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Ancillaries and Conditional Inference

D. A. S. Fraser

Abstract. Sufficiency has long been regarded as the primary reduction pro-
cedure to simplify a statistical model, and the assessment of the procedure
involves an implicit global repeated sampling principle. By contrast, condi-
tional procedures are almost as old and yet appear only occasionally in the
central statistical literature. Recent likelihood theory examines the form of
a general large sample statistical model and finds that certain natural condi-
tional procedures provide, in wide generality, the definitive reduction from
the initial variable to a variable of the same dimension as the parameter,
a variable that can be viewed as directly measuring the parameter. We begin
with a discussion of two intriguing examples from the literature that compare
conditional and global inference methods, and come quite extraordinarily
to opposite assessments concerning the appropriateness and validity of the
two approaches. We then take two simple normal examples, with and with-
out known scaling, and progressively replace the restrictive normal location
assumption by more general distributional assumptions. We find that suffi-
ciency typically becomes inapplicable and that conditional procedures from
large sample likelihood theory produce the definitive reduction for the analy-
sis. We then examine the vector parameter case and find that the elimination
of nuisance parameters requires a marginalization step, not the commonly
proffered conditional calculation that is based on exponential model struc-
ture. Some general conditioning and modelling criteria are then introduced.
This is followed by a survey of common ancillary examples, which are then
assessed for conformity to the criteria. In turn, this leads to a discussion of
the place for the global repeated sampling principle in statistical inference.
It is argued that the principle in conjunction with various optimality criteria
has been a primary factor in the long-standing attachment to the sufficiency
approach and in the related neglect of the conditioning procedures based di-
rectly on available evidence.

Key wordsand phrases:  Ancillaries, conditional inference, inference direc-
tions, likelihood, sensitivity directions, pivotal.

1. INTRODUCTION tistical problem is done implicitly in terms of repeated
o , _ performances of the full investigation under study; call
Suﬁ'c'ep?/ thasl a ][ong an_d.tflrmly'sstabllshgd PreS- this the global repeated sampling principle.
ence in statistical inference, it provides a major Sim- - o qin conditional methods have almost as long a

p||f|cat|9n for mgnyl far_nrllllar _stat;snc?l _modhe_ls an;]j history in statistical theory, but rather strangely are dis-
often gives a variable with a simple relationship to the .,sseq and used extremely rarely. In Section 2 we ex-

parameter. The assessment of this reduction of the staz .o o two important early papers (Welch, 1939: Cox,
1958) that discuss conditional inference and quite ex-
D. A S Fraser is Professor, Department of Satis- traordinarily come to opposite views on the merits of
tics, University of Toronto, Toronto, Ontario, Canada conditioning. Note, however, that the two papers dif-
M5S 3G3 (e-mail: dfraser @utstat.toronto.edu). fer in their orientation toward statistics, the first be-
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ing decision theoretic and the second being inferential. Casella and Berger (2002), but despite its importance

The conditional approach examined in the second pa-seems not to appear in most texts on statistics. A some-

per does violate, however, the global repeated samplingwhat related example was considered earlier by Welch

principle, because the model used for statistical infer- (1939).

ence refers just to repeated performances of the mea- Cox initially considered the appropriate sample

surement instrument that actually gave the observedspace for statistical inference, but then developed it in

data. terms of conditioning on an ancillary statistic (Fisher,
In Sections 3 and 4 we examine two simple nor- 1925, 1934, 1935). A statistic ancillary if it has a

mal measurement contexts and find of course thatfixed distribution, that s, if its distribution is free of the

sufficiency produces the essential variables for form- parameter in the problem. A related notiorreference

ing tests and confidence procedures. In each of theséet was introduced by Fisher (1961).

sections we then progressively replace the normality COx noted that the indicator variable, sayfor the

and location relationship by alternative conditions con- choice of measurement instrument has a fixed distrib-

cerning the distribution form and the continuity in ution with probability 2 ata =1 or 2 according as

the parameter—variable relationship. We find that suf- the first or second instrument is usedis thus ancil-

ficiency is no longer available and that definitive con- 1&ry. The Fisher conditionality approach is to condition

ditioning procedures from likelihood asymptotics give ©n the observed value of the ancillarnand thus to use

the appropriate variable with a simple relationship to the normal model that corresponds to the mstrumgnt

the parameter. We also find that if these procedures ardhat actually made the measurement. From a practical

applied to the initial location normal cases, they dupli- Perspective this seems very natural, and some related

cate the results from sufficiency. We are thus led to theth(z:ory iigseg/elopdedcin Sefj“ﬁf‘ il 1974 idered
view that sufficiency and the global repeated sampling Ox ( ) and Cox and Hinkley ( ) considere

principle together have been a major delaying factor f[hetwo measurement instrmts example numerically

to recognition of the conditional approach. These two n terms _of_the testing of a point _nuII hypothesis. We
sections also include an overview of the methods pro- recast this in terms of confidence intervals.
vided by recent likelihood theory; these methods in  ExXAmMPLE 2.1. For the two measurement instru-
wide generhlity produce highly accurate values and  ments we assume that the standard deviations are
highly accurate likelihoods for component parameters 100 andoyp, respectively. A 95% confidence interval
of interest. The methods are assessed in terms of jusbased on the measurementinstrument actually used has
the measurement processes that gave the actual datéhe form
accordingly the methods do not conform to the global (y £19650) if a=1,
repeated sampling principle. (2.2) )
In Section 5 we examine criteria for the use of condi- (y£19600) ifa=2
tioning and for the construction of statistical models for Suppose now that we consider the problem in terms
purposes of statistical inference. In Section 6 we surveyof ordinary confidence methods and then invoke some
some traditional ancillary examples and how these re-optimality criterion such as minimizing the average
late to the criteria in Section 5. Then in Section 7 we length of the confidence interval. We might then prefer
consider the role of global repeated sampling assessthe 95% confidence interval
ments an_d how th(_ese assessments interact with familiar (v +1640g) ifa=1,
optimization criteria. (2.2) _
(y & 500) ifa=2.
2. TWO MEASUREMENT INSTRUMENTS We can see that this has 90% conditional confidence
if @ =1 and has almost certain conditional confidence
As part of a general discussion of statistical infer- if 4 = 2; and we then see that this averages and does
ence, Cox (1958) considered two measurement instru-give the desired 95% overall confidence. The first in-
ments, both unbiased and normal, but with different terval (2.1) has average length 197%8&nd the sec-
variances; the context includes an equally likely ran- ond interval (2.2) has a substantially shorter average
dom choice of which instrument to use to make a sin- length 16%,. The second interval (2.2) acquires this
gle measurement on a parameteiThe example was  shorter average length within the overall 95% confi-
also discussed by Cox and Hinkley (1974, page 96) anddence by presenting a slightly longer interval in the
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precise measurement cage= 2 and a very much
shorter interval in the imprecise measurement case
a=1. A similar argument in the hypothesis testing
context shows that the overall power of a sizdest
analogousto (2.1) can be increased by allowing a slight
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decrease in power in the precise measurement cas: .

i b

e

with a large increase in power in the imprecise case.
The raw message for applications from this optimal-
ity approach is, “Get your minimum length or maxi-
mum power where it is cheap in terms of contribution
to confidence level or test size.” Here, we are view-
ing this in terms of a random choice of measurement
instrument, but we could also view it in a larger con-
text, say that of a major consultant who advertised that
his or her 95% intervals are shorter on average. His or
her policy might be to give the clients with more ac-
curate measuring instruments longer intervals and give
the clients with less precise instruments shorter inter-
vals. He or she thus maintains the overall confidence
level at 95%, but is able to provide shorter confidence
intervals on average than some other confidence in-
terval provider who might feel constrained to restrict
the coverage probability at 95% for each instrument
used. This would perhaps not be done overtly, but is
presented here because of its patent violation of good
sense and because the phenomenon as just described
intrinsically embedded in almost all applications when
an optimality approach is used. The next example will
clearly display this strange trade-off.

Let us consider the two measurement instruments
example in Welch (1939). For this we have two
measurementg; andy, of 6 with independent errors
that are uniform(—1/2, 1/2); there is nothing special
in the choice of a uniform distribution other than
simplicity and its clear departure from normality in the
form of having very short tails.

EXAMPLE 2.2. The variable(y1, y2) has a uni-
form density equal to 1 on the unit squafe-1/2, 6 +
1/2) x (6 — 1/2,6 + 1/2). If we takez; =7y and
z2 = (y2 — y1)/2 we see easily tha, has the trian-
gular density

p(z2) =2(1—2|z2])

on the interval(—1/2, +1/2) and thatz1|z2> has the
uniform density

pzilz) =1 - R)~1

on the intervald + (1 — R)/2}, whereR = 2|z5| is the
sample range fo(y1, y2). Obviously z» is ancillary,
and clearly, it is describing the physical nature of

FiG. 1. Acceptance regionin (6 +1/2)' x (6 +1/2): (a) condi-
tional; (b) max power; (c) min length.

the sample, the within-sample characteristics typically
presented by residuals. Its analog in more general
contexts is called &onfiguration statistic. A B-level
confidence interval conditional on the ancillaRyis
then given as

(2.3) {y£B1—-R)/2};

the 8 = 75% acceptance region for testing a vatue
corresponding to (2.3) is recorded in Figure 1(a).

A likelihood ratio argument can be used to obtain
the most powerful (often called, rather inappropriately,
most accurate) unbiased or symmeftitevel interval:

e B (2"
RN
if R < (1_7}3)1/2.

This interval gives the full range of possildevalues

for large R. The B = 75% acceptance region for
testing a valu® that corresponds to (2.4) is recorded

in Figure 1(b). Similarly a length-to-density ratio
argument can be used to obtain the shortest on average
symmetric8 = 75% confidence interval, which has the
form

yil‘TR) it R > (1— VB),

if R<(1-B).

This confidence interval is either the full range of

possibled values or the empty set; the acceptance
region that corresponds to this confidence interval (2.5)
is recorded in Figure 1(c). Again we see that we can
reduce average length or gain power by removing the
requirement that the confidence level be controlled
conditionally. Also we note that the two optimality

criteria lead to quite different confidence intervals, both
with rather extreme properties. In particular, the most

(2.5) (

%]
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powerful 75% interval is the full range of possible
values some of the time (and then always covars

D.A. S. FRASER

interpret “left” in the sense of smaller maximum
likelihood value.

the minimum average length 75% interval is the empty  An end user might be interested in a right tail or a

set 25% of the time (and then never covejsThese

two-tailed p value, but we take the left value as in

are certainly extraordinary and unpleasant properties(3.2) as the elemental or primitive inference summary

that hopefully would not easily be explained away to
a client.

Cox (1958) offered general support for the condi-
tionality approach from Fisher (1961). Welch (1939)
invoked optimality conditions and argued against con-
ditionality using a similar example. Similar opposite
viewpoints can be found in Fraser and McDunnough
(1980) and Brown (1990). The viewpoint from Fisher

from which the others can be derived; this is in accord
with the conventional definition for a distribution
function. Thep value records the percentile position of
the data point relative to the distribution indexedéby
Suppose now that we are in the sampling context
with data(y?, ..., y9). The familiar sufficiency argu-
ment gives a reduction to the sample averagd@he
observed likelihood and observedvalue p°(9) are
then available a&%(9) in (3.1) andp®(¥) in (3.2), but

and Cox and supported here is that anomalies such agith 10 0
. : _ y" replaced by © andog replaced by//n. The
these argue in fact against the appropriateness of thgy o\ih 504 function and thep-value function give two

optimality approach applied on a global or repeated

sampling basis. Indeed optimality criteria and global

complementing assessments of the unknéwn

probability assessments lead generally to analyses thaB.2 Measurement with Known Nonnormal Error
do not acknowledge clear and evident characteristics in Suppose now that we know the shape and scaling

particular circumstances.

3. SCALAR PARAMETER
MEASUREMENT EXAMPLES

3.1 Measurement with Known Normal Error

Consider a very simple example with known normal
measurement error: Lep be normal (6, 002) with
observed data®. The observed likelihood function is
available immediately,

1
L%0) = cexp{—goz(yo - 0)2}

ol5")

00
where¢ is the standard normal density. It has maxi-
mum value av?, has normal shape and is scaledigy
and it displays how much probability sits at the data
point under various possibke values. The observed
p-value function is

where® is the standard normal cumulative distribution
function. This records the left tail probability at the
data pointy® when the parameter has the vafyét can

(3.1)

-6

00

(3.2) P6) = <I><

of the error distribution, say the logistic or even
the Student distribution with 7 degrees of freedom
often cited as having an appropriate thickness in the
tails. Let f(e) be the error density and suppose for
convenience thaf (e) has been centered at= 0. For

an asymmetric distribution there would be arbitrariness
in the centering choice, but this has no effect of
substance on the considerations here. We thus consider
the measurementwith model f (y — 6) together with
observed data valug’.

For some of the discussion we can be still more
general and consider with model f(y; ) together
with observed dats®. Then, as in Section 3.1, we have
that the observed likelihood function is

(3-3) Lo6) =cf (°.6)
and the observeg-value function is
(3.4) p°O) = F(%0),

where F is the cumulative distribution function that
corresponds tof. Confidence intervals are available
immediately by the standard inversion of (3.4); for
example, the central 95% intervid; , 6;) is obtained
by solving

p°61)=0.975 p°@dy) =0.025

where we assume for convenience that the distribution

be viewed as presenting the percentile position of the shifts to the right with increasing. For the moment

datay? relative to the distribution fop that is indexed
by 6. In more general contexts we can typically

we are examining just the case with a single measure-
menty.
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A primary theme in this paper is that observed like- all after an orthogonal transformation. The Jacobian
lihood and observeg-value functions are primary is thus constant and the conditional density up to a
inference elements, and are available in wide gener-norming constant is available as just the full density
ality and with little computational difficulty. Toward reexpressed in terms of the new variables.
this, a natural next step is to consider a sampling situ- For an alternative expression for the conditional
ation or, more generally, a multiple response situation. distribution we note that the observed likelihood is
With nonnormalf (y; 0), or with varying f; (y;, ), the (3.5) L9 = cf( 0_gy... ( 0_ g
simple reduction by sufficiency is almost never avail- * = n
able. We will see, however, that definitive conditioning and we can thus write
is readily available, and for this we first examine the (3.6) g(ﬂao; 6) =10 — §+§°),

case with direct location modeling.
where the proportionality constantn (3.5) is taken to
be the appropriate norming constarjtust described.
The observeg value is then obtained as the appro-
Consider a sampléys, ..., y,) from a distribution priate integral of the conditional model:

3.3 Multiple Measurements with
Location Parameter

f(y — 0). The residual vectot:(y) = (y1 — ¥, ..., 50
y. — y) describes the pattern within the sample po(g):/ ¢(y1a% 0)dy
and is easily seen to have a fixed parameter-free —oo
distribution. To make this transparent we wrige= 30
0 + e;, where (e1,...,e,) is a sample from the (3.7) =/ LY -5 +7%dy
error distribution f(e). Thena(y) = (y1 — ¥, ..., -
yn—y) =(e1—e,...,ep —e) = a(e); this clearly :/ L9%@) do.
0

shows that the distribution far(y) depends only on
the error sampldey, ..., e,) and is thus free of the Note that this has been expressed as an integral of
parametep. The residual vector is sometimes called observed likelihood and in fact happens to be the
aconfiguration statistic: It is ancillary and, in addition, = Bayesian survival probability derived from the flat
directly presents key observable characteristics of theor uniform prior 7(#) = k. Also note that for the
underlying or latent errors; recall the discussion in special case with normal error density we have that
Example 2.2. (3.5) and (3.7) duplicate the results (3.1) and (3.2) for
Now consider observed da([;ag, e, y,?). From this the normal case. We thus see that sufficiency works
we know that the ancillary:(y) has observed value essentially just for the simple normal model, but that
a® = a(y%) and then, in accord with the condition- conditioning works in the general case and in doing
ality approach, we work ith the conditional model so reproduces the special earlier result for the normal

given the observed configuratiany®) = «°. Thiscon-  case.
ditional model can be derived in various ways and can When we examine a still more general case in the
be expressed as a density for, sagivena?; that is, next section, we will see that for implementation we do

_ _ _ not need to know the full ancillary or full configuration

8(1a% 0) = kf (5 +ay = 0) - 5+, = 0), statistic. It suffices to know just the nature of the

wherek is the norming constant and in most applica- conditioning at the observed data point. In fact we will

tions would be obtained by numerical integration at the see that highly accuratg values are available quite

same time as a probability of interest was calculated by generally using just the observed likelihob8(#) and

the appropriate numerical integration. the gradient of the log-likelihood(#; y) calculated at
The usual derivation of a conditional model requires the data point in what we call sensitivity direction,

the calculation of a Jacobian to the new variables, herea direction, say, in which the ancillary is constant in

y anda(y). This can be presented quite simply here value. At this stage, it is easy and of interest to see what

by noting that the new variables are both linear and in such a vector would be like. #(y) = a9, then a poiny

fact are orthogonaly records position in the direction has projectiony; —y,...,y, —y) = (ag, e a,?) on

of the one-vector, and(y) records position in the the orthogonal complement-(1) of the one-vector.

directions of the orthogonal complemest-(1) of the The points with such fixed projection lie on the line

one-vector. In effect we are finding the distribution «° 4+ .£(1) and a tangent to the line is of course in

of one coordinate given the remaining coordinates, the direction of the one-vector; thus= 1 or some
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multiple of it. This vector tells us what the ancillary ity vector

looks like near the observed data point; it just happens ~0 AOvy/
here in this location model case that the tangent vector(3'9) v={va(6%), .., va(67))
is the same vector at all the possible data points. Moreat the observed datg’ which describes change cor-
generally, for accurate inference we do not need theresponding to change that the maximum likelihood
appropriate ancillary explicitly; it suffices to have just valueg = 4°.

its tangent vector at the data point, and we will see that As a simple example consider the regression model

this is easily obtained. with independent coordinates apd= Sx; + ¢;, where
the errors have a known distribution and the covariate
3.4 Multiple Measurements with Scalar Parameter valuesx; are known. The effect of change gon the

. . response vector is then given as= x, which is the
With a location modey (y —6) we see thata change  yery simple design matrix. A second example is given
in the parametef causes a shift of the distribution by a 5t the end of this subsection.
corresponding amount. We can refer to thig @hange In any case, likelihood theory establishess the
caused by change, and writéy/d6, which, for this  tangent vector to an approximate ancillary suitable
simple location model, has the value 1; for this we for highly accurate likelihood inference. Whether the
should understand clearly that the derivative is taken physical suggestion of sensitivity under parameter
for a fixed value of the error quantity=y — 6. For a change has persuasive value, it does provide the basis
more general case with distribution functiét(y; 6), for the arguments that lead to the ancillary property
we note that a small incremeidt to the parameter (Fraser and Reid, 1995, 2001).
from a valued causes a shift of the distribution by an ~ Recent likelihood inference theory focuses on the
amountv$ at a pointy, where likelihood function and in wide generality produces
results that have high accuracy as opposed to the first-
__ IF(y; 9)/89. order accuracy when standard normality is ascribed to
AF(y;0)/0dy the score or maximum likelihood departure measures.
By high accuracy we mean that the approximation
errors are of orde0 (n—%/2), wheren is the sample
size or some equivalent indicator of data dimension,
and being based on likelihood, the approximations
can have extraordinary accuracy even with very small

For this we take the probability position of the point
to be given by itsp value F(y; 0), and we hold this
mathematically fixed as we examine ha@wvchange
causesy change, using the total differential df.

Correspondingly we calb = v(0) the sensitivity ofy samples.

relative to 0. Indeed this agrees with the sensitivity £ yhese recent likelihood approximations we need
mentioned for the location case in the preceding yq special first-order departure measures.IL@) be

section. N N the observed likelihood and lg(6) be the observed
When we speak of the probability position or the |4q_jikelihood. If we then write

p value of a pointy we are presenting the same )

information as the traffic monitor when he or she (5 10) LO) _ o /) —E(é)}zexp(_r )

asserts that you are driving at the 99.5 percentile;

the statistical position relative to other cars would be

clearly understood. A A
Now consider independent measurements. . , y,, (38.11) r=sgn@ —6)[2{¢@®) — LO)}N"2,

wherey; has modelf; (y;; 6) with distribution function \hich is called the signed likelihood root. The second

Fi(yi;0). A changes in 6 causes in the manner just  geparture measure is a standardized maximum likeli-
described a changes in the coordinatey;; this gives  1ood departure

the sensitivity

~

and solve for with an appropriate sign we obtain

(312) g=s9d — 0)lp®) — p(©) 42,

(3.8) v; (0) = _OFi(3i:0)/96 2 2782 0 i
dF; (vi; 0)/dy where j,, = —(04/39)L(O; y")|,_s0 IS the corre-
sponding observed information. This has certain rather
for the ith coordinate. With a data poimjrvg, s y,?) special features that turn out to be very important: The

we could then reasonably be interested in the sensitiv-standardization is with respect to observed and not the
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usual expected information, and the departure is calcu- In the location model context in Section 3.2, the
lated in terms of a special reparameterizatigf). The reparameterizatiorp(9) becomes the familiar score
use of the special parameterizatip(®) is essential; it  parameter

needs to be obtained as the gradient

06) -2 ¥O) = —£4(6; Y%
a0 07> 7

d
(3.13) P(0) = —£(6;y) _ _ o _
dv y=)° where the subscrip® denotes differentiation with

of likelihood at the data point and calculated in the respectt®@.Formulas (3.14) and (3.15) then give third-

sensitivity directionv discussed above. For (3.13) a Order approximations to (3.7). o
directional derivativel /dv is defined by Now to illustrate the accuracy of the approximations

(3.14) and (3.15), consider a sample from the density
functiond exp{—0y} on the positive axis. For a coordi-
x=0 natey; we obtain the log-likelihood; (9) =log6 — 6y;
Certainly we would expect likelihood at and near a data and the log-likelihood gradient ig; (9) = —6. From
point to be important, and the use of the sensitivity this we obtain the overall log-likelihood
direction as being a plausible way to examine likeli-
hood near the data point, but for some background mo- £(6) =nlogt — 6 Z Y-
tivation and details, see Fraser and Reid (1993, 1995 A natural pivotal for théth coordinate is; = 6y;. This
2001). We do note that(9) can be replaced by anyin- has a fixed distribution, of course, with distribution
creasing affine equivaleat (6) + b without alteringg, function F (z;) = 1—exp(—z;). For the vector case this
but any further modification of the reparameterization gives then-dimensional pivotaly16, ..., y,0). From
can destroy the high accuracy. The special reparameterthis we obtain the sensitivity vector
ization will be called the exponential reparameteriza-

d d
—h(y)=—h
e 6)) T (y +xv)

/
tion, because it takes the role of a canonical parameter v(y,0) = <_ﬂ’ L _y_”) )
of a closely approximating exponential model (Fraser o 0
and Reid, 1993). If we examine this a(y°, °) we obtain the related

The observedp value p%(9) for testing 8 with sensitivity vector
observed data® is then given by

0 0 1 1 0 v(y)=v(y;éo)=(—yA—g,...,—yA—g)/
@14) p°0) =000+ (55— ;o0 G0’ o
or and the related reparameterization
1 0 N
315 0@ =0 (L)iog( )], 0= (-35) 0 =co.
0 P T\ 60

wherer? andq? refer to the observed values obtained Because the model is exponential, thig)) is, of
from (3.11) and (3.12). These formulas (3.14) and course, just the exponential parameter of the initial
(3.15) for combining the likelihood ratio and maximum model, and the sensitivity vector in this case, where a
likelihood departure measures are from Lugannanifull sufficiency reduction is available, has no effect on
and Rice (1980) and Barndorff-Nielsen (1986) as the calculation as all the possible directions yield the
derived in particular contexts; the value has third- same reparameterization. For a numerical illustration,
order accuracy and conforms to appropriate ancillary consider the extreme case of a sample:ef 1 from
conditioning (Fraser and Reid, 2001). this very nonnormal distribution and examine the data
In the special normal case described in Section 3.1,pointy = 1 relative to the parameter valde= 10. The
the quantitiesr and ¢ are both equal tay — 6)/ familiar signed likelihood ratio- has value—3.6599.
(00/+/n). Both formulas (3.14) and (3.15) have nu- With the common normal approximation, this gives
merical difficulties nea# = #°, where both- andq are the p value 0.000126. Alternatively the maximum
equal to zero. Of course, we are usually not interestedlikelihood departureq, which has value-9, with
in p values near the maximum likelihood value, but a normal approximation clearly gives an unrealistic
simple bridging formulas are available (Fraser, Reid, approximation. If, however, we useandgq in (3.14)
Li and Wong, 2003). we obtain thep value 0.000046 which agrees very
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closely with the exactp value 0.000045. As the and widely accepted;thatis,
model here is a location model in mild disguise, the 0
calculations also provide an approximation to (3.7). (4.2) PO(w) = H(i)
The present type of calculation using (3.14) or (3.15) s0/(n? —m)t/2
can be surprisingly accurate even for extremely small where H is the Student(n — 1) distribution func-
samples and extremely nonnormal distributions; for a tion. This can be argued in various ways. The statistic
range of numerical examples, see Fraser, Wong and WUy, s) is minimal sufficient and is the sole data ingredi-
(1999). ent needed for the likelihoo8l (i, o; y1, ..., ya); for
fixed 1, t = n/2(y — w)/s, has uniqueness properties
as a continuous function @¥, s) with distribution free
Our examples in this section were concerned with ©f the nuisance parameter. Whatever the basis, we
a scalar parametef, and we began with the case here take the quantity as the appropriate input for the

of normal error with known scaling. Sufficiency pro- ? value.
vided the reduction to the sample average and we
obtained likelihood andp values directly. We then
considered nonnormal location models, followed by Considerys, ..., y,, wherey;, = u + oe; and the
general models that describe independent coordinateg; form a sample from some known error distribu-
of a vector response. We found that conditional meth- tion f(e). To have a sensible definition pfando we
ods produced the accuragevalues, while sufficiency  require thatf (e) be appropriately centered and scaled.
methods typically are not available. We also saw that The standardized residuals= (y; — y)/s describe
when sufficiency was available the conditional meth- simple characteristics of a sampley, ..., y,), free
ods reproduced the same result as sufficiency. In Ap-of location and scale. It is straightforward to see
pendix A we show this holds more generally: That is, thatd = (da, ..., d,)’ has a fixed distribution, free of
if sufficiency is available to simplify a problem, thenin  ando. Accordingly itis ancillary in the conventional
wide generality conditioning produces the same result. sense. We can also note théty®) = d(¢°), where
Thus we hardly need sufficiency; it can be replaced ¢® records the realized underlying errors; thus the
by conditioning. Indeed historically the extreme focus underlying standardized errors are directly observable.
on sufficiency has distracted appropriate attention from Accordingly d(y) can be viewed as the appropriate
serious consideration of conditional methods. configuration statistic.

The observed likelihood function is

3.5 Condition to Separate Main Effects

4.2 Measurements with Known Error Shape

4. VECTOR PARAMETER

n
0 — -1,.0
MEASUREMENT EXAMPLES 4.3) L(w,0)=co ™[] flo™ G0 —w).

i=1
4.1 Measurements with Normal Error The conditional distribution of the response vector
given the standardized residuals is obtained by change
of variable; it has probability element
1 dyds
co " [ flo~ G +sdf = w)s" =5,

Consider the case of a samghg, ..., y,) from the
normal(u, o2) distribution and le(»yY, ..., y9) be the
observed data. The observed likelihood function is

Lo, 0)

(41) (S0)2

—n
=co "expy — -
202

n@o—uﬂ}
202 ’

where s2 = Y (y; — ¥)2. We could be interested in

i=1
which can be rewritten as

L°<7°+s°—“_y SO—G) dyds

4.4 :
( ) N N S2

various parameter components, but we choose justwhere the constant in the likelihodd is taken to be

the simple location parametgr. From a general
viewpoint we might want a likelihood fog; there are

the appropriate norming constant. We thus see that any
probability for(y, s) can be presented as an appropriate

recent developments for this (e.g., Fraser, 2003), but tointegral of observed likelihood.
address them here would take us from the main theme Also in the particular case that(e) is the standard
of this paper. Ap value, however, is directly available normal ¢(¢) as in Section 4.1, we have that (4.4)
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reproduces the normal distribution ferand the scaled  ditional density. They value forys is then given as
chi square distribution fos?. o
For testing a value ofu free of the nuisance (4.8) po(w):/slf(sﬂsg; W) dsa,
parameters, the statistict = n/2(y — w)/s, has
uniqueness properties as a continuous function withwhere the lower limit is the lower end of the range
distribution free of the nuisance parameter The of the variable. Some details for such calculations for

corresponding value is the gamma mean problem can be found in Fraser,
Reid and Wong (1997). The value in (4.8) is
(4.5) pO(M)=/ Lo{y°+soﬂ_y SO_G} dyds presented as a conditional value, conditional on
' <0 s s s2 7 the nuisance parameter score. It is also, however,

o ) o ) a marginalp value, just a matter of whether it is being
which is readily evaluated by numerical integration. ¢qnsidered from the conditional or the overall marginal
We also see that (4.5) can be rewritten as viewpoint: If it has a uniform distribution given any

~ value for the condition, then it has that same uniform
0 o0 o0 0, ~ deU .. . .
4.6) p (/,l,):/: / L*(ix,0) , distribution marginally.
w=pJa o In wide generality, as will be seen in the next section,
which gives a simple expression for thevalue as P Values free of nuisance parameters are not available
a direct integral of likelihood, indeed in the form of PY such conditional calculations, but are obtained
a survival posterior probability using the prier1. free of the nuisance parameter by a marginalization

Highly accurate approximations for (4.5) or (4.6) are fpﬁt ellmlnates_l tEIe egfec:] of thed_n_wsalnce parameter.
also easily available; see Section 4.4. ey are avallable by the conditional argument as

just indicated only for very special model types such
4.3 Exponential Model and Canonical Parameters as the exponential described here; in such cases,
the conditionalp value is also a marginab value,
Consider an exponential model with natural or so there is no conflict with the marginal approach

canonical parameter(s, 1): now being recommended. Conditioning above is then
an alternative route to the same end by a different
f(s1,52; ¥, A) argument, but suitable just for certain special cases.
4.7)
= exp{ys1 + Aso — k (Y, M) }h(s1, 52). 4.4 Location Model and Canonical Parameters

Consider a location model on the plane and let
(y1, y2) be the variable with locatiof, ») and error
density f (e1, e2). We could examine the rather special
case with independent normal errors, but for interest
assume something more general, wherefsay, e») is
rotationally symmetic as for example with the Student
densityr ~1(1+ €2 + 2)~2. A still more general case
would proceed in the same manner. Also suppose that

This type of model is frequently mentioned when in-
ference for a parameter in the presence of a nuisance
parametei is under discussion. If sampling is part of
the background, then the coefficientsyoandA in the

exponent of (4.7) form the minimal sufficient statistic
or likelihood statistic. We anticipated this in (4.7) by
writing (s1, s2) to suggest the sufficient statistic under

sampling. In this sampling case, however, the supporty e 4re interested in the component paramgtefor a
densityh(s1, s2) typically is available only by integra- general context, see Fraser (2003).

tion from some original composite density for the sam- ~ gor 3 sample of: we can reasonably consider the
ple; by contrast, the likelihood ingredierty, ) is  residual vectors for each coordinath,= (y11 — ¥y,

quite typically available explicitly. v — V) andds = (y21 — Vou .. os Yon — Vo)
For testing a valuey free of the nuisance parame- as providing the data pattern free of location char-
ter A, the conditional distribution of; given the nui- acteristics. It follows thatl1(y1, y2) = d1i(e1, e2) and

sance score; is often advocated. It is of course free d,(yq, y») = do(e1, e2), thus showing that the distribu-
of A, but its density for direct calculation needs the tion for (d1, d>) is free of(y, 1), and also showing that
typically unavailable density facta@ns1, s2). However, the residual characteristics of the underlying errors are
for discussion here lef (s1]s2; ¥) designate this con- directly calculable from the observed data vectors.
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In the presence of observed d#€a?., y2,)} we have
that the conditional distribution ofyq, y,) given the
observed residuals is available by change of variable:

[ Vold?, dg; v, 1)
=k]£[lf(?1+dfi — V. Vo +dy — 1),
As the observed likelihood is
4.9) Lo(y.n=c 1'[ fO%—6,y%—6),
i=1

we find that we can then rewrite the conditional
distribution as

f(yl’ y2|d](_)7 dgv ‘h )\')
= Lo =51+ 51, A — T2+ 5.

Again the arbitrary constant in the likelihood would

(4.10
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corresponding translation of the distributigiiy; — v,

y2 — A) on the plane. For a sample of the effect is
particularly simple: A change ity causes a shift in the
first coordinate:-vector by the corresponding multiple
of the one-vector for that coordinate. A changexin
similarly causes a shift in the second coordinate vector
by the corresponding multiple of the one-vector for that
second coordinate. This sensitivity connection between
the parameter and the distribution for the response
seems obvious and natural here in the location context,
but for its more general version some discussion is
needed.

Suppose thar andi are scalars, and that indepen-
denty; have a common distribution with distribution
function F(y; ¥, A) and density functionf (y; ¥, 1).
Then, as in Section 3.4, we examine how a change
in (y, A) shifts the distribution. We do this by examin-
ing the p value F (y;; ¥, A) for theith coordinate and
seeing how, for fixed value of this pivotal, the distrib-
ution shifts at a poiny;. From the total differential of

be taken equal to the norming constant. This reducedthe p value we obtain

model is a two-dimensional location model with para-
meter(y, 1).

Under a requirement of moderate continuity for the
variables under study it is straightforward to see that
v, is the essentially unique variable free of The
corresponding marginal distribution is

o0
fG1-wld.df) = [ 1w ~F1+ 300 ar
-0
and the essentially uniqyevalue for assessing is
o0 o0 - -
@1) o= [ LGmapd,
v —00

which, in this pure location case, is equal to the
Bayesian survival probability based on the flat prior in
the location parameterization. Tipevalues for various

i
(Y, A)
_( OF(i;0)/0y  9F(yi;0)/9A
_<_8F(yi;9)/8yi’_BF(yi;O)/ayi)'

If we then consider alk coordinates, we obtain an
array of two sensitivity vectors

(vi1, vi2) =

Vi1 V12

(4.12) V= = (v1, v2),

Unl Un2

which describes howr, A) affects the distribution.
Quite reasonably we are concerned with this effect
for an observed data point® at the corresponding
maximum likelihood parameter valug®. Let V in

Y values can then be obtained by numerical integration 4 12) pe evaluated foiy, 8) = (y°,°). As a simple

of likelihood. Highly accurate approximationsto (4.11)
are available and discussed in the next section.

For a more general approach to location parameteri-

example considey = X8 + oe, where the error is
a sample from a known distribution and the design
matrix X is given. The sensitivity vector array

zation, see Fraser and Yi (2002), and for the interplay {hen has a vector for each parameter coordinate and
of frequentist and Bayesian methods, see Fraser an%imple calculation give&’ = (X, ¢°), whereé® is the

Reid (2003).

4.5 Multiple Measurements: Interest and
Nuisance Parameters

With the location model in the preceding section
we see that a change in the paraméteri) causes a

fitted standardized error vector. This leads to accurate
inference even with nonnormal error and extends easily
to nonlinear regression; for examples, see Fraser, Wong
and Wu (1999).

For the two parameter case as indicated by (4.12),
general theory (Fraser and Reid, 2001) then shows that
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there is an approximate ancillap(y) of dimension

n — 2 for which the tangent vector¥ at the data
point y© are given by (4.12). This then leads to highly
accurate third-ordep values for scalar components of
the parametef. The calculations for the values for
assessing say need just the observed log-likelihood
2%(y, 1) and the observed log-likelihood gradient

oo _da
@ (0) ={p1(0), p2(0)} = dV@(G, y)
(4.13)
{ d

using directional derivatives as defined after (3.13).
We refer to this as the exponential parameterization,
being the canonical parameter of some best fitting
exponential model near the data point. For inference
concerningys we can then calculate a first departure
measure given by the signed likelihood ratio

(4.14) ) = sgnyr® — ) (2[°@) — €212,

whered,, is the maximum likelihood value under the
constrainty (8) = ¥, and we can calculate a second

y=)0

o d
LO;y)|y ,d—vzﬁ(é;y)
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simple cases where sufficiency can be used and covers
the general cases as developed in Sections 4.3 and 4.4,
where sufficiency is not available.

5. SOME CONDITIONING AND
MODELING CRITERIA

5.1 The Two Measurement Instruments Example

In Section 2 we discussed two examples that in-
volved measurement instruments, as presented by Cox
(1958) and, earlier, by Welch (1939). Our theme, in
contrast with that in Welch, was that conditioning is
appropriate and proper for both examples.

For the earlier example (Welch, 1939), the two in-
struments were identical and both were used in a sin-
gle investigation. The conditioning under discussion
used Fisher’'s configuration statistic and provided the
background for the succession of examples in Sections
3 and 4. We develop further aspects of conditioning
on configuration statistics in the next section. For the
other example (Cox, 1958), only one of the instru-

departure measure given as a special standardize@nents was actually used. This raises a serious issue.

maximum likelihood departure
9°) = sgny® — v)

| oo }1/2
Jon By)

In this x (9) is a rotated coordinate gf(¢) that agrees
with ¥ (9) atdy and acts as a surrogate fo(6) atdy,,

and the full and nuisance informations are recalibrated
in the ¢ parameterization, as indicated by the use of
parentheses arounth.. Further details are recorded
in Appendix C; also see the regression examples in
Fraser, Wong and Wu (1999) and Fraser, Monette, Ng
and Wong (1994). The value p°(y) is then given by
(3.15) in Section 3.4.

The p value just discussed corresponds to the use
of the special conditional model given the approxi-
mate ancillary with tangent vectors, followed by
a marginalization to eliminate the nuisance parame-
ter. This two-step simplification corresponds closely to
that found for the location model in Section 4.4, and
the presenp value provides an approximation to that
given by (4.11). The presempt value also can provide
an approximation to the Studeptvalue at (4.2), or to
the location scale value at (4.5) or to the exponen-
tial model p value at (4.8). We can thus note that the
present approach using sensitivity vectd@rsovers the

(4.15) x @) — x<é¢>|{

Should the modeling include probability structure for
measurements that were never taken? Cox comes out
quite firmly in support of the use of the appropriate
conditional model, the model for the measurement that
was actually made. Surprisingly there seems to have
been little subsequent support for such an approach.
We develop some further aspects of this modeling in
Section 5.3.

5.2 Conditioning Directions V

The examples in Sections 3 and 4 all involved
a primary role for continuity: how a change in the
parameter shifts the response distribution, in particular,
how it shifts the distribution in the neighborhood of
the observed data. At the present time this theory is
now available for the case of discrete distributions. The
concern with the model in the neighborhood of the data
does seem data dependent, but at the observed data is
where the model form is of particular importance. In
substance this is not dissimilar to standardization of a
maximum likelihood departuré — 6 by an observed
information, information at the data point of interest
rather than expected information, thus giving: (6 —

6) jY/2. Theoretically this type of standardization has
strong support.
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The examples in Sections 3 and 4 all consider how is obtained by combining these components using the
a change in the parameter shifts the response distribusensitivity vectord/ in (5.1),
tion. In the context of independent scalar coordinates, "
the coordinatep values F;(y;; 6) provide the direct  (5.3) @' ) = Z¢{(9)Vi =L.y(6; y9),
continuity link that describes how a parameter change i1
affects a coordinatg;; see (3.8) and (4.12) for details.
Now, more generally, suppose that the coordinates
are vector-valued with dimension say equal to the di-
mensionp of the parameter. A change in the parameter
will lead to an altered distribution, but this in itself does
not prescribe a point-by-point movementof the distrib- o 1o del is exponential with observed likelihood
ution; something more is needed. Foritfecoordinate ;. y0) = ¢9(9) and with canonical parameter©)
letz; (y;; #) be some appropriate pivotal quantity. With ¢4y (5 3 n particular, the observedvalue function

p> 1_ther.e may not be an obvious unique choice_for pO(v) is given by (3.14) or (3.15) usingv) andg (v/)
this pivotal; we would then seek one that best descrlbesgiven by (4.14) and (4.15). For a variety of examples in

how theith variable measures or relates to the parame-5 regression context, see Fraser, Wong and Wu (1999)
ter being measured. A basis for this choice is discussed,,q Fraser. Monette Ng and Wong (1994).

elsewhere. Here we assume that it is given or has been
chosen on a natural or what-if basis. 5.3 Modeling the Actual Data Production

The pivotal allows us to examine howéachange As mentioned in Section 5.1, the Cox (1958) ex-
affects or moves the data point For this we let  gmple recommended that only the measurements that
y be thenp-dimensional vector obtained by stacking ere actually made should be modelled or, put another
they; and similarly letz be thenp-dimensional vector  \yay, that the full model should not be describing mea-

obtained by stacking the;. Then taking the total  syrements that were not made. We now develop this in
differential of the pivotal we obtain more detail.

whereV; is the p x p block of the matrixV that cor-
responds to theéth observationy; and the right-hand
term of (5.3) is an array g directional derivatives.

For inference concerning a scalar parametes),
it then suffices for third-order inference to act as if

Consider a succession of measurements on a para-
meterd and suppose that for each there is a direct mea-
where the Jacobian matrices are, respectivelys np surement relationship to the parameter, as discussed in
andnp x p, and are evaluated at the data poijfit Sections 3, 4 and 5.2. For illustrative purposes a suc-
and the corresponding maximum likelihood vatife ~ cession of three models, sy, M2 and Ms, will suf-

the subscripts indicate differentiation with repect to the fice. Lety1, y2 andys be the corresponding data. Many
argument before or after the semicolon. issues can be involved in the modeling of such a con-

For conditional inference with an approximate an- [€Xt. Here we focus on the goal of statistical inference
cillary, the measurement vectorsrepresent the direc-  T0F the parameter in question and propose three model-
tions of change along which the appropriate conditional N9 criteria:

model is defined. They give tangent vectors to an | Provide a model for each measurement that has
approximate second-order ancillary (Fraser and Reid, been made.

2001). General theory (Fraser and Reid, 1993, 1995) ||, Do not provide a model for measurements that

(5.1) V=—210%6%200° 69,

shows that a second-order ancillary suffices for third- were not made.

order likelihood inference. ' ll. Do not provide a model otherwise for the process
The directional vectord’ lead to an exponential- or procedure that led to the choice of a particular

type recalibration of the parameter. The exponential- measurement process.

type parameterization for thigh coordinate model is

available as the gradient of log-likelihood These seem reasonably natural and persuasive, but

have some rather striking implications.

(5.2) 9 (0) = %5(9; . ExAMPLE 5.1. Consider Example 2.1 concerning

Vi the two measurementinstruments and suppose we have
which is recorded here asjadimensional row vector.  datay = y° anda = ¢° = 2 (the second instrument is
For the full model the appropriate reparameterization chosen). By criterion Ill, we do not model the coin
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toss used to choose the instrument. By criterion lI, 6. SOME FAMILIAR ANCILLARY EXAMPLES

we do not model the measurement process for the . . .
first instrument. By criterion 1, we do model the We are concerned with conditional inference theory

measurement process for the second instrument. W@nd how it relates to the ancillarity principle that speci-
then have data® and a normal model with meah fies the use of the conditional model given the observed

and standard deviatiosy. A 95% confidence interval value of an appropriate ancillary statistic. In Sections
is given as(y? + 1.9600) 3 and 4 we noted that conditional methods could be
Y e used quite generally to replace sufficiency and, in ad-
EXAMPLE 5.2 (Meta-analysis). Consider the dition, to provide definitive inference methodology
meta-analysis of three investigations concerning a pa-in @ much broader context. As part of this we used
rameterd. In practice the precise definition 6fmay  continuity and a notion of a measurement sensitivity
vary from investigation to investigation, and various t0 motivate the related results from recent likelihood
factors such as reliability of measurements may arise.a@symptotics. In Section 2 we examined the Cox two
For our illustration here we assume that these aremeasuring instruments example and noted that there
not at issue. By criterion lll, we do not model the was Something stronger than ancillarity involved, that
process by which the particular investigations were se-0nly measurements that were actual made should be
lected. For example, the data with investigatitf modelled. This led in Section 5 to criteria for models
may have suggested some interesting range of valuedor inference, in particular criteria for isolating certain
for 6, but were inconclusive for this, thus leading to the cOmponents, that is, the components that correspond
choice of a more comprehensive or demanding investi- 10 meéasurements that were actually made. This went
gation M». Or, the data with//; might have been very ~ Significantly beyond just conditioning on an observed
strongly conclusive for the interesting range, leading ancillary. _
to no further investigation. Alsd/3 might only have In this section we examine some of the commonly

been performed in the case of conflicting results from Cited ancillary examples. A survey of such ancillary
M1 and M. By criteria | and II, we model exclusively ~€Xamples can be found in Fraser (1979, pages 54-68

the investigations that have actually been made and in21d 76-86) andin Buehler (1982); see also Reid (1995)

doing so make reference to repeated sampling just forfor a general discussion of conditional inference. Here
the corresponding measurement models. Accordingly, V& €xamine these examples from the viewpoint of
our composite model is the product formed from the what the proper model for inference should be in the

individual models. In particular, this would say that the presence of data and for this we use the cntgna from
randomness in mode¥, is not influenced by the re- Section 5. We also compare these models for inference

sults from the investigationfy. That is,M; andM; are with the result of invoking ar\cillarity Within models
taken as statistically independent. We note of coursethf"’lt are global (encompassing all poss!ble data_t th_at
that if M, had produced a different outcome, we might Tfnhé ITIave been observed) and thus violate criteria
have had a different investigation in placeM$ or in- '
deed have had no second or subsequent investigations. exampLE 6.1 (Random choice of sample size).
This is in accord with criterion I: We are concerned Consider the repeated measurement unit assessment of
with the randomness in the measurement processes tha} paramete and suppose that the number of repe-
have been performed, and not with randomness in othetitions » is random with known density(n). In ac-
possible investigations that in fact did not take place. cord with criteria | and 11, we would model the specific
The repeated sampling reference is for measurementgneasurement units that were performed, and in accord
that have been made and does not embrace repeategith criterion Ill, we would not model the process that
sampling in a global sense that might embrace manyleads to the sample size This gives the inference
possible other models, none of which has correspond-model[T; f(y;; #) plus the corresponding data. From
ing data values. the global repeated sampling viewpoint, however, we
In conclusion, we note that the use of the product would examine the composite modein) [T} f (yi; 6)
model for the analysis oMy, M> and M3 as just with data(n;yf,...,yg). For this full model.n is an
described is the common procedure for meta-analysis.ancillary statistic and the corresponding ancillary re-
We return to this consideration of meta-analysis in duction gives the just described inference model. The
Section 7. two viewpoints lead to the same reduced model. More
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generally we can consider a distributigr(n; 1) for
n with dependence on a parameieifree of 6. The
criteria again give the moddl[} f(y;; #) with data
O3

EXAMPLE 6.2 (Sampling from a mixed popula-
tion). Consider two populationd1 and A, of rel-
ative sizesqi and g2 that are intermixed and the
elements of which are not easily distinguishable. A pa-
rameteré may have the same value in each popula-
tion and yet distributionally express itself differently:
f1(y; 0) and f2(y; ) in A1 and A, respectively. We
consider a random sampleofrom the mixed popula-
tion, yielding observed numbers, andn, from the
populationsA; and A,. The inference model would
describe the dateyy, ..., yt) and(y7, ..., y2,) from
the random sampling of1 elements fromA; andn;
elements fromA, (with n1 andn, fixed at their ob-
served values). By criterion 1l we would omit the
hypergeometric model that yieldg1, n2). However,
if we consider the full global model, we can note
that the allocatiorin1, n2) has a fixed distribution and
is ancillary. The corresponding conditional model is
that just describedn, observations randomly sam-
pled from A1 andny observations randomly sampled
from A,. Accordingly the reduced model conditional
on the ancillary coincides with the inference model.
Note that in the full global model the indicator vari-
ables that describe whicly elements ofA; are cho-
sen, and whichio elements ofA; are chosen, with
givenni, no, have a fixed distribution with probabili-
ties 1/(Ng1) "™ (Ng2)™2 and are thus also ancillary.
Conditioning on this ancillary just gives the assess-
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has a fixed distribution and is thus ancillary. The corre-
sponding conditional model then agrees with the infer-
ence model just described.

EXAMPLE 6.4 (A 2x 2table; Fisher, 1956, page 47).
The offspring in a breeding experiment can be classi-
fied by phenotype based on two genetic characteristics
(A, @) and (B, b) that show complete dominance. The
relative proportions for AB, Ab, aB and ab are 9, 3,
3 and 1 if there is no linkage and aret26, 1 — 6,

1 -6 and® in the presence of a linkage parameter
wheref = 1/4 corresponds to the no linkage case. The
proportions for A:a or for B: b are the standard 3:1
of dominant to recessive phenotypes. Let, n12, n21
andno» be the data fon offspring in a particular mat-
ing with say (n1.,n2.) = (n11 + n12, n21 + no2) des-
ignating row totals andn.;, n.p) designating column
totals.

If the data are assembled in terms of the A pheno-
type, we then have that; is binomial{ni., (2+6)/3}
andnaq is binomial{ns., (1 — 0)}. Alternatively, if the
data are assembled in terms of the B phenotype, we
then have thaki1 is binomial {n.1, (2 + 0)/3} and
n12 is binomial{n.,, (1 — 6)}. We thus obtain two dif-
ferent inference modelings based on two different clas-
sifications of the data, by A phenotype or by B phe-
notype, each classification corresponding to a partic-
ular viewpoint concerning the context in which the
paramete# is being investigated.

From the ancillary viewpoint we can note that the
row totals nj.,no. have a binomial allocation with
probabilities in the ratio 3:1, and thus are ancillary;
this gives a reduced model that coincides with the
inference model based on assembly by A phenotype.

ment of specified units in each population and thus can a5 we can note that the column totalg . n., have
be viewed as 100% sampling of particular subsets of 3 3.1 pinomial allocation and are thus ancillary;

A1 andAa. Thus, this use of ancillarity seems 10 g0 100 he corresponding reduced model coincides with the
far and eliminates the inference assessment availablgnference model based on assembly by B phenotype.
from finite population sampling (Fraser, 1979). Some \ye do note, however, that the combination of the row
consideration of this issue in terms of labels for sample {otals and the column totals is not ancillary. Thus the
elements was given by Godambe (1982, 1985). ancillarity approach gives two different modelings and

EXAMPLE 6.3 (Random regression input). Con- provides no preference for one over the other.

sider a regression model = XB + oe, where the EXAMPLE 6.5 (Bivariate correlation). A continu-
rows X; of then x r design matrix have been gen- ous example closely analogous to the preceding ex-
erated randomly from some distributi@ftx1,...,x,) ~ ample is provided by data from a bivariate normal
for input variables. The inference model again would distribution for (x, y) with means 0, variances 1 and

be for fixedX even in the context whergdepends on
a parametek with range free ob. More specifically,
the inference model concernidgwould be the model

correlationp. If we examine the data labelled by the
x values, we have that the values are normal with
meanpx and variance 1 p2. Alternatively, if we ex-

for the actual measurements made. From the ancillarityamine the data labelled by thevalues, we have that

viewpoint we note that for the first case the variakle

the x values are normal with meamy and variance
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1— p2. Accordingly, we obtain two different inference  being considered. Cox argued that the conditional ap-
modelings that correspond to two different assembliesproach should take precedence over global properties,
or classifications of the data, by or by y. By con- and Welch argued that the global properties invalidated
trast we can note that from the full model ancillary the conditional approach. This leads to the focal issue:
viewpoint we have that they, ..., x, are ancillary, What probabilities are the appropriate probabilities for
and the corresponding conditional model examiyiess  presenting inference conclusions from context and data
for fixed x's and agrees with the first inference model information?

above. In a parallel way we note that the, ..., y, With the modeling criteria in Section 5.3, we viewed
are ancillary in the full model with a conditional model the individual measurement probabilities as the pri-
that agrees with the second inference model above mary ingredients, with frequency interpretations based
Again we have conflicting ancillaries and ancillarity on repetitions of the individual measurement processes.
alone does not provide a resolution. Indeed ancillar- This supports the Cox viewpoint for the two measure-
ity itself creates the conflict between the two condi- ment instrument example. Our earlier discussion in
tional resolutions. We could also rotate our coordinates Section 2 viewed the global probabilities as artificial

through an angle ot /2 and in effect use; = x; + y;, in that they used probabilities for measurement units
z; = x; — y;; the independent coordinates and z; that might have been used, but in fact were not.

could then be examined more transparently using the At the heart of the global approach is the calculation
approximate ancillary approach in Section 3.4. of probabilities for repetitions of the full process

For the first three examples, our model for the in- under a fixed value for the parameter. This allows the
ference approach and the ancillarity approach are incalculation of global operating characteristics for the
agreement. For the final two examples, the model for full investigation under consideration. On the surface
the inference approach required a particular assemblythis seems hard to argue against or, at least to argue
of the data, by choice of phenotype or by choice of in- against it is counter to present culture. Of course it is
put variable. Without this choice of how to assemble telling a story, but perhaps not the relevant story for the
the data, the ancillarity approach produces conflicting purposes of statistical inference.
recommendations. It thus seems that invoking ancillar- - From the global viewpoint there seems little alterna-
ity also requires some specification of how the data aretive to that of repetitions under a fixed parameter value,
to be assembled for analysis. without say putting weights on the possible parameter

We do note that the two approaches lead to thevalues and using a Bayesian-type argument. Of course
same observed likelihood function, even in the con- this Bayesian approach has given a wealth of possi-
text of conflicting ancillaries. If, however, we wish to  ple answers to wide ranging problems, in contrast to
go beyond just observed likelihood, we find that dif- the range of answers from the traditional optimality
ferent ancillaries can produce different distributions approach, but this same wealth is of course available
for possible likelihood functions and can produce dif- more directly, and without pretense, by weighted like-
ferent confidence assessments and diffefemalues.  [ihood and integration. For some recent discussion, see
Accordingly, some additional specification is heeded Fraser (1972), Fraser and Reid (2003) and Fraser and
and indeed should not have been omitted at the initial yj (2002).
modeling stage. This leads to the use of measurement Here we examine some aspects of global and con-
directions as introduced in Sections 3.4 and 4.5, which ditional probabilities without resort to probabilities or

use continuity and express how parameter change canyeights on the various values for the parameter.
produce an effect at a data point.
ExamMpPLE 7.1 (Meta-analysis). As part of the

discussion of inference modeling in Section 5.3 we
considered conditional inference and metanalysis for
three investigations of a scalar parameéteFor some

We have been considering ancillary statistics and comparisons with global probabilities we now examine
how they lead naturally to conditional inference given an even simpler case that involves two measurements
an observed value of the ancillary. However, our initial of the paramete#: a first measuremen is unbiased
examples from Cox (1958) and Welch (1939) included and normal with standard deviatieg say equal to 1;
some discussion of overall or global sampling proper- a second measurement is unbiased and normal with
ties, where repetitions of some complete process werestandard deviatiowy/100= 0.01. We also suppose

7. ARE GLOBAL REPEATED SAMPLING
PROPERTIES WANTED?
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that some threshold value= 6 is of interest and for  the reportedp value is then piecewise uniform with
simplicity and convenience take this value here to be density 32 on (0, 1/2) and density 12 on(1/2, 1).
zero. We believe that the individugb valuescb(yg) and

If there had just been the first measurement, Sayq>(100y8) provide the appropriate inference presenta-
y1= yf, the p value or significance function fof tion for the particular cases as they arose in time, and

would be that the nonuniform globat value is a consequence of
71 0 — o0 — o the seemingly inappropriate use of an overall marginal
(7.1) p1(0) =@ (y1 —0) assessment of the values for this two measurement
and thep value for the threshold would bg = q)(yg)_ situation. Also recall the earlier Example 2.1.

However, with the two measurements the weighted From a raw global approach we thus note that it
averagey = (y1 + 100005,)/10001 would be the IS possible to obtairp values biased to the left by

significance function foé would be initial p value is high. The inappropriateness of the use

of global probabilities is again to be emphasized.

(7.2) pa(6) = ®{100y3 — )}, .

EXAMPLE 7.2 (AR1 models). The typical autore-
where, as a reasonable approximation and simplifica-gressive model is used for data that arrives sequentially
tion, we ignorey, because of the very large weight in time and as such seems appropriate for considera-
on y2 in the weighted average; the p value for  tion here from our present conditional viewpoint. For
the threshold would b@, = ®(100y9). In summary,  this we examine now a very simple case with just two
with just the first measurement the significance func- measurements that illustrates some of the key issues.
tion is a reverse standard normal distribution func- Consider normal0, 002) errors with an autoregressive
tion centered on the datd, while with two measure-  paramete® and two observations. Thug = ¢; and
ments it is a reverse normal distribution function cen- y, =6y, + e, wheree; ande; are normal0, 002). The
tered at the valuag but scaled much more tightly log-likelihood function is
around that value, indeed by a factor of 100 to 1.

1
Also the p value for the threshold = 0 changes from  (7.3) 00) = —=—5(y2 — Oy1)>.
@ (y?) to ®(100yD) in going from the one- to the two- 204
measurement situation. This has the maximum likelihood value = y,/y1,

~ Now consider an experimental context for these two \yhjch has a standard Cauchy distribution centered at
investigations. The investigator is particularly inter- the pointo.

ested in the threshold value= 0. He or she makes  Now consider the inference modeling viewpoint

a first measurement of and obtains a value? = 1.1, from Section 5. The first; does not measusg, but it
suggesting in a very informal way that perhaps the true does determine the precision for the second measure-
value for6 is above the threshold. As a result he or she ment y,. By criterion 111, we do not model;. Then
decides to take a second high precision measuremenpy criterion I, we do modeb, and by criterion II, we
and obtaing’§ = —0.1; this new significance function  madely, only for its particular measurement situation.

is very tight and substantially left of the origin. We This gives the modey, is normal(9yx; (,02), and this
suggest that both the preliminary and the subsequenproduces the same likelihood function (7.3) as does
p values represent appropriate expressions of the infor-the global model, and the maximum likelihood value is
mation at the respective times. We also note that thesqust the samé = y2/y1. We observe, however, that the
seem in agreement with the meta-analysis approach. maximum likelihood value is now norm&¥; 002/))%)’

Now suppose that if the first measurement had beenwhere they; value is taken at its observed value. The
negative with ap value less than /2 then no follow-  issue we have mentioned before becomes more trans-
up measurement would have been deemed appropriatgparent here. Do we use the actual measurement process
Consider the global probability assessment of this for model with its normal distribution or do we use some
the null situatiory = 0. With the first measurementthe average of possible measurement situations that typ-
initial p values are uniforng0, 1); with probability 1/2 ically did not occur, leading to the Cauchy analysis?
the pivotal p value is greater than/2 leading to the ~ We know that the normal distribution describes the ac-
follow-up combinedp value, which is approximately tual measurement that was made and leads to a nor-
uniform (0, 1). The global probability distribution for mal analysis. But the persuasive global approach would
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want to include modelings for other measurements thatthe probability integral transformation for the first co-
were never made and thus argue for the Cauchy analy-ordinate, the probability integral transformation of the
sis. second coordinate conditional on the first and so on. Of
From the present viewpoint we prefer the measure- course there are many such transformations obtained
ment model approach, conditioning on preceding mea-even by varying the order of the coordinates. It follows
surements. Of course there may be cases where theéhat the conditional distribution of(y) given s(y)
global probabilities are wanted, but for direct statis- js uniform on a unit cube and thus does not depend
tical inference with observed data the conditional ap- on s(y). It follows thatu ands are independent and
proach seems appropriate. Also it avoids the usual antthys that f(s; ) = f(s|u; 6), showing that a condi-
well-known SingUIaritieS that arise with the mal’ginal tional model equiva|ent to the given model is avail-
approach in the neighborhood @ 1. It now seems  aple. This result does not depend on the choice of
clear that these singularities arise precisely from the the probability integral transformation. This says that
inclusion of a wealth of possible models that apply t©0 ap analysis using sufficiency can be duplicated by a
measurements that were in factnevermade. ~ ~ ¢onditional analysis. For a simple example consider
The preceding is arguing in support of conditioning (1, y2) from the normal(, 002)_ The model fory is

in the time series con'text; this is of course not a normat@,ooz/Z); the conditional model fofy given
common recommendation, but has been suggested o , . . 5
the configurationy, — y; is also normab, o5/2). If,

several occasions by Professor Jim Durbin. Perha . ) e .
y pshowever, we are without normality, then sufficiency is

the only way to argue against it is to make somet icall i iable. but th ditional Vsi
preliminary assumption that only the global repeated ypically not avaliable, but the conditional analysis re-
mains available and is routine. Accordingly we support

sampling principle will be entertained. h ditional h and hat there is littl
Now consider briefly the global repeated sampling (€ conditional approach and suggest that there is little
need for sufficiency methods for inference in the con-

approach and how it interacts with various common '’ ; h chE
optimality criteria. The examples in Section 2 show tnuous case. Of course they can be convenient in spe-

how a search for optimality leads to a trade-off between i@l cases, but they do not provide the methodological

different measurement situations. In particular we saw Sanction needed for general contexts; they should be
how a precise measurement instance could be given &1€Wed as an expediency for the special cases. For the
longer confidence interval so that a much shorter in- typical discrete case, sufficiency can be convenient, but
terval could be given in a less precise instance. Opti- SOMe simple invariance notions typically suffice.

mality in the global framework can lead to results in

particular instances that are contrary to the available APPENDIX B: MARGINALIZATION TO

evidence. Alternatively, by overstating and by under- ELIMINATE PARAMETERS

stating in particular instances it is possible to increment

toward some optimality goal on the global scale. This  Conditioning is often suggested as a means to elimi-

clearly argues against the appropriateness of the opti-nate nuisance parameters, but in general contexts mar-
mality applied on the global scale; this has been as-ginalization is the effective method and conditioning

serted very gently by Cox (1958). can be viewed as an expediency when special model
structure is available. Consider two examples. For a
APPENDIX A: CONDITIONING REPLACES continuous exponential model,

SUFFICIENCY TO SEPARATE MAIN EFFECTS

(B.1)  exply1y + y21 — c(¥, M)}h(y1, y2),

Consider t_he case .OT contmu_ogs variables and SUP%he conditional distribution of1|y2 depends oy only

pose there is a sufficient statisti¢y) that has the . . .
. . and is thus free of. For a continuous location model,

same dimensiop as the parameter. Also suppose for
ease _of argument that the co_ndltloned vgrlable, say(B.2) Fyn— ¥, y2—A),
t(y) givens(y), has constant dimension which would
then ben — p. It follows from sufficiency that the the marginal distribution of; depends ony only and
distribution ofz(y) givens(y) is parameter-free: Let is thus free of.. In each case we have a special model
u(y) be a coordinate-by-coordinate sequential proba-type with specialized variables and parameters, and
bility integral transformation of (y) as obtained from  these are often referred to as canonical variables and
the conditional distribution given(y); for example, parameters.
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Now consider the first example, where conditioning where the row vector multiplyings(9) is the unit
provides freedom from the nuisance parameter, andvector obtained from the gradienp;)(@w) and is
suppose we are testing Letu(y1, y2) be aprobability  obtained from

integral transformation ofy1|y» obtained from the 20

A-free conditional distribution for testingr. Then for Yy 0) = — >

the tested/, the distribution olz|y, is free of yo; thus ¢

u is independent ofy,. It follows that the marginal oY (0) (dp(0) -1

distribution ofu is A-free and give® values that agree PYY < PY:R )

with those from the initial conditional variable. 1
Recent likelihood asymptotics (e.g., Fraser and Reid, =Yy (0) g, (0);

1993; Fraser, Reid and Wu, 1999) shows that for ain this we takey, to be the Jacobian of the column
general asymptotic model with continuous variables, yector y with respect to the row vectay’ and, for

the testing of a parameter valyg6) = ¢ is available  gxample, would havey,)' = y,, for the transpose of
from a marginal distribution obtained by integrating the first Jacobian.

over a nuisance parameter based conditional distribu-
tion as in the second example, which follows the pat-
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Comment

Ronald W. Butler

1. INTRODUCTION conditional inference might mean for predictive infer-

Can we now put to rest the unthinking and unquali- ence. This is followed by the bulk of the discussion,

fied use of “global repeated sampling properties” as g Which presents a numerical exgmple for a curved ex-
means for probability computation and inference? Pro- Ponential family. No exact ancillaries are known for
fessor Fraser has forcefully and eloquently stated thethis €xample, but it will be shown that (i) the likeli-
case against the use of this principle when the modelhood ancillary is particularly appropriate, (i) the ap-
structure would suggest otherwise. In Section 7 para-Proximate p value suggested in (3.14) agrees with
graph 3 he concedes that “On the surface this (princi- that in Barndorff-Nielsen (1990), expression (1.2), and
ple) seems hard to argue against However, after (i) the “sensitive direction” points tangent to the man-
a careful reading of this paper, one must conclude ifold created by holding the likelihood ancillary fixed
from the multitude of examples and discussion that at the data. The findings of the example pose further
the unconditional and blanket use of this principle is questions.
seriously flawed. There are many modeling situations
which would qualify for its use, particularly nonpara-
metric modeling settings; however, the models pre-
sented here clearly do not. The dual problem to parametric inference is predic-
My comments are divided into two parts. First some tive inference for unobserved Criterion Il in Sec-
consideration of what these ideas about ancillarity andtion 5 needs slight modification if is to be inferred
from observedy® using a parametric model. Crite-
rion Il seems particularly relevant to this setting: ig-
nore the reason why has not been observed, whether
it be in the future or the past, or perhaps because it is

2. PREDICTIVE INFERENCE

Ronald W. Butler is Professor, Department of Satistics,
Colorado State University, Fort Collins, Colorado
80523-1877, USA (e-mail: butler @stat.colostate.edu).
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a random effect in a model and therefore can never beprinciple than the restriction due to predictive suffi-
observed. ciency. For an overview of this issue and others, see
The problem is dual because, rather than condition-Bjgrnstad (1996).
ing on ancillary statistics to make the inference more
relevant to the model and data at hand, the reference 3. GAMMA EXPONENTIAL EXAMPLE
set might now be a fixed value for the sufficient statis-
tic. In the simplest settingansidered in Butler (1986),
suppose there is a sufficient statistigy) of fixed di-
mension that agrees with that of the model paranteter
If a generic value; is adjoined withy in (v, z) space,
then the evidence for this value should be with re- 1. What sort of ancillary, affine or likelihood, should
spect to the reference ssty°, z). In entertaining the be used for inference abofitand in what format?
value ofz as the unobserved value, thety?, z) con- 2. Which ancillary is “more ancillary”?
veys all relevant information abodtand hence about 3. What are the relationships between these ancillaries
the state of the model used to make the predictive in-  and the “sensitive” or ancillary directions suggested
ference. In the same way that conditioning on ancillary  in the paper? Are there any deeper connections
a is used to convey “key observable characteristics of  between the results of this paper and the suggestions
the underlying error” for a location model, condition- of Barndorff-Nielsen (1990)?
ing on s(y°, z) provides complete information about
the current state of understanding fowithin the para-
metric model setting. Fixing this understanding allows A (2, 1) curved exponential family may be defined
the model structure to make the prediction and also by supposing that, ~ Exponentiald) independently
have it relevant to the current level of understanding of y, ~ Exponentiale?). To keep numerical computa-
about the model. Professor Fraser's arguments in Ap-tion simple, suppose the data ag= 1 andy? = 2.
pendix A were also particularly interesting and rele- The MLE is
vant because they relate to determining the ancillary ~0
values in(y, z) space for prediction. The approach in 6" =LambertW(1/2) =~ 0.3517

Butler (1986) worked instead with orthonormal coor- and solves an equation which, when rearranged, allows

An example is given that is similar to that considered
by Pedersen (1981). The example is used to consider
(and partially answer) the following questions and
speculations:

3.1 Model and Ancillaries

dinates that are locally orthogonal¢®?, z). y, to be expressed in terms éfandy; as
Barnard (1986) also suggested a pivotal approach .
to prediction, which is the dual procedure to the (1) yo=e9(1/0 +1—y1).

parametric inference in Section 4.2. Working with

the location—scale model, his approach also used the Two ancillaries are considered. The first is an affine

marginalization step to remove dependence on all para_ancnlarya as discussed in Efron and Hinkley (1978)

meters to determine the marginal distribution of an an- :fr;grEf[ﬂren?grr:ql\:'isfhnoggﬁo)’eztnd iometlme/shr;imed
cillary a(y, z). This ancillary is now transformed into u - If vector = (y1, y2)

- . . . meanuy and covarianc&y, then the affine ancillary
predictive pivotp(y, z) and predictive ancillary (y), : .
with the latter quantity offering evidence for model is computed as the MLE of the Studentized vector or

criticism derived from data. The conditional distribu- a’=(y— Mé)/zrl(y — 1)
tion of p(y, z) giveng(y) evaluated at the data=y°  (2) ) v
now provides the predictive extrapolation. =@y — 1%+ ¥y — 1)2

Based on the discussion above, it seems likely that 0. N . :
the inferential structure proposed by Professor Fraseranda ~ 1.954 To compute the" density for condi

. _ tionality resolutiord|a, the transformatioriy1, y2) —
can neatly accommodate the dual problem of predic-  » . :
tion. Other predictive approaches that attempted to (0, @) needs to be inverted from (2), which leads to
extend higher-order asymptotic methods beyond the 1A Ao
restriction of sufficiency include Butler (1989), Vidoni 3) y1=1/0 =lal/y1+6
(1995) and Barndorff-Nielsen and Cox (1996). The with y, givenin (1).
first paper suggested that conditioning on the proper The second ancillary is a likelihood ancillary. It is
reference set [e.g., the maximum likelihood estimator defined through the process of completing t2el)
(MLE) 6(y°, z)] provides a more generally applicable curved exponential family so it ig2,2) with the



ANCILLARIES AND CONDITIONAL INFERENCE 353

0.5

addition of another parameter > 0. This is most
simply done by assuming thap ~ Exponentialy e?) 0u]
with the valuey = 1 creating the curved exponential
family. The likelihood ancillary is now based on the 03]
likelihood ratio test thay = 1. If [,(0, x) denotes the ]
log-likelihood under the alternative, then the ancillary °
a, assumes the value o

305 =1,0.%) — 1.0, 1)

(4) =—In0+1/0 —1—(1—-0)y;
—1In y1— |n(1/é +1-y1), 071

where (4, ¥) denotes the MLE under the alternative. ©¢
In (4), any dependence gn has already been replaced 57
with y1 using (1). Let the sign af be sgrix — 1) = 04] |
sgn0.3517— 1) = —1 so thau? ~ —1.546 03]

0.2

3.2 Which Ancillary and in What Format?

017

The format to be used for inference is thedensity.
It uses the likelihood shape to approximate the condi-
tional density of|a; 6 as the normalizedd6) version Fic. 1. Densitiesfor § in the gamma exponential example when

of conditioning on the affine ancillary a9 =1.954 The plots show a
t,4 - ~ A A range of accuracy from good to poor and depict Ehe exact density
p Bla;0) =/ js/Cr)expkl(0;0,a) —1(6;0,a)}. £(61a% 6) (solid), pT(@]a; 6) (dotted) and p*(d}a; ) (dashed)

In the case of the conditioning on the observed affine for 6 =4.2 1 and 1/2, respectively.

ancillarya®, plots of p* (dashed) p (dotted) and the

true densityf(4]a% 6) (solid) are shown in Figure 1

and are obtained through the inverse transformation
61a® — (y1, y2) given in (3). As# moves fromp = 4 4]
(top left), 2, 1, to 1/2 (bottom right), the accuracy of
p*andp’ diminish markedly.

Compare this with the use gf andpT when condi-
tioning instead on the observed likelihood ancillaﬁy
Figure 2 shows the same quiies as its ounterparts ;1
in Figure 1 as concerns the assessment of accuracy of
p* andpT for their respective true densities. However,
the true conditional densities are different in the two
sets of plots since Figure 1 fixes= «°, while Figure 2
fixesa, =a?. Fixing a2 rather than affine is a con-
siderably more difficult computation since the inverse os1
transformationé|a)°( — (y1, y2) requires selecting the  ¢s1 |
correcty; roots in (4) over a fine grid of values. The
true joint density of(é,ax) has also been computed
the same way but with the additional complication of oa
a Jacobian determination based on implicit differentia-
tion. 1

0.37

037

0

3.3 Which Ancillary Is “More Ancillary”?

The normalization Constantﬂé) of the joint den- FiG. 2. Densitiesforéwhenconditioning on thelikelihood ancil-

sities (8,a%;6) and f(0,a%6) provide the mar- lary o = ~1.546 In each plot, /(617 6) (solid), p'(6la2;6)
ginal densitiesf (a,.; ) and f (a; ), which should not ~ (dotted) and p*(6la3: 6) (dashed) are shown.
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FIG. 3. Marginal likelihood plots for f(a2;6) (solid) and
f(a; 0) (dashed) versus 0, Whereag and a are the likelihood and

affine ancillaries, respectively.
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— TABLE 1

p values pO(6) for the various methods listed in the rows

0
M ethod?@ 1/2  3/4 1 3/2 2

Exact (trapezoidal) .89 Q0689 00194 003489 00°120

[

(3.14) withg 0.238 00864 00239 00%583 Q0°140
Skovgaard (259 Q0990 00289 003796 00°219
T, Normal 0325 0130 Q0392 002112 Q0°315

&Exact” refers to trapezoidal summation for (Br< é0|a3;9),

(3.14) accounts for the sensitive direction as well as Barndorff-
Nielsen’s (1990) value ofi, Skovgaard (1996) computesusing

the author’s approximate sample space derivatives and Normal uses
the normal approximation toin (3.11).

show extraordinary dependence @nf « anda, are

“good ancillaries.” Figure 3 p|0t$(a2; ) (solid) and

f(a% 6) (dashed) versus. These plots show the mar- departurex suggested in Barndorff-Nielsen (1990)
ginal evidence about contained in each of the ob- as (1.4) and computed as in (5.5). We return to the
served ancillaries. The observed likelihood ancillary implications of this equivalence below, but first pause
is clearly more ancillary as revealed by the compari- to tabulate some values in Table 1.

son in the right plot. All numerical computations for

Even for thisn = 1 setting, the sensitive direction

the likelihood ancillary here and in the previous sub- approach and that using Skovgaard’s (1996) approx-

section used the griél € {0.02(0.04)9.98, 104(%)12,

imate sample space derivatives show remarkable ac-

12%(%)16}. The superior performance of the likelihood curacy, particularly for largé. Taking the inference
ancillary was previously suggested in the asymptotics for ¢ further, the exact confidence interval by inverting
of Barndorff-Nielsen and Wood (1996). This superior Pr¢ < 6°a2;6) gives (0.0276 0.664) while (3.14)
performance can now be confirmed using a sample sizegives (0.0446 0.717) and Skovgaard’s method gives

of n = 1 for this dataset and model.

3.4 “Sensitive” Directions, p Value Computations
and r* Connections

For this example, the ancillary direction is computed

as

v'=—(1/0, y2),

which leads to the data dependent parameterization

0(©) =0y1/0 + ¥ ys.

Computation of the standardized maximum likelihood

departure value leads to
q(®) =sgnd — 0)|y1(1—0/0) + ya(e” — ")
‘“/7é|y1/é +eyo 1,
where

Jp=1/62+1/6 +1— y1.

At this junction, quite remarkably, it can be shown for

any data(y?, yJ), that¢(9) is analytically the same

(0.0478 0.748).

The analytical equivalence of Fraseg$9) with u
from Barndorff-Nielsen’s (1990) approach, which ex-
plicitly conditions onag, suggests that the sensitive
direction in which the directional derivative is taken
in (3.13) to definep(#) is tangent to the manifold
{(y1. y2) 1ay (y1. y2) = a9}. This is indeed the case.
Implicit differentiation of (1) to determindy,/dy1,
holdingag fixed, requires the determination & /9y,
through (4). After long computations,

(6) 3y2/dy1 = Oy2/y1 = v2/v1,

the direction ofv. At the data this slope is.0035

Is this example merely a coincidence or are there any
greater generalities to these agreements? To be tangent
to the likelihood ancillary curve, the curve must be
a solution to the differential equation in (6), which
is complicated by the dependence @fon (y1, y).
General differential equation theory (see Ross, 1974,
Theorem 1.1) only guarantees a local solution to (6)
at the data, but this is all that is required for a local

as the value for the standardized maximum likelihood ancillary. This seems to say that the sensitive direction



ANCILLARIES AND CONDITIONAL INFERENCE 355

approach has greater mathematical generality when avhat extent can the equivalence between Fragéf's
likelihood ancillary does not exist. If it does exist, and Barndorff-Nielsen’s be asserted with or without
when is the sensitive direction equal to or “close” nuisance parameters in curved exponential families or
to the direction of the likelihood ancillary curve? To in other classes of models?

Comment

Ib M. Skovgaard

INTRODUCTION to Cox’s artificially looking measuring instrument ex-
‘ample. The only difference is that the distribution of
the number of patients is not known, but this is hardly
important for the argument and the distribution could
not only his immense stamina, but also the moderateProPably be modeled reasonably if it were considered
amount of support from others. A few have taken the ©f importance. o
theory further, first of all Barndorff-Nielsen, butmainly MY point is that problems of conditioning are not
in terms of asymptotic solutions while still leaving the ~artificial philosophic problems of limited practical rel-
question whether conditional inference given ancillary €vance, butshould be considered more seriously in sta-
statistics has any logical justification. Despite scatteredlistical practice. Fraser keeps reminding us of this, and
attempts to resolve this problem of frequentist infer- On the main issues | agree entirely. | also agree that
ence, it seems that the majority of the statistical com- he has some good and very accurate asymptotic solu-
munity has given up on the idea after some severetions through the methods he describes. There are siill
knock-outs around 1960. | am referring first to Basu open problems and questions, however, conceptionally
(1959), who pointed out the lack of unique maximal as well as asymptotically, and | do not find his solu-
ancillaries, thus raising not only the question which tions and arguments entirely convincing in all respects
one to condition on, but more importantly why the ar- as | will try to substantiate below.
gument for conditioning on one does not apply equally Initially let me point out, though, that my com-
well to the other. Second | refer to Birnbaum (1962), ments deal entirely with problems of frequentist infer-
who showed that conditioning on ancillaries as a prin- ence. Bayesian inference (in its orthodox setting with a
ciple together with basing inference on sufficient statis- proper prior) avoids these problems and contradictions.
tics implies the likelihood principle, which essentially In my view, Bayesian inference of this kind is obvi-
is only met by orthodox Bayesian inference. ously correct, but the problem is whether you can come
Despite these difficulties and the lack of general ap- up with a prior on which you want to base your conclu-
proval of any kind of ancillarity principle, condition-  sjons. My experience is that this is rarely the case, and
ing on (some) ancillaries is used frequently in practice, it would be a pity to give up the idea that reasonable
almost unconsciously. In a clinical trial running over jnference can be made without a prior. The ancillarity

a certain period and allocating the incoming patients proplem is a central theme in the pursuit of the logic of
randomly to one of two treatments, say, the sample g,ch inference.

size is not given in advance and is an ancillary sta-
tistic. Few people would hesitate to consider sample
size fixed when analyzing the data, and indeed it does
seem very artificial to take into account that the trial  If you believe that this is a relevant question, then
might have comprised 100 patients if only 50 partici- you are already defeated if you support conditional
pated. This problem is conceptionally almost identical inference. The point is that if you behave sensibly,

nobody should be able to convince you that it is not

Fraser is to be thanked for his persistence in empha
sizing the importance of conditional inference and an-
cillarity. A quick glance at the reference list reveals

CONDITIONAL OR OPTIMAL INFERENCE?

Ib M. Skovgaard is Professor, Department of Natural optimal. In other words, if conditioning on ancillar-
Sciences, The Royal Veterinary and Agricultural Uni- ies is the proper way, then this ought to drop out as
versity, DK-1871 Frederiksberg C, Denmark (e-mail: an optimal method. Presently this is unfortunately not

ims@kvl.dk). so. The guestion arises then whether the criteria used
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for optimality are reasonable. Fraser suggests in Secval with a certain probability, namely the confidence
tion 5.3 the modeling criteria |-Ill to help resolve the level, say 0.95. While this may be correct by a certain
problem. In my taste these are too vague and impre-method, other methods might give more useful pre-
cise to be of much help. To make a model for mea- dictors. Here is where the conditioning on ancillaries
surements that were made and not for measurementgomes in: It gives more useful prediction of the de-
that were not made sounds reasonable, but to what €xyree of confidence. This is intuitively obvious in Cox's

tent does it restrict the modeling? Does it mean that
censoring mechanisms, sample selection and biologi-
cal variation (beside measuring errors) should not be
modeled, for example? Some of Fraser's examples in
Section 6 illustrate the problem with the limitation of

example with the two measuring instruments. The “op-
timal” confidence interval, by whatever current opti-
mality criterion, does not agree with the conditional
confidence interval which uses the standard deviation
his principles. of the measuring instrument actually used. Then, just

The best attempt | have seen so far toward a reso-2S W€ can point out that some person with high choles-

lution of the problem is a recent article by Sundberg €0l has a higher risk of heart attack, we can point
(2003) that quantified the intuitive feeling that, in the OUt that some of the optimal confidence intervals have
measuring instrument experiment, for examplerghe  higher or lower chance of capturing the parameter.
evant variance is the one attached to the instrument we Such improved predictions can be made uniformly in
have actually used. Before reviewing this idea, let me the parameter and based on the same information that
digress a little to some simple basic considerations thatwas used to construct the confidence intervals, so it
must be kept in mind. ought to be clear that conditioning in this case is more
Several different probability distributions that de- useful, if not more correct. Now the hope is that the

scribe the same events can all be correct, but some argptimal method, in terms of usefulness (or relevance
more useful or more info_r_mative than others. Consider, i, the setting of Sundberg’s paper), “automatically” is
for example, the probability that a man who belongs 10 he congditional one, so there is no need for principles

a particular age group dies of a heart attack within a ot 4 illarity, only for optimizing with respect to the
year. The frequency in the male population at that ageappropriate criteria

is one answer, and indeed, if you check the distribu- There are several beneficial side effects of optimiz-

tion, it will turn out to be correct. Another distribution . - .
has probatities either 1 or 0 foreach individual: 1 if ing rather than conditioning on ancillaries as a matter
of principle. First of all, it avoids the contradictions

that person dies of a heart attack; O if not. Again this =" | i ) i
is a correct probability distribution and it is perfectly Pointed out by Bimbaum and Basu, as mentioned in
accurate, but it is not useful since we cannot use it for the Introduction. Second, a reasonable optimality cri-
prediction_ Suppose’ however, that we could measureterion will be ContinUOUS W|th I’eSpeCt to the mOdel, SO
some variable, say cholesterol in the blood, that could that slight model changes will not alter the inference
distinguish to some extent between those who die anddramatically and so that ideally approximate (asymp-
those who do not. Then we could ascribe probabilities totic) ancillarity may drop out as an (nearly) optimal
closer to 1 or O than the population average and in thisresult even if no exactreillary has been found. This
way bring us part of the way toward the accurate dis- might be the case even for discrete data for which the
tribution. No doubt that this distribution is both more cuyrrent higher-order asymptotic approximations do not
accurate and more useful than the population averagepg|d.
A quantification of the increased precision is the vari-  The above scenario is my understanding of the
ance of t_he prediction probabllltl_es)i_, wherei labels idea of Sundberg’s paper, which has other arguments
the individual. LetZ; denote the |nd|c§\tor of death by and a lot more detail; in particular, the superiority
heart attack, lep denote the pppulatlon average and of conditional variance as a predictor of the actual
assume that&|P) = P, according to the requirement . .

) ., e . squared error of the estimate. There are still open
of “correctness.” Then the squared prediction error is .

questions such as whether mean squared error of

SPE=E(Z — P)*= p(1— p) —varP, squared prediction error is the proper quantity to
which decreases with increasing variance of the predic-0ptimize and how to optimize tests and confidence
tor. intervals, but | think Sundberg’s paper presents a

Now we can leap to the confidence intervals which breakthrough with regard to convincing arguments for
predict the event that the parameter is inside the inter-conditioning.
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ASYMPTOTIC SOLUTIONS situations. Also, | would be surprised if they turned
out to be much different in practice from alternatives
along the same direction, such as tletype statis-
tics given by Jensen (1997) and Skovgaard (1996) or
the original and principal, but less operational, ver-
sion by Barndorff-Nielsen (1986). So the following
queries really concern details regarding the principal
differences between the various approaches. First a lit-
tle more background on Fraser’s method.

Since the paper by Barndorff-Nielsen (1986) the
main problem in deriving highly asymptotically accu-
rate p values has been to construct an (asymptotic)
ancillary statistic that, jointly with the maximum like-
lihood estimate, is sufficient and for which we can
calculate the local changes of the likelihood function
and its first derivative with an infinitesimal change of

the mganlum “bke“hOOd estrl]mater,] npt cIJnIy ?t thefoE- Fraser argues that the pivaigy;, ) should be kept
served value, but at any (hypothetical) value of the . noiant (at least locally) along any level surface of

estimate. _Qu!te remarkably Fhese so-called sample—, . conditioning statistic as a function of the maximum
space derivatives are all that is needed to calculate thqikelihood estimated, when this is plugged into the
highly accurate approximations to the tail probabilities pivot; see the equation defining the tangent vectors
that constitute the values. Let me contrast Fraser’s v1 and vy just above (4.12) and recall the analogy
way of achieving this with my own (Skovgaard, 1996), \yith the location models. This has some good sides:
starting with the latter. Since we need only the local This pivot is a natural choice which is close to the
change of the likelihood function, it suffices to know eaqyrement process in a heuristic sense and its use
the derivatives of a sufficient statistic. A representation i, yefine the tangent directions is an excellent way to
of this is the (infinite) number of derivatives of the og-  15ke use of a pivot, after many years of less successful
likelihood function at that point, the first one being the attempts going back to Fisher's arguments in favor
score function, which vanishes at that point, of course. 4 fiducial inference. The method also raises some
The derivative of the score function with respect to questions, however.

the estimate at this point is necessarily the observed Tne first question is a bit technical and has to do
Fisher information. Now the changes of all derivatives ith the existence of the ancillary statistic and whether
of higher order may be approximated by regressingjt agrees with the statisti¢F (y1; 0), ..., F(ya: 6)),

them on the score statistic. This gives all information considering only the case of independent replications.
that is needed and provides an explicit solution. FraserThjs statistic formally gives the tangent directions
deliberately discards the fact that local changes are re-ghove (4.12) and Frasers subsequent reference to
quired only for a sufficient statistic and describes in- Fraser and Reid (2001) suggests that the same tangent
stead the local changes of the entire set of observationsyectors arise from their approximate ancillary. Hence

While this, at first, may seem unnecessarily compli- | deduce that their approximate ancillary statistic is
cated, it does make natural constructions more readilythe vector of quantiles in the estimated distribution,

available, essentially by keeping the quantiles in the or am | wrong about that? If so, my problem is
estimated distribution fixed, as he shows in the presentthen whether conditioning on this statistic may not
paper and as discussed below. Furthermore, since a scexclude certain parameter values or even, in some
lution is obtained this way, the construction of ancil- cases, exclude all but one, such that the conditional
lary directions on the (bigger) entire observation space distribution is degenerate. In other words, the set of
can hardly be said to be a drawback. While my sugges-observation vectors that gives rise to a certain value of
tion is fairly easy and general, Fraser’s is undoubtedly the maximum likelihood estimate, say, corresponds
better suited for location models and some other groupto a certain set of quantile vectors, but this will not in
models. It should be noted, though, that for group mod- general be the same set of quantiles that correspond to
els the local changes of the log-likelihood are also another estimaté,, | suspect. So what is approximate
fairly easily written down exactly given the maximal here, the ancillarity of the statistic, the tangent vectors
invariant ancillary statistic, thus providing the same ex- of the approximate ancillary statistic, or the existence
act sample space derivatives as obtained by Fraser.  of the statistic so that it is merely a technical device for
There is little doubt that Fraser's suggestion of obtaining unconditionap values of high quality?
sample-space derivatives, [see, e.g., (4.12)], in combi- The second question regards Fraser’s claim that we
nation with the Lugannani—Rice approximation (3.14) hardly need sufficiency (Section 3.6 and Appendix A),
or the Barndorff-Nielsen approximation (3.15), pro- because whatever we may achieve by sufficiency re-
vides highly accurate values for a large number of ductions may also be achieved by conditioning. In the
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same vein one might argue that conditiopalalues that it may and that we do not quite agree whether
are superfluous because they are also valid uncondithis is an advantage. | highly respect the viewpoint
tionally and may therefore be obtained without condi- that aspects other than the model should be taken into
tioning. | do not agree with either of these arguments: account (e.g., robustness considerations), but whether
sufficiencyrestrictsthe choice of method in a way that such aspects should enter the model-based part of the
conditioning does not and conditioning restricts the inference directly is another matter.
permissible results compared to unconditional meth- Let me conclude by emphasizing that the foregoing
ods, and such restrictions may be useful because thegomments are of little concern compared with the
guide our method of inference. excellent results obtained. | congratulate Fraser for
This leads to the third question: Does thevalue as  achieving these results along the lines of conditioning
obtained here by Fraser depend on the data in othe@nd ancillarity that he has stubbornly pursued since the
ways than through the sufficient statistic? | suspect early days of his scientific career.

Comment

Rudolf Beran

The concepts of sufficiency, ancillarity and condi- made this approach the technology of choice. Thus,
tional inference are parts of a classical statistical theorythe hotly debated statistical theories formulated in
that treats data as a random sample from a probabil-Wald’s (1950)Statistical Decision Functions, Fisher’s
ity model with relatively few parameters. In discussing (1956)3tatistical Methods and Scientific Inferenceand
Don Fraser’s paper, | will consider the place of these Savage’s (1954The Foundations of Satistics shared

and related concepts in the evolution of statistics. a common reliance on relatively simple probability
models.
1. THE EVOLUTION OF STATISTICAL THEORY After 1960, results on weak convergence of proba-

Reliance on probability theory in statistical writing Pility measures provided the technology for major de-
spans the spectrum from none to fixed effects models toV€lopment of asymptotic theory in statistics. Notable
random effects models to Bayesian reasoning. One fac-achievements by 1970 included (a) the clarification of
tor is the extent to which an author regards probability What is meant by asymptotic optimality, (b) the under-
as a feature of the natural world. For a Bayesian, prob-Standing, through Le Cam’s work, that risks in sim-
ability measures the strength of opinions, which are Ple parametric models can approximate risks in certain
modelled by a sigma algebra. At the other end of the more general models, (c) the discovery of supereffi-
spectrum, illustrated by Tukey’s (197 Bxploratory cient estimators whose asymptotic risk undercuts the
Data Analysis, data-analytic algorithms are basic real- information bound on sets of Lebesgue measure zero
ity and probability models are hypothetical constructs. and (d) the remarkable discovery, through the James—

A second factor is the technological environment Stein estimator, that superefficient estimators for pa-
in which an author is writing. Until the late 1950s, rameters of sufficiently high dimension can dominate
the tools available to a statistician consisted of mathe-classical estimators globally. These findings set the
matics, logic, mechanical calculators and simple com- stage for the vigorous subsequent development of ro-
puters. Because calculation was laborious, writers onbustness, of nonparametrics and of biased estimators
statistical theory thought in terms of virtual data gov- in models with many or an infinite number of para-
erned by probability models that involved relatively meters. Theoretical study of Efron’s (1979) bootstrap
few parameters. Indeed, the great intellectual advancesenefited from the evolution in asymptotic theory. In
made in probability theory during the twentieth century turn, the bootstrap and iterated bootstrap provided in-

tuitive algorithms for realizing in statistical practice the

Rudolf Beran is Professor, Department of Statistics, benefits of erudite asymptotic improvements.
University of California, Davis, California 95616, Mathematical logicians investigating the notion of

USA (e-mail: beran@wald.ucdavis.edu). proof had greatly refined the concept of algorithm by
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mid-century (cf. Berlinksi, 2000). Through the tech- If our goal as a field is to use data to solve

nological development of digital computers, program- problems, then we need to move away from

ming languages, video displays, printers and numerical exclusive dependence on data models and
linear algebra, stable computational algorithms en- adopt a more diverse set of tools.

riched the statistician’s toolbox. In consequence, ) ) ) )
a wider range of statistical procedures, numerical andiS paper emphasized algorithmic modeling tech-
graphical, became feasible. Case studies and experiliques that treat the data mechanism as essentially un-
ments with artificial data offered nonprobabilistic ways Known.
to understand the performance of statistical proce- HOw are data-analytic algorithms to be implemen-
dures. The fundamental distinctions among data, prob-ted? One answer, offered by the Omega-hat project
ability model, psadorandom numbers and algorithm (www.omegahat.org), focuses on open-source devel-
returned to prominence. The extent to which determin- opment of the next generation of statistical comput-
istic pseudorandom sequences can imitate properties ofng paradigms, environments and software. The project
random variables received more attention (cf. Knuth, provides an optionally typed language that extends
1969). It became clear once again that data are notboth S and JAVA, and a customizable, multithreaded
certifiably random. Computing technology provided a interpreter; it encourages participation by those want-
new environment in which to extend and reconsider ing to extend computing capabilities in one of the
statistical ideas developed with probability technology. existing languages for statistical computing, by those
The bootstrap is a case in point. interested in distributed or web-based statistical soft-
From our present technological standpoint, statistics ware and by those interested in the design of new sta-
is the development, study and implementation of algo- tistical languages.
rithms for data analysis. This answer recognizes that software provides a
How is a data-analytic algorithmto be understood?  — hoerful new medium for expressing statistical ideas.
One answer, offered by Brillinger and Tukey (1984), The Introduction to McLuhan’s (1964) bodknder-

addressed the gap between statistical theory and dataétandi ng Media: The Extensions of Man began:
analytic techniques: : :
In a culture like ours, long accustomed to

splitting and dividing all things as a matter
of control, it is sometimes a bit of a shock
to be reminded, in operational and practical
fact, that the medium is the message.

If our techniques have no hypotheses, what
then do they have? How is our understand-
ing of their behavior to be described?

As a generalization of an umbra within
a penumbra. Here there are at least three

successively larger regions, namely: In other words, the nature of a medium has at least

1. An inner core of proven quality (usually as much effect on human activity as does its content,
quite unrealistically narrow). . . which itself is just an older medium that is being

2. A middle-sized region of understanding, expressed through the newer medium. In this manner,
where we have a reasonable grasp of our leading edge statistical computing environments stand
technique’s performance. . to influence core ideas about statistics.

3. A third region, often much larger than Fraser’s paper examines pros and cons of conditional
the other two, in which the techniques versus unconditional inference in classical probabil-
will be used.. .. ity models for data where the parameter of interest

For example, the inner core of understanding could be!S 0ne-dimensional. His examples indicate that these
an analysis under a simple probability model: the mid- @PProaches can yield procedures with differing prob-

dle core could be asymptotic analyses and simulations@bilistic properties. A diversity of answers is to be
under substantially more general probability models €xpected once we recognize the difference between
together with salient case studies; and the outer coredata and probability model. In my discussion, I will
would contain data analyses that use the techniques. Irfonsider (a) the construction of simultaneous confi-
reality, data consist of scientific and other contexts asdence sets, a problem that intrinsically has multiple
much as numerical observations. answers with different properties, and (b) estimation
For some statistical problems, such as classificationof the means in a two-way layout with one observa-
of handwritten digits, probability models may not gen- tion per combination of factor levels, a typical mul-
erate effective procedures. Breiman (2001) observed: tiparametric problem where neither sufficiency nor
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ancillarity is of immediate help. | will argue that, Property (1) is calledbalance. It reflects the wish that
within the statistical environment created through tech- the confidence sef treat the logically similar com-
nological advances in asymptotic theory and comput- ponentsz, in an even-handed way while controlling
ing, the role of ancillarity and sufficiency is narrow. the simultaneous coverage probability (2). The balance
Narrow is not the same as none. For example, constraintis a cousin to the equal conditional coverage
Hajek's convolution theorem in locally asymptoti- probability condition treated in Fraser's second sec-
cally normal families has a form in which asymp- tion.
totic sufficiency, asymptotic ancillarity and Basu’s ~ One general approach starts withreot R, , =
theorem suggest a heuristic interpretation of necessary®».«(X», t,) for each component,. The root may
and sufficient conditions for consistency of paramet- OF may not be an exact pivot. L&}, and 7 denote,
ric bootstrap distributions. The interested reader is re-respectively, the ranges of = 7,(6) andt = T'(6).
ferred to Beran (1997) and, for a tangentially related Every pointing” can be written in the component form

nonparametric discussion, to van Zwet and van Zwet? = {f.:u € U}. The simultaneous confidence sets to be
(1999). considered are

B) C={teT Ry uw(Xn, ty) <cu(B), YueU}.

The technical problem is to devise critical values

Coverage probality under aprobability model does  {¢,(B)} so that, to a satisfactory approximatiaf,is
not, by itself, determine a confidence set. A further balanced and has simultaneous coverage probapility
design goal, whether minimum expected geometrical for the {z,,}.
size or equal conditional coverage probabilities, is Let H, ,(-,0) and H,(-,#) denote the left-continu-
needed to construct the confidence set. Geometricabus cumulative distribution functions (c.d.f.s) &f, ,,
size may be of interest if the confidence set is to and of sup.y H,..(Rn.u,0), respectively. If6 were
serve as a set-valued estimator of the parameter. Equaknown and the two c.d.f.'s just defined were continuous
conditional coverage probabilities may be of interest in their first arguments, an oracle choice of critical
if the conditioning variable reflects a real feature in values for the component confidence sets would be
the data. An experienced statistician selecting a data<,(8) = 1[H 1(8,0),0]. The oracle component
analytic algorithm will consider the context, and aims confidence set
of the analysis as well as probability models. _ - .

The construction of simultaneous confidence sets (4) Cou = At € Tu? R (X, 1) < cu(P)}
has raised issues analogous to those in Fraser’s second ={ty €Ty Hyy(Ryy,0) < Hn‘l(ﬂ, 0)}
section. Consider a statistical model in which a sam-

ple X,, of size_n has joint probability distributiorPg,,?, simultaneous confidence s€t, defined through (3),
whereg € © is unknown. The parameter spaeis has coverage probabilityy for ¢ by definition of
an open subset of a metric space, whether of finite ory H,(-,6). In historically influential special cases, this

infinite dimension. Of interest is the parametric func- q4c1e construction can be carried out because neither
tion t = T(0), whereT is a specified function om. H,,., nor H, depends on the unknowh

Suppose that hascomponents {7, = 7,(0):u € U},
U being a metric space, which jointly determineFor EXAMPLE 1. Suppose thaX,, has aN (Ay, o21,)
eachu, let C, denote a confidence set for the com- distribution, where the vectar is p x 1 and the ma-
ponentr,. By simultaneously asserting the confidence trix A has rankp. The unknown parametér= (y, o?)
sets{C, :u € U}, we obtain a simultaneous confidence IS estimated by, = (u, 6,2) from least squares theory.
setC for the componentsr,}. Suppose that the root

If the co.m.ponent$ru}' are deemed logically similar, (5) Ruw = |t/ (Pn — V) /6 s
the statistician may wish to construct the confidence

2. SIMULTANEOUS CONFIDENCE SETS

has coverage probabilit&!,;l(ﬂ, 0) for z,. The oracle

sets{C,} in such a way that where u is a p-dimensional vector and?, =
_ u'(A'A)~Lu AZ . Theroot§R, ,} are |dent|callyd|str|b—
1) PoulCu > y]isthe sam&/u e U uted, each havmg a distribution, folded over at the

origin, withn — p degrees of freedom.
Suppose thal/ is a subspace ak? of dimensiory.
(2) PonlCuoty, YueU]= Py,lC>1]=8. Then sup.y R, is a continuous pivot (cf. Miller,

and
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1966, Chapter 2, Section 2). In this instance, the The discussion in this section illustrates how ad-
oracle balanced simultaneous confidence set definedrances in asymptotic and computer technology have
by (3) and (4) coincides with Scheffé’s simultaneous given statisticians the ability to explore beyond the
confidence intervals for the linear combinatiqa$y : statistical principles of earlier eras, principles whose
uelU}. formulation captures, as in amber, the technological

EXAMPLE 2. Specializing to a balanced one-way environment of their times.

layout, suppose thal/ consists of all pairwise con-

trasts. The parameter is just the vector of means 3. MULTIPARAMETRIC TWO-WAY LAYOUTS

in this case of 'Fhe linear model. Then gup Ry, is Consider a high-dimensional two-way layout with

a continuous pivot (cf. Miller, 1966, Chapter 2, Sec- one observation per combination of factor levels.
tion 1). In this instance, the oracle balanced simulta- Factor k has p; levels {n;:1 < j < pi}, which
neous confidence set defined by (3) and (4) coincidesmay be nominal or ordinal. Such a two-way layout
pairwise differences in means. images and gene chips. Subscripting is arranged so

The exact pivots used by Tukey and Scheffé in con- that, for an ordinal factor, the factor levels are a strictly
structing their respective balanced simultaneous confi-increasing function of subscript. A simple probability
dence intervals do not exist in most probability models. model asserts that
However, bootstrap techniques enable more general( )
construction of simultaneous confidence sets that be-
have asymptotically like oracle simultaneous confi- where the{y;;} are the observationss;; = (1, t2;)
dence sets. Suppose thigtis a consistent estimator and the errorge;; } are independent, identically distrib-
of 6. Replacingd by 6, in the oracle critical values uted N(0, o2) random variables. The functiom and
that appear in (4) yields bootstrap simultaneous confi- the variances2 are unknown. A basic problem is to
dence sets for thér,}. A Monte Carlo approximation  estimate the mearisz;;} ando?.
to the bootstrap critical values requires only one round  For the means in model (6), the minimum variance
of bootstrap sampling. Computation of the supremum unbiased (MVU) estimator and the minimum quadratic
over U may require further approximations when the risk location equivariant estimator both coincide with
cardinality ofU is not finite. In practice, the case of a the raw data. This estimator is unacceptable in contexts
finite number of components, } is both approachable  such as image processing or estimation of response sur-
and important. Theorem 4.1 in Beran (1988) provides faces. Indeed, Stein (1956) showed that the MVU is
sufficient conditions under which the bootstrap simul- jnadmissible under quadratic loss whenever the num-
taneous confidence set is asymptotically balanced ancher of factor-level combinations = p1p» exceeds 2.
has asymptotic overall coverage probabifity Neither reduction by sufficiency nor by ancillarity sug-

The balance condition (1) on the simultaneous con- gests a satisfactory estimator of the means in model (6).
fidence sets is a design element that can be modifieds partial exception to this claim holds for the one-way
at will. Technically speaking, we could seek speci- |ayout with nominal factor levels, but does not handle
fied proportions among the componentwise coveragegrdinal factor levels (cf. Beran, 1996).
probabilities. (I am not aware of a problem where this  \ynat does work is regularization, the use of a
would be useful.) The Tukey and Scheffé exact con- ¢ynstrained fit to the means that trades bias for variance
structions and, more generally, the bootstrap construc-g, a5 1o achieve lower risk in estimating the means
tion are readily modified to handle this design goal. Qn of the two-way layout. Regularization is an estimation
the other hand, balance has not been found compelllngstra,[egy for models that have many or an infinite
in situations where the componerits} are not logi-  ;mper of unknown parameters—models that play a
cally comparable. prominent role in modern statistics. A regularized fit is

EXAMPLE 3. Given an independent identically typically constructed in three stages. First, we devise
distributed sample from th¥ (u, o2) distribution, it is a candidate class of constrained mean estimators that
easy to construct a balanced simultaneous confidencéndividually expresses competing prior notions about
set of coverage probability for the pair(u, o2). How- the unknown means. Second, we estimate the risk of
ever, this is not a popular procedure, no doubt becauseeach candidate estimator under a general model that
the parameterg ando 2 are logically dissimilar. doesnot assume any of the prior notions in step one.

vij=mij+¢&j, 1<i=<pi, 1<j=p>,
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Third, we define the regularized fit to be a candidate
fit that minimizes estimated risk or a related criterion.
This regularized fit may be interpreted as the trend
discernible in the noisy observations.

In the two-way layout, ley denote thep x 1 vector
obtained by ordering the observatiops;} in mirror
dictionary order: The first subscript runs faster than the
second subscript. Let denote the similarly vectorized
means{m;;}. Model (6) asserts that the distribution
of y is N(m,a2I,). Fork = 1,2, define thep; x 1
vectoruy and thep, x p; matricesJy, Hy by

we=pr A1, 1),
(7) Je = uguy,
H =1, — J.

For each k, the symmetric idempotent matrices
Jr and H; have rank (or trace) 1 ang, — 1, respec-
tively. They are thus orthogonal projections that de-
composeRr’x into two mutually orthogonal subspaces
ofdimensions 1 angy — 1. The identity/,, = J; + Hy
implies that

m=,,®I,)m
= Pom + Pim + Pom + Piom,

(8)

wherePg= /o ® J1, P1= /1 Q® Hy, P,= Hy,® J; and
P12 = H> ® H,. Equation (8) gives, in projection form,
the analysis of variance (ANOVA) decomposition of a
complete two-way layout of means into overall mean,
main effects and interactions.

Certain penalized least squares criteria generate a

class of candidate estimators by restricting, in varying
degree, the ANOVA decomposition. Let; be any
matrix with p; columns such thadu; = 0. Examples
of such annihilator matrices areA, = Hj, suitable
when factork is nominal, andA; equal to thedth
difference matrix, suitable when factar is ordinal
with equally spaced factor levels;}. Let By = A} A
and defineQ1 = o ® B1, Q2= B> ® J; and Q12 =
B> ® By. Let A = {A1, Ao} and letv = (v1, v2, v12)
be any vector in[O, o0]3. The candidate penalized
least squares (PLS) estimator ofn is mp g(v, A) =
argmin,, S(m, v, A), where

S(m,v, A)
9 ) )
=ly—m|*+m' (V101 +v202+v12012)m.

The symmetric matrixB; has spectral decomposi-
tion UxA U, where A = diag{As;} is diagonal with
0= Ak1 < A2 < -+ < Agp, and the eigenvector ma-
trix Uy is orthonormal with first column equal two.

D.A. S. FRASER

Let fi;(v) = [L+ viAyez) + voer o) + ViAo 7L,
wheree;1 = 1 and all othefe,;} vanish. Vectorize the
{fij(»)} in mirror dictionary order to obtain the vector
f(v) and letz = (U2 ® Up)'y. It follows readily that

the candidate PLS estimator is the shrinkage estimator

(10)  mpLs(v, A) = (U2 ® Uy) diag{ f (v)}z.

Let & = (U ® Uy)’'m and let avéh) denote the av-
erage of the components of vectorThe normalized
quadratic risk of the (usually biased) candidate estima-
tor (10) is

pLE|mpLs(v, A) —m|?

= avd 2102 + (1— ()%

The operations inside the average are performed com-
ponentwise, as in the S language.

Having devised a variance estimat®f by some
form of pooling, say, we may estimate the risk (11) by

F(A,v)

=avd 2162+ (1— F(1))3(2 - 62)].

This is just Stein’s unbiased risk estimator witt?
replaced by62. For a specified clas# of annihilator
pairs A, we define theadaptive PLS estimator ofn to

be the candidate PLS estimator with smallest estimated
risk:

(11)

(12)

mpLs = ripLs(D, A)
(13) . .
where(v, A) =  argmin

(A,v)eAX[0,00]3

F(A,v).

This adaptive estimator is an empirical approximation
to the oracle candidate PLS estimator that minimizes
the unknown risk (11) ovefA, v) € A x [0, 0o]°.
Computational algorithms, case studies, and multi-
parametric asymptotics fofip s were developed by
Beran (2002). Under model (6), subject to restrictions
on the richness of the annihilator clagsand to as-
sumptions that ensure consistencyédt, the risk of
the adaptive PLS estimat@¥p_s converges to that of
the oracle candidate estimator as the number of factor-
level combinations tends to infinity. By construction,
this limiting risk cannot exceed that of the MVU esti-
mator. In case studies, it is not unusual for the adap-
tive PLS estimator to reduce risk by a factor of 3 or
more over that of the MVU estimator. For two-way lay-
outs with nominal factors, the adaptive PLS estimator
generated byA; = H; essentially coincides with the
multiple shrinkage estimator studied by Stein (1966).
For two-way layouts with ordinal factors, the adaptive
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PLS estimator based on local polynomial annihilators nonparametric models. The role of sufficiency and
can be strikingly more efficient than the MVU estima- ancillarity has been inconsequential in this substantial
tor and is akin to spline fits in two-way functional data portion of modern statistics.
analysis.
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1. INTRODUCTION inference information from a model-with-data investi-

M _ d thank h . ; gation; see Sections 2 and 3.
y appreciation and thanks go to the reviewers for = pq, g jjer enquires concerning predictive inference

their thou_g_htful _and careful (_:omment_s on a_mcillaries and the extent to which the conditioning methods
and condltlgqal mference._ Itis a _spec!al deh_ght to be .an pe applied. Clearly they can be applied, and
able to participate further in ongoing discussion of the one direction involves treating a probability for a
topics. future observation as just a parameter of interest
As part of this, | express my sincere thanks to the for the original model and then proceeding with the
Editor, George Casella, for advice on the final versions conditioning approach.
of the paper and for arranging discussants who have a Ron also examines in detail how the sensitivity
wide spectrum of views. | vgh also to acknowledge the  directions approach works in comparison with some
very large contributions of the previous Editor, Leon alternative ancillary methods. He does find that they
Gleser, for his encouragement over many decades tauncover familiar ancillaries, thus allowing a more
bring to written form an examination of ancillaries and predictable and mechanical access to the methods
conditional inference; indeed his support stems from based on such ancillaries. Of course, in addition, the
his days as a graduate student at Stanford, where | hagensitivity approach provides an easy and direct access
the good fortune and opportunity to argue closely with t0 the new high accuracy approximation methods,
him. which are thus available quite generally for wide areas
The three discussants express very different views©f application. , _ _
with very little overlap of the points they raise. Rudy € then reports on a simulation to compare various

Beran expresses the view that “statistics is the develop-mhethgOIS for a sim]E)Ie exglonen:]ial example Iantlj f@nds
ment, study and implementation of algorithms for data :Nat ft. Zytﬁomﬁare av;a;la} thW'tt. a? e)iﬁc'( ca (agt_atlor;.
analysis.” While | fully share Rudy’s enthusiasm for ¢ find that the exact distribution for th€ conditiona

. o .._._case can be examined directly and present simulation
such data algorithms and their importance, | hesitate

L .- “results that show the new methods are even closer to
on such a catholic view that the whole of statistics is

. o S the truth than Ron’s calculations suggest; see Sections
algorithms. Indeed the claim is not dissimilar to that 9¢

- . . . 4 and 5.
of decision theory in the mid-twentieth century, that Ib Skovgaard notes the widespread lack of profes-
statistics is just deductive behavior or the application

S ) ; sional statistical approval for conditioning and that, de-
of decision rules: just change “data algorithm” to “de- gpjte this, conditioning is in fact frequently used in
cision algorithm.” The escape from that decision the- practice. He provides a persuasive example. While he
ory philosophy is only partial at best and perhaps an does not directly address the stigmata connected with
overemphasis on data algorithms would assist the esconditioning or the social origins of the stigmata, he
cape. Surely there is a large place for determining whatdoes speak positively of many aspects of condition-
is known in any context of interest and for not being ing, and indeed asks whether or how a conditioning
pressed into such extreme discipline directions. Indeedimperative might be derived from some optimality ap-
it is now possible in some generality to report the total proach. He then comments on aspects of conditioning,
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and raises insightful and serious questions about manyerror distribution, everything factors into independent
aspects of the recommended methodology; see Secnormal pieces, each addressing a different orthogonal
tions 6-9. Section 10 then provides a brief overview. parameter or addressing pure error with mean zero: the
simplicity of the familiar analysis of variance context!
2. STATISTICS IS ... ALGORITHMS FOR The examples are to illustrate how to repackage the
DATA ANALYSIS full inference information to focus on particular inter-
Data-analysis algorithms are undoubtedly making est paramgters. This is of course an importe_mt area and
major contributions to statistical methods and will con- ©n€ to which Rudy has made strong contributions. It
tinue to do so, often in areas neglected or underexam4dS also one that the paper addresses, for scalar parame-
ined by traditional mainstream statistics. However, the [€rS; see Fraser (2003) for more general cases. How-
suggestion that they form all of statistics seems more €Ver, neither sufficiency nor ancillarity is concerned
a measure of the enthusiasm and optimism of those in-with this information repackaging. If the examples had
volved. In particular, the implied suggestion that sta- departed from the over simple normal, then ancillar-
tistical models and data have largely been supercededty Would play a major role, as described in the paper.
by the algorithms neglects immense important areas OfTO ignore the then available structure and default to
statistics. Consider the use of many generalized linearmarginal methods is to blatently throw away the well
models or the analysis of categorical data arrays whichdefined information. Of course the repackaging is still
just now are amenable to the recent higher-order like- needed, but you address it from what you know.
lihood methods. Would you want the possible benefits In the paper a prominent theme concerning suffi-
of a new drug therapy to be evaluated by an algorithm?ciency is that in broad generality it is not needed for
Rudy provides four examples that illustrate an statistical analysis and, indeed, that it has lulled the
“experienced statistician selecting a data-analytic algo-theoretical side of statistics into complacency so that
rithm....” All four examples involve normality with  effective alternatives are not discussed or investigated.
independent errors and common variance, a very speSo with regard to sufficiency, | fully support Rudy’s
cialized textbook-type formulation. All yield quite eas- view that it is not needed, and indeed go further and
ily what can be called a presentation of the total suggest that its widespread acceptance has been seri-
inference information. What Rudy presents are innova- ously damaging to statistics.
tive ways to repackage this total inference information ~ What then ancillarity? For such normal examples an-
for specific interests or purposes, something to which cillarity works, but can be ignored because with simple
he has made substantial contributions. normal error everything factors into independent pieces
The examples could at least have involved nonnor- as described above. Such cases do not well represent
mality. We all acknowlege that data rarely come to us real cases, but we stick with them for no obvious good
as if from the skinny-tailed normal. Then if the analysis reasons beyond the methodological simplicity.
is based on the nonnormal case, we would find that an-  Rudy makes frequent references to optimality. Op-
ciIIary inference procedures are needed. Indeed theSQ|ma||ty has of course a strong appeaL Express the
alternatives are the focus of the paper and are availablejesired properties in the form of an optimality crite-
in the literature; for a range of examples in the general rion together with the related modeling, and we have
regression context, see Fraser, Wong and Wu (1999). 3 mathematical problem that is often very challenging
~ Thisis not to say that repackaging the total inference anq an obtained solution has all the stature of optimal-
mforr_natlo_n for s_pe_cmc purposes in not |mp_ortan'§; it ity. However, as Cox (1958) mentioned rather gently,
certainly is, but it is secondary to the considerations «yin (respect) to certain. . long-run properties, the
here. unconditional (procedure) may be in order, although
it may be doubted whether the specification of de-
sired properties is. . very sensible.” Put more bluntly,
Rudy notes, “The role of sufficiency and ancillarity unconditional analysis allows a trade-off between the
has been inconsequential in this substantial portion ofknown case you have in hand and other cases that
modern statistics” and then discusses the four examplesnight have occurred but did not, thus allowing one to
mentioned above. All the examples have independentoptimize the chosen optimality criterion over a broader
normal errors with common variance, and becausecontext at the expense of the present context. For many,
of the rotational symmetry of the composite normal the message seems lost in the medium.

3. SUFFICIENCY AND ANCILLARITY
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4. PREDICTION variables (Fraser and Reid, 2001). Another second- and

Ron discusses predictive inference and the extent toh|gher—order ancillary is that obtained from the sen-

which the conditional methods can “accommodate the sitivity directions. It yields third-order inference and
dual problem of prediction.” He mentions the use of for familiar exponential-type examples, as Ron notes,

sufficiency (Butler, 1986, 1989) to develop a pivotal 29r€es with the preceding ancill'ary. For many othere>§—
quantity to obtain inference for a future observation @MPples, however, the exponential structure is not avail-
and also the use of conditioning (Barnard, 1986) to able and yet the sens'|t|V|ty ancillary is easily accessible
develop a pivotal quantity for such purposes; some (see, e.g., Fraser, Reid and Wu, 1999; Fraser, Wong and
steps for the latter may be found in Fraser and Hag WU, 1999).

(1969, 1970). These and other methods suggested For a simple exponential model example, Ron con-
by Ron seem very promising. An alternative is to siders three methods for calculating an approximate
treat a probability for a future observation as yet p value for a particular data point: the signed like-
another parameter of the original model and follow the lihood ratio (SLR) method using approximate nor-

likelihood routes described in the paper. mality, the Skovgaard (1996) method using implicit
conditioning, and the sensitivity directions method us-
5. TRUE p VALUES ing approximate conditioning. He also obtains an exact

Ron discusses several kinds of ancillary that have P value based on the numerical integration of the dis-

been used for conditional inference, and then examined'ibution for6. _ _

them for an exponential model example. One ancillary ~ The €xample Ron uses iS2 1) exponential model

is the first-order ancillary affine ancillary (Efron and formed by y1 with an exponential distribution that
Hinkley, 1978; Barndorff-Nielsen, 1986). Another an- has rate parameter and by y, with an exponential
cillary is the second-order ancillary given by the like- distribution that has rate paramet€r. The observed
lihood ratio statistic for testing the given model in a data pointis taken to b@, 2). For testing say =1/2,
larger embedding model, often available in simple ex- the observedg value calculated using the sensitivity
amples with exponential form that allows embedding directions aproach is.R38, or 023771 to extra places.
in a saturated model; this leads to third-order infer- For variousd values(1/2, 3/4, 1,3/2, 2) Ron records
ence. An extension allows second-order inference andp values obtained by the three methods; some of these
uses a locally defined score variable coupled with di- are reproduced here in Table 1. He finds that the
rections obtained from the mean value of those scoresensitivity direction approach is closer to the exact

TABLE 1
Observed significance probability from the data point (1, 2) for testing 6, where
there are two exponential variables with rate parameters (6, expd)

Method 0.5 0.75 1 15 2
MLE
Integratior? 0.189 00689 00194 003489  Q0°120
True Q18747 009063 004336 002759 Q0376
(20) (0.00242 (0.00178 (0.00126 (0.0354)  (0.0317)
SLR
Normal 0325 Q130 00392 00%112  Q0°315
True 01610 00518 00136 00337 NA
(20) (0.0023 (0.0014 (0.0371) (0.0°12) NA
Skovgaard
Second order @59 00990 00289 003796  Q0°219
Sensitivity
Third order 023771 008641 002391 0035829 00°1404
True 024201 008691 002461 00382 NA
(20) (0.0027 (0.001% (0.0396) (0.0°18 NA

arrom Butler.
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than the Skovgaard approach or the signed likelihoodless structured view, see Fraser (1968). The details
approach. also provide yet another strong statement concerning
To obtain true values here, we resort to simulations the role and appropriateness of sufficiency. The proof
(Wong, 2003) and obtain such values to any accuracyfrom conditioning to likelihood also indicates how, in
by sampling. Accordingly withv = 100,000 repeti-  the minimalist statistical model, the nonuniqueness of
tions we find for the special data poitt, 2) that the ancillaries follows from the arbitrary lumping together
true p value is 024201 with a 2 simulation limit of sample points. Indeed this can be used to create a
0.0027. The simulategh values are obtained by con- nominal proof for quite arbitrary results (Evans, Fraser
ditionally measuring departure of data from true and and Monette, 1985, 1986).
then simulating to get the true probability position of ~ All of which points back to the minimalist statistical
the particular data point in question. For the data point model as being at the root of most of the apparent

(1,2), Table 1 records the trug value with 2 limit difficulties in statistical inference. Of course, in real
corresponding to varioug values obtained by the var- €xamples continuity and integrity of variables are
ious methods mentioned above. ImplICItly |nC|uded n mUCh the Way, as Ib nO'[eS, that

The sensitivity directions approach yields a value @ lot of c_onditi_oning is done in applications without
very close to the true, although clearly not within really noticingit. o _ _
the tight 2 simulation limits. This departure can _1hus ignore sufficiency, add continuity and integrity
be attributed to the approximation involved in the of variables as explicit par'Fsf of th_e statistical moplel,
conditioning and the very small sample size- 1. The ~ @nd be prepared to “COI’\dI'[IOI’.].WI.de|y and sensibly.
Skovgaard approach also yields a reasonabalue, As Ip notes, issues _of condltlonlng.. ”should be
but substantially farther from the true; it too could be considered more seriously in practice.” Ib also has
assessed against its own implicit way of measuring SOM€ concerns about detail which | address below.
departure of data from true, but consistent with the
conditional theme of the paper, we use the measure of
departure given by the sensitivity directions. It seems This section title is a small variation on Ib’s: just
clear in the example that the sensitivity directions replace “optimal inference” with “optimality.” Some-

7. CONDITIONING OR OPTIMALITY?

approach gives remarkable accuracy. how the term optimal inference seems to be two words
in contradiction: either you get the total inference
6. CONDITIONING IMPLIES SUFFICIENCY concerning the unknown or you do not. Perhaps you

_ . L should target getting it all, even though subsequently

Ib Skovgaard mentions that “conditioning on.  yq might package and target it on specific parame-
ancillaries is used frequently in practice, almost Un- o characteristics; recall the various examples men-
consciously” and cites a persuasive example. He alsojgneq by Rudy that deal with focussed final inference.

mentions the darker side that a “majority of the statis- | fee| skeptical generally about seeking a measure and
tical community (have) given up on the idea (of using then optimizing with respect to that measure, but here
ancillaries)” _ _ _ seeking a measure of total inference information with-
As part of this discussion he cites the nonuniquenesspt first having some understanding of total informa-

of maximal ancillaries and the well known Birnbaum tjon does seem like putting things in the wrong order.
result that the principles of sufficiency and condition- Surely you would want the inference material assem-
ing together imply the likelihood principle. What is  pled before you try to measure it numerically. How
less widely known is that the conditioning principle successful has the measuring of information been? Not
alone implies the likelihood principle (Evans, Fraser that some measures of information have not been abun-
and Monette, 1985, 1986). The details of the deriva- dantly useful and, as emphasized in the paper, the re-
tion provide key insights to the role of sufficiency in |ated use of optimization allows you to trade higher
the earlier argument to the likelihood principle: that it value in one context against a lower value in other con-
lumps together sample space points, ignoring the in-texts, so you are not presenting things as they are. Can
tegrity of the underlying variables, treating the model we expect an optimization approach then to tell us what
as just frequencies attached to unassociated points anthe total inference is in a particular context? It seems
ignoring structure other than provided by the mini- unlikely.

malist statistical model; for some recent views on this |b then describes an appealing approach that in-
issue, see McCullagh (2002), and for an earlier and volves squared error of prediction and a notion of
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relevance. This is persuasive and its development isthus enable the use of the approximation methods de-
promising, the preceding discussion notwithstanding. scribed in the preceding paragraph. How can they be
compared?
8. ASYMPTOTIC SOLUTIONS? Refering to his approach, Ib notes, “This gives all

M i hods i tistics h vedi [the] information needed and provides an explicit solu-
any inference methods in statistics have evolvedin ' o then adds, “Fraser deliberately discards the

the asymptotic context foIIowin_g patterns found Wi'_[h fact that local changes are only required for a suf-
exponential model_s, and location _and transformation ficient statistic and describes local changes [for] the
modgl;. Exponential models provide the .pat'Fern for entire set of observation.” However, “deliberately dis-
obtaining accurate values from observed likelihood cards. .. [a] fact”: What fact? That the weak likeli-
functions (Lugannani and Rice, 1980) using (3.14) and hood or sufficiency principle says one needs only to
using a Fourier inversion for distribution functions to |55\ at the sufficient statistic? Perhaps “fact” only in
advance an earlier saddlepoint inversion for density \he context of total belief in the likelihood-sufficiency
functions (Daniels, 1954). The high third-order accu- principle. A major claim of the paper is that suffi-
racy for such re_sults was then extended for scglar Pa-iency is widely an inappropriate principle: in effect
rameter and variable models from the exponential case \yorks exclusively with frequencies at data points
to the general asymptotic case: this used a technicalyit, the minimalist statistical model, and ignores con-
modification of the Wald-type ingredieqt, and was  nyity and coordinate integrity and the direct effect
implicit in Barndorff-Nielsen (1986), eXp|.ICItIn Fraser ¢ parameter change on individual measurements or
(1990) and, in alternate form (3.15), in Barndorff- cqordinates. Would this make sense for a surveyor or
Nielsen (1991). _ - _anastronomer? So rather than discarding a “fact,” there
With nuisance parameters in addition to a scalar in- js the assertion that there is not such fact and that other
terest parameter, an integration over a nuisance paragypstantial facts are being ignored.
meter distribution allows the preceding to be applied  \whatever the merits or demerits of the construction
to a scalar pivot for a scalar interest parameter (Fraserprocedures, one can of course see how the end results
and Reid, 1993; implicit in Barndorff-Nielsen, 1986). perform. For this, consider an example where multiple
Collectively this covers the case of an asymptotic ancillaries are present: a covariance matrix in normal
model with variable and parameter of the same di- sampling. A covariance matrix can have a positive
mension. From the details, particularly the construc- |gwer triangular square root and this generates a
tion of the nominal or operational parameg&?), itis  standard ancillary from the obvious transformation
seen that the third-order accuracy needs only the like-model. However, take a rotation of the coordinates and
lihood and the gradient of likelihood at the observed then apply the preceding method:; a different ancillary
data point. This is a remarkable and powerful fact with s obtained, and these are different from the ancillary
far-reaching implications for statistical methodology.  obtained from the likelihod analysis proposed by Ib,
Location and transformation models by contrast pro- which does not favor an order for the coordinates.
vide the pattern for extending thegevalue methods  The context could determine a preference, based on a
to cases with the dimension of the variable larger than choice of how you view the coordinates as measuring
that of the parameter. The mechanism involves quite the parameters, and then the other ancillaries would not
generally the use of ancillaries, exact or approximate pe appropriate. Perhaps the seemingly hidden integrity
or implicit. Exact ancillaries are widely and directly of coordinate variables is more fact than sufficiency.
available with location and transformation models; in-
deed most ancillaries have their origins in this context. 9. SOME TECHNICAL QUESTIONS
Approximate ancillaries are then developed by restrict- ,
ing attention to parameter values close to the observed ! Constant Pivots?
maximum likelihood value; for this there are different  The sensitivity directions describe what the ancillary
approaches. Ib works with the distribution of parame- looks like at the data point. These directions are
ter derivatives of the likelihood function. By contrast obtained by seeing how a changejicauses a change
the paper examine how local changes in the parame-n y for a fixed pivot, examining this coordinate by
ter affect individual coordinates; this in fact reproduces coordinate of course. Ib then suggests that this “argues
the ancillaries in the location and transformation case. that the pivots (y;, ) should be kept constant (at least
Both approaches generate approximate ancillaries andocally) along (a contour) of the conditioning statistic
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as a function of the maximum likelihood estim@te 9.3 Does the Conditional p Value Depend on Just
when this is plugged into the pivot.” He then questions the Sufficient Statistic?
whether the implied conditioning “statistic agrees with

(F(y1;0), ..., F(y.; 0))" and expresses concern that . . e )
the conditional distribution from the latter statistic ' acao[emlc. If the sufficient StatBt'? has the same
dimension as the parameter, then it is a nonissue

might be degenerate. | share Ib’s concern for this di 4 in th i the di : f 1h
statistic, but do note that in general it does not generate?S_discussed in the paper. It the dimension of the

the sensitivity directions ancillary. sufficient statistic is larger, then available procedures

Consider the simple example of the standard Sym_in the context of sufficiency include conditioning to
metric normal with center on a circle of known ra- Pring the dimension down to that of the parameter
diusp. A natural pivotis{y; — p coS), y2— p Sin(a)}, and then the discussion in the paper is applicable.

whereq is the polar angle. At a data poifty, y;) = Thus, without loss of generality, it can depend on the
(I" cosa, r Sina) it generates the Sensitivity direction sufficient Statistic, but relevant information for making

(—sina, cosa), which is tangent to the circle of ra- @ sensible choice of conditional measure of departure

dius r through the data point and is thus tangent may have been lost.

to the familiar ancillaryr for this problem. On the

other hand, the mentioned statistic is equivalent to 10. DISCUSSION
(y1 — pcosa, y2 — p Sina), which can be rewritten as
(1— p/r)(y1, y2) and is seen to be one—one equivalent
to the data point itself. As a conditioning statistic, it is
as Ib suspected degenerate.

In general, the estimated residuals or, more gener-
ally, the estimated pivots do not generate the ancillary
conditioning; the complication for that route lies in the
gradient ofd with respect to the data point.

If we do not care about sufficiency, then the question

The theme in the paper is that ancillarity and condi-
tioning lead to a wealth of highly accurate inference
procedures. For the familiar special cases that have
available ancillaries, the procedures give accurate ap-
proximations to the correspondinpgvalue, and for the
wide range of more general cases, the procedures use
natural approximate ancillaries and give again highly
accuratep values.

9.2 We Hardly Need Sufficiency It has always been my feeling that there must be

Ib questions the “claim that we hardly need suffi- logic and structure to natural processes, viewed here
ciency...” and raises several related issues. The paper@s including statistical reasoning. However, much in
shows that a method for Obtaininglavaiue from a statistics has worked from the minimalist mOdel, often
sufficient statistic can be duplicated by a conditional Using optimization to trade off a present instance
approach, so there is no need to work from a sufficientagainst other cases that might have arisen but have
statistic because the same can be duplicated otherwisghot. The related recommendation that you stand by and
Whereas a conditionap value is also a marginal act by rules suggests you have given up on finding
p value, he then “in the same vein” suggests that substance to statistical thinking and are relying on an
conditional p values would be superfluous because external decision or algorithmic approach. So certainly
they would be available without conditioning. Agreed. there was persistance in the search for structure in
However, they would not be based on the conditional the statistical context, against of course strongly held
structure that makes the departure measure sensible foviews opposing such structure. This never particularly
the particular data point of interest. bothered me and may even have supported the search.

Thus, reaffirmation for the initial claim and rejection When Ib mentions “stubbornly” it suggests overt forces
for the in-the-same-vein claim. Ib rejects both and to be resisted. | have not seen overt forces, so hardly
suggests two views, both of which | agree with: acted stubbornly. But substantial structure? Clearly

1. Sufficiency restricts the choice of method (with bad €vident.
effects).
2. Conditioning restricts the permissible results (for ACKNOWLEDGMENTS
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