processnde- judgement ranking and the independence of the re-
pendent times, yielding the daféyqy;, ..., X;, for sulting order statistics that enables procedures based
Jj=1...,m. on RSS data to be more efficient than comparable
procedures based on an SRS with the same number

3. STRUCTURE OF A RANKED SET SAMPLE of measured observations. On the other hand, these

To understand what makes the ranked set sampleS@me features also make the theoretical development of

(RSS) different from a simple random sample (SRS) properties for RSS procedures more difficult than for
a single cycle t = 1) with set sizek and perfect trate both of these aspects via comparison of the RSS
judgement ranking. In this case, the ranked set sam-2nd SRS sample means.
ple observations are also the respective order statis-
tics. LetX1, ..., Xx denote a simple random sample of 4. PROPERTIES OF THE SAMPLE MEAN
sizek from a continuous population with p.d.f.(x) 5 k > k "

Let X = : X; nd X* = : X7 h
and c.d.f.F(x), and letX},..., X; be a ranked set SRgt and gégls;{nk I{:‘a ?neans Zrézsl egt)i\//lgl bef;recom-
sample of sizek obtained as described in Section 2 P ' b Y

: . mon measured number of observationslt is well
from k independent random sampleskatinits each. known thatX is an unbiased estimator of the popula-
In the case of an SRS theobservations are inde- pop

pendent and each of them is viewed as representing a{'on mean,u_and thgt it has varlanqez/k, Whereaz_ls
typical value from the population. However, there is the population variance. H.OW dods’ compare? F!rst,
no additional structure imposed on their relationship W& NOte that the mutual independence of &ig,’s,
to one another. Letting 1) < X <--- < X bethe | =1.---.k, enables us to write

order statistics associated with these SRS observations, B 1k

we note that they are dependent random variables with E[X*]==) E[X{,] and

joint p.d.f. given by kiz

)
k
X ceey X -
gsrdl (lZ’ ) Var(X*) = k—iZVar(X?})).
i=1
=k ] f(xi) . .
i1 Moreover, since we have assumed perfect rankings,
X{;, is distributed like theth order statistic from a con-
M—oco<xy 23 =S <00} (XD 45 ¥h)- tinuous distribution with p.d.f.f(x) and c.d.f.F(x).
For the RSS setting, additional information and Hence, we have
structure have been provided through the judgement 00 k! A
ranking process involving a total & sample units. E[XZ;)] =/ x?'k"[F(x)]l_l
Thek measurement&y; . ..., X, are also order sta- () —eo (i = DGk =)
tistics, but in this case they are independent observa- 1= FIF f(x)dx

tions and each of them provides information about a . o _
different aspect of the population. The joint p.d.f. for fori =1....,k. Combining equations (1) and (2), we

Xy, .. X, is given by obtain
k 00
ERSIX()s -+ > X)) = f[lf(i)(xzki))’ EIXT] = %;{/;oo e (lf: i) [Fer
where - 1- F(x)]"—"f(x)dx}
fio(xg) = % 3 k

=/_O;Xf(x){

k—1 i
L s Z(,-_l)[F<x>] !
1— —1 .
(PG L= FO@)] £ (G) i=1
is the p.d.f. for theith order statistic for an SRS

M k—i
of size k from the population with p.d.f.f(x) and [1=F@l ]dx'
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Lettingg =i — 1 in the summation in equation (3), we Now, proceeding as we did witA[ X*], we see that

see that
Z E[(XG) —

k 00 . '
-3/ k(x—,u)2<ll.€_]1_)[F(x)]l_l
=17 "%

q1- F(x)]’”f(X)dx}

k
> (1) tFe - P

i=1
k—1 k 1
-y ( . ) [F (011 — F )=
q=0

=1,

since the latter sum is just the sum over the entire sam- = k/ (x—p) f(x){z (k 1) [F(x)]'~
ple space of the probabilities for a binomial random !

variable with parameters— 1 andp = F(x). .
Using this fact in equation (3), we obtain [1- F(x)]k"] dx.
E[X*] = /OO xf(x)dx = p. Once again using the binomial distribution, the interior
—00 sum is equal to 1 and we obtain

Thus,X* is also an unbiased estimator for k N
Of course, there is certainly a difference between ZE Xt

these unbiased estimatoks and X*. The k compo-  (6)

nents of the SRS averagé are mutually independent = ko?.

and identically distributed, and each is itself an unbi- combining equations (5) and (6), it follows that

ased estimator for.. While thek components of the '

RSS averagel™ are also mutually independent, they Var(X*) = — {ko Z(W(k') . M)Z}

are not identically distributed and none of them (except !

for the middle order statistic wheh is odd and the

=k [ wPredx

i=1

. o : o 2 k
underlying distribution is symmetric abowt) is in- _9 _ iz(“* _M)z
dividually unbiased for.. Yet the averaging process k k2 = ®
leavesX™* unbiased. Interestingly, it is the additional Lk
structure associated with the nonidentical nature of the % 2
L s . =Var(X)——ZZ(M(,) 1)
distributions for the terms iX™ that leads to the im- k=
provement in precision fak* relative toX, as we now .
show. <Var(X) since * _u)?>0
= Wi wn)-=0.
Letting uuf;) = E[X};,] fori =1,....k, we note that i;( O
E[(X%, — )2] Hence, in the case of perfect rankings, not onlyis
(Ol an unbiased estimator, its variance is always no larger
4 — E[(X* — % 4wk — )2 than the variance of the SRS estimakbbased on the
@) [(XG) = oy + 1y = )] same number of measured observations. In fact, this is
2 2 . . . _ .
= E[(X{;) — i)+ (n(y) — n)°, a strict inequality unlesg(;) = forall i =1,... &,

which is the case only if the judgement rankings are
since the cross-product terms are zero. Combiningpure|y random.

equations (1) and (4) yields the expression
5. OTHER IMPORTANT ISSUES FOR RANKED
SET SAMPLES

vk 1 & * 2
Var(X )=ﬁzE[(X(i)_rU“) ] . o .
i—1 All of the earlier discussion in this paper involved
(®) k a balanced ranked set sample with fixed set gize
i Z W — 2 and perfect judgement rankings. Of course, these fac-
© tors can clearly affect the performance of ranked set
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sample estimators and hypothesis tests. In particularFor discussion of the pros and cons of balanced versus
they interact with one another in a variety of ways. unbalanced RSS in this setting as well as others, see
For example, remember that each measured ranked sedztiirk and Wolfe (2000a, b).

sample observation utilizes additional information ob-  Finally, we note that it might be logically appealing
tained from its ranking among — 1 other units from  to collect more than a single judgement ordered item
the population. Clearly this additional information is an from each ranked set of size However, it is generally
increasing function ok as long as there are no errors not statistically optimal to do so unless the cost of the
in our judgement rankings. Thus, with perfect judge- judgement ranking is quite large relative to the cost of
ment rankings, we would want to take our set gize actual unit measurement. For most settings where RSS
be as large as economically possible within available is appropriate in the first place, the optimal choice is to
funds. However, it is also clear that the likelihood of collect only a single observation from each ranked set
errors in our judgement rankings is an increasing func- of sizek. This is true regardless of whether it is better to
tion of the set size as well; that is, the largeis, the collect a balanced or an unbalanced ranked set sample.
more likely we are to experience errors in our judge- For more details, see Oztlirk and Wolfe (2000c).

ment rankings. Thus to select the set sizeptimally,

we need to be able both to model the probabilities of 6. NONPARAMETRIC RANKED SET

imperfect judgement rankings and to assess their im- SAMPLE PROCEDURES

pact on our RSS statistical procedures. Initial work in - e previous discussion in this paper is broadly
modeling imperfect judgement rankings was provided gpplicable to both parametric and nonparametric me-
by Bohn and Wolfe (1994). For a nice general discus- ynodologies. For example, the general property of unbi-
sion of modeling probabilities of imperfect judgement asedness for the sample mean discussed in Section 4 is
rankings, the interested reader is referred to Presnell,qt dependent on the assumption of any particular un-
and Bohn (1999). _ . derlying distribution. (The variance of the RSS mean
Even under perfect judgement rankings, the costsis of course, dependent on the underlying distribution
of the various components of ranked set sampling, throughy, o2 and thew)'s, i =1, ..., k.) For the re-
namely, identifying sampling units, ranking of sets of majinder of the paper, we concentrate solely on a num-

sampling units and eventual measurement of units seer of important nonparametric RSS procedures.
lected for inclusion in the ranked set sample all affect

the choice of optimal set size. For a basic discus- ©-1 Distribution Function Estimation and
sion of these factors and optimal set size selection, the ~ Mann-Whitney—-Wilcoxon Procedures
reader is referred to Nahhas, Wolfe and Chen (2002).  utilization of information obtained from rankings is

We have thus far discussed only balanced rankedclearly part and parcel of the ranked set sample con-
set samples; that is, ranked set samples where eaclept through the judgement ranking process used to
judgement order statistic, ranging froif;, to X, select the specific items for measurement. However, it
is represented once in each cycle. However, for somewas not until the seminal paper by Stokes and Sager
situations it is quite reasonable to consider unbalanced(1988) that a nonparametric approach was considered
ranked set samples, where the various judgement orfor analysis of the RSS measurements themselves. In
der statistics have differential representation in a given their paper, they considered the use of RSS data to es-
cycle (but common from cycle to cycle). timate the distribution function of a population.

For example, consider an underlying distribution |et kal]"' _,kak]j for j =1,...,m be the ranked
that is unimodal and symmetric about its med@&an  set samplle (for set sizeandm cycles) from a distri-
Suppose we are interested only in making inferencespution with c.d.f.F (). The natural RSS estimator for
aboutd using ranked set sample data based on an oddF (¢) considered by Stokes and Sager (1988) is the em-
set sizek. Among all the order statistics for a random pirical c.d.f. for the RSS data, namely,
sample of set sizé&, we know that the sample me- Lk m
'?’Ir?n X(k+1)/2 contains the most information abotit Fr @)= 33" Icoon(Xfy))-

us, to estimaté@ in this setting, it is natural to con- mk
sider using the drastically unbalanced ranked set sam- ) ]
ple where only a single judgement order statistic, the Stokes and Sager showed ti#&i(7) is an unbiased es-
judgement mediai, ;) -, is represented in the RSS timator of F'(r) and that )
and it is measured alt times in each of the cycles. (7) Var(F*(¢)) <Var(F(t)) forallz,

i=1j=1
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where £ (¢) is the usual empirical c.d.f. for an SRS of equally likely. This makes tabulation of the associated
equal sizenk. They also showed how to use the RSS null distribution for the SRS Mann-Whitney statistic
empirical c.d.f. in conjunction with the Kolmogorov— relatively straightforward. However, the equally likely
Smirnov statistic to provide simultaneous confidence nature of these arrangements does not carry over to
bands for the distribution functiof (r). the RSS setting, due to the fact that the ranked set
Sparked by the Stokes and Sager (1988) paper,X’S andY'’s, while still mutually independent, are no
Bohn and Wolfe (1992) initiated the development of longer identically distributed. For example, even in the
distribution-free inference procedures based on ranked®@se of perfect rankings, there is nothing to prevent the
set samples. They used the Stokes and Sager RSS esmallest ordered item from one ranked set from being
timator of the distribution function to develop RSS |arger than the largest item from a second ranked set.

analogs of the Mann—Whitney version of the SRS While this probability will, generally, be small, it will
Mann—Whitney—Wilcoxon two-sample test and esti- not be zero as in the case of SRS. This means that for

mation procedures. RSS data itis no longer sufficient to look at tﬁ’ﬁ'ﬁmk )
. * " . distinct (i.e., unchanged by permutations within the
Once again, leX{,.,..., X, for j=1,...,m be , ;
(11 (k1j ™ X'’s andY's separately) ordered arrangements of the
the ranked set sample (for set sizeand m cycles) bined le ob : d d
from a distribution with c.d.f.F(¢). In addition, let combined sample observations. Instead, we need to
y* Y5 forf—1 ' b th. ked t’ calculate the probability of each of thi@k 4+ ng)! per-

(12 - Llgy 1OV T =1, DEANE TANKED SELSAM- oy ations separately and then combine them to obtain
ple (for set sizgy andx cycles) from a second distribu-  the nyi distribution forUrss Fortunately, the proba-
tionwithc.df.G (1) = F(t — A), with —oo <A <00. Yjjities of these(mk + nq)! permutations under RSS
Here we assume that bofhandG represent continu- il do not depend on the form of the common, contin-
ous distributions. Le¥,, (1) andG, ,(r) be the em-  yousF = G underHy, although the tabulation can be
pirical distribution functions for th& andy ranked set  tedious. We illustrate the necessary computations with
samples, respectively, and lg{z) = 1if r > 0and=0 a small example.
if t < 0. The RSS version of the Mann—Whitney statis-

tic is given by EXAMPLE 1. For a singleX and Y cycle (i.e.,

m =n =1) and commorX andY set sizek =q = 2,
we must obtain the null probabilities for the 4 24
different permutations. Under the assumption of per-
fect judgement rankings, the RSS observatidng,

o0
Urss= mnkq/ F, ) dG, (1)
—0o0

g n k m X Il
8 _ W(Y*, — X*,. X 21, Y1 andY(p)1 are independent order statistics
®) ;;;; (s = Xii) with joint p.d.f. given by
— (#X's < Y’s in the RSS data gRsX (1), X(2)» Y1) Y(2)

To conduct hypothesis tests of the null hypothesis . 13[ 2! [F(x )]i—l
Hp: A = 0 against either one- or two-sided alterna- N i @=Dl2-i! ®
tives, we need some properties of the null distribu- B
tion of Urss For this purpose, we assume that we _ \12—i ‘
have perfect judgement rankings for bath and ¥ (1= Flea) |7 S (o)

ranked set samples. Bohn and Wolfe showed that just )

as for the SRS setting, the RSS Mann-Whitney sta- _ 1—[ 2! [F( )]s—l
tistic Urss (with perfect rankings) is distribution-free (s =D!I2—s)! Y
under Hg over the entire class of continuous distrib-

utions . However, there is a major difference in the (L= Fl) 2 f ()
null distributions and how critical values are obtained ) Yo
for the two settings. For the SRS setting, the + ng
combined sampl& andY observations are not only
mutually independent, but they are also identically dis- gRsYX (1), X(2)» Y1) Y(2)

tributed. Thus it suffices to look at each of t(‘(é‘m?_") =161—- F(x)]|[F(x)][1 - F(y»)][F (v2)]
distinct (i.e., unchanged by permutations within the 5 5

X's andY'’s separately) ordered arrangements of these ] _

combined sample observations; moreover, they are all lljlf(X(z))S:]_[lf(y(s))-

s=1

which simplifies to
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Using this expression fogrssand straightforward in- Nl orobabilities and val T‘;BJE 1f the 24 etionsi

tegration, the null probabilities for each of the=424 P o> 0 URss 41 The A parmuiationsina
. withm=n=1landk=g =2

permutations ofX (1)1, X1, Y1 and Y1 can

then be computed by integrating over the appropri- permutation Null probability ~ Valueof Urss

ate region. Thus, for example, the four permutations

(Xan < Yan < X@1 < Yeuh (Xan < Yar < (@210 2@ 270 /360 0
Y X % X Y X d @ =Yo <X <X /

@1 < X1h Y1 < X1 < Yeu < Xea} and 07 300 v <xp 137/2520 0
(Y1 < .X(l)l <Xo1< Y(Z)l}_ all have the same null Y1) < Y2 <X@2) <X(1) 7/360 0
probability of occurrencep, given by Y1) <X1) < V) <X 41/280 1

00 Y2 X2 Y y(l) < X(Z) < y(Z) < X(l) 7/360 1

P= / / / / grRsSX(1)» X(2)» Y(1)» Y(2)) Y@ =D =YD =X 7/360 L

—00 J—00 —00 —0 y(2) < X(Z) < y(l) < X(l) 1/280 1
41/280 2

~dxydyaydxoyd D =<YD <Y <X
O dym axe dy@ X(1) < Y©2) < Y1) <X 137/2520 2
— 41/280 X2) < Y1) < Y2 <X 17/2520 2
. . . . . X(Z) < y(z) < y(l) < )C(l) 1/280 2
Proceeding in this fashion for all 24 permutations y) < x@1) < x@2) <y 41/280 2
yields the set of null probabilities (independent of the Y@ <x@ <x@ <y© 137/2520 2
form of the continuous commoi¥) and associated Y@ <*D <*@ <Y 11/ gggo ;
values ofUrss given in Table 1. Combining the null Jyﬁ; i)ycg iig iig 41;280 5
propabllltles for the various permutations W|th th_e 8S- x1) <y <*@ <Y 7/360 3
sociated values fob/rss we see that the null distribu-  x) < yq) <x@) <ye) 7/360 3
tion of Urssis given by X2) <Y <X <Y 1/280 3
XD <X©2 <Y1 <Y©2 137/2520 4
Po(Urss=0) = Po(Urss=4) = 1/10, X(1) <X@2) < Y@ <Y 7/360 4
. . . . X(2) <X(1) < YD <V®) 7/360 4
Po(Urss= 1) = Po(Urss= 3) = 17/90, X@) < X1 < Y@ < Y 17/2520 4

Po(Urss=2) = 19/45.

Note that the null distribution is symmetric about its (1992). Under the null hypothesig : A = 0, we have
meanEo(Ursg = mnkq/2 = 2. This symmetry prop-  E[Ursg = mkngq/2 and the asymptotic varianee’,
erty holds for the null distribution ol/rss for any  does not depend on the form of the underlying contin-
(m, n, k, q) configuration. UOUSF.

Just as for the SRS setting, the theoretical proper-
ties of the RSS Mann—Whitney statisfitrss are ob-
tained by using standard results about the general clas
of U statistics. (See Randles and Wolfe, 1979, for a

For given values ofk and ¢, Result 1 can be
used to provide approximate critical values for the
Yest of Hp: A = 0 based onUrss For example, in
the special case ofn = n (so thatir = 1/2) and

discussion ol statistics.) Let k = q = 2, it follows from Bohn and Wolfe (1992)
kg that 02 = 16/9, so that the asymptoticM — o)
y=>_> P(X@1<Yu). null distribution of (v/N/mn)(Urss — Eo[Urss)) =
i=1s=1 V2n(Urss/n® — 2) is N(0, 16/9). Thus it follows that
Theny is a two-sample, multivariate, estimable pa- P{v2n{(Urss/n?) — 2} > z()} ~ a, Wherez ) is the
rameter of degre€¢l, 1) and Ursg/mn is the multi- upperath percentile for the standard normal distribu-

variateU statistic estimator fop. Standard statistic ~ tion. The approximate uppeith perceg/tizle for the null
arguments can then be used to establish the followingdistribution of Urssis then given byn®?/v/2)z () +

result. 2n? for the settingc = ¢ = 2. _ _ _
Bohn and Wolfe (1992) also provided a point esti-

~REsuLT 1. Let N =m + n and seti = mator, and confidence intervals and bounds/oas-

My oc(m/N). If 0 <2 <1 and liMy_ oo (N/(m? - sociated with the RSS Mann-Whitney statistigss

n?)) Var(Urss) > 0, then(v/N /mn)(Urss— E[Urss) In addition, they studied the asymptoti¥l (- co) rel-

has an asymptotic\ — oo) normal distribution with  ative efficiency of inference procedures based/ags
mean 0 and finite varianagZ,. An expression fot2, relative to the analogous procedures based on the SRS
can be found in equation (3.3) in Bohn and Wolfe Mann—Whitney statistié/srs
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In a followup paper, Bohn and Wolfe (1994) showed without reducing the amount of reliable information
that the statistid/rssis no longer distribution-free un-  obtained about the BMD makeup of the population.
der the null hypothesigiy: A = 0 when the judge- Nahhas, Wolfe and Chen (2002) discussed the se-
ment rankings are not perfect. Using an approximate lection of an optimal RSS set size for such an ap-
expected spacings model, they studied the effect thatplication in collaboration with Dr. Velimir Matkovic,
imperfect rankings have on the properties of the infer- a researcher in the Bone and Mineral Metabolism
ential procedures based 6éfgss Laboratory at The Ohio State University.
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