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Abstract.

We are thankful to the discussants for their hard, interesting work.

The main purpose of our paper was to give reasonably sharp rates of conver-
gence for some simple examples of the Gibbs sampler. We chose examples
from expository accounts where direct use of available techniques gave prac-
tically useless answers. Careful treatment of these simple examples grew into
bivariate modeling and Lancaster families. Since bounding rates of conver-
gence is our primary focus, let us begin there.

1. RATES OF TWO COMPONENT
GIBBS SAMPLERS

Consider the beta/binomial example (with a uni-
form prior) discussed in our introduction. Some of
our students tried to use the Harris recurrence tech-
niques directly on the two component chain. The two-
component chain K goes (x,0) — (x,0") — (x,0).
To establish the drift condition: E(V(X;4+1) | X; =
x) < AV(x) + b, they chose V(x,0) = x. Then E(x’ |
(x,0)) = n”j_‘z + 747 S0 A > n”ﬁ,b = 4 work. For
the minorization condition, they used the factoriza-
tion

FL0) [ (x,0) = f1(0" | %) fo(x" 6"

with f1(- | x) the Beta(x + 1,n — x + 1) density
and f»(- | ') the Binomial(n,6’) density. Let
g®) = inf, f1(0 | x), € = fol g(0)do = zin and
q(x,0) = e_lg(H)fg(x | ). Then the minorization
condition

F(&x,0) ] (x,0))>eq(x,0) Vx,x',0,0
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is satisfied. This leads to the bound

IKS = flitv
<(1—e)’@+( all )e(1+—b + Vi(x ))
- al=r 1—2 o)
with
1+d
o= ———
1+2b+Ad
2b

For n = 100 and xo € (0, 1), they chose d = 1000,
r= ﬁ. The bound says that if we run the sampler

1033 steps, the total variation distance will be less
than 0.01.

A similarly poor rate follows from Proposition and
Example 4.1.1 of Berti et al. The point of spelling out
this example is not to make fun of anyone, but to em-
phasize how a reasonable first pass at using off the shelf
tools can lead to a useless answer. Here, despite the
fact that an explicit eigenfunction corresponding to the
largest eigenvalue was available as a choice for the drift
function V.

We are impressed and thankful to Berti et al. and
Jones and Johnson for carrying out the work to mas-
sage their bounds into a more useable form. We re-
gard the treatment of the normal example in Jones and
Johnson as particularly successful (we don’t see any
practical difference between “3 steps” and “99 steps”).
The reader who studies their argument will find clever,
nonobvious choices coupled with computer work.
Proposition 3 in Berti et al. also seems quite useful.
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They say they are playing “devils advocate.” We note
that “the devil is in the details.” We have tried their
suggestion to use “numerical evaluations” to make a
choice of d, r and B from their Proposition 3 for their
example 4.2.1. After some playing around, the best we
found is d = 4,r =0.11, B = (2, 3). Putting this into
their bound gives

1T76(x, ) — Pllty
< (0.99986)6 + (0.998497)e 2+x).

For x = 0,6 =1, this gives that 34,000 steps are re-
quired to make total variation distance smaller than
0.01. Our bounds show that seven steps are required.
We are trying to use their ideas for the three compo-
nent example with joint density f(j,6,n) = (?)Gj(l -

s —hyn
o)y*=J % It does not seem easy.

2. TWO MORE FOCUSED RESPONSES

Jones and Johnson suggest that “the existence of a
CLT is asymptotic.” We disagree. In situations such
as the present one, with control on the spectral gap,
there are non-asymptotic Berry—Esseen results for ad-
ditive functions of Markov chains. Useful references
are Mann [15] or Lezaud [14]. In situations where
one has explicit constants for geometric ergodicity, the
work of Kontoyanis and Meyn [11, 12] seems quite ex-
plicit.

At the end of their comment Berti et al. suggest that
the conditionally reducible families of Consonni and
Veronese [5] may be amenable to our explicit analyti-
cal techniques. This has recently been pushed through
for multinomial, multivariate normal and other exam-
ples in Khare and Zhou [10].

3. LANCASTER FAMILIES

Gerard Letac has given a masterful summary of this
part of our paper along with several new examples. As
anyone who studies this subject learns, fascinating new
examples “pop out of nowhere.” While our paper was
being edited, a large new class of processes with poly-
nomial eigenfunctions surfaced in the work of Bryc,
Matysiak and Wesolowski [4]. Orthogonal polynomi-
als have a hierarchy; lower ones (e.g., Hermite) be-
ing limits of higher ones (e.g., Laguerre, Charlier). At
the top of the list are the Askey—Wilson polynomials.
These have yet to appear in natural probability prob-
lems. Just below them are the very similar Al-Salem
Chihara family. These are central to the work of Bryc
et al.

Letac rightly points out that our location families are
a subclass of models suggested by Eagleson. We would
like to point out a strange anthropological feature of
this part of the world. In this age of “computational sta-
tistic,” the kind of distribution theory that Letac (and
we) enjoy so much is sometimes regarded as an old
fashioned corner of statistics. We recently fielded a
question from Susan Holmes who had trivariate count
data (668 patients with counts of number of mutations
in three regions of each patient’s HIV strain). The data
had Poisson margins and curious correlations. Because
we knew of Eagleson’s work and its extensions by
Letac [13] and Griffiths et al. [8], along with practical
implementation by Karlis and Meligkotsidou [9], we
were able to suggest simple models which made good
sense (and matched the data). The old fashioned corner
shone brightly, at least for a moment. See Rhee et al.
[16].

We would like to add one thought to Letac’s list of
three. We regard one of our major contibutions as the
use of Lancaster families for explicit determination of
rates of convergence of the Gibbs sampler. This allows
us to harness years of work by Letac and his students
along with the wonderful tools developed by the or-
thogonal polynomial community to answer simple in-
teresting questions in mathematical statistics.

4. SCANNING STRATEGIES

George Casella and Richard Levine bring a fresh per-
spective, useful literature and great new questions. We
continue the discussion in two directions.

4.1 Diagonalization for Non-Uniform
Scan Strategies

It is not necessary to use uniform coordinate choices
to diagonalize our random scan samplers. Suppose that
we choose the x-coordinate with probability o and the
6 coordinate with probability 1 — «. Using the setup
from Section 3, the corresponding random scan opera-
tor K, on L2(P) is given by

Kog(x,0) =o¢Lg(x,9)rr(0’ | ) (d6’)

+(1-a) fxgo/, 0) fo (<) (dx)

Vg e L?(P).

For 0 < k < ¢, consider K, acting on pi(x) + ugi(0)
where u satisfies

€] au(l + pru) = (1 — ) (ke + u).



198 P. DIACONIS, K. KHARE AND L. SALOFF-COSTE

The result is
a(pr(x) + Ex[qk(0")]u)
+ (1 = o) (Eg[ pr(x)] + uqx ()
=a(l + pru) pr(x) + (1 — o) (k + )i (0)
l—« u
i)
=a(l + pru)[pr(x) +uqr(©)].

The last equality follows from (1). If ¢ < oo, then for
k > ¢, Lemma A2 (Appendix) shows that
E[qr(0")] = 0 for all x. It follows that K, is diago-
nalizable with eigenvalues/eigenfunctions

—a(l +uku>[pk<x> +

1£,/(1—20)% + da(1 — )

2 9
(1= 2a) £ /(1 - 20)2 + dar(1 — @)prgrne
Pr(x) +
20t ug
-qr(@) forO0<k<c,
1—a, qr@) forc<k<oo.

In particular, the spectral gap is

1= (=202 +da(1 — )iy

7 .
Clearly, the spectral gap is maximized when o = 5
Hence, if we choose spectral gap as a measure of con-
vergence optimality, then uniformly choosing coordi-
nates is the best way. However, as we point out later
on, spectral gap is not always the most accurate crite-
rion for measuring convergence optimality, and conver-
gence of Markov chains often depends on more subtle
notions.

4.2 Comparison with Systematic Scan Strategies

The class of systematic scan strategies is frequently
used in practice and just “seems sensible.” It is hard
to prove things, or compare to random scan strategies,
especially for high-dimensional problems, because the
systematic scan chains become quite nonlocal. How-
ever, for our examples it is not difficult to analyze the
random scan chain. We give the details for the beta-
binomial case (uniform prior), but mostly everything
applies to all of the examples.

Let K [defined in (2.3)] be the operator correspond-
ing to the random scan chain. Then K = 2(P1 + P),
where

Pig(x,0) = /O ¢(x. 070 | )n(dd)) Vg e LX(P)

and
Prg(x,0)

- /x g ) F( | O)m(dx’) Vg e LA(P),

are the projection operators onto L>(m) and L? (i), re-
spectively.

PROPOSITION 1. For the beta/binomial random
scan chain (uniform prior),

1RE, — 1] >1(1 l)g
™ 3 n—+2

Vn>1,0>—-,£>1

N =

and

1Ky — fllTv
< 3o (=18

10 n+2<1+1<1 2 )l/2>ﬁ—1
n 2 2 n+2
3n

1
Vn>1,0>—-£>—.
2 4

Note that 5 + 3(I — -25)!/? =

n]ﬁ + 0(’11—2). For the systematic scan Gibbs samplers,
the distance after ¢ steps is roughly (up to small explicit
multiplicative constants) (1 — - +2)€ Hence in this
sense, the random scan chain takes twice the amount
of time as the systematic scan chain to converge to the
stationary distribution. Although one might argue that
computationally one step of the systematic scan chains
is comparable to two steps of the random scan chain,

hence they are equivalent computationally.

REMARK.

PROOF OF PROPOSITION 1. The function ¢(x,
0) = (x — ) + /n(n +2)(0 — }) is an eigenfunction
corresponding to the eigenvalue % + %, | 4 for K. Us-
ing the bound of Lemma 2.1 we have

1Ry - etz 3 (545, )Z
no 8TV = 3 n+2
(-at)
>_(1—

-3 n+2

1
Vnzl,sz,Ezl.

This shows that £ must be of order n to have a chance
of total variation convergence. We next show that this
order of steps suffice.
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For the upper bound, we expand K' using the bino-
mial theorem and use the fact that P, P, are projec-
tions, so repeated terms cancel out. Thus,

K* = (3P + Py)’
= +{(P| +2P P, + P| P, Py)
+ (P2 +2P,P1 + PP P)}.
Let K and K be the systematic scan operators defined

in Sect10n 2.1. Note that K = PPy and K = P, P;. For
L > 1 6, it follows from the work done in Section 4 that

Vn>1,602>%

_, 7 \E-1/2
K> ,— <1011 — —— ,
1R, — fllav < ( n+2)

12 2 ¢
K, o— <10({1———=]) .
&L~ Sy < 10(1- =)
The number of terms in the binomial expansion of K*
which collapse to K/ or K/ is easily seen to be (2l J_l1)
1 < j < 5. The number of terms on the binomial ex-
pansion Wh1ch collapse to K/ Pjor K/ P, is easily seen
to be (12_/.1), 0 < j < £. Note that:
1. || - llItv is convex and || - ||ITv < 1.
l/4 ()
2. By Azuma’s inequality, <e Bv>1.
3. (K Ping = fllv < ”K",ﬁ — flrv.
4. (K P2)po — fllTv < ||K,j,,9 — fliv.

Using the facts above and the binomial expansion of
(L(Py + Py))!, it follows that for € > 32

1Ko — fllTv
< 36(6—1)/8
¢ (Ehamim )i
1
+ 10 Z = [—1
j=t/4+1 2
< 387(571)/8

(vn/(n +2))/~!
+ 10 Z 2l—1

<3eU=D/8

+10 l’l+2<1 +1(1 2 )1/2)5—1
n \2 2 n+2 - O

REMARK. The calculations can be carried out for
the non-symmetric mixture o P 4+ (1 — &) P>. The mul-

tipliers of the condensed terms KJ VK, KJ P; and

K/ P; are now polynomials in o which can be given ex-
plicitly. The asymptotics of these multipliers are avail-
able using the distribution theory of the classical Wald—
Wolfowitz runs test. We omit further details since in
present examples the choice o = % seems best.

In the handful of other cases where things can be
proved, systematic scan chains are not superior to ran-
dom scan chains. One nice example involves graph col-
oring. A natural algorithm is to scan through vertices
and try a new color. If this results in a legitimate col-
oring, the change is made, else the previous coloring
is kept. Should one choose vertices at random or scan
through systematically? Dyer et al. [7] managed to find
classes of graphs where random and systematic scans
are comparable.

Similar results are found for a natural statistical
problem involving a non-uniform distribution on per-
mutations (Mallows model through Kendall’s tau). Di-
aconis and Ram [6] coupled with Benjamini et al.
[2] found random pairwise transpositions followed by
Metropolis comparable with systematically scanning
through all coordinates. The Diaconis and Ram paper
contains a literature review of scanning strategies.

A very important point made by Casella and Levine
is that asymptotic variance of a few statistics of interest
gives an important alternative notion of convergence
that can give different answers. This is an important
research area. See Bassetti and Diaconis [1] for some
first steps/tools.

Finally, we note and mildly object to equating con-
vergence rates with spectral gap. The present authors
have spent much of their careers trying to make the
point that practical convergence of Markov chains de-
pends on much subtler notions. Consider the Poisson—
Gamma example in our Proposition 4.4 with a =
o = 1. The second eigenvalue of the x-chain is % It
we just use this, we get the usual bound

. 1/ !
K =miry = [=(5)  wimmeo=(3)

This bound implies that it takes £ of order j steps to
randomize. Proposition 4.4 shows that £ of order log j
steps is the right answer. We may wonder why tuning
behaviour to a criterion (like spectral gap) tangentially
related to convergence is worthwhile. Of course, we
too have sinned in this direction; see [3].

In conclusion, we thank our discussants and editors
for their help, encouragement and good ideas. Thanks
to Susan Holmes for the Poisson example and to Guo-
giang Hu and Wai Wai Liu for help with the beta-
binomial example.
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